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Abstract. Soot particles are the most efficient light absorbing
aerosol species in the atmosphere, playing an important role
as a driver of global warming. Their climate effects strongly
depend on their mixing state, which significantly changes
their light absorbing capability and cloud condensation nu-
clei (CCN) activity. Therefore, knowledge about the mixing
state of soot and its aging mechanism becomes an important
topic in the atmospheric sciences.

The size-resolved (30–320 nm diameter) mixing state of
soot particles in polluted megacity air was measured at a sub-
urban site (Yufa) during the CAREBeijing 2006 campaign in
Beijing, using a volatility tandem differential mobility ana-
lyzer (VTDMA). Particles in this size range with non-volatile
residuals at 300◦C were considered to be soot particles. On
average, the number fraction of internally mixed soot in total
soot particles (Fin), decreased from 0.80 to 0.57 when ini-
tial Dp increased from 30 to 320 nm. Further analysis reveals
that: (1)Fin was well correlated with the aerosol hygroscopic
mixing state measured by a CCN counter. More externally
mixed soot particles were observed when particles showed
more heterogeneous features with regard to hygroscopicity.
(2) Fin had pronounced diurnal cycles. For particles in the
accumulation mode (Dp at 100–320 nm), largestFin were ob-

served at noon time, with “apparent” turnover rates (kex→in)
up to 7.8 % h−1. (3) Fin was subject to competing effects of
both aging and emissions. While aging increasesFin by con-
verting externally mixed soot particles into internally mixed
ones, emissions tend to reduceFin by emitting more fresh
and externally mixed soot particles. Similar competing ef-
fects were also found with air mass age indicators. (4) Un-
der the estimated emission intensities, actual turnover rates
of soot (kex→in) up to 20 % h−1 were derived, which showed
a pronounced diurnal cycle peaking around noon time. This
result confirms that (soot) particles are undergoing fast ag-
ing/coating with the existing high levels of condensable va-
pors in the megacity Beijing. (5) Diurnal cycles ofFin were
different between Aitken and accumulation mode particles,
which could be explained by the faster growth of smaller
Aitken mode particles into larger size bins.

To improve theFin prediction in regional/global models,
we suggest parameterizingFin by an air mass aging indica-
tor, i.e.,Fin = a + bx, wherea andb are empirical coeffi-
cients determined from observations, andx is the value of an
air mass age indicator. At the Yufa site in the North China
Plain, fitted coefficients (a, b) were determined as (0.57,
0.21), (0.47, 0.21), and (0.52, 0.0088) forx (indicators)
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as [NOz]/[NOy], [E]/[X] ([ethylbenzene]/[m,p-xylene]) and
([IM] + [OM])/[EC] ([inorganic + organic matter]/[elemental
carbon]), respectively. Such a parameterization consumes lit-
tle additional computing time, but yields a more realistic de-
scription ofFin compared with the simple treatment of soot
mixing state in regional/global models.

1 Introduction

Soot particles are generally regarded as the most efficient
light absorbing component of atmospheric aerosols (Rosen
et al., 1979; Japar et al., 1986; Horvath, 1993; Bergstrom
et al., 2007). They are produced by incomplete combustion
of fossil fuel and biomass and they consist mainly of black
or elemental carbon but may also contain some refractory
organic matter (Horvath, 1993; Smith and O’Dowd, 1996;
Burtscher et al., 2001; Novakov et al., 2003; Pöschl, 2005;
Sadezky et al., 2005; Andreae and Gelencsér, 2006; Kondo
et al., 2006, 2010; Rose et al., 2006; Frey et al., 2008; Cheng
et al., 2009; Wehner et al., 2009). In the atmospheric sci-
ence literature, the terms black carbon (BC), elemental car-
bon (EC), pyrogenic carbon are frequently used as synonyms
for soot (e.g., Kondo et al., 2006, 2009; Pöschl et al., 2010).
More discussion on this topic can be found in Andreae and
Gelencśer (2006).

Soot particles, after emission, generally undergo aging
processes by condensation (Smith et al., 1989), coagulation
(Riemer et al., 2004, and references therein), as well as ox-
idation (Ivleva et al., 2007) and cloud/fog processing; and
gradually become internally mixed (coated) with other chem-
ical compounds. Depending on their mixing state, soot par-
ticles can be classified as internally mixed (coated) or exter-
nally mixed (uncoated). The mixing state of soot particles has
a great influence on their climate effects. The light absorb-
ing capability of soot (related to its direct radiative effects)
can be enhanced by a factor of 1.5 to 3 when soot is coated
by or internally mixed with other aerosol components in-
cluding sulfate, nitrate, organics and water (Jacobson, 2000;
Lesins et al., 2002; Bond et al., 2006; Cheng et al., 2006,
2008a, b, 2009; Shiraiwa et al., 2008, 2010). Moreover, the
coating of soot particles can significantly enhance their abil-
ity to be activated as cloud condensation nuclei (CCN) (Rose
et al., 2011) and hence influence cloud formation processes
(related to their indirect radiative effects) and the removal
of soot particles from the atmosphere. For these reasons, the
mixing state is a crucial parameter for soot particles, uncer-
tainty about which has made it difficult to accurately assess
its climatic impact (Jacobson, 2001).

In global/regional climate models, the turnover rate
(kex→in) is used to describe the conversion rate of ex-
ternally mixed to internally mixed soot particles. Due to
limited knowledge and computational limits, a constant
kex→in was assumed in most studies, varying from 1.25 to

2.5 % h−1 (Cooke and Wilson, 1996; Cooke et al., 1999,
2002; Lohmann et al., 2000; Jacobson, 2001; Koch, 2001).
To obtain a more realistickex→in, several aerosol model-
ing studies have been carried out to examine quantitatively
kex→in of soot particles (Riemer et al., 2004, 2010). How-
ever, it is challenging to validate the modeling results against
atmospheric conditions, since modeling of the soot mixing
state is almost equivalent to modeling all physico-chemical
processes in the gas and aerosol phases.

Decades ago, information about the soot mixing state re-
lied on particle morphology measurements by Transmission
Electron Microscopy (Katrinak et al., 1992, 1993; Hasegawa
and Ohta, 2002). This technique does not always give reliable
information, as volatile coatings may be lost, or thin coat-
ings may not be evident. Later on, several online instruments
with high time resolution were developed, i.e., volatility
tandem differential mobility analyzer (VTDMA) (Philippin
et al., 2004), single particle soot photometer (SP2) (Stephens
et al., 2003) and aerosol time-of-flight mass spectrometer
(ATOFMS) (Moffet and Prather, 2009). Among these meth-
ods, only the VTDMA is able to detect particle smaller than
0.1 µm. Based on these online methods, several field studies
have been carried out in recent years at regional (Engler et al.,
2007), suburban (Shiraiwa et al., 2007; Cheng et al., 2009;
Wehner et al., 2009), and urban sites (Rose et al., 2006), and
by aircraft measurements (Moteki et al., 2007). The aging of
soot particles was found to be well correlated with several
air mass age indicators, e.g., ratios of C2H4 to C2H2 (Moteki
et al., 2007), 2-pentyl nitrate (2-PeONO2) to n-pentane (n-
C5H12) (Shiraiwa et al., 2007) and OC to EC (organic car-
bon/elemental carbon) (Cheng et al., 2006). Under certain
assumptions on the air mass history and OH concentrations,
rates of change ofFin (number fraction of internally mixed
soot particles) around 1 to 2.3 % h−1 were derived (Moteki
et al., 2007; Shiraiwa et al., 2007).

In the summer of 2006, measurements of the mixing state
of non-volatile particles (here taken to be “soot particles”,
see discussion in Sect. 2.2) were carried out at a suburban
site of Beijing in the North China Plain by using a VTDMA
(Cheng et al., 2009; Wehner et al., 2009). In this study, we
perform an in-depth analysis of VTDMA results, focusing
on the following topics: (1) comparison of the mixing state
of soot measured by a VTDMA and the aerosol hygroscop-
icity mixing state determined by a CCN (cloud condensation
nuclei) counter; (2) diurnal variation and evolution of soot
mixing state at different size ranges; (3) calculation ofkex→in
and the influence of emissions on it; and (4) potential param-
eterization methods.
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2 Methods

2.1 Overview of the campaign

As part of the “Campaign of Air Quality Research in Bei-
jing and Surrounding Region 2006” (CAREBeijing 2006),
air pollutants including aerosol and gases were compre-
hensively measured at a suburban site, Yufa (39.51467◦ N,
116.30533◦ E, ∼ 25 m above ground level), during the sum-
mer of 2006. The Yufa site is located in the south of Beijing,
roughly 50 km away from the urban center. One major road
passes east of the measurement site, at a distance of less than
200 m. Figure S1 (in the Supplement) shows the meteorolog-
ical conditions at the Yufa site from 15 August to 9 Septem-
ber. During this period, the averages (± one standard devia-
tion) of temperature, relative humidity (RH) and wind speed
were 26.2± 3.7◦C, 68± 17 % and 1.6± 1.4 m s−1, respec-
tively (based on 5-min resolution meteorological data, see
Supplement Fig. S1).

2.2 VTDMA measurement

A volatility tandem differential mobility analyzer (VTDMA)
(Orsini et al., 1996; Philippin et al., 2004) was used to mea-
sure the number size distributions of the non-volatile residu-
als of pre-selected mono-disperse particles that were heated
at 300◦C (7 selected particle diameters in the range of 30
to 320 nm; time resolution of 1 h for a complete cycle of 7
diameters). In the thermal chamber (i.e., at 300◦C) of the
VTDMA, the coating materials undergo volatilization leav-
ing behind the non-volatile cores. Details about the VTDMA
measurements at the Yufa site in 2006 can be found in Cheng
et al. (2009) and Wehner et al. (2009). The volatilization
results in a change of particle size, where unchanged parti-
cles indicate no coating material while big changes indicate
a large fraction of coating materials. In continental polluted
megacity air, the material of sub-micrometer particles that is
non-volatile at this temperature (i.e., 300◦C) is considered
to be mostly “soot” (Smith and O’Dowd, 1996; Burtscher
et al., 2001; Kondo et al., 2006, 2010; Rose et al., 2006;
Frey et al., 2008; Cheng et al., 2009; Wehner et al., 2009),
which consists mainly of black or elemental carbon but may
also contain some refractory organic matter (Pöschl, 2005;
Sadezky et al., 2005; Andreae and Gelencsér, 2006). Since
the VTDMA actually measures non-volatile-core containing
particles (NVP), the notation “soot (NVP)” was mostly used
instead of “soot” when referring to the VTDMA results.

In VTDMA measurements, the size distribution of non-
volatile residuals is classified into three groups according
to Dp,300◦C/Dp, where Dp is the initial diameter of the
sampled dry particles andDp,300◦C is the diameter of the
particle residual after being heated at 300◦C. Following
Wehner et al. (2009), (1) particles withDp,300◦C/Dp <

45 % were denoted as “high-volatile” and not considered
as soot particles; (2) particles with 45 %< Dp,300◦C/Dp <

82 % were denoted as “medium-volatile” and considered as
internally mixed (coated) soot particles; and (3) Particles
with 82 %< Dp,300◦C/Dp were denoted as “low-volatile”
and considered as externally mixed (uncoated) soot particles.

Fin, the number fraction of internally mixed soot particles
(among all soot-containing particles), was intensively used
for discussion in this paper and calculated as,

Fin = nin/(nin + nex) (1)

wherenin is the number concentration of internally mixed
soot (NVP) particles, andnex is the number concentration of
externally mixed soot (NVP) particles.

2.3 The turnover rate of soot particles

The turnover rate,kex→in, can be used to describe the con-
version/aging rate of the externally mixed soot to internally
mixed particles. It is defined as the rate of percentage change
of externally mixed soot particles due to conversion/aging
processes (Eq. 2).(

∂nex

∂t

)
ex→in

= −kex→innex (2)

where(∂nex/∂t)ex→in is the rate of change ofnex due to con-
version/aging processes.

In case condensation dominates the conversion,ntot, the
number concentration of total (ex + in) soot particles can be
considered as a constant. Dividing Eq. (2) byntot, we have(

∂Fin

∂t

)
ex→in

= kex→in(1− Fin) (3)

Thekex→in, however, can’t be directly solved by substitut-
ing nex or Fin obtained from field measurements into Eqs. (2)
or (3). This is because the observed changes ofnex and
Fin are subject to multiple processes in the atmosphere, in-
cluding horizontal/vertical transport (subscribed by “Tran”),
emissions (subscribed by “Emis”), deposition (subscribed by
“Depo”), condensation (subscribed by “Cond”) and coagula-
tion (subscribed by “Coag”) as in Eq. (4).

∂Fin

∂t
=

aging(ex→in)︷ ︸︸ ︷(
∂Fin

∂t

)
Cond

+

(
∂Fin

∂t

)
Coag

+

(
∂Fin

∂t

)
Tran

+

(
∂Fin

∂t

)
Emis

+

(
∂Fin

∂t

)
Depo

(4)

in whichFin could also be replaced bynex or nin.
During daytime (the focus period of this study), the con-

densation dominates the aging processes, especially for rel-
atively large particles (Jacobson, 1997; Riemer et al., 2004).
The impact of transport and deposition on the fractionFin
is also not prominent because both the internally and exter-
nally mixed soot particles undergo similar transport and de-
position processes and their ratios are likely conserved (Su
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et al., 2008; Wiedensohler et al., 2009). Therefore, we as-
sume that∂Fin/∂t is mainly controlled by the condensational
aging process (“Cond”) and emissions (“Emis”) while other
processes are supposed to be unimportant and not considered
in this study.

When the emission term in Eq. (4) is also neglected, an
“apparent” turnover rate can be determined bykex→in =

(1Fin/1t)/(1−Fin) , which attributes all variations inFin to
an “apparent” conversion process. In previous studies, “ap-
parent” kex→in of 1.3–5.8 % h−1 has been reported, corre-
sponding to(1Fin/1t) of 1.0–2.3 % h−1 andFin of 0.2–0.6
(Moteki et al., 2007; Shiraiwa et al., 2007).

2.4 CCN measurement and hygroscopicity (κ)
distribution

Size-resolved CCN efficiency spectra (activation curves)
were measured with a Droplet Measurement Technologies
continuous flow CCN counter (DMT-CCNC) coupled to
a differential mobility analyzer (DMA; TSI 3071) and a con-
densation particle counter (CPC; TSI 3762). The CCNC was
operated at a total flow rate of 0.5 l min−1 with a sheath-to-
aerosol flow ratio of 10. The effective water vapor supersat-
uration (S) was regulated by the temperature difference be-
tween the upper and lower end of the CCNC flow column
(1T ) and calibrated with ammonium sulfate aerosol as de-
scribed by Rose et al. (2008).

For each CCN measurement cycle,1T was set to 5 dif-
ferent levels (2.0–11.9 K) corresponding toS values in the
range of 0.07–0.86 %. For each1T and the respectiveS, the
diameter of the dry aerosol particles selected by the DMA
(Dp) was set to 9 different values in the range of 20–290 nm
depending on the supersaturation selected. At eachDp, the
number concentration of total aerosol particles (condensa-
tion nuclei, CN),NCN was measured with the CPC, and the
number concentration of CCN,NCCN, was measured with
the CCNC. The integration time for each measurement data
point was 30 s, the recording of a CCN efficiency spectrum
took∼ 16 min (including a 50 s adjustment time for each new
particle size and 4 min for adjustment to the next supersatu-
ration level), and the completion of a full measurement cycle
comprising CCN efficiency spectra at 5 different supersatu-
ration levels took∼85 min (including 5 min of settling time
for the changeover from highest to lowestS). For a detailed
description of CCN measurements in the campaign, see Gun-
the et al. (2011).

Size-resolved CCN efficiency spectra can be used to derive
the cumulative distribution function of particle hygroscopic-
ity, H (κ, Dp), which is defined as the number fraction of
particles with a given dry diameter,Dp, and with an effective
hygroscopicity parameter smaller than the parameterκ (Pet-
ters and Kreidenweis, 2007; Su et al., 2010). The data pair of
Dp andNCCN/NCN in a CCN spectrum can be converted to
a corresponding data pair ofκ andH (κ, Dp) by solving the

Fig. 1. Evolution of the mixing state and hygroscopicity (κ) in
the aging process. Solid lines refer to dH/dlogκ, the normalized
number distributions of particle hygroscopicity. The areas of the
pie diagrams refer to the abundance of individual chemical com-
ponents (EC: elemental carbon, Org: organics, Inorg: inorganics).
After aging, the externally mixed particles become internally mixed
(coated).

κ-Köhler model equation (refer to Eqs. (21) and (22) in Su
et al., 2010).

By fitting H(κ, Dp) with a cumulative single-mode log-
normal distribution function, the following parameters were
calculated:κg, the geometric mean ofκ in the fitted mode;
andσκ,g, the geometric standard deviation ofκ in the fitted
mode. The spread of theκ distribution, e.g.,σκ,g, reflects the
mixing state of aerosols: under internally mixed conditions,
all particles have the same composition and a uniform hy-
groscopicity mode, while under externally mixed conditions,
particles can have distinct hygroscopicity modes (see Fig. 1).

2.5 Air mass age indicator

The aging of soot particles results in a change of their mix-
ing state, i.e., conversion of externally mixed to internally
mixed soot. An aged air mass has a larger fraction of inter-
nally mixed soot than a fresh air mass. Therefore, correla-
tions can be expected between an air mass age indicator and
the soot mixing state parameter (e.g.,Fin). If such a correla-
tion is significant, the soot mixing state could be parameter-
ized by the air mass age indicators.

The age of air mass is a concept under the Lagrangian sys-
tem. Ideally, the most fresh air mass is assigned an age of
zero and its age will increase as the air mass becomes aged.
The longer the air mass travels in the atmosphere, the older
it will be. However, this does not mean that the age of an air
mass can become infinitely large as injection of fresh emis-
sions into the air mass would reduce its age.

To quantify air mass ages, several indicators have been
proposed. They are based on the fact that the aging
will change the chemical compositions of air masses. So
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Table 1.Statistics ofFin at different diameters (429 data points).

Fin 30 nm 50 nm 100 nm 150 nm 200 nm 260 nm 320 nm

Arithmetic mean 0.80 0.74 0.70 0.64 0.60 0.62 0.57
Standard deviation 0.075 0.078 0.084 0.090 0.100 0.100 0.102

parameters reflecting such changes can indicate the aging
stage. Three indicators were used in this study.

[NOz]/[NOy]

In a fresh air mass from combustion sources, NOx
(NOx=NO+ NO2) are the dominant components of NOy
(the total odd nitrogen compounds in the atmosphere). As
photochemical reactions proceed, NOx evolves to other N-
containing compounds such as HNO3 and PAN, and the ra-
tio of [NOz]/[NOy] (NOz=NOy−NOx) will increase (Parrish
et al., 1992; O’Brien et al., 1997). In this study, the nitrogen
oxides (NOx) and total reactive nitrogen (NOy) were mea-
sured using a NO-O3 chemiluminescence detector combined
with a photolytic converter and a gold tube catalytic con-
verter (Takegawa et al., 2006)

[E]/[X]

The ratios of hydrocarbons have been used as measures of
photochemical age since Calvert (1976). Different reactiv-
ities of hydrocarbons result in different removal rates and
monotonic change of their ratios in the aging process. We
used the ratio of ethylbenzene and m,p-xylene ([E]/[X]) in
this study. Ethylbenzene and m,p-xylene were measured by
an online GC-PID (gas chromatograph-photo ionization de-
tector) system, as detailed by Xie et al. (2008).

([IM ] + [OM])/[EC]

As an air mass ages, more secondary aerosol is pro-
duced, which reduces the mass fraction of soot
particles. ([IM ] + [OM])/([EC]) could hence be
used as an indicator (Cheng et al., 2006), in which
[IM ]=[NH+

4 ] + [NO−

3 ] + [SO2−

4 ] + [Cl−] (inorganic ions in
PM1 measured by aerosol mass spectrometer, AMS) and
[OM] was the organic matter mass (in PM1) determined
by AMS. An online Sunset EC/OC analyzer was used to
measure the mass concentrations of EC, [EC]. Details about
the EC/OC analyzer and AMS can be found in Takegawa
et al. (2009).

3 Results and discussion

3.1 The mixing state of soot and hygroscopicity

Table 1 summarizes statistics ofFin measurements from this
campaign. TheFin values show a decreasing trend as the par-
ticle sizeDp increases, ranging from anFin of 0.80± 0.075

Fig. 2. Comparison of aerosol hygroscopicity and soot (NVP) mix-
ing state parameters during the CAREBeijing-2006 campaign. The
parametersκg andσκ,g were calculated from the aerosol hygroscop-
icity (i.e., κ) distribution measured at supersaturationS = 0.26 %
(Su et al., 2010); andFin was determined for particles of diameters
at 100 nm by the VTDMA measurements. Note that the mean ac-
tivation diameter observed atS = 0.26 % is 85 nm (Gunthe et al.,
2011).

atDp = 30 nm toFin of 0.57± 0.102 atDp = 320 nm (arith-
metic mean± standard deviation). Figure 2 shows a compar-
ison of hourlyFin data withσκ,g (the geometric standard de-
viation in a lognormalκ distribution, as detailed in Sect. 2.4.,
and Su et al., 2010). The (1− Fin) is the number fraction of
externally mixed soot (NVP) particles. The two parameters,
σκ,g and (1−Fin), are well correlated. This means that more
externally mixed soot (NVP) particles were observed when
particles showed more heterogeneous features in their hygro-
scopicity distributions (largeσκ,g). Such consistency gives
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Fig. 3. Average diurnal variation ofFin at different size bins (30,
50, 100, 150, 200, 260, and 320 nm). Symbols represent arith-
metic mean values and error bars represent the standard deviation.
Since transport might significantly affect the evolution ofFin, days
with average wind speed>2 m s−1 (20, 22 August, 3, 4, 5, 6 and
8 September) were completely removed from the statistics.

confidence about the robustness of both parameters and the
reliability of the measuring systems.

During the CAREBeijing campaign, positive correlation
between hourlyκg andFin was also found (Fig. 2b) as a re-
sult of their concurrent increase during the aging process.
The increasedκg can be attributed to the increase of frac-
tion of inorganic matter (IM) in aerosol particles. The IM is
in general more hygroscopic and CCN-active than the rest
of the aerosol chemical species (Pöschl, 2011; Rose et al.,
2011). The increase of IM fraction leads to a corresponding
increase of the overall aerosol hygroscopicity and henceκg,
which represents an averaged hygroscopicity of aerosols (Su
et al., 2010).

3.2 Diurnal cycle of the soot mixing state

Figure 3 shows a pronounced diurnal cycle ofFin, which also
has a strong size dependence. For accumulation mode parti-
cles (i.e., 100 nm to 320 nm, Fig. 3b), similar diurnal profiles
of Fin can be found, with a maximum at∼13:00 LT (local
time) and two minimums, in the early morning∼07:00 LT
and at night∼21:00 LT, respectively. As the day progresses,
an increase inFin (08:00–13:00 LT) is observed for accumu-
lation mode particles with “apparent” turnover rates of 6.7–
7.8 % h−1.

Table 2. Correlation matrix ofFin at different diameters (429 data
points).

R 30 nm 50 nm 100 nm 150 nm 200 nm 260 nm

50 nm 0.49
100 nm −0.12 0.40
150 nm −0.09 0.25 0.86
200 nm −0.04 0.24 0.73 0.93
260 nm −0.01 0.24 0.65 0.87 0.95
320 nm 0.00 0.28 0.58 0.80 0.89 0.94

Fig. 4. Averaged diurnal variation of [NOz]/[NOy], [E]/[X] and
([IM ] + [OM])/[EC]. Symbols represent arithmetic mean values
and error bars represent the standard deviation.

In the Aitken mode, however, the variation ofFin is dif-
ferent to that in the accumulation mode (Fig. 3a). The max-
imum of Fin appears earlier at∼08:00 LT (atDp = 30 nm)
and 12:00 LT (atDp = 50 nm), and the afternoon minimum
Fin appears earlier as well. The distinct behaviors of Aitken
mode particles are shown by the correlation matrix in Ta-
ble 2, whereFin of Aitken mode particles show poor correla-
tions with the accumulation mode particles. The reasons for
such correlations will be further discussed in Sect. 3.5.

For accumulation mode particles presented in Fig. 3b,Fin
shows a peak around noon time. Such a diurnal cycle indi-
cates that ground-based measurements were subject to com-
peting effects from physico-chemical aging and the introduc-
tion of fresh emissions. While the aging increasesFin by
turning externally mixed particles into internally mixed ones,
the fresh emissions, with lowFin, tend to reduce theFin val-
ues. Similar competing effects can also be found in the diur-
nal courses of the air mass age indicators (e.g.,[NOz]/[NOy],
[E]/[X] and([IM ] + [OM])/[EC] in Fig. 4) and aerosol sin-
gle scattering albedo as reported in Garland et al. (2008,
2009).
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Fig. 5. Diurnal variation of normalized parameters: (a) emission
rates of EC,(∂[EC]/∂t)Emis, which is assumed the same as CO
emission rates in Beijing (green dashed lines); (b) EC concentra-
tions measured by an online Sunset EC/OC analyzer (red dotted
lines); and (c) ratio of emission rate to EC concentration (black
solid lines). All parameters are normalized by their diurnal means,
respectively. Shaded areas represent the time period of 08:00–
19:00 LT when vertical mixing is supposed to significantly affect
EC concentrations.

3.3 Estimation of soot emission rate

Emissions have a significant impact on the measuredFin and
the “apparent”kex→in (soot turnover rate). Before determin-
ing the actualkex→in, we need to first quantify the emissions.

The emission rate can be divided into a diurnal profile de-
scribing its relative variation and the absolute value of any
point on this profile. In this study, we adopt the diurnal profile
of CO (carbon monoxide) emissions in Beijing areas (Zhou
et al., 2010) and assume that soot emissions have a simi-
lar diurnal pattern. Then measured EC loadings are used to
estimate the absolute emission rate at certain period during
night-time. With these two kinds of information, the whole
emission profile can be quantified.

Note that the emission rate is often expressed as a flux in
mass per area per time while its impact on EC concentrations,
(∂[EC]/∂t)Emis, has a unit of mass per volume per time.
From the aspect of Eulerian grid models, the diurnal profile
(relative variation) of the emission flux and(∂[EC]/∂t)Emis
is the same while their absolute values differ by a factor of
the grid height.

Figure 5 shows the diurnal profile of the emission rate
(∂[EC]/∂t)Emis used in this study. To estimate its absolute
values, we tried to find a time period when the concentra-
tion variation is dominated by emissions, i.e.,∂[EC]/∂t ≈

(∂[EC]/∂t)Emis. The EC concentration is also shown in
Fig. 5. It is clear that [EC] is not always increasing though
(∂[EC]/∂t)Emis is always positive. This is because transport
plays an important role on the diurnal variation of [EC].

To minimize the impact of transport and obtain an optimal
estimate on absolute values of(∂[EC]/∂t)Emis, we take the
following criteria, eliminating days with average wind speed
>2 m s−1 (20, 22 August, 3, 4, 5, 6 and 8 September), ex-
cluding time periods with strong vertical mixing (from 08:00
to 19:00 LT), and choosing periods with largest ratio of nor-
malized(∂[EC]/∂t)Emis to [EC] (at 20:00 LT). The reason
for choosing low wind speeds and night-time periods is to
minimize the impact of horizontal and vertical transport pro-
cesses on [EC]. Large ratios of(∂[EC]/∂t)Emis/[EC] ensures
that the emission term dominates the variation of [EC].

Finally, 1[EC]/1t at 20:00 (∼0.89 µg m−3 h−1) was
taken as an optimal estimation of(∂[EC]/∂t)Emis at 20:00. It
was then used to calculate(∂[EC]/∂t)Emis for the rest of the
day by applying the diurnal profile in Fig. 5. Table 3 summa-
rizes the diurnal variation of the measured [EC] and the cal-
culated(∂[EC]/∂t)Emis. The mean emission rate is∼13 % of
the mean soot concentration per hour (13 % h−1).

3.4 Actual turnover rate of soot

In this section, a conceptual model is used to analyze the
observed variation ofFin. SinceFin of particles of all sizes
in the accumulation mode (i.e., 100–320 nm) showed similar
behaviors,Fin at 150 nm is taken as an example and will be
discussed through this section.

Two processes are considered in the model: emissions and
the condensational aging process that converts equal amounts
of externally mixed particles into internally mixed particles.
We also assume that all (or most) particles stay in the same
size bin after the 1-h aging process. This assumption, to
a large extent, simplifies the following analysis, and could
at least be valid for a broader size bracket, e.g., [100 nm,
350 nm]. The transport and dry deposition processes are sup-
posed not to significantly changeFin (assumingnin andnex
have the same gradient and dry deposition velocity) and are
therefore ignored in this analysis.

Then the variation ofFin in the time interval1t can be
derived by Eq. (5):

1Fin =

nin +

(
∂nin
∂t

)
ex→in

+

(
∂nin
∂t

)
Emis

ntot +

(
∂ntot
∂t

)
Emis

− Fin

=

nin + kex→innex+ β
(

∂ntot
∂t

)
Emis

ntot +

(
∂ntot
∂t

)
Emis

− Fin (5)

in which β = (∂nin/∂ntot)Emis is the fraction of internally
mixed soot in emissions and is assumed to be a constant. The
minimumFin ∼ 0.6 can be considered as the upper limit of
β, and we also tested otherβ values (0.2 and 0.4) for sensi-
tivity studies.
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Table 3.Mean diurnal variation of [EC] (EC concentrations) and(∂[EC]/∂t)Emis (emission rates).

Time [EC] (∂[EC]/∂t)Emis
(∂[EC]/∂t)Emis

[EC]
Time [EC] (∂[EC]/∂t)Emis

(∂[EC]/∂t)Emis
[EC]

h µg m−3 µg m−3 h−1 % h−1 h µg m−3 µg m−3 h−1 % h−1

0 6.1 0.191 3.1 12 3.9 0.954 24.5
1 5.8 0.120 2.1 13 3.1 1.092 35.2
2 6.3 0.088 1.4 14 2.7 0.952 35.3
3 6.7 0.074 1.1 15 2.7 0.856 31.7
4 7.2 0.058 0.8 16 2.6 1.114 42.8
5 7.7 0.108 1.4 17 2.8 1.168 41.7
6 8.3 0.407 4.9 18 2.7 0.986 36.5
7 8.0 0.832 10.4 19 3.3 1.052 31.9
8 7.5 0.934 12.5 20 4.4 0.894 20.3
9 7.8 1.022 13.1 21 5.1 0.564 11.1
10 5.1 1.020 20.0 22 5.7 0.495 8.7
11 4.4 1.052 23.9 23 6.1 0.232 3.8

Fig. 6. The actual turnover rate of soot (NVP),kex→in, assuming
different emission factorsβ (number fraction of internally mixed
soot particles to total soot particles in the emissions).

Dividing the numerator and fraction of the first term on the
right-hand side of Eq. (5) by ntot, we have

1Fin =

Fin + kex→in(1− Fin) + β[
1

ntot

(
∂ntot
∂t

)
Emis

]

1+ [
1

ntot

(
∂ntot
∂t

)
Emis

]

− Fin (6)

Assuming 1
ntot

(∂ntot/∂t)Emis =
1

[EC]
(∂[EC]/∂t)Emis (see Ta-

ble 3),kex→in becomes the only unknown parameter and can
be calculated by solving Eq. (6).

Figure 6 shows the diurnal cycles of campaign-averaged
kex→in calculated for particles at 150 nm with differentβ.
Compared to a fixedkex→in value commonly used in regional
and global models, the observation-constrainedkex→in shows
higher values with a maximum around 11:00–15:00 LT, and
low values in the early morning and late afternoon. Such a di-
urnal cycle always holds, even after varying(∂[EC]/∂t)Emis
by a factor of two (see Fig. S2). The cycle of the turnover

rate, kex→in, supports previous results in modeling stud-
ies (Riemer et al., 2004, 2010), which show high day-
time kex→in dominated by condensation processes, and low
kex→in resulting from both slower condensation and coag-
ulation processes in the early morning and late afternoon.
Although kex→in for night-time periods are also presented
in Fig. 6, these night-time values require caveats because
the coagulation-induced aging could become more important
than the condensation during night-time (Riemer et al., 2004,
2010), which violates our assumption onkex→in calculations.

Since the condensation-induced turnover rate is propor-
tional to the condensable vapor pressure, the derived day-
time kex→in implies a peak of condensable vapor pressure at
the same period (11:00–15:00 LT). It is already known that
gaseous sulfuric acid (precursor of sulfate in particles) often
shows a peak around noon. Our results indicate that even the
potentially present un-identified condensable vapors might
have similar diurnal cycles as sulfuric acid. Instead of com-
plete characterizations of these un-identified vapors, the sim-
ilarity in their diurnal variations enables the use of a simple
parameterization method as an alternative solution in aerosol
modeling studies, as will be discussed below.

Due to the presence of primary emission sources, the ac-
tual turnover rate of soot,kex→in is higher than the “ap-
parent” kex→in. The freshly emitted particles contain more
externally mixed soot than the aged ambient air. The ob-
served “aging” of soot (NVP) is to a certain extent compen-
sated by the fresh emissions, the extent of which depends on
the emission intensity. For the estimated emission intensity,
(∂[EC]/∂t)Emis/[EC] of 13 % h−1 andβ = 0.6, kex→in val-
ues reached up to 20 % h−1 (see Fig. 6), much faster than the
“apparent”kex→in of 6.7–7.8 % h−1.

The aging process in Beijing is also much faster than
kex→in of 1.3–5.8 % h−1 in previous field measurements
(Moteki et al., 2007; Shiraiwa et al., 2007) and 1.25–
2.5 % h−1 in modeling studies (Cooke and Wilson, 1996;
Cooke et al., 1999, 2002; Lohmann et al., 2000; Jacobson,
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2001; Koch, 2001; Tsigaridis and Kanakidou, 2003; Riemer
et al., 2004). The fast turnover rate in the polluted megacity
air is consistent with the observed rapid particle growth in
the same area (Wiedensohler et al., 2009), both of which can
be attributed to the fast formation and condensation of sec-
ondary aerosols in the megacity. The flow of soot particles
from megacities influences the global background of soot to
a large extent. If those soot particles are already coated or
internally mixed in a very short time due to strong condensa-
tion, the background soot should be mostly internally mixed,
as has been suggested by Andreae and Rosenfeld (2008).

Figure 6 also shows that the absolute value ofkex→in
strongly depends on the choice of the emission factorβ,
while the relative variation ofkex→in does not. Smallerβ
values (large fraction of externally mixed soot in emissions)
require fasterkex→in to explain the observedFin variations.
For example,β = 0.2 requireskex→in up to 70 % h−1 to meet
the observations. On the other hand,kex→in up to 20 % h−1

require a largeβ = 0.6, which means that 60 % of the emit-
ted soot particles should have already been internally mixed
when they arrive at the measurement site.

3.5 Distinct diurnal variations of Fin for Aitken and
accumulation mode particles

In the conceptual model, we assume that particle growth will
not lead to significant change inntot andnex, which means no
significant shift of the particle size distribution occurs over
a short time. While such an assumption is valid for large par-
ticles in the accumulation mode (i.e.,>100 nm), it might be
violated by the faster growth of small particles (e.g., 30 nm)
in the Aitken mode, which was reflected by the different di-
urnal cycles ofFin at smaller diameters (see Fig. 3).

To describe the rate of change of a particle size distribution
n(Dp) resulting from condensation, we adopted a general
condensation equation (Seinfeld and Pandis, 2006, pp. 591)
in the form

∂n

n∂t
= −

∂

n∂Dp
(n

4DM

RTDpρp
f (Kn,α)P ) (7)

wheren denotes the particle number concentration atDp, M

is the molecular weight for the condensable species,D is its
diffusion coefficient in air,R is the molar gas constant,T is
the temperature (in Kelvin),ρp is the density of the particles,
P is the supersaturated vapor pressure of the condensable
species,Kn is the Knudsen number (Kn= 2λ/Dp), λ is the
mean free path of the condensable species in air, andα is
the accommodation coefficient of the condensable species.
f (Kn, α) is the correction due to non-continuum effects and
imperfect surface accommodation and can be calculated by

f (Kn,α) =
0.75α(1+ Kn)

Kn2
+ Kn+ 0.283Knα + 0.75α

(8)

Fig. 7. The size dependence of the particle size distributionn(Dp)
variation due to condensation growth.kshift equals(∂n/∂t)/n due to
condensation growth divided by a constant (in Eq. 20).kshift can ei-
ther be positive or negative, which indicates increases and decreases
of n(Dp) due to condensation growth, respectively. The shaded ar-
eas (with gray and light gray fornin andnex, respectively) indicate
the size ranges wherekshift are positive whilekshift are negative in
the un-shaded ranges.

Dividing both sides of Eq. (7) byA = 4DMP/(RTρp), we get
a parameterkshift:

kshift =
1

A

∂n

n∂t
= −

∂

n∂Dp
(

n

Dp
f (Kn,α)) (9)

kshift differs from (∂n/∂t)/n in Eq. (7) by a factor ofA,
which is generally/mostly independent of particle sizes. So,
kshift is equivalent to(∂n/∂t)/n in representing the size
dependence of the rate of change ofn due to condensa-
tion. By taking the measuredn(Dp) and λ = λair (298 K,
1 atm)= 65.1 nm (Seinfeld and Pandis, 2006, p. 399),kshift
can be calculated for eachDp.

Figure 7 showskshift as a function of the particle sizeDp,
calculated with Eqs. (7)–(9) for the CAREBeijing 2006 cam-
paign. The (mean) size distributions of the internally (exter-
nally) mixed soot (NVP) particles were used in the calcu-
lation (Wehner et al., 2009). Since VTDMA measurements
covered only a limited size range (from 30 to 320 nm), near-
est neighbor extrapolations were performed to getFin val-
ues out of range, i.e. [10 nm, 30 nm) and (320 nm, 1000 nm]
as shown in Fig. 7.kshift shows positive values roughly on
the right side of the peak of the particle size distributions
and negative values on the left side. Positivekshift (at Dp
in shaded areas) indicate condensation-induced increases in
n(Dp) while negativekshift (at Dp in un-shaded areas) in-
dicate condensation-induced decreases inn(Dp). Since the
peaks of thenin(Dp) and nex(Dp) distributions appears at
sizes smaller than 100 nm, the condensation growth gener-
ally increasesnin(Dp) in the accumulation mode and reduces
nin(Dp) at theDp of 30 nm.
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Fig. 8.Correlations betweenFin and(a) [NOz]/[NOy], (b) [E]/[X],
and (c) ([IM ] + [OM])/[EC]. The open circles are measurement
data with a time resolution of 1 h; while the colored solid dots are
average diurnal data. The average diurnal data can be linearly fitted
by equation “y = a+bx” (dashed line) withR being the correlation
coefficient.

3.6 Size-resolved parameterizations ofFin

Due to insufficient knowledge concerning the soot mixing
state (and its temporal evolution) and the computational costs
associated with explicit modeling of the mixing processes, it
is still difficult to explicitly and accurately predict the varia-
tion of Fin in regional/climate models. In an aging air mass,
the change of soot mixing state is generally accompanied by
the change of other indicators representing the air mass age.
We suggest parameterizing the mixing state of soot by using
these correlations. If the other indicators are easier to mea-
sure and model, such parameterizations might provide an al-
ternative solution, narrowing down the differences between

Fig. 9. Measured and predictedFin over 100 nm to 320 nm (2145
data points). The dashed line represents the 1: 1 line.

ambient and modeled soot mixing state without significant
additional computational costs.

The proposed parameterization approach involves two
steps to calculateFin from other indicators. First, the aver-
age diurnal values ofFin and other parameters (as shown
in Figs. 3 and 4) are adopted to calculate a linear fit, re-
sulting in the parameterization Eqs. (10)–(12). The reason
for using average values is to smooth out fluctuations which
may greatly reduce the correlation coefficientR and intro-
duce large uncertainties into the fitting results.Fin at cer-
tain diameter (i.e., 150 nm) can be predicted by parameteri-
zation Eqs. (10)–(12). Figure 8a–c shows comparisons ofFin
at 150 nm with individual indicators, namely,[NOz]/[NOy],
[E]/[X] and([IM ] + [OM])/[EC].

Fin(150nm) = 0.572+ 0.209
[NOz]

[NOy]
(10)

Fin(150nm) = 0.468+ 0.212
[E]

[X]
(11)

Fin(150nm) = 0.522+ 0.0088
[IM ] + [OM]

[EC]
(12)

Second, we find that the size-resolvedFin in the accumula-
tion mode can be calculated by the following equation from
Fin at 150 nm:

Fin(Dp) = (a log10(Dp/1 nm) + b)Fin(150 nm) (13)

wherea andb are constant parameters.
Fitting Eq. (13) to the measuredFin over the diameter

range 100 to 320 nm, we gota = −0.353 (−0.370,−0.336)
(coefficients with 95 % confidence bounds),b = 1.78 (1.74,
1.82), andR2

= 0.80. Figure 9 and Table 4 shows that
Eq. (13) performs well in predicting the size-resolvedFin
over the size range between 100 nm and 320 nm. There is no
systematic underestimation (or overestimation) and the fitted
slopek is almost the same as the 1: 1 line. Most variations of
Fin, i.e., up to 77 % can be predicted by the parameterization.
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Table 4.Correlation of measured and predictedFin (429 data points for individual size bins; 2145 data points for all size bins).

Dp

100 nm 150 nm 200 nm 260 nm 320 nm all

k∗ 0.99± 0.01 1.01± 0.00 1.02± 0.01 0.96± 0.01 1.00± 0.01 0.99
R2 0.75 1.00 0.80 0.68 0.41 0.77

∗k is the fit parameter in the equation:Fin (predicted) = kFin (measured).

This parameterization method requires caveats because
considerable variability can be expected between different
sites or even at a given site, like the scattered data shown
in Figs. 8 and 9. To validate the parameterization methods,
more measurements should be carried out in other environ-
ments.

3.7 Coating thickness distribution

In both the existing literature and the present study, the soot
particles are often classified into two distinct groups (inter-
nally and externally mixed soot particles) by certain thresh-
old core/shell ratios (e.g.,Dp,300◦C/Dp). However, the tran-
sition between the two groups in the atmosphere can be quite
smooth, especially in aged air mass (Fig. 10, results at 13:00),
and the threshold core/shell ratio should be considered as an
arbitrary definition. Such “arbitrary” ratios (e.g., core/shell
ratio= 0.5) have also been used to distinguish different mix-
ing states of soot particles in SP2 studies (e.g., Shiraiwa et
al., 2007).

In our case, the use of different threshold ratios will change
the absolute values ofFin but leave the same/similar trends
(see Fig. S3 for example). For a better description of the mix-
ing state of soot particles, we suggest to consider the distri-
bution concept, e.g., the distribution of the relative coating
thickness (Dp,300◦C/Dp) in future studies.

4 Conclusions

Analysis of VTDMA results from the megacity Beijing
shows a pronounced diurnal variation ofFin with different
behaviors in the Aitken and accumulation modes. For accu-
mulation mode particles, maxima ofFin were observed at
12:00–13:00 LT, which can be explained by competing ef-
fects of physico-chemical conversion and direct emissions.
The distinct diurnal cycles ofFin of Aitken and accumulation
mode particles are likely caused by faster growth of smaller
Aitken mode particles.

To calculate the actual turnover rate of soot from exter-
nal to internal mixture (kex→in), measurement data were an-
alyzed by a conceptual model, which considered both di-
rect emissions and the aging process. The analysis shows
that the actualkex→in has high values during daytime, i.e.,
a maximum around 11:00–15:00 LT, and low values during
the night-time. Turnover rates reached values of 20–70 % h−1

Fig. 10.Size distributions of nonvolatile residuals with initial diam-
eterDp of (a) 100 nm and(b) 200 nm.Dp,300◦C is the diameter of
the nonvolatile residuals, i.e., particles after being heated at 300◦C.
The presence of particles withDp,300◦C > Dp is due to the transfer
function of the DMA used for initial particle selections.

around mid-day, which implies that soot (NVP) particles are
present to a large extent as internal mixtures by the time
they leave the urban environment. This enables them to act
as CCN and also facilitates their removal by wet deposition
(Andreae and Rosenfeld, 2008). The cycle ofkex→in supports
previous modeling results implying that the un-identified
condensable vapors might have similar diurnal variations as
sulfuric acid and other short life-time compounds produced
by photochemistry. We also found that due to injection of
fresh emissions, the “apparent” turnover rates derived from
the variation inFin were much smaller than the actualkex→in.
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Table A1. Acronyms.

Symbol Description

AMS Aerosol mass spectrometer
ATOFMS Aerosol time-of-flight mass spectrometer
CAREBeijing Campaign of air quality research in Beijing
CCN Cloud condensation nuclei
DMA Differential mobility analyzer
EC Elemental carbon
GC-PID Gas chromatography-photo ionization detector
OC Organic carbon
PAN Peroxyacetyl nitrates
PM1 Particles of 1 µm or less in aerodynamic diameter
PM10 Particles of 10 µm or less in aerodynamic diameter
SP2 Single particle soot photometer
Soot (NVP) Non-volatile-core containing particles, measured

by the VTDMA, and taken as soot particles
VTDMA Volatility tandem differential mobility analyzer

In this study, the calculatedkex→in might be subject
to potential uncertainties due to: (1) the estimation of

1
[EC]

(∂[EC]/∂t)Emis (relative emission rate of soot) andβ
(number fraction of internally mixed soot particles in emis-
sions); (2) the effect of transport process; and (3) the influ-
ence of particle growth and coagulation. To better understand
the soot aging process, we suggest measuringβ in some
emission studies, combining regional models to quantify the
transport effects, and implementing aerosol dynamic models
instead of the current conceptual model.

Fin shows a similar diurnal course as the other air
mass age indicators (e.g.,[NOz]/[NOy], [E]/[X] and
([IM ] + [OM])/[EC]), which are subject to competing ef-
fects between emissions and aging processes as well. The
good agreement of their correlations can be expressed as
a linear relationship. Given the difficulty of making direct
measurements of soot mixing state (Fin), these relationships
might be of great practical value in regional/global-scale
studies on the influence of the various direct and indirect soot
aerosol effects on climate, as it provides an easily measured
proxy that does not consume significant additional comput-
ing time. However, such parameterizations require caveats
because considerable variability can be expected between
different sites or even at a given site, like the scattered data
shown in Figs. 8 and 9. To validate the parameterization
methods, improve our understanding and refine the range of
the fitting parameters, more measurements should be carried
out in other environments. In addition, validation for particles
larger than 320 nm needs to be performed in future studies.

Table A2. Symbols.

Symbol Unit∗ Quantity

D m2 s−1 Diffusion coefficient for species in air
Dp nm Dry particle diameter
Dp,300◦C nm Particle diameter after being heated at

300◦C in the VTDMA
[E] ppb Concentration of ethylbenzene
[EC] µg m−3 Concentration of elemental carbon
Fin Number fraction of internally mixed

soot particles (medium volatile
particles measured by VTDMA with 82 %>
Dp,300◦C/Dp > 45 %) in total soot particles

f (Kn, α) Correction due to non-continuum effects and
imperfect surface accommodation

[IM] µg m−3
[IM ]=[NH+

4 ] + [NO−

3 ] + [SO2−

4 ] + [Cl−]

(inorganic mass in PM1 measured by
aerosol mass spectrometer, AMS)

Kn Knudsen number
kex→in h−1 Turnover rate of soot, the rate of conversion

of externally mixed to internally mixed soot
kshift nm−2 Parameter representing the rate of change

of particle number concentrations at certain
size bin due to the condensational growth

M kg mol−1 Molecular weight
NCN cm−3 Number concentration of aerosol particles
NCCN cm−3 Number concentration of CCN
[NOx] ppb Concentration of NO+ NO2
[NOy] ppb Concentration of total reactive nitrogen
[NOz] ppb [NOy]-[NOx]
nin cm−3 Number concentration of internally mixed

soot particles
nex cm−3 Number concentration of externally mixed

soot particles
ntot cm−3 Number concentration of total soot particles
[OM] µg m−3 Mass concentration of organic matter

(in PM1 measured by aerosol mass
spectrometer, AMS)

P Pa Supersaturated vapor pressure of
condensable species

R J mol−1 K−1 Molar gas constant (unless specified)
S % Supersaturation of water vapor
T K Kelvin temperature
t s Time
[X] ppb Concentration of m,p-xylene
α Accommodation coefficient
β Number fraction of internally mixed soot

particles in emissions
σg,κ Geometric standard deviation in a lognormal

κ distribution
κ Hygroscopicity parameter
κg Geometric mean ofκ in a lognormal

κ distribution
λ m Mean free path of the condensable species

in air
ρp kg m−3 Particle density

∗ if not specified.

Supplementary material related to this article is
available online at:http://www.atmos-chem-phys.net/12/
4477/2012/acp-12-4477-2012-supplement.pdf.
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