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Abstract

In this paper we prove the well-posedness of the full Keller-Segel system,
a quasilinear strongly coupled reaction-crossdiffusion system, in the spirit
that it always admits a unique local-in-time solution in an adequate function
space, provided that the initial values are suitably regular. Apparently, there
exists no comparable existence result for the full Keller-Segel system up to
now. The proof is carried out for general source terms and is based on recent
nontrivial elliptic and parabolic regularity results which hold true even on
fairly general spatial domains, combined with an abstract solution theorem
for nonlocal quasilinear equations by Amann.

Nous considérons le système de Keller et Segel dans son intégralité, un système
quasilinéaire à réaction-diffusion fortement couplé. Le résultat principal mon-
tre que ce système est bien posé, c’est-à-dire il admet une solution unique
existant localement en temps à valeurs dans un espace fonctionnel appro-
prié, pourvu que les valeurs initiales sont réguliers. Apparemment, il n’existe
pas encore des résultats comparables. Pour la démonstration, nous utilisons
des résultats récents de régularité elliptique et parabolique applicable à des
domaines assez générals, combiné avec un théorème abstrait d’Amann con-
cernant les équations quasilinéaires non locales.

1. Introduction

This paper establishes the local-in-time existence of solutions in a suitable functional-
analytic sense to the so-called original full Keller-Segel model which is a coupled system of
four nonlinear parabolic partial differential equations over a finite time horizon J = ]0, T [
in a bounded domain Ω in space dimensions d ∈ {2, 3}, and reads as follows:

u′ − div (κ(u, v)∇u) = div (σ(u, v)∇v) in J × Ω, (1.1)
v′ − kv∆v = −r1vp+ r−1w + uf(v) in J × Ω, (1.2)
p′ − kp∆p = −r1vp+ (r−1 + r2)w + ug(v, p) in J × Ω, (1.3)

w′ − kw∆w = r1vp− (r−1 + r2)w in J × Ω, (1.4)

combined with homogeneous Neumann conditions

ν · κ(u, v)∇u = ν · kv∇v = ν · kp∇p = ν · kw∇w = 0 on J × ∂Ω, (1.5)

where ν denotes the outer unit normal to the boundary ∂Ω, and suitable initial values
(
u(0, ·), v(0, ·), p(0, ·), w(0, ·)

)
= (u0, v0, p0, w0) in Ω. (1.6)

This model describes the aggregation phase during the life cycle of cellular slime molds
like the Dictyostelium discoideum and has first being introduced by Keller and Segel in
their 1970ies paper “Initiation of slime mold aggregation viewed as an instability” [55].
We briefly describe the underlying biological processes. Looking at its life cycle one
observes that a myxamoebae population of the Dictyostelium grows by cell division as
long as there are enough food resources. When these are depleted, the myxamoebae

1



propagate over the entire domain available to them. Then, after a while, the phase that
is covered by the given model is initiated by one cell that starts to exude cyclic Adenosine
Monophosphate (cAMP) which attracts the other myxamoebae. As a consequence the
other myxamoebae are stimulated to move in direction of the so-called founder cell and
commence to release cAMP. This leads to the aggregation of the myxamoebae that also
start to differentiate within the myxamoebae aggregates resp. within the aggreagtion
centers. The aggregation phase ends with the formation of a pseudoplasmoid in which
every myxamoebae maintains its individual integrity. However, Keller and Segel did
not model the formation of the pseudoplamoid; thus, this phase of the life cycle of the
Dictyostelium is not covered in the original equations. This pseudoplasmoid is attracted
by light and, therefore, it moves towards light sources. Finally a fruiting body is formed
and after some time spores are diffused from which the life cycle begins again. For more
details on the life cycle of the Dictyostelium we refer to [15], for example.

In the given model u(t, x) denotes the myxamoebae density of the cellular slime
molds at time t in point x, where v(t, x) describes a chemoattractant concentration (like
cAMP). The given model for aggregation of a cellular slime population is based on four
basic processes that can be observed during the aggregation phase:

a) The chemoattractant is produced per amoeba at a positive rate f(v).
b) The chemoattractant is degraded by an extracellular enzyme, where the concentration

of the is enzyme at time t in point x is denoted by p(t, x). This enzyme is produced
by the myxamoebae at a positive rate g(v, p) per amoeba.

c) Following Michaelis-Menten the chemoattractant and the enzyme react to form a
complex E of concentration w which dissociates into a free enzyme plus the degraded
product:

v + p
r1
−→
←−
r−1

E r2
−→ p + degraded product,

where r−1, r1 and r2 are positive constants representing the reaction rates.
d) The chemoattractant, the enzyme and the complex diffuse according to Fick’s law.

As a tribute to the experimental setting and the conservation of the myxamobae density
the equations are equipped with homogeneous Neumann boundary data.

Since the influence of chemical substances in the environment on the movement of
motile species (in general called chemotaxis) can lead to strictly oriented or to partially
oriented and partially tumbling movement of the species, the first equation contains
both a pure diffusion term div (κ(u, v)∇u) with κ(u, v) ≥ 0 for (u, v) ∈ R+ × R+ and a
convection term div (σ(u, v)∇v) that describes the movement with respect to the chemical
concentration. For a movement towards a higher concentration of the chemical substance,
termed positive chemotaxis, one assumes σ(u, v) < 0 for (u, v) ∈ R+ × R+ while for the
movement towards regions of lower chemical concentration, called negative chemotactical
movement, the opposite inequality σ(u, v) > 0 for (u, v) ∈ R+×R+ has to hold. For the
detailed derivation of the given model we refer to [47, 55].

Chemotaxis is known to be an important device for cellular communication. In de-
velopment or in living tissues the communication by chemical signals prearanges how
cells collocate and organize themselves. Biologists studying chemotaxis often concen-
trate their experiments on the movement, the self-organisation and pattern formations
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of the cellular slime mold Dictyostelium discoideum. One reason for the great inter-
est in this cellular slime mold is caused by the fact that “development in Dictyostelium
discoideum results only in two terminal cell types, but processes of morphogenesis and
pattern formation occur as in many higher organisms” (see [71, p. 354]). Thus biologists
hope that studying this cellular slime mold gives more insights in understanding cell
differentiation.

However, by to a simplification done by Keller and Segel themselves in [55] this
original model of four strongly coupled parabolic equations was reduced to a model which
is given by a system of only two strongly coupled parabolic equations. This was done
by assuming that the complex is in a steady state with regard to the chemical reaction
and that the total concentration of the free and the bounded enzyme is a constant,
assumptions that are well-known for the Michaelis-Menten equations in enzyme kinetics.
This reduction was justified by the paradigm “it is useful for the sake of clarity to employ
the simplest reasonable model” (see [55, p. 403]). The corresponding model was then given
by the following parabolic equations:

ut − div (κ(u, v)∇u) = div (σ(u, v)∇v) in J × Ω,
vt − kc∆v = −k(v)v + uf(v) in J × Ω,

ν · κ(u, v)∇u = ν · kc∇v = 0 on J × ∂Ω,
(
u(0, ·), v(0, ·)

)
= (u0, v0) in Ω.





(1.7)

This model is nowadays often referred to as the classical chemotaxis model or as the
Keller-Segel model in chemotaxis. As in the full model, κ(u, v) denotes the density
dependent diffusion coefficient and σ(u, v) is the chemotactic sensitivity, where now k(v)v
and uf(v) describe degradation and production of the chemical signal. For κ(u, v) = 1,
σ(u, v) = −χ · u or −χuv with a constant χ > 0 and k(·) and f(·) positive constants,
this two equation model has been extensively studied during the last twenty years, see
for instance [42, 43, 47, 48, 51] and the references therein. In particular the so-called
Childress-Percus conjecture for (1.7) has attracted many scientists.

For the κ, σ, k and f as just stated Childress and Percus [17] suggested that in d = 2
for suitable initial data the solution of (1.7) can blow up in either finite or infinite time,
i.e., that there exists a time Tmax with 0 < Tmax ≤ ∞ such that

lim sup
t↗Tmax

||u(t, x)||L∞(Ω) =∞ or lim sup
t↗Tmax

||v(t, x)||L∞(Ω) =∞,

while they excluded this possibility for spatial dimension d = 1. For d ≥ 3 they suggested
that under a perturbation of sufficiently high symmetry the solution of (1.7) has to blow
up in either finite or infinite time. For d = 1 the conjecture has been shown to be true
by Osaki and Yagi [72]. For d = 2 there is a huge number of papers that have studied
this conjecture. To quote some we only mention [13, 32, 39, 44–46, 69], while the case
d = 3 has been considered for example in [16, 19, 50, 52, 86]. Childress’ and Percus’
conjecture was originally formulated for system (1.7). However, it has also been studied
for the situation where the first equation of (1.7) is parabolic and the second is given by
an elliptic equation by several authors, cf. [47] and the references therein.

From the biological point of view, the blow-up behaviour of the solution can be
interpreted as the starting point of cell differentiation and therefore the blow-up time
Tmax < ∞ would correspond to the stopping time where the aggregation phase in the
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life cylce of the Dictyostelium ends and the cell differentiation and formation of the
pseudoplamoid starts.

Besides the mathematical interesting question whether the solution can blow up in
finite or in infinite time one can also observe interesting pattern formations during the
aggregation phase and development of the Dictyostelium such as traveling waves like
motion and spiral waves for the chemoattractant (see for instance [48, 49, 84]). Although
there have been some attempts to prove the existence of traveling wave solutions for
the simplified model (1.7), one can find in general different equations to describe those
pattern formations in literature. Hence, it might be worthwhile to remember the original
four-equation-system instead if one tries to describe these pattern formations during the
aggregation of some particular species. Possibly, the reduction to two equations that was
done in [55] was too restrictive to cover all observable patterns and phenomena during
the aggregation of mobile species like the Dictyostelium discoideum. For example, one
can find an attempt to describe the aggreagtion of the Dictyostelium discoideum along
the experimentally observable cAMP spiral waves in [83] where the authors look at
a coupled three-equations model that contains a version of the simplified Keller-Segel
model equipped with an ODE that should cover the recovery process of the myxamoebae
after binding the extracellular cAMP. Thus it might be worth to look at the original
model to see whether it can also generate these complex pattern formations.

As far as we know there are no results available for the full four equation model.
In particular, the question of blow-up has not been studied for the full four equations
model up to now. Of course, there are several local existence and well-posedness results
known for parabolic-parabolic and parabolic-elliptic versions of the simplified two equa-
tion model (1.7) as for instance the results in [2, 13, 14, 42, 68, 79, 80, 89]. Furthermore,
existence results for solutions for the simplified two-equation model with additional pop-
ulation growth are also known, cf. [54, 73, 81, 85, 88]. However, all these results consider
the equation either on a smooth domain with boundary of class C2, on convex domains
with smooth boundaries or on the whole space Rd. Furthermore, the inital data have
to satisfy certain comparability conditions in some cases. The only result which we are
aware of concerning nonsmooth objects is the local existence result in [32] where the
authors allow a domain Ω ⊂ R2 with boundary ∂Ω that is piecewise of class C2. There-
fore, the results stated in the present paper are completely new and much more general
than those known so far. It will turn out that the analysis presented below immediately
transfers to the more simple model (1.7).

Our analysis of the system (1.1)–(1.4) fundamentally bases on the fact that it is only
one equation where the second derivative of another quantity appears. So we solve the
equations (1.2)–(1.4) for (v, p, w), where u enters parametrically as a given function. It
turns out that the dependence of (v, p, w) on u in this spirit is well-behaved in a suitable
sense. This allows to insert (v, p, w) in their dependence of u into (1.1). Thus, one ends
up with one “scalar” quasilinear parabolic equation whose dependence on u is nonlocal in
time, since the functions v, p, w, as solutions to evolution equations themselves, depend
on the whole function u on ]0, t[ instead of just the value u(t). Such an equation, however,
can be solved by a pioneering theorem of Amann which covers such general settings, cf. [3,
Thm. 2.1] or Theorem 3.18 below. Still, it is a formidable task to verify the assumptions
of the theorem, since the equation under consideration is still quasilinear and nonlocal
in nature.

Thereby it is not obvious a priori in which function spaces the problem should be con-
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sidered, but some hints are given: since homogeneous Neumann conditions are prescribed,
cf. (1.5), Lebesgue spaces Lp(Ω) are favorable, see Remark 3.3 below. Fortunately, there
are various recent elliptic ([10, 26, 37]) and parabolic ([34, 41]) regularity results available,
which are even valid in the case of non-smooth domains. The indeed crucial problem is
the adequate choice of p. However, there is a fairly general class of domains Ω for which

−∇ · µ∇+ 1: W 1,q(Ω)→
(
W 1,q′(Ω)

)′ =: W−1,q
• (Ω)

is a topological isomorphism for some q > d, where µ is a uniformly continuous, strictly
positive function on Ω, cf. [26], [37]. Combining this isomorphism property with very
recent and powerful results on the square root of elliptic operators as in [10, Thm. 5.1],
see also Proposition 3.9 below, provides very precise embedding results for the domains
of fractional powers of the elliptic operators on Lebesgue spaces. On the other hand, one
can show that the domains of the operators −∇ · φµ∇, when considered on Lq/2(Ω), are
independent of φ, whenever φ is a strictly positive function from W 1,q(Ω), cf. e.g. [63].
Combining these results is crucial in the task of establishing constant domains for the
operators entering in the quasilinear equation (1.1). This is a, or even the, central point
in the theorem of Amann mentioned above, for which we indeed choose a Lebesgue space
Lp(Ω) with p = q

2 . Note that for the Keller-Segel model (1.1)– (1.6) one in fact only needs
to consider µ ≡ 1. We have included the general case for µ for the sake of transparency
and to point out that the technique used is not necessarily restricted to the Laplacian,
cf. our statements in Chapter 5 at the end of the paper.

Let us emphasize that the analysis of the system (1.1)–(1.4) may be adopted to
both the simplified model (1.7) with virtually no changes, and also to the situation
where the equations (1.2)–(1.4) for v, p, and w are elliptic only. In fact, the general
setup and the way to proceed for the latter case would only change very little from
the considerations below: one would solve the then elliptic equations for each t ∈ J in
dependence on u(t) alone (topologically with regard to a certain interpolation space),
then insert (v(t), p(t), w(t)) into the quasilinear equation (1.1) and finally solve this with
the theorem of Prüss [77]. See [64] for a display of this technique where the elliptic
equation is also quasilinear.

The outline of the paper is as follows: in the next chapter we will establish notations,
general assumptions and definitions. In Ch. 3, we collect preliminary results, partly
already established in other papers. In particular, the concept of maximal parabolic
regularity is introduced – being fundamental for all what follows. The investigation of the
model is carried out in Ch. 4, beginning with a precise formulation in Ch. 4.1. The main
result, local in time existence and uniquenes for the Keller-Segel system, is formulated in
Theorem 4.3. Its proof follows in Ch. 4.2. The paper finishes with concluding comments
and remarks in Ch. 5.

2. Notations, general assumptions and definitions

The underlying spatial set Ω is always supposed to be a bounded Lipschitz domain
in Rd for d = 2 or d = 3 in the sense of [35, Def. 1.2.1.2] or [62, Ch. 1.1.9]. The reader
should carefully notice that this is different from a strong Lipschitz domain, which is more
restrictive and in fact identical with a uniform cone domain, see again [35, Def. 1.2.1.1]
or [62, Ch. 1.1.9].

5



Concerning function spaces, W 1,q(Ω) stands for the usual Sobolev space on Ω as a
complex vector space (we will switch to real ones later). Accordingly, W−1,q

• (Ω) denotes
the anti-dual of W 1,q′(Ω). Moreover, for θ ∈ ]0, 1[ and q ∈ ]1,∞[, Hθ,q(Ω) is the symbol
for the space of Bessel potentials on Ω, cf. [82, Ch. 4.2.1]. The space of uniformly
continuous functions on Ω is denoted by C(Ω). For an open set Λ ⊂ RN , where N ∈
{1, 2, 3}, and a Banach space X, we write Cα(Λ;X) for the usual X-valued Hölder spaces
of order α ∈ ]0, 1[, cf. [6, Ch. II.1.1.]. We will mostly encounter these in the incarnations
Λ = Ω and X = R or Λ an interval in R and X a function space. Since we frequently
work with triplets of functions, let Lp(Ω) and W1,q(Ω) denote the spaces (Lp(Ω))3 and
(W 1,q(Ω))3, respectively. The domain Ω under consideration will not change throughout
this work, hence we usually omit the reference to Ω when working with the function
spaces.

For two Banach spaces X and Y we denote the space of linear, bounded operators
from X into Y by L(X;Y ). If X = Y , then we abbreviate L(X). The norm in a Banach
space X will be always indicated by ‖ · ‖X . If a Banach space Y is contained in another
Banach space X and the canonic injection of Y into X is continuous, then we say that
Y is embedded into X and write Y ↪→ X. Let Y embed into X. Then E(Y ;X) denotes
the embedding constant, i.e., the norm of the embedding map. Moreover, in the same
situation, if B is the restriction of an operator A : X ⊇ dom(A) → X to the space Y ,
then domY (B) indicates the domain of this operator B in Y .

Finally, we use J = ]0, T [ for 0 < T <∞, and the letter c denotes a generic constant,
not always of the same value.

2.1. Assumptions and definitions
In order to allow for concise notation in the later stages of this work, we generalize the

nonlinear growth, production and degradation terms on the right hand sides of (1.2)–(1.4)
to general functions R2, R3, R4, including a function R1 for (1.1) which is not present in
the above model but poses no problem to include analytically. Note that the differential
operator for v in (1.1) will be treated specially. For the Ri and for the coefficient functions
κ and σ, we make the following assumptions.

Assumption 2.1. i) The functions κ, σ : R2 → R are supposed to be twice continu-
ously differentiable throughout this paper. Moreover, κ takes only positive values.

ii) For i = 1, . . . , 4, each function Ri is defined on R4 and maps into R, and is also
assumed to be twice continuously differentiable.

We point out that we have to pose another assumption of completely different nature
than the above ones concerning the regularity of the domain Ω, cf. Assumption 3.5 below.
This assumption is only posed below to put it in the appropriate context.

Remark 2.2. In the sequel, the functions κ, σ are always readily identified with the
induced superposition operators, acting from C(Ω) × C(Ω) into C(Ω). The same is,
mutatis mutandis, done for the functions R1, R2, R3, R4.

3. Preliminaries: Some operator theoretic results

In this chapter we declare suitable Banach spaces on which the Keller-Segel system
will be considered and in which the analysis is carried out, and the corresponding dif-
ferential operators. The initial point is the (classical) insight that, also for parabolic
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equations which include homogeneous Neumann conditions, Lebesgue spaces are the ad-
equate function space choice to consider the equations in, cf. [60, Ch. 3.3]. Unfortunately,
in view of the nonlinearities, the Hilbert space L2 is not appropriate in general, cf. our
comments in Chapter 5 below. It will become clear that Lp-spaces with suitably chosen
p < 2 are the adequate ones. Thus, it is the aim of the following considerations to provide
a consistent definition of the second order divergence operators on such Lp spaces and
to show that these operators indeed possess suitable functional analytic properties, in
particular, maximal parabolic regularity.

Definition 3.1. Assume that µ is a real-valued, measurable, bounded function on Ω.
We define (as usual), for q ∈ ]1,∞[, the continuous operator

−∇ · µ∇ : W 1,q →W−1,q
•

by

〈−∇ · µ∇v, w〉 :=
∫

Ω

µ∇v · ∇w dx for v ∈W 1,q, w ∈W 1,q′ , (3.1)

here 〈·, ·〉 denoting the anti-dual pairing between W−1,q
• and W 1,q′ , which is in turn an

extension of the L2 scalar product.

Taking µ ≡ 1 in Definition 3.1, one, of course, recovers the (negative) weak Laplacian,
−∇ · ∇ = −∆.

Remark 3.2. In this context, it is not quite common to admit functions µ which take
positive and negative values. Nevertheless, this is unavoidable by the properties of the
function σ originating from the model, cf. the introduction, see also [32].

3.1. The restriction of −∇ · µ∇ to Lp spaces
Let us in this section consider −∇ · µ∇ as an operator mapping W 1,2 to W−1,2

• and
let p ∈ ] 2d

d+2 , 2[. For these p we have the embedding Lp ↪→ W−1,2
• via taking the adjoint

of the embedding W 1,2 ↪→ Lp
′
, and define the restriction Ap(µ) of −∇ · µ∇ to the space

Lp as follows: ψ ∈W 1,2 belongs to domLp(Ap(µ)) iff the (anti-) linear form

W 1,2 3 ϕ 7→
∫

Ω

µ∇ψ · ∇ϕdx = 〈−∇ · µ∇ψ,ϕ〉 (3.2)

is continuous if W 1,2 is only equipped with the weaker Lp
′

topology, i.e., if there exists
a constant c = c(ψ) such that

|〈−∇ · µ∇ψ,ϕ〉| ≤ c(ψ)‖ϕ‖Lp′ for all ϕ ∈W 1,2.

In this case, the functional (3.2) may be extended by continuity from the dense subspace
W 1,2 to whole Lp

′
under preservation of its norm. We denote the representative of this

functional on Lp
′

by Ψ ∈ Lp and define Ap(µ)ψ := Ψ. Then Ap(µ)ψ satisfies
∫

Ω

(
Ap(µ)ψ

)
ϕdx =

∫

Ω

µ∇ψ · ∇ϕdx = 〈−∇ · µ∇ψ,ϕ〉 for all ϕ ∈W 1,2, (3.3)

which is considered as the constitutive relation between −∇ · µ∇ψ and Ap(µ)ψ. In
fact, (3.3) precisely means that −∇ · µ∇ψ ∈ W−1,2

• is the image of Ap(µ)ψ ∈ Lp under
7



the embedding Lp ↪→W−1,2
• . Moreover, it is clear that the Lp-norm of Ap(µ)ψ is nothing

else but the norm of the antilinear form (3.2) – W 1,2 equipped with the Lp
′
-norm.

Since the notation Ap(µ) already indicates the space on which the operator is assumed
to act, we write e.g. dom(Ap(µ)) instead of domLp(Ap(µ)) if there is no need for greater
care. Note that the often used technique to construct the “strong” differential operators
on the Lp scale by restricting A2(µ) to Lp for p > 2 and taking adjoints of these resulting
operators to define the corresponding operator in Lp for p < 2 (or forming the closure of
A2(µ) there) gives the same operators as the procedure above.

We will mostly consider the case of strictly positive µ and derive results for the corre-
sponding operators; only in Lemma 3.23 properties of the operators Ap(µ) with possibly
non-positive values for µ are pointed out which are fundamental for the treatment of the
divergence operator in the right hand side of (1.1). Hence, let us now assume for the rest
of this subchapter that µ is bounded from below by a positive constant.

We collect some properties of A2(µ). It is a non-negative, selfadjoint operator on L2,
classically called the operator induced by the form (3.1) on W 1,2, cf. [75, Ch. 1.2.3] or
the classical text [56, Ch. VI.2]. Firstly, the following basic properties are of note:

Remark 3.3. i) A particular case of the operator A2(µ) with µ bounded from below
by a positive constant is of course the case µ ≡ 1, for which one recovers the negative
Laplacian A2(1) = −∆ on L2.

ii) It is well-known that the property ψ ∈ dom(A2(µ)) implies a (generalized) homo-
geneous Neumann condition ν · µ∇ψ = ν · ∇ψ = 0 on ∂Ω, cf. [18, Ch. 1.2] or [31,
Ch. II.2], ν being the outer normal at the boundary. This fact reflects the homoge-
neous Neumann boundary conditions (1.5) on the functional analytic level.

Moreover, both ∇ · µ∇ and −A2(µ) generate analytic semigroups on W−1,2
• and

L2, respectively, and these semigroups are consistent, cf. [75, Ch. 1.4.2]. The semigroup
{exp(−tA2(µ))}t≥0 is a contractive one on L2. Even more, by [75, Cor. 4.10], it induces a
contraction semigroup on L∞ and thus does so also on Lp for p ∈ ]2,∞[ by interpolation,
and then on all spaces Lp for p ∈ [1, 2[ by duality, cf. [75, Cor. 2.16]. We denote the
corresponding negative generators as operators on Lp by Bp(µ), for which B2(µ) = A2(µ)
by definition. Concerning the abstract definition of the semigroups {exp(−tBp(µ))}t≥0

for p ∈ [1, 2[, the Lipschitz property of Ω assures that the heat kernel of the semigroup
{exp(−tA2(µ))}t≥0 admits upper Gaussian estimates, see [8, 29] or [75, Ch. 6]. Thus, the
operators {exp(−tBp(µ))}t≥0 for this range of p are obtained as the continuous extension
of the operator {exp(−tA2(µ))}t≥0 to Lp, cf. [75, Prop. 7.1] or [8, Prop. 1.4]. Generally,
the semigroups {exp(−tBp)}t≥0 are analytic for p ∈ [1,∞[ as of [75, Cor. 7.5]), while the
one for p =∞ is even not strongly continuous.

The natural question to ask at this point is whether Bp(µ) and Ap(µ) coincide for
p 6= 2. This is indeed a crucial question, since various results in the common literature
state properties of the semigroup generated by A2 considered on the Lp spaces, whereas
other results concern the operators Ap directly. The cited proofs for Theorem 3.17 and
Proposition 3.9 below are particular examples of this polarity. In this sense, it is necessary
to make sure that the generators Bp(µ) and the operators obtained by restriction Ap(µ)
are actually the same objects. In the subsequent theorem we show that in fact Ap(µ)
and Bp(µ) coincide in the range of p’s which is of interest here.
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Theorem 3.4. Assume that µ is a real, bounded, measurable function on Ω which admits
a strictly positive lower bound. Then Ap(µ) = Bp(µ) for all p ∈ ] 2d

d+2 , 2].

Proof. Let t ≥ 0 be arbitrary, but fixed in the following. Recall that the condition
on p implies the embeddings W 1,2 ↪→ Lp

′
and, equivalently, Lp ↪→ W−1,2

• . Moreover,
it was already stated that A2(µ) = B2(µ) by definition and that {exp(−tBp(µ))}t≥0

is exactly the continuous extension of the operator {exp(−tA2(µ))}t≥0 to Lp. So, let
ψ ∈ Lp be arbitrary. Then there exists a sequence (ψn) ⊂ L2 such that ψn → ψ and
exp(−tA2(µ))ψn → exp(−tBp(µ))ψ, both in Lp. Due to the embedding Lp ↪→ W−1,2,
we have exp(t∇ · µ∇)ψn → exp(t∇ · µ∇)ψ in W 1,2 by the analyticity of the semigroup
on W−1,2

• . On the other hand, also noted above, the semigroups generated by −A2(µ)
and ∇ · µ∇ agree on L2, hence

exp(t∇ · µ∇)ψn = exp(−tA2(µ))ψn −→ exp(−tBp(µ))ψ in Lp.

But this means that exp(−tBp(µ))ψ = exp(t∇ · µ∇)ψ ∈ Lp for every ψ ∈ Lp, i.e.,

exp(−tBp(µ)) = exp(t∇ · µ∇) |Lp . (3.4)

Since t ≥ 0 was arbitrary, the resolvent formula via the Laplace transform of the
semigroup and (3.4) then imply the coincidence of the resolvents (Bp(µ) + 1)−1 and
(−∇ · µ∇+ 1)−1|Lp = (Ap(µ) + 1)−1, cf. [61, Lemma 2.1.6], compare also [7, Prop. 2.4].
From this, Ap(µ) = Bp(µ) follows.

We lastly collect some deeper results about the operators Bp(µ). It is known that
exp(−t(Bp(µ) + 1))t≥0 transforms real functions into real ones and positive ones into
positive ones ([75, Ch. 2.6]). Moreover Bp(µ) + 1 admits bounded imaginary powers; in
particular, the set of operators {(Bp(µ) + 1)is : s ∈ ]−ε, ε[} is bounded in L(Lp) for every
p ∈ ]1,∞[ and every ε > 0, see [21] or [75, Cor. 7.24]. Observing that the fractional
powers of Bp(µ) + 1 are well defined, due to the contractivity of the semigroups and
the Hille-Yosida theorem (cf. [82, Ch. 1.15]), the boundedness of the imaginary powers
has quite some interesting implications; the most important for being, at this point, the
identity of the domains of fractional powers (Bp(µ) + 1)α with interpolation spaces, see
[82, Ch. 1.15.3] or [6, Ch. 4.6/4.7]. We devote a subchapter to the special fractional
powers which we need in the following.

3.2. Fractional powers of the elliptic operators
In this section, we ultimately establish the embedding

dom
(
(Ap(µ) + 1)

1
2 + d

2q
)
↪→W 1,q (3.5)

for suitable q > d and p ≥ q
2 , cf. Theorem 3.11 below. The main tool here, which will

be the “anchor” in the derivation of (3.5), is the precise information on the domain of
definition of the square root of the operators −∇ · µ + 1, cf. Proposition 3.9, together
with the following assumption, which essentially allows to “lift” the obtained regularity
to sufficiently high levels:

Assumption 3.5. There is a q ∈ ]d, 4[ such that

−∆ + 1: W 1,q →W−1,q
• (3.6)

provides a topological isomorphism, the operator being defined as in Definition 3.1.
9



Since Assumption 3.5 in fact implicitly determines the class of admissable domains,
an (extensive) comment on this should be in order:

Remark 3.6. i) In case of d = 2 the assumption is fulfilled for any Lipschitz domain
Ω. This is the main result in the classical paper [36], there even established for
mixed boundary conditions.

ii) It is exactly this condition which—besides the a priori required Lipschitz property—
puts a restriction on the geometry of the underlying domain Ω in three spatial
dimensions in this paper. For d = 3, it is known that Assumption 3.5 holds true in
case of strong Lipschitz domains Ω, cf. [90]. Moreover, it is also true for Lipschitz
domains Ω whose closures form—generally nonconvex—polyhedrons, cf. [37]. Note
that this latter class is, by far, not contained in the class of strong Lipschitz domains,
as the (topologically regularized) double beam shows.

iii) Assumption 3.5 is also fulfilled for domains which are obtained locally as C1 defor-
mations of the ones mentioned before.

iv) It is well-known that, even for strong Lipschitz domains, the admissable index q
exceeds 3 by an arbitrarily small margin only, cf. [90, Introduction], cf. also [53,
Thm. A]. In case of C1-domains Ω, q may be chosen arbitrarily large (cf. [1, Sec-
tion 15] or [66, p. 156–157]); but if one admits polyhedral domains the isomorphism
index q cannot be expected to be larger than 4 in general, since edge and corner sin-
gularities appear, cf. [22], [23]. See also [65] and [38, Appendix] for sharp estimates
of edge singularities.

v) If φ is a uniformly continuous function on Ω with a positive lower bound, then
Assumption 3.5 implies that

−∇ · φ∇+ 1 : W 1,q →W−1,q
• (3.7)

is also a topological isomorphism, cf. [26, Ch. 6].

Altogether, this shows that Assumption 3.5 is fulfilled for a fairly rich class of domains
which should cover almost all interesting constellations in the applications.

We suppose Assumption 3.5 to be satisfied for the rest of this work. Let us fix a
corresponding number q, that is, let us assume that Assumption 3.5 is satisfied for this
q from now on.

Remark 3.7. In the introduction it was already noted that the differential operators on
Lp with p = q

2 , where q as in Assumption 3.5, are of critical importance in the following
considerations. Due to q > d, this implies p > d

2 . However, 2d
d+2 ≤ d

2 if and only if
d ≥ 2. Hence, if p is greater than d

2 then it is also greater than 2d
d+2 in the setting of this

paper. By Theorem 3.4, this means that there is no ambiguity concerning the differential
operators on Lp and we hereby agree to call them Ap(µ).

Remark 3.8. The domain of the operator Ap(µ) is always equipped with the usual
norm ‖(Ap(µ) + 1) · ‖Lp , or ‖(Ap(µ) + 1) · ‖Lp when considered on the space Lp or Lp,
respectively. This means that domAp(µ) and dom

(
Ap(µ)+1

)
coincide as Banach spaces

and we will use them interchangeably.

The following recent result on the regularity properties of the square root of −∇ ·
µ∇+1 is, in coorperation with the isomorphism (3.6), the central instrument for deriving
estimates for suitable fractional powers of the differential operators.
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Proposition 3.9. Let µ denote any real, measurable function on Ω which is bounded
from below and above by positive constants.

i) The isomorphism (−∇ · µ∇ + 1)−
1
2 : L2 → W 1,2 continuously extends to an iso-

morphism from Lp onto W 1,p for p ∈ ]1, 2[. Hence, according to Theorem 3.4, the
operator (Ap(µ) + 1)

1
2 provides a topological isomorphism between the spaces W 1,p

and Lp, or, in other words: dom(Ap(µ) + 1)
1
2 = W 1,p for all p ∈ ] 2d

2+d , 2[.
ii) (−∇ · µ∇+ 1)

1
2 provides a topological isomorphism between the spaces Lp and W−1,p

• ,
in other words: domW−1,p

•
(−∇ · µ∇+ 1)

1
2 = Lp for all p ∈ [2,∞[.

iii) We have
dom

(
(Ap(µ) + 1)θ/2

)
= Hθ,p (3.8)

for p ∈ ] 2d
d+2 , 2] and θ ∈ ]0, 1[ \ { 1

p}.
Proof. i) is the main result in [10], cf. Thm. 5.1 there. ii) follows from i) by duality
because A2(µ) is selfadjoint on L2. iii) Since Ap(µ) + 1 admits bounded imaginary
powers,

dom
(
(Ap(µ) + 1)θ/2

)
= [Lp,dom(Ap(µ) + 1)

1
2 ]θ

follows from [82, Ch. 1.15.3]. By i), the latter is equal to [Lp,W 1,p]θ, and this space is
exactly Hθ,p as proved in [33, Thm. 3.1].

Lemma 3.10. Let µ denote any real, uniformly continuous function on Ω which is
bounded from below by a positive constant. Then, under Assumption 3.5,

(
−∇ · µ∇+ 1

) 1
2

provides a topological isomorphism between W 1,q and Lq.

Proof. First of all, Remark 3.6 tells us that under the supposition on µ Assumption 3.5
implies the isomorphism (3.7). Having this at hand, the claim follows in a straight
forward manner from Proposition 3.9 ii).

The square root isomorphism on the W 1,q space for q > d has the following immediate
consequence:

Theorem 3.11. Let µ denote any real, uniformly continuous function on Ω which is
bounded from below by a positive constant. Then, for every p with 2 ≥ p ≥ q

2 one has the
embedding

dom
(
(Ap(µ) + 1)

1
2 + d

2q
)
↪→W 1,q, (3.9)

which implies (
Lp,dom(Ap(µ))

)
θ,1

↪→W 1,q (3.10)

for all θ ∈
[

1
2 + d

2q , 1
[
.

We note that, due to q > d, we always have p > 2d
2+d in the situation of Theorem 3.11,

cf. Remark 3.7.
Proof of Theorem 3.11. It suffices to show the assertion for p = q

2 . Combining [82,
Ch. 1.10.1 and Thm. 1.15.3] gives for θ ∈

[
1
2 + d

2q , 1
[

(
Lp,dom(Ap(µ) + 1)

)
θ,1

↪→
(
Lp,dom(Ap(µ) + 1)

)
1
2 + d

2q ,1

↪→
[
Lp,dom(Ap(µ) + 1)

]
1
2 + d

2q

= dom
(
(Ap(µ) + 1)

1
2 + d

2q
)
. (3.11)
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It was already mentioned in the proof of Proposition 3.9 that Ap(µ) + 1 admits bounded
imaginary powers which is needed for the equality in (3.11). Hence, modulo identification
of domAp(µ) and dom

(
Ap(µ) + 1

)
, (3.10) follows from (3.9), which we show as follows.

Firstly, (
Ap(µ) + 1

)−α =
(
−∇ · µ∇+ 1

)−α on Lp (3.12)

for all α ∈ [0, 1]. This of course means in particular
∥∥(Ap(µ) + 1)−( 1

2 + d
2q )‖L(Lp;W 1,q) =

∥∥(−∇ · µ∇+ 1)−( 1
2 + d

2q )
∥∥
L(Lp;W 1,q)

,

and we estimate the latter by

∥∥(−∇ · µ∇+ 1)−( 1
2 + d

2q )
∥∥
L(Lp;W 1,q)

≤
∥∥(−∇ · µ∇+ 1)−

1
2
∥∥
L(Lq ;W 1,q)

∥∥(−∇ · µ∇+ 1)−
d
2q

∥∥
L(Lp;Lq)

≤
∥∥(−∇ · µ∇+ 1)−

1
2
∥∥
L(Lq ;W 1,q)

· E(H
d
q ,p;Lq)

∥∥(−∇ · µ∇+ 1)−
d
2q

∥∥
L(Lp;H

d
q

,p
)
, (3.13)

where E(H
d
q ,p;Lq) denotes the corresponding embedding constant. The first factor

in (3.13) is finite according to Lemma 3.10, and the last is finite due to the equality
domLp

(
(−∇·µ∇+1)

d
2q
)

= dom
(
(Ap(µ)+1)

d
2q
)

= H
d
q ,p according to (3.8), cf. also (3.12).

Obviously, this altogether gives

dom
(
(Ap(µ) + 1)

1
2 + d

2q
)
↪→W 1,q

which was the claim. �

3.3. Maximal parabolic regularity and consequences for nonlinear problems
Let us now introduce preparatory concepts and results concerning parabolic opera-

tors. Throughout the rest of this paper let T > 0 and set J = ]0, T [. Let us start by
introducing the following (standard)

Definition 3.12. If X is a Banach space and r ∈ ]1,∞[, then we denote by Lr(J ;X)
the space of X-valued functions f on J which are Bochner-measurable and for which∫
J
‖f(t)‖rX dt is finite. We define the Bochner-Sobolev spaces W 1,r(J ;X) := {u ∈

Lr(J ;X) : u′ ∈ Lr(J ;X)}, where u′ is to be understood as the time derivative of u
in the sense of X-valued distributions (cf. [6, Section III.1]). Moreover, we introduce the
subspace of functions with initial value zero W 1,r

0 (J ;X) := {ψ ∈W 1,r(J ;X) : ψ(0) = 0}.
Let us define a suitable notion of maximal parabolic regularity in the non-autonomous

case and point out some basic facts on this:

Definition 3.13. Let X, D be Banach spaces with D densely embedded in X. Let
J 3 t 7→ A(t) ∈ L(D;X) be a bounded and measurable map and suppose that the
operator A(t) is closed in X for all t ∈ J . Let r ∈ (1,∞). Then we say that the
family {A(t)}t∈J satisfies (non-autonomous) maximal parabolic Lr(J ;D,X)-regularity,
if for any f ∈ Lr(J ;X) there is a unique function u ∈ Lr(J ;D) ∩ W 1,r

0 (J ;X) which
satisfies

u′(t) +A(t)u(t) = f(t) (3.14)
12



for almost all t ∈ J . We write

MRr(J ;D,X) := Lr(J ;D) ∩W 1,r(J ;X)

and
MRr

0(J ;D,X) := Lr(J ;D) ∩W 1,r
0 (J ;X)

for the spaces of maximal parabolic regularity. From the open mapping theorem, we
further obtain that there exists a constant c such that

‖u‖MRr
0(J;D,X) ≤ c‖f‖Lr(J;X) (3.15)

for all f ∈ Lr(J ;X) and u being the associated unique solution of (3.14).

If all operators A(t) are equal to one (fixed) operator A0, and there exists an
r ∈ (1,∞) such that {A(t)}t∈J satisfies maximal parabolic Lr(J ;D,X)-regularity,
then {A(t)}t∈J satisfies maximal parabolic Ls(I;D,X)-regularity for all s ∈ (1,∞) and
all other (finite) intervals I (cf. [27]), and we say that A0 satisfies maximal parabolic
regularity on X.

The following embedding result for the spaces of maximal parabolic regularity is
essentially used in the sequel.

Lemma 3.14. Let X,Y be two Banach spaces, with dense embedding Y ↪→ X.

i) There is an embedding

MRs(J ;Y,X) ↪→ C
(
J ; (X,Y )1− 1

s ,s

)
. (3.16)

ii) Conversely, if the operator A generates an analytic semigroup on the Banach space
X with Y as its domain, and ψ ∈ (X,Y )1− 1

s ,s
, then the function exp(·A)ψ belongs

to W 1,s(J ;X) ∩ Ls(J ;Y ) for every bounded interval J = [0, T [.
iii) There is an embedding

MRr(J ;Y,X) ↪→ Cα
(
J ; (X,Y )ζ,1

)
(3.17)

where 0 < α = 1− ζ − 1
r .

Proof. i) is proved in [6, Ch. 4.10], ii) is shown in [61, Ch. 2.2.1 Prop. 2.2.2], and iii) is
proved in [5, Ch. 3, Thm. 3], see also [25] for a simple proof.

Remark 3.15. The first two points of Lemma 3.14 together show that the space
(X,domX(A))1− 1

s ,s
, is the adequate space of initial values in the framework of maxi-

mal parabolic regularity.

In the immediate context of maximal parabolic regularity, Y is taken as domX(A)
equipped with the graph norm, of course. Moreover, we need the following results.

Theorem 3.16 ([78, Thm. 2.5]). Let the following two suppositions be satisfied:

(H1) The family of operators {A(t)}t∈J , acting on a Banach space X has a common
dense domain D and the mapping J 3 t 7→ A(t) ∈ L(D;X) is continuous. More-
over, each operator A(s), s ∈ J , generates an analytic semigroup on X.
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(H2) For some r ∈ ]1,∞[, every (fixed) s ∈ [0, T ] and all f ∈ Lr(J ;X) there is a unique
element u ∈ MRr

0(J ;D;X) which satisfies the equation u′ +A(s)u = f .

Then {A(t)}t∈J satisfies maximal parabolic Lr(J ;D,X)-regularity.

Theorem 3.17. Let µ be a real, bounded, measurable function on Ω which admits a
positive lower bound. Then, for every p ∈ ]1,∞[, the operators Bp(µ) admit maximal
parabolic regularity on Lp. In particular, Ap(µ) admits maximal parabolic regularity on
Lp for p ∈ [ 2d

d+2 , 2], due to Theorem 3.4.

Proof. The theorem can be proved in different ways: in [41, Thm. 5.4] it is shown via
Gaussian estimates for the heat kernel, heavily resting on [40], see also [20].

On the other hand, the theorem is proved in [34, Ch. 7], there resting on the contrac-
tivity of the induced semigroups on all Lp spaces, p ∈ [1,∞], and the pioneering result of
Lamberton [58]. The latter allows to prove maximal parabolic regularity on even more
general Lebesgue spaces, see [30].

Theorem 3.18 ([3, Thm. 2.1]). Let J = ]0, T [ for some T ∈ ]0,∞[ and r ∈ ]1,∞[, and
suppose that X,Y are Banach spaces with dense embedding Y ↪→ X. Also assume that

i) A is a map from MRr(J ;Y,X) into L∞(J,L(Y ;X)), the latter space being identi-
fied with a subset of the non-autonomous parabolic operators on X. A is Lipschitz
continuous on bounded subsets.

ii) For each u ∈ MRr(J ;Y,X) and every S ∈ ]0, T ] the non-autonomous operator
A(u)|]0,S[ provides a topological isomorphism between MRr

0(0, S;Y,X) and Lr(0, S;X).
iii) There is an s > r, and a mapping F : MRr(J ;Y,X) → Ls(J ;X), which is Lips-

chitzian on every bounded subset.
iv) Both MRr(J ;Y,X) 3 u 7→ A(u) ∈ L∞(J ;L(Y ;X)) and F : MRr(J ;Y,X)→ Ls(J ;X)

are Volterra maps, i.e.

u|]0,S[ = v|]0,S[ =⇒ (A(u), F (u))|]0,S[ = (A(v), F (v))|]0,S[

for every S ∈ ]0, T [.
v) u0 ∈ (X,Y )1− 1

r ,r
.

Then there is a (maximal) interval I• := ]0, S•[ ⊆ J such that the equation

u′ +A(u)u = F (u), u(0) = u0

has a solution u on every subinterval I = ]0, S[ ⊆ I•, which belongs to the maximum
regularity space MRr(I;Y,X). Moreover, this solution is unique.

Remark 3.19. It is known since long that the Volterra property allows to derive results
which are not available in a general context without this property, see e.g. [31, Ch. V].
Nevertheless, we feel that Amann’s result is very close to the “optimum” what can be
achieved. The reader is advised to consult [4, Thm. 3.1] for comments on the result by
its inventor and a (fixable) shortcoming in the proof in [3].
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3.4. Transferring to real spaces
Up to now, we have worked in a complex setting, but the Keller-Segel system has to

be read as a real one. Therefore we transfer the results which we need in the sequel to
the corresponding real spaces. In order to do this, we denote the real parts of Lp, W 1,q

by LpR and W 1,q
R , respectively.

Remark 3.20. The necessity to start with complex spaces and to re-evaluate the asser-
tions to also hold in the real case can be explained as follows: Most results up to this
chapter 3.4 are complex in their very nature, a particular example being Proposition 3.9.
This makes it evident that, at this point, complex spaces are the correct setting. On
the other hand, the condition of being twice continuously differentiable for the nonlin-
ear functions is more or less inevitable in the context presented above, cf. Lemma 4.14,
Corollary 4.15 and Lemma 4.16. But imposing this condition in a complex setting in fact
necessitates the analyticity of the corresponding functions, which is drastically and more
importantly unnecessarily more restrictive. Hence we “do the twist” and switch to real
spaces for the actual investigation of the model.

The starting point is the insight that the semigroup operators exp(−tAp(µ)) map real
functions into real functions (cf. [75, Prop. 2.5]) if the coefficient function µ is real-valued.
Hence, the operators (Ap(µ) + λ)−1 : Lp → Lp also map real functions into real ones if
λ ∈ ]0,∞[. This makes clear that the operator Ap(µ) has a meaningful restriction to
LpR, the domain of which also consisting of real functions only. In this sense, the symbol
dom(Ap(µ)) from now on denotes the domain of Ap(µ) considered on the real space LpR.

Lemma 3.21. Let µ be a real, uniformly continuous function which is bounded from
above and below by positive constants. The assertion of Theorem 3.11 remains true in
case of real spaces, i.e. one has for p ≥ q

2 the embedding

(LpR,dom(Ap(µ)) 1
2 + d

2q ,1
↪→W 1,q

R . (3.18)

Proof. Let us first recall, see Remark 3.8, that we have topologized dom(Ap(µ)) by the
norm ‖(Ap(µ) + 1) · ‖Lp

R
. Further, by Theorem 3.11, there is a positive constant c such

that the following inequality holds true for all ψ ∈ dom(Ap(µ)):

‖ψ‖W 1,q ≤ c ‖ψ‖1−θLp ‖ψ‖θdom(Ap(µ)) = c ‖ψ‖1−θLp ‖(Ap(µ) + 1)ψ‖θLp . (3.19)

In particular, inequality 3.19 holds for real ψ ∈ dom(Ap(µ)), and then reads

‖ψ‖W 1,q
R
≤ c ‖ψ‖1−θ

Lp
R
‖(Ap(µ) + 1)ψ‖θLp

R
= c ‖ψ‖1−θ

Lp
R
‖ψ‖θdom(Ap(µ)). (3.20)

But (3.20) is constitutive for the embedding (3.18), cf. [12, Ch. 3.5] or [11, Ch. 5, Prop. 2.10].

Theorem 3.22. Let µ be a real, bounded, measurable function on Ω which admits a
positive lower bound. Then, for every p ∈ ]1,∞[, Bp(µ) admits maximal parabolic LpR
regularity. In particular, Ap(µ) admits maximal parabolic LpR regularity for p ∈ [ 2d

d+2 , 2]
due to Theorem 3.4.
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Proof. Let f ∈ LpR. Then, by maximal parabolic Lp regularity of Bp(µ), there exists a
unique solution u ∈ MRr

0(J ; dom(Bp(µ)), Lp) such that

u′ +Bp(µ)u = f, u(0) = 0.

But then this solution is given by the variation of constants formula

u(t) =
∫ t

0

exp(−(t− s)Bp(µ)) f(s) ds

and since the semigroup operators transform real functions into real ones, cf. [75, Prop. 2.5],
it is clear that the solution in fact belongs to the space W 1,r

0 (J ;LpR)∩Lr(J ; dom(Bp(µ))),
what proves the claim.

We will need that the domains of the differential operators Ap(µ) are uniform w.r.t. µ
from a certain regularity class, as per the assumptions in Theorem 3.18. In general, this
is not to be expected if µ does not have a positive lower bound, cf. Remark 3.2. Still, we
need that the differential operator on the right-hand side in (1.1), which is the “culprit”
having potentially negative coefficient function values, is compatible with the domain of
definition for the function v(t).

It will turn out that both the latter and the constant domain of definition for the
differential operators on the left-hand side in (1.1) is exactly domLp(∆). We prove the
following lemma which covers all these considerations in its generality, there writing ∆
instead of −Ap(1) and already supposing that all occurring spaces are in fact real ones.

Lemma 3.23. Let p = q
2 and assume µ ∈W 1,q.

i) The domain of the Laplacian is embedded into the domain of Ap(µ), that is,

domLp(∆) ↪→ dom(Ap(µ)).

ii) If µ has, additionally, a positive lower bound, then the reverse embedding

dom(Ap(µ)) ↪→ domLp(∆)

is also true, and domLp(∆) and dom(Ap(µ)) coincide as Banach spaces.

Proof. i) Let ψ ∈ domLp
R
(∆) and consider the linear form

W 1,2 3 ϕ 7→ 〈−∇ · µ∇ψ,ϕ〉. (3.21)

We show that ψ ∈ dom(Ap(µ)) by showing that (3.21) is continuous w.r.t. the Lp
′
-

topology on W 1,2. Therefore we estimate
∣∣∣
∫

Ω

µ∇ψ · ∇ϕdx
∣∣∣ =

∣∣∣
∫

Ω

∇ψ · ∇(µϕ) dx−
∫

Ω

ϕ∇ψ · ∇µdx
∣∣∣ (3.22)

≤
∣∣∣
∫

Ω

∇ψ · ∇(µϕ) dx
∣∣∣+
∣∣∣
∫

Ω

ϕ∇ψ · ∇µdx
∣∣∣

≤ ‖µ‖L∞‖∆ψ‖Lp‖ϕ‖Lp′ + ‖∇ψ‖Lq‖∇µ‖Lq‖ϕ‖Lp′ .
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Since domLp(∆) was topologized by ‖(−∆ + 1) · ‖Lp , we thus find

sup
ϕ∈W 1,2,‖ϕ‖

Lp′≤1

∣∣∣
∫

Ω

µ∇ψ · ∇ϕdx
∣∣∣

≤
(
‖µ‖L∞‖∆(−∆ + 1)−1‖L(Lp) + E(domLp(∆),W 1,q)‖∇µ‖Lq

)
‖ψ‖domLp (∆). (3.23)

This means that the linear form (3.21) is bounded, such that ψ ∈ dom(Ap(µ)). Moreover,
‖Ap(µ)ψ‖Lp is bounded by the right-hand side in (3.23). From here, the embedding
domLp(∆) ↪→ dom(Ap(µ)) follows immediately.

ii) One reasons analogously as in the previous case, but exploits instead of (3.22) the
equality
∫

Ω

∇ψ · ∇ϕdx =
∫

Ω

µ−1µ∇ψ · ∇ϕdx =
∫

Ω

µ∇ψ · ∇(µ−1ϕ) dx−
∫

Ω

ϕµ∇ψ∇(µ−1) dx.

This gives dom(Ap(µ)) ↪→ domLp(∆), from which the identity domLp(∆) = dom(Ap(µ))
as Banach spaces follows.

Lemma 3.23 directly yields the following corollary:

Corollary 3.24. For p = q
2 and µ ∈W 1,q, the mapping

C
(
J ;W 1,q

)
3 ω 7→ −∇ · ω∇

takes its values in the space C(J ;L(domLp(∆);Lp)) and is Lipschitzian on bounded sub-
sets.

4. Investigation of the model

4.1. Precise formulation of the problem and main result
In this section, we give a rigorous analysis of (1.1)–(1.4) in the sense of Definition 4.1

below. In fact, most of this section will consist of the proof of the main Theorem 4.3,
which we state in the following. An explanation of the strategy for the proof can be
found in Section 4.2.

Let us first agree on the following: from now on all appearing function spaces are
supposed to be real ones, without indicating this explicitely in the sequel.

For all what follows, we moreover fix p as p = q
2 with q being the number from

Assumption 3.5. We abbreviate Ap(µ) for this fixed p by A(µ) in the sequel. Fix also,
from now on, a number r > 2(1− d

q )−1 and another number s > r.
In the following we want to establish a precise notion of the solution of the Keller-

Segel-Model.

Definition 4.1. Given a subinterval I = ]0, S[ of J , we call a quadrupel (u, (v, p, w)) ∈
MRr(I; domLp(∆), Lp) × MRs(I; domLp(∆),Lp) a solution of (1.1)–(1.4) on I, if this
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satisfies

u′(t) +A
(
κ(u(t), v(t))

)
u(t) = A

(
σ(u(t), v(t))

)
v(t)

+R1

(
u(t), v(t), p(t), w(t)

)
, (4.1)

v′(t)− kv∆v(t) = R2

(
u(t), v(t), p(t), w(t)

)
, (4.2)

p′(t)− kp∆p(t) = R3

(
u(t), v(t), p(t), w(t)

)
, (4.3)

w′(t)− kw∆w(t) = R4

(
u(t), v(t), p(t), w(t)

)
, (4.4)

(
u(0), v(0), p(0), w(0)

)
= (u0, v0, p0, w0) (4.5)

for almost all t ∈ I in Lp × Lp for (4.1)–(4.4), where the time derivative is taken in the
sense of vector valued distributions and the initial values satisfy

(u0, v0, p0, w0) ∈
(
Lp,domLp(∆)

)
1− 1

r ,r
×
(
(Lp,domLp(∆))1− 1

s ,s

)3 =: IV(r, s).

Here, the operator −∆ is to be understood as Ap(1), i.e., the restriction of the weak
(negative) Laplacian to Lp.

Remark 4.2. i) In the original model, we had the specific inhomogeneities

R1 = 0,
R2 = −r1vp+ r−1w + uf(v),
R3 = −r1vp+ (r−1 + r2)w + ug(v, p),
R4 = r1vp− (r−1 + r2)w,

cf. (1.1)–(1.4).
ii) For almost all t ∈ I the functions u(t, ·), v(t, ·), p(t, ·), w(t, ·) each lie in the space

domLp(∆). This tells us that for these t the homogeneous Neumann condition ν ·
∇u = ν · ∇v = ν · ∇p = ν · ∇w = 0 is fulfilled in a generalized sense, cf. Remark 3.3.

iii) The regularity of the initial values in IV(r, s) is exactly the optimal one for the class
of solutions as defined in Definition 4.1, cf. Remark 3.15.

iv) Definition 4.1 is in fact faithful to itself in the sense that the functions and mappings
indeed map into the correct spaces, see Remark 4.6.

We formulate now the main result of this paper.

Theorem 4.3. Under Assumption 3.5, Problem (1.1)–(1.4) admits exactly one local in
time solution in the spirit of Definition 4.1. Moreover, the the components (v, p, w) of
the solution are uniformly bounded in L∞ over the interval of existence.

Remark 4.4. Considering the derivation of the model in the introductionary chapter,
the question of positivity of the solutions (u, v, p, w), provided their initial values were
positive in the first place, arises very naturally. It is a folklore result in the theory of
reaction-diffusion systems (cf. e.g. [76]) that a system in the form (4.2)–(4.4) is positivity
preserving if and only if the inhomogeneities R2(ū, ·), R3(ū, ·), R4(ū, ·) are quasipositive
for every ū ∈ R, that is, if (v̄, p̄, w̄) is an arbitrary vector in R3 with nonnegative entries,
then

R2(ū, 0, p̄, w̄) ≥ 0, R3(ū, v̄, 0, w̄) ≥ 0 and R4(ū, v̄, p̄, 0) ≥ 0.
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Intuitively, the condition prevents the source term for each of the quantitities to be neg-
ative whenever the quantity itself is in danger of becoming negative, thus preventing
a further decrease of the quantity. The specific inhomogenenites in (1.2)–(1.4), cf. Re-
mark 4.2, indeed satisfy this condition for g satisfying g(v̄, 0) ≥ 0 for all v̄ ≥ 0 and non-
negative f with nonnegative ū. Hence, (4.2)–(4.4) is positivity preserving for (v, p, w)
if u is also a positive function, i.e., (4.1) is also positivity preserving. Unfortunately,
the latter seems very difficult to show in the very general context of Definition 4.1, even
with R1 = 0 (and is generally not true for seemingly easy cases, see [70, Ch. 5]). How-
ever, for the specific choices κ(u, v) = 1 and σ(u, v) = −u, already mentioned in the
introduction as well-researched model choices, positivity of u is shown in [32, Thm. 3.3]
independent of the sign of v. The proof in [32] only relies on the fact that v is uni-
formly bounded in time and space, which is the case for our solutions obtained from
Theorem 4.3. Hence, for this choice of κ and σ, R1 = 0 and R2(ū, ·), R3(ū, ·), R4(ū, ·)
quasipositive for ū ≥ 0, system (4.1)–(4.4) is indeed posivitity preserving. This includes
in particular system (1.1)–(1.4) for this choice of κ and σ.

We now proceed with the proof of the main result.

4.2. The proof
The actual proof of Theorem 4.3 works as follows. It should be evident to the reader

that we plan to use the abstract result of Amann, Theorem 3.18. The general idea is to
solve the semilinear equations for (v, p, w), (4.2)–(4.4), in dependence of u, and to show
that this dependence satisfies the assumptions in Theorem 3.18. Here, it is clear that the
dependence of (v, p, w) on u will be nonlocal in time, which indeed makes Theorem 3.18—
instead of other well-known abstract quasilinear existence results—necessary.

However, as (4.2)–(4.4) are nonlinear equations themselves, it is not a priori clear
that they in fact admit global solutions on the whole time horizon ]0, T [, and a local-in-
time existence interval I(u) for (v, p, w) depending on u would clearly thwart any attempt
to establish the assumptions from Theorem 3.18. Hence, we modify the right-hand sides
in (4.2)–(4.4) by introducing a suitable cut-off, which then allows to show global existence,
uniqueness, and a well-behaved dependence on u for the solutions (v̂, p̂, ŵ) of the modified
system ((4.10)–(4.12) below); this is Theorem 4.10. After establishing that the involved
operators and functions satisfy the assumptions of Theorem 3.18, we then use that very
theorem to show existence and uniqueness of a local-in-time solution u to the modified
system (4.9)–(4.12), including the equation for u, in Theorems 4.13 and 4.9. From there,
we finally obtain Theorem 4.3 by showing that the local-in-time solution obtained for
the modified system is indeed also the solution to the original system (4.1)–(4.4) at the
cost of a possibly still smaller existence interval.

Aside from the dependence of (v, p, w) on u, there is another major obstacle when
working to satisfy the assumptions of Theorem 3.18: Innocently looking, assumption i)
of said theorem in fact requires, in our notation, that the differential operators, which
will be Ap

(
κ(u(t), [v(u)](t))

)
, have uniform domains Y for all u ∈ MRr(J ;Y, Lp) and for

almost every t ∈ J . As already hinted right before Lemma 3.23, we will be able to use
Y = domLp(∆), provided that the coefficient functions κ(u(t), [v(u)](t)) are from W 1,q

for almost every t ∈ J . Luckily, we already laid the fundations for this by Lemma 3.21
and have the maximal regularity embedding (3.16) at hand. Together, they immediately
yield the following introductory result which is of importance in all what follows.
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Lemma 4.5. Set α = 1
2 − d

2q − 1
r . By the choice of r, we have α > 0.

i) The space MRr(J ; domLp(∆), Lp) embeds into Cα(J ;W 1,q) and, hence, compactly
into C(J ;C(Ω)).

ii) Analogously, MRs
0(J ; domLp(∆),Lp) embeds into Cα(J ; W1,q) and, hence, compactly

into C(J ;C(Ω)3).

Proof. The compactness in both cases follows by the vector-valued Arzelà-Ascoli theorem,
cf. [59, Ch. III.3]. For i), the condition on r implies 1 − 1

r − 1
2

(
1 + d

q ) > 0. Thus, the
claim follows from Lemma 3.14, cf. (3.17), in conjunction with Lemma 3.21. ii) is proved
analogously.

Remark 4.6. For u ∈ MRr(I; domLp(∆), Lp) and v ∈ MRs(I; domLp(∆), Lp) with I as
in Definition 4.1, Lemma 4.5 in conjunction with Lemma 3.23 and the assumptions on κ
and σ (cf. Assumption 3.5) tells us that κ(u(t), v(t)) and σ(u(t), v(t)) are each functions
from W 1,q for every t ∈ I. Together with u(t), v(t) ∈ domLp(∆) for almost every t ∈ I,
this shows that the expressions A(κ(u(t), v(t)))u(t) and A(σ(u(t), v(t)))v(t) in (4.1) are
indeed well-defined. See also Lemmata 4.16 and 4.17 below.

As laid out in the beginning of this section, we will now modify the abstract sys-
tem (4.1)–(4.4) in such a way that the terms on the right hand sides of (4.2)–(4.4)
become bounded in space and time. This will ultimatively lead to a solution in the spirit
of Definition 4.1 on a smaller time interval, since the modification becomes “active”, only
after some time point T• > 0, allowing to re-obtain the correct solution to the unmodified
system on [0, T•].

We consider
(v0, p0, w0) ∈

(
(Lp,domLp(∆))1− 1

s ,s

)3 (4.6)

to be given and fixed from now on.

Definition 4.7. For δ > 0, we put M := δ + max(‖v0‖L∞ , ‖p0‖L∞ , ‖w0‖L∞). Let
η ∈ C∞(R) be a smooth function which is the identity on the interval [−M,M ] and is
equal to −(M + 1) on the interval ]−∞,−(M + 1)] and equal to M + 1 on the interval
[M + 1,∞[. Moreover, we put Rηi := Ri(·, η(·), η(·), η(·)) for i = 2, 3, 4.

Note that, due to Lemma 3.21 and the choice of s, we have the embedding
(Lp,domLp(∆))1− 1

s ,s
↪→ C(Ω), such that the number M in Definition 4.7 is well-defined.

We further split off the initial values for the functions v, p, w. In this spirit, we put
vI(t) = exp(t kv∆) v0 as well as pI(t) = exp(t kp∆) p0 and wI(t) = exp(t kw∆)w0, and
write

v = vI + v̌, p = pI + p̌, w = wI + w̌, (4.7)

where v̌, p̌ and w̌ have the initial value 0, of course.
For convenience, we collect some of the properties for the functions vI , pI and wI

which will be of importance later.

Lemma 4.8. Let the initial values (v0, p0, w0) satisfy (4.6).

i) One has
v′I − kv∆vI = p′I − kp∆pI = w′I − kw∆wI ≡ 0 (4.8)

on any time interval ]0, S[ ⊂ J .
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ii) The functions vI , pI and wI are each from MRs(J ; domLp(∆), Lp), take their values
pointwise on J in W 1,q, and are continuous on every time interval [0, S[ ⊂ J .

iii) The functions vI , pI and wI are continuous on every time interval [0, S[ ⊂ J when
considered with values in C(Ω). Moreover, in this case we have

‖vI(t)‖C(Ω) ≤ ‖vI(0)‖C(Ω), ‖pI(t)‖C(Ω) ≤ ‖pI(0)‖C(Ω),

and ‖wI(t)‖C(Ω) ≤ ‖wI(0)‖C(Ω)

for every s ∈ S
Proof. i) is clear. ii) Lemma 3.14 ii) shows that the functions vI , pI , wI are continuous,
when considered as (Lp,domLp(∆))1− 1

s ,s
-valued ones. Thus, the assertion follows from

Lemma 3.21 and the definition of s. iii) The first assertion follows from ii) by embedding
W 1,q ↪→ C(Ω). Moreover, since the semigroups act as contractive ones in L∞, cf. Ch. 3.1,
the evolution of the initial values v0, p0, w0 does not lead to larger L∞-norms. The latter
is identical with the C(Ω)-norm in our case.

Having introduced the modified nonlinearities Rηi and the split-off of the initial values,
we combine both into the functions R̂i : J × C(Ω)4 → Lp by

R̂i(t; u, v, p,w) := Rηi (u, vI(t) + v, pI(t) + p, wI(t) + w)

for i = 2, 3, 4, and

R̂1(t; u, v, p,w) := R1(u, vI(t) + v, pI(t) + p, wI(t) + w).

Then we consider instead of (4.1)–(4.4) the system

u′(t) +A
(
κ(u(t), vI(t) + v(t))

)
u(t) = A

(
σ(u(t), vI(t) + v(t)

)(
vI(t) + v(t)

)

+ R̂1(t;u(t), v(t), p(t), w(t)), (4.9)

v′(t)− kv∆v(t) = R̂2(t;u(t), v(t), p(t), w(t)), (4.10)

p′(t)− kp∆p(t) = R̂3(t;u(t), v(t), p(t), w(t)), (4.11)

w′(t)− kw∆w(t) = R̂4(t;u(t), v(t), p(t), w(t)), (4.12)
(u(0), v(0), p(0), w(0)) = (u0, 0, 0, 0) (4.13)

as equations in the Banach space Lp × Lp × IV(r, s), holding for almost every t ∈ I for
the first four components. Note that we have, by abuse of notation, returned to writing
v, p and w instead of v̌, p̌ and w̌ as introduced in (4.7) for better readability. Since we
work exclusively with the functions with initial value 0 from here on, this should not give
rise to confusion to the reader.

After these preparations we prove the subsequent theorem, from which our main
result, Theorem 4.3, then follows (and which is in fact only a slight reformulation of
this).

Theorem 4.9. For given (u0, v0, p0, w0) ∈ IV(r, s), the system (4.9)–(4.13) admits ex-
actly one local-in-time solution

(u, (v, p, w)) ∈ MRr(I; domLp(∆), Lp)×MRs
0(I; domLp(∆),Lp),

with I = ]0, S[ ⊆ J .
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Let us point out some of the strategy for the proof of Theorem 4.9: Firstly, we will
solve the equations (4.10)–(4.12) with u ∈ C(J ;C(Ω)) fixed by a fixed-point argument.
The crucial point is that the dependence of these solution (v, p, w) from u is well-behaved
in the space MRs

0(J ; domLp(∆),Lp). So implicitly inserting this into (4.9), this equation
decouples from the other ones and is tractable by means of Amann’s result, Theorem 3.18.
Having then u at hand (we prove that the assumptions of Theorem 3.18 are satisfied in
Theorem 4.13), one “rediscovers” (v, p, w) by (4.10)–(4.12).

Theorem 4.10. i) Assume u ∈ C(J ;C(Ω)) to be given. Then the system (4.10)–
(4.12) has a unique solution (v, p, w) ∈ MRs

0(J ; domLp(∆),Lp).
ii) Let S : C(J ;C(Ω)) → MRs

0(J ; domLp(∆),Lp) denote the mapping which assigns to
u the solution of (4.10)–(4.12). Then S is continuously differentiable.

Proof. i) As announced above, we tackle this problem with a fixed-point argument which
is rather standard in nature. We thus describe it only briefly. Let us investigate the right-
hand sides in (4.10)–(4.12) for fixed u ∈ C(J ;C(Ω)) and an arbitrary subinterval J0 ⊆ J .
Observing that

LR := max
i
Li,R, where Li,R := max

|ū|≤‖u‖C(J;C(Ω)),

|v̄|∨|p̄|∨|w̄|≤M+1

∥∥∂(2,3,4)Ri(ū, v̄, p̄, w̄)
∥∥

R3

is finite due to Assumption 2.1 and the definition of η, we easily find that (v, p, w) 7→
R̂(·;u(·), v(·), p(·), w(·)) is Lipschitz-continuous as a mapping from Lς(J0; Lp) to Ls(J0; Lp)
for every ς > s, where we have collected the functions R̂2, R̂3, R̂4 into R̂. Moreover, the
Lipschitz constant depends on the time interval J0 via the term `ς,s(J0) := |J0|

1
s− 1

ς , with
the usual convention 1

∞ = 0.
This paves the way for a fixed point argument employing Banach’s fixed point theorem

for the mapping Φu, associated to the given u ∈ C(J ;C(Ω)), which assigns to (v, p, w) ∈
Lς(J0; Lp) the solution (v̂, p̂, ŵ) ∈ MRs

0(J0; domLp(∆),Lp) ↪→ Lς(J ; Lp) of the parabolic
equations

v̂′(t)− kv∆v̂(t) = R̂2(t;u(t), v(t), p(t), w(t)), (4.14)

p̂′(t)− kp∆p̂(t) = R̂3(t;u(t), v(t), p(t), w(t)), (4.15)

ŵ′(t)− kw∆ŵ(t) = R̂4(t;u(t), v(t), p(t), w(t)). (4.16)

This mapping is well-defined, since

−∆̃ := diag(−kv∆,−kp∆,−kp∆)

satisfies maximal parabolic regularity on Lp due do Theorem 3.22, with domain
domLp(−∆̃) = domLp(∆), and the triplet of functions on the right-hand sides in (4.14)–
(4.16) is from Ls(J0; Lp). Now let I0 = ]0, S0[ ⊆ J . By the Lipschitz continuity of
the right-hand sides R̂ as noted above, with J0 = I0, and the maximal parabolic reg-
ularity estimate (3.15), Φu is Lipschitz-continuous and its Lipschitz constant consists
of `ς,s(I0) and quantities which are monotonically increasing w.r.t. the interval length
|I0|. Thus, it is possible to choose S0 such that we achieve a certain Lipschitz constant
for Φu. In fact, choosing S0 small enough such that Φu is a contraction gives a fixed
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point (v, p, w) = Φu(v, p, w) on Lς(I0; Lp) which is, by construction, the unique solution
of (4.14)–(4.16) on I0, and in fact an element of MRs

0(I0; domLp(∆),Lp).
Now one may consider Φu again, this time on another interval I1 = ]S0, S1[ ⊂ J ,

with the modification that now the initial values (v(S0), p(S0), w(S0)) have to be split
off again as we did above, cf. (4.7). It remains to observe that choosing S1 such that
|I1| = |I0| again makes Φu a contraction and its fixed point the unique solution of (4.14)–
(4.16), this time on I1, “gluing” the solutions on I0 and I1 together, and to iteratively
repeat this procedure a finite number k times to obtain a unique solution (v, p, w) ∈
MRs

0(J ; domLp(∆),Lp) of (4.14)–(4.16) with the correct regularity on the whole time
interval.

ii) For this we apply the implicit function theorem, considering the mapping

Ψ: C(J ;C(Ω))×MRs
0(J ; domLp(∆),Lp)→ Ls(J ; Lp),

which is given by

Ψ(u, v, p, w)(t) =
(
v′(t)− kv∆v(t)− R̂2(t;u(t), v(t), p(t), w(t)),

p′(t)− kp∆p(t)− R̂3(t;u(t), v(t), p(t), w(t)),

w′(t)− kw∆w(t)− R̂4(t;u(t), v(t), p(t), w(t))
)
.

Obviously, for given u ∈ C(J ;C(Ω)), the triple (v, p, w) is a solution of (4.10)–(4.12) iff
Ψ(u, v, p, w) = 0 in Ls(J ; Lp). By the assumptions on R2, R3 and R4, Ψ is continuously
differentiable and the partial derivative with respect to the second variable in a given
point

(
ū, (v̄, p̄, w̄)

)
∈ C(J ;C(Ω)) ×MRs

0(J ; domLp(∆),Lp) is the linear mapping which
assigns to the triple (h2, h3, h4) ∈ MRs

0(J ; domLp(∆),Lp) the expression
[(
∂(2,3,4)Ψ

)
(ū, v̄, p̄, w̄)(h2, h3, h4)

]
(t)

=

[(
h′2(t)− kv∆h2(t)−

4∑

i=2

∂iR̂2(t; ū(t), v̄(t), p̄(t), w̄(t))hi(t)
)
, (4.17)

(
h′3(t)− kv∆h3(t)−

4∑

i=2

∂iR̂3(t; ū(t), v̄(t), p̄(t), w̄(t))hi(t)
)
, (4.18)

(
h′4(t)− kv∆h4(t)−

4∑

i=2

∂iR̂4(t; ū(t), v̄(t), p̄(t), w̄(t))hi(t)
)]

, (4.19)

a function from Ls(J ; Lp). We know already that the autonomous operator −∆̃ satisfies
maximal parabolic regularity on the space Lp. Moreover, it is clear that the remaining
terms in (4.17)–(4.19), considered as time-dependent multipliers on the corresponding
Lp-space, form bounded operators in Ls(J ; Lp), since the corresponding multipliers are
bounded and continuous in space and time. Hence, according to a suitable perturbation
theorem as in [9, Prop. 1.3], the equation

(
∂(2,3,4)Ψ

)
(ū, v̄, p̄, w̄)(h2, h3, h4) = f

is uniquely solvable with (h2, h3, h4) ∈ MRs
0(J ; domLp(∆),Lp) for every f ∈ Ls(J ; Lp).

This means that the partial derivative
(
∂(2,3,4)Ψ

)
(ū, v̄, p̄, w̄) is a topological isomorphism
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between MRs
0(J ; domLp(∆),Lp) and Ls(J ; Lp), what makes the implicit function theorem

applicable. Considering (ū, v̄, p̄, w̄) = (ū,S(ū)), i.e., Ψ(ū, v̄, p̄, w̄) = 0, we thus obtain that
the implicit function defined on a neighborhood of ū, whose existence is guaranteed by
the implicit function theorem, coincides with S on that neighborhood and is continuously
differentiable. Since this is true for every ū ∈ C(J,C(Ω)), S is continuously differentiable
on that space.

Remark 4.11. In addition to the results of Theorem 4.10, the above considerations make
it clear that the set of solutions {S(u) : u ∈ B} which correspond to a bounded subset B
of C(J ;C(Ω)) in turn forms a bounded subset in the space MRs

0(J ; domLp(∆),Lp), and,
hence, a precompact one in C0(J ;C(Ω)3), cf. Lemma 4.5. This can be seen by observing
that the real functions Ri, being right hand sides in (4.14)–(4.16), are uniformly bounded
in Ls(J ; Lp) in the following way: We set, analogously to the definition of Li,R in the
foregoing proof,

MR := max
i
Mi,R <∞, where Mi,R := sup

|ū|≤MB,
|v̄|∨|p̄|∨|w̄|≤M+1

∣∣Ri(ū, v̄, p̄, w̄)
∣∣,

using MB := maxu∈B ‖u‖C(J;C(Ω)). Then

max
i

∥∥R̂i(·; ū(·), v̄(·), p̄(·), w̄(·))
∥∥
Ls(J;Lp)

≤ `s,∞(J)|Ω| 1pMR

for all ū ∈ B and (v, p, w) ∈ MRs
0(J ; domLp(∆),Lp)), which by the maximal parabolic

regularity estimate (3.15) shows that {S(u) : u ∈ B} forms a bounded set in the space
MRs

0(J ; domLp(∆),Lp).

Out next intention is to show that the mapping S is Lipschitzian on bounded subsets
of MRr(J ; domLp(∆), Lp).

Corollary 4.12. Let B be any bounded subset of MRr(J ; domLp(∆), Lp). Then the
mapping S is Lipschitzian as a mapping from B into MRs

0(J ; domLp(∆),Lp), and hence,
also into C(J ; W1,q).

Proof. Without loss of generality we may assume that B is a—sufficiently large—ball.
Any bounded subset B of MRs

0(J ; domLp(∆),Lp) forms a precompact subset of C(J ;C(Ω)),
according to Lemma 4.5. Accordingly, its closure B in C(J ;C(Ω)) forms a compact set
in this space which is convex, too. Now Theorem 4.10 (ii) tells us that the derivative
of S is bounded on B. Since this set contains with any two points also the segment
between them, an application of the mean value theorem gives the first claim. Finally,
the assertion for C(J ; W1,q) is obtained from the previous one via Lemma 4.5.

Having introduced the solution operator S for (4.10)–(4.12), we now turn back to
Theorem 4.9. Inserting S(u) with u ∈ MRr(J ; domLp(∆), Lp) for (v, p, w) in (4.9), one
obtains a self-consistent equation for u alone together with the initial value condition
u(0) = u0. This equation can be solved via Theorem 3.18, as we will show below.
Afterwards, having the solution ū at hand, the functions (v̄, p̄, w̄) are determined via
Lemma 4.10 or S(ū), from which they satisfy (4.10)–(4.12) automatically by construction.
The quality of the whole solution of (4.9)–(4.12) is then ū ∈ MRr(J ; domLp(∆), Lp) and
(v̄, p̄, w̄) ∈ MRs

0(I; domLp(∆),Lp).
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We have formulated the next big step—the application of Theorem 3.18—as a theorem
on its own. For this, let S1 denote the v-component of S, S2 the p-component of S, and
S3 the w-component of S.

Theorem 4.13. Suppose (u0, v0, p0, w0) ∈ IV(r, s). Then there exists a maximal interval
I• = ]0, S•[ ⊆ J such that the equation

u′(t) +A
(
κ(u(t), vI(t) + S1(u)(t))

)
u(t)

= A
(
σ(u(t), vI(t) + S1(u)(t))

)(
vI(t) + S1(u)(t)

)
+ R̂1

(
t;u(t),S(u)(t)

)
, (4.20)

has a unique solution u ∈ MRr(I; domLp(∆), Lp) with initial value u(0) = u0 on every
subinterval I = ]0, S[ ⊂ I•.

In order to validate the suppositions in Theorem 3.18, we will formulate some lem-
mata:

Lemma 4.14. Let ξ : R2 → R be twice continuously differentiable. Then the superpo-
sition operator C(Ω) × C(Ω) 3 (ψ,ϕ) → ξ(ψ(·), ϕ(·)) induced by ξ is well defined and
Lipschitzian on bounded sets when considered as an operator from W 1,q×W 1,q into W 1,q.

Proof. Let B be a bounded set in W 1,q and assume firstly that ψ,ϕ ∈ B∩C∞(Ω). Taking
into account that B forms a bounded subset of C(Ω), a straight forward calculation shows
the existence of a constant c = c(B, ξ) such that

‖ξ(ψ1, ϕ1)− ξ(ψ2, ϕ2)‖W 1,q ≤ c
(
‖ψ1 − ψ2‖W 1,q + ‖ϕ1 − ϕ2‖W 1,q

)
, (4.21)

holds for all ψ,ϕ ∈ B∩C∞(Ω) . Thus, the superposition operator induced by ξ is defined
on a dense subset of B×B ⊂W 1,q×W 1,q and is uniformly continuous in W 1,q w.r.t. the
W 1,q ×W 1,q-toplogy. Hence, it can be extended to all of B ×B, with the same estimate
as in (4.21).

We immediately obtain the following extension from the preceding lemma.

Corollary 4.15. Let ξ : R2 → R be twice continuously differentiable. In the spirit of
Lemma 4.14, ξ induces a superposition operator C(J ;W 1,q)×C(J ;W 1,q)→ C(J ;W 1,q)
via

C(J ;W 1,q)× C(J ;W 1,q) 3 (ψ,ϕ) 7→
[
t 7→ ξ(ψ(t), ϕ(t))

]
∈ C(J ;W 1,q),

and this mapping is also Lipschitzian on bounded sets.

The next lemma covers the differential operators occurring in (4.9).

Lemma 4.16. Let ξ : R2 → R be twice continuously differentiable.

i) The operator
A(u)(t) := A

(
ξ(u(t), vI(t) + S1(u)(t))

)
(4.22)

defines a mapping

A : MRr(J ; domLp(∆), Lp)→ C(J ;L(domLp(∆);Lp)).

Moreover, A is Lipschitzian on bounded subsets of MRr(J ; domLp(∆), Lp).
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ii) If, additionally, ξ is a strictly positive function, then A(u)|I provides a topologi-
cal isomorphism between MRr

0(I; domLp(∆), Lp) and Lr(I;Lp) for every subinterval
I = ]0, S[ ⊆ J and every u ∈ MRr(J ; domLp(∆), Lp). In particular, A satisfies
assumptions i) and ii) in Theorem 3.18 for the spaces X = Lp and Y = domLp(∆)
in this case.

Proof. i) According to Lemma 4.5, both spaces MR(J ; domLp(∆), Lp) and
MRs

0(domLp(∆), Lp) each embed continuously into C(J ;W 1,q). Hence, both u and S1(u)
are from C(J ;W 1,q), cf. Theorem 4.10. Due to to Lemma 4.8 and (4.6), this is also true
for the function vI(·). Thanks to Corollary 4.15, then the function ξ

(
u(·), vI(·)+S1(u)(·)

)

is also from C(J,W 1,q). This allows to apply Corollary 3.24, which shows that A as given
in (4.22), is well-defined as a mapping into the space C(J ;L(domLp(∆);Lp)).

Let us further show the Lipschitz continuity of A on bounded subsets of the space
MRr(J ; domLp(∆), Lp). Combining Corollary 4.12 and Lemma 4.14 shows that the map-
ping

MRr(J ; domLp(∆), Lp) 3 u 7→ ξ
(
u(·), vI(·) + S1(u)(·)

)
∈ C(J ;W 1,q)

is well-defined and Lipschitzian on any bounded subset of MRr(J ; domLp(∆), Lp). Now
it remains to apply Corollary 3.24.

ii) Clearly, assumption i) of Theorem 3.18 is already covered by the first assertion in
this lemma. Let u be a fixed function from MRr(J ; domLp(∆), Lp). Under the positivity
condition on ξ, the functions ξ

(
u(t), vI(·)+S1(u)(t)

)
∈W 1,q are measurable and bounded

from above and below by positive constants, uniformly for all t ∈ J . Thus, the operators
A(u)(t) satisfy maximal parabolic regularity on Lp for each fixed t ∈ J , cf. Theorem 3.17.
Moreover, t 7→ A(u)(t) belongs to C(I;L(domLp(∆);Lp)) for every subinterval I =
]0, S[ ⊆ J by i). But then Theorem 3.16 tells us that the non-autonomous operator
A(u) on every such I satisfies maximal parabolic Lr(I; domLp(∆), Lp)-regularity. This
is exactly assumption ii) in Theorem 3.18.

Let us now turn to the right-hand side in (4.9).

Lemma 4.17. Define for u ∈ MRr(J ; domLp(∆), Lp) the following operators:

F1(u) := A
(
σ(u(·), vI(·) + S1(u)(·))

)
vI(·), (4.23)

F2(u) := A
(
σ(u(·), vI(·) + S1(u)(·))

)(
S1(u)(·)

)
, (4.24)

F3(u) := R̂1

(
· ;u(·),S(u)(·)

)
. (4.25)

Then F1, F2 and F3 are well-defined as mappings from MRr(J ; domLp(∆), Lp) into Ls(J ;Lp)
and Lipschitzian on bounded sets.

Proof. We first consider F1 and F2. Taking ξ = σ in Lemma 4.16, we see that the
operator function in (4.22) belongs to the space C(J ;L(domLp(∆);Lp)) for every u ∈
MRr(J ; domLp(∆), Lp). Due to the supposition v0 ∈ (Lp,domLp(∆))1− 1

s ,s
, cf. (4.5)

and (4.6), we already know that in fact vI ∈ Ls(J ; domLp(∆)), see Lemma 4.8. For F2,
we recall that S1(u) belongs to Ls(J ; domLp(∆)), cf. Theorem 4.10. This shows that F1

and F2 are well-defined.
Let us prove the Lipschitz properties for F1 and F2. For F1, this directly follows from

Lemma 4.16 with ξ = σ, and the property vI ∈ Ls(J ; domLp(∆)). On the other hand,
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F2 is of the form F2(u) = Aσ(u)S1(u), where Aσ is the operator in (4.22) for ξ = σ,
i.e., a product of two functions in u which are Lipschitzian and bounded on bounded
sets in MRr(J ; domLp(∆), Lp) with values in the correct spaces, by Lemma 4.16 and
Corollary 4.12, see also Remark 4.11. Hence F2 is also Lipschitzian on bounded sets.

The assertions on F3 are also satisfied: It remains to collect the continuity of vI , pI
and wI due to Lemma 4.8 with the regularity of v0, p0 and w0 as in (4.6), the assumptions
on R1 (cf. Assumption 2.1) and the properties of S(·) as in Theorem 4.10 combined with
Corollary 4.12.

Lemma 4.18. Define A as in (4.22), there setting ξ := σ. Further, put F := F1 +
F2 + F3 as given in (4.23)–(4.25). Then both A and F satisfy the Volterra property, cf.
Theorem 3.18.

Proof. We only need to check the supposition for S. Since S(u) is obtained as the solution
of a system of semilinear parabolic forward equations into which u enters pointwise with
respect to the time variable, it is clear that if u1, u2 ∈ C(J ;C(Ω)) with u1 = u2 on a
subinterval I = ]0, S[ ⊆ J , then also S(u1)|I = S(u2)|I . But this is exactly the Volterra
property.

Now all suppositions of Theorem 3.18 are proved to be satisfied in order to prove
Theorem 4.13.

Proof of Theorem 4.13. Since we presupposed the correct regularity for the ini-
tial value u0 ∈ (Lp,domLp(∆))1− 1

r ,r
, it remains to collect all the assertions from Lem-

mata 4.16, 4.17 and 4.18. With these, Theorem 3.18 is applicable and, hence, proves
Theorem 4.13. �

With Theorem 4.13 at hand, we are now in turn able to prove the main Theorem 4.3
via Theorem 4.9.

Proof of Theorem 4.9. Let u ∈ MRr(I; domLp(∆), Lp) be the local-in-time solution
of (4.20) on an interval I ⊂ I• as given by Theorem 4.13. Lemma 4.5 shows that u admits
the regularity to obtain (v, p, w) := S(u) via Theorem 4.10. This proves Theorem 4.9 by
construction. �

Proof of Theorem 4.3. We use Theorem 4.9. Let

(u, (v̌, p̌, w̌)) ∈ MRr(I; domLp(∆), Lp)×MRs
0(I; domLp(∆),Lp)

be the solutions of (4.9)–(4.13) as given by Theorem 4.9 (we need to return to the accented
way of denoting the functions, as introduced in (4.7), now). It suffices to “remove” the
cut-off introduced in Definition 4.7 for (v̌, p̌, w̌). Let M be the number from Definition 4.7
for given δ > 0. Firstly, from Lemma 4.8, we know that

‖vI‖C(I;C(Ω)) ∨ ‖pI‖C(I;C(Ω)) ∨ ‖wI‖C(I;C(Ω)) ≤M.

On the other hand, since v̌, p̌ and w̌ are functions from C0(I;C(Ω)) by Lemma 4.5, there
exists an interval I0 = ]0, S0[ ⊆ I such that

‖v̌‖C(I0;C(Ω)) ∨ ‖p̌‖C(I0;C(Ω)) ∨ ‖w̌‖C(I0;C(Ω)) ≤
δ

2
.
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This means that

Rηj
(
u(t), vI(t) + v̌(t), pI(t) + p̌(t), wI(t) + w̌(t)

)

= Rj
(
u(t), vI(t) + v̌(t), pI(t) + p̌(t), wI(t) + w̌(t)

)

for every t ∈ I0, hence (u, (v, p, w)) with (v, p, w) as in (4.7) are a solution to (4.1)–(4.5)
on I0, cf. (4.8). Moreover, (v, p, w) admits the correct regularity due to (vI , pI , wI) ∈
MRs(J ; domLp(∆),Lp), see Lemma 4.8. �

5. Concluding remarks

In this concluding chapter we want to comment on possible relaxations and possi-
ble modifications that can be done to apply our results also to some slightly different
situations than those that we have proposed in the present paper.

i) Reduction to simplified models: We want to point out again that the simplified
model (1.7) may also be treated by the strategy used above for the full model, with
very little changes. The same is true for the case of only elliptic equations for v, p,
and w, and for which one would not need to deal with a nonlocal equations. We refer
to the paragraph in the introduction and to [64], where such a system was treated.

ii) Regularity of initial data: We suggest that one can reduce the requirements on the
initial values considerably, if one is willing and able to work in spaces with temporal
weights. The basis of such an approach are the results in [57] where it is shown
that maximal parabolic regularity carries over to spaces with temporal weights. The
demanding task would be to prove an analogue of Amann’s theorem also in this
case and, finally, carry out the programm of this paper in that setting. Clearly, this
would be an ambitious program and is completely out of scope here.

iii) Boundary conditions in the model: Of course, one can also impose other boundary
conditions than homogenous Neumann conditions. For example, one can also find
references where no-flux boundary conditions for the equation of the population den-
sity and homogeneous Dirichlet conditions for the chemoattractant or homogeneous
Dirichelt boundary conditions for both equations of the simplified system (1.7) are
considered (see for example [24] and [87]). If other boundary conditions are imposed
(cf. for instance [67]) or if the inhomogenities Ri consist of more delicate terms such
as ones “living on the boundary” ∂Ω, one can proceed in a quite similar way, basing
on Assumption 3.5 in case of pure Dirichlet conditions or mixed boundary condi-
tions. There also exist large classes of domains for which the assumptions is satisfied
in these cases, cf. [26]. Then spaces of type W−1,q would be adequate to consider the
system in and the prinicipal functional analytical framework would be very similiar.
In particular, the needed elliptic and parabolic regularity results are also available
here, cf. [10, Ch. 11].

iv) Convex domains: In contrast to the known results so far we did not assume the
domain Ω to be convex. However, if the domain Ω is convex, then one can prove
the result of well-posedness much easier: one is enabled to treat the problem in L2,
basing on the classical result (−∆ + 1)−1 : L2 → H2, cf. [35, Ch. 3.2]. Namely, from
this one deduces

(
L2,domL2(∆)

)
θ,1

↪→
[
L2,domL2(∆)

]
θ
↪→
[
L2, H2

]
θ
↪→W 1,4,
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as long as θ ≥ 1
2 (1 + d

4 ), the bound on θ being strictly smaller than 1 for space
dimensions d = 2 or d = 3. Thus, one can prinicpally proceed as in our more general
proof, thereby avoiding the highly nontrivial considerations in the non-Hilbert spaces
we used.

v) Regularity of solutions: Concerning the equations for (v, p, w), one could chose any
other integrability index p ∈ ] q2 ,∞[ with respect to the spatial variable. Moreover,
it is possible to bootstrap the regularity of the solutions by inserting the solutions
(v, p, w) ∈ MRs

0(J ; domLp(∆),Lp) ↪→ C(J ;C(Ω)) of (4.10)–(4.12) into the right
hand sides, which then each belong to a space Cβ(J ;C(Ω)) for some β > 0. Now
exploiting the fact that −∆ also generates an analytic semigroup on C(Ω) (see [74,
Rem. 2.6]) and the well known results of [61, Ch. 4], one obtains even more regularity
for (v, p, w).

vi) Matrix-valued coefficient functions: Finally we want to point out a technicality con-
cerning our considerations in Ch. 3.1 and 3.2. As already mentioned in the introduc-
tion, these considerations may also be generalized to real matrix-valued coefficients,
since the underlying results are available also in this case, cf. [28] and the refer-
ences therein, see also [26]. We did not undertake this here because the considered
Keller-Segel model is restricted to scalar coefficients and the general way to proceed
is clear.
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[31] Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferen-
tialgleichungen, Akademie-Verlag, 1974.

[32] Gajewski, H., Zacharias, K.: Global behavior of a reaction-diffusion system modelling chemotaxis,
Math. Nachr. 195 (1998) 77–114.
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[57] Köhne, M., Prüss, J., Wilke, M.: On quasilinear parabolic evolution equations in weighted Lp

-spaces, J. Evol. Equ. 10 No. 2 (2010) 443–463.
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