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Abstract: The electrochemistry and photophysics of the Pt(II) complexes [Pt(naphen)(X)] (Hnaphen = na-
phtho[1,2-b][1,10]phenanthroline, X = Cl or C≡CPh) containing the rigid tridentate CˆNˆN-coordinating
pericyclic naphen ligand was studied alongside the complexes of the tetrahydro-derivative [Pt(thnap-
hen)(X)] (Hthnaphen = 5,6,8,9-tetrahydro-naphtho[1,2-b][1,10]phenanthroline) and the NˆCˆN-coord-
inated complex [Pt(bdq)(Cl)] (Hbdq = benzo[1,2-h:5,4-h’]diquinoline. The cyclic voltammetry showed
reversible reductions for the CˆNˆN complexes, with markedly fewer negative potentials (around
−1.6 V vs. ferrocene) for the complexes containing the naphen ligand compared with the thnaphen
derivatives (around −1.9 V). With irreversible oxidations at around +0.3 V for all of the complexes,
the naphen made a difference in the electrochemical gap of about 0.3 eV (1.9 vs. 2.2 eV) compared
with thnaphen. The bdq complex was completely different, with an irreversible reduction at around
−2 V caused by the NˆCˆN coordination pattern, which lacked a good electron acceptor such as the
phenanthroline unit in the CˆNˆN ligand naphen. Long-wavelength UV-Vis absorption bands were
found around 520 to 530 nm for the CˆNˆN complexes with the C≡CPh coligand and were red-shifted
when compared with the Cl derivatives. The NˆCˆN-coordinated bdq complex was markedly blue-
shifted (493 nm). The steady-state photoluminescence spectra showed poorly structured emission
bands peaking at around 630 nm for the two naphen complexes and 570 nm for the thnaphen
derivatives. The bdq complex showed a pronounced vibrational structure and an emission maximum
at 586 nm. Assuming mixed 3LC/3MLCT excited states, the vibronic progression for the NˆCˆN
bdq complex indicated a higher LC character than assumed for the CˆNˆN-coordinated naphen and
thnaphen complexes. The blue-shift was a result of the different NˆCˆN vs. CˆNˆN coordination. The
photoluminescence lifetimes and quantum yields ΦL massively increased from solutions at 298 K
(0.06 to 0.24) to glassy frozen matrices at 77 K (0.80 to 0.95). The nanosecond time-resolved study on
[Pt(naphen)(Cl)] showed a phosphorescence emission signal originating from the mixed 3LC/3MLCT
with an emission lifetime of around 3 µs.
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1. Introduction

The study of luminescent materials based on transition metal complexes is motivated
by a number of importantapplications in fields such as photocatalysis [1–3], sensing and
bioimaging [4–7], and optoelectronic devices [8–16]. In the field of OLEDs (organic light
emitting diodes), phosphorescent metal complexes are of particular interest due to their
ability to harvest all generated excitons through the availability of excited triplet states.
The necessary intersystem crossing (ISC) is facilitated through efficient spin-orbit coupling
(SOC) associated with the heavy metal centres, which also boosts the phosphorescent
relaxation [8,10,17]. Typical phosphorescent (triplet) emitters are based on metal cations
such as Ir(III), Ru(II), and Pt(II) [4–16]. While the d6 metal centres of Ir(III) and Ru(II)
adopt an octahedral coordination environment, the d8 configured Pt(II) complexes and
the less frequently used Pd(II) and Au(III) coordination compounds adopt square planar
geometries with open coordination sites in the axial positions [16,18]. These open axial
flanks can lead to metal–metal (M···M) and/or π−π stacking interactions in the aggregates
with red-shifted emission originating from MMLCT (metal–metal–ligand charge transfer)
states or the LC (ligand-centred) character of monomers [8,10,14,18–25].

For the design of efficient phosphorescent Pt(II) complexes, two main structural
features have turned out to be beneficial. First, a rigid coordination sphere prevents
radiationless decay from the triplet excited states, while the second involves the use
of polydentate heteroaromatic ligands with a high rigidity and cyclometalating capabil-
ity [10,13,16,18,21–45]. The strong bonding through their carbanionic donor atoms and
the chelate effect provides a strong ligand field and, thus, energetically disfavours the
thermal population of “dark” metal-centred (d−d*) excited states which lead to nonradia-
tive decays. Heteroaromatic ligands also offer multiple options to tune the character of
the excited triplet states, while involving a metal(d8)–ligand(π*) charge transfer (MLCT),
intraligand (π−π*) charge transfer between donor and acceptor parts of the multidentate
ligand(s) (IL or ILCT), or charge transfer between different ligands (L’LCT) [32,35–37,44–46].
Very often, the three last contributions are summarised as ligand-centred (LC), and the
excited states of such complexes are frequently described as having a mixed 3LC/3MLCT
character [10,14–18,22–24,35–37,41,45,46]. Thus, a number of Pt(II) complexes containing
tri- or tetradentate multifunctional (C-bonding, N-bonding, further substituents) ligands
were previously studied [10,18,21–43].

Amongst the tridentate heteroaromatic ligands, variations of the CˆNˆN, NˆCˆN,
and CˆNˆC cores based on phenyl(C) and pyridyl(N) donor units have been reported
[16,23,30,34,36–41,44–46]. In the prototypical systems with freely rotatable phenyl and
pyridyl moieties, the double CˆNˆC cyclometalation in complexes of the dppy2− ligand
(H2dppy = 2,6-diphenylpyridine) has no marked benefit over the CˆNˆN (phbpy−) or
NˆCˆN (dpb−) coordination in terms of the efficiency of the triplet photoluminescence
(Hphbpy = 6-phenyl-2,2′-bipyridine; Hdpb = 2,6-di(2-pyridyl)benzene) [37]. On the
other hand, the condensation of the three aromatic rings in the CˆNˆC system dba2−

(H2dba = dibenzo[c,h]acridine) (Scheme 1A) has led to markedly increased photolumines-
cence quantum yields (ΦL) for the complex [Pt(dba)(DMSO)] compared with the deriva-
tives [Pt(dppy)(dmso)] [37]. The corresponding NˆCˆN derivative [Pt(bdq)(Cl)] (Hbdq =
benzo[1,2-h:5,4-h’]diquinoline (Scheme 1B) was previously synthesised, but its lumines-
cence properties had not been studied yet [47].

Thus, we embarked on a study using the fully fused CˆNˆN ligand naphen− (Hnaph-
en = naphtho[1,2-b][1,10]phenanthroline) in the Pt(II) complexes [Pt(naphen)(X)] (X = Cl (1a)
or C≡CPh (1b)) (Scheme 1C). The NˆCˆN derivative [Pt(bdq)(Cl)] (3) was added to probe for
the symmetry and the role of the position of the carbanionic C atom. To evaluate the impact
of the rigidity of the ligand scaffold, we also used the hydrogenated derivative of naphen,
namely thnaphen (Hthnaphen = 5,6,8,9-tetrahydro-naphtho[1,2-b][1,10]phenanthroline)
and studied the two complexes [Pt(thnaphen)(X)] (X = Cl (2a) or C≡CPh (2b)) (Scheme 1D).
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Scheme 1. Schematic representation of the studied complexes and related work. A. [Pt(dba)(dmso)] [31];
B. [Pt(bdq)(Cl)] 3 [48]; C. [Pt(naphen)(X)] 1; D. [Pt(thnaphen)X] 2.

2. Results and Discussion
2.1. Preparation and Analytical Characterisation

The protoligand 5,6,8,9-tetrahydro-naphtho[1,2-b][1,10]phenanthroline (Hthnaphen)
(Scheme 2) represents a natural product which was isolated from Cardiospermum hali-
cacabum [49]. We accomplished its synthesis following Risch’s original protocol [50]
and obtained Hthnaphen with a 71% yield after column chromatographic purification
(for details, see Materials and Methods Section 3.2 to Section 3.4). The subsequent de-
hydrogenation afforded the two isomeric dihydro-naphtho[1,2-b][1,10]phenanthrolines
Hdhnaphen(8,9) and Hdhanaphen(5,6) (Scheme 2) and, finally, naphen with a yield of 61%.
Alternatively, Hdhnaphen(8,9) was synthesised by Friedländer condensation from 8-amino-
7-quinolinecarbaldehyde and 1-tetralone, as previously reported, with a 48% yield [51],
and then dehydrogenated to Hnaphen with a yield of 67%.
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Scheme 2. Schematic representation of the protoligands (protonated ligand precursors).

The protoligands Hnaphen, Hthnaphen, and Hbdq were reacted with K2[PtCl4] in
order to obtain the cyclometalated complexes in good to excellent yields [Pt(naphen)(Cl)]
(1a) (78%), [Pt(thnaphen)(Cl)] (2a) (93%), and [Pt(bdq)(Cl)] (3) (57%). The analytical
data of 3 were obtained as previously reported [47]. The Pt−Cl complexes 1a and 2a
were then converted to the Pt−C≡CPh complexes [Pt(naphen)(C≡CPh)] (1b) (99%) and
[Pt(thnaphen)(C≡CPh)] (2b) (90%) in excellent yields. The NMR spectra and MS of all of
the new materials can be found in the Supplementary Material (Figures S1–S14).

2.2. Electrochemistry

The two Pt(II) naphen complexes 1a and 1b showed a first reversible reduction at
around −1.58 V, while for the thnaphen derivatives 2a and 2b, this wave shifted to −1.86 V
(Figure 1, Table 1, more plots in Figures S15–S19). The second reduction waves were
irreversible for the chlorido complexes and at least partially reversible for the Pt−C≡CPh
derivatives 1b and 2b. The potential for the second waves was again lower (more neg-
ative) for 2b, but interestingly, it was fully reversible for this complex, while for 1b, the
second wave was only partially reversible under the same conditions (Figure 1). When
comparing 1a and 2a with the CˆNˆC derivative [Pt(dba)(dmso)] or the nonfused derivatives
[Pt(phbpy)(Cl)] (CˆNˆN) and [Pt(dpb)(Cl)] (3) (NˆCˆN), the reduction potential increased
(became less negative) along the series dpb < dba < bdq < thnaphen < phbpy < naphen
(Table 1) in line with the assumption that NˆN-containing ligands contain far better acceptor
units of the bipyridine or phenanthroline type [23,51].
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Figure 1. Cyclic voltammograms of 1b (A), 2b (B), and 3 (C) in 0.1 M n-Bu4NPF6/THF.

Table 1. Selected redox potentials of [Pt(L)(X)] and comparable complexes a.

[Pt(L)(X)] E1/2 Red2 E1/2 Red1 Epa Ox1 ∆E = Ox1 − Red1

1a −2.24 irr −1.57 0.36 1.93

1b −2.27 −1.59 0.30 b 1.89

2a −2.59 irr −1.86 0.34 2.19

2b −2.53 −1.86 0.30 c 2.16

3 −2.55 irr −2.06 irr 0.41 2.47

Other Pt complexes

[Pt(dba)(dmso)] d −2.70 irr −1.98 irr 0.93 2.91

[Pt(phbpy)(Cl)] e −2.48 −1.78 0.40 2.19

[Pt(dpb)(Cl)] e,f - −2.14 irr 0.35 2.49

[Pt(Me2dpb)(Cl)] e −2.69 −2.24 0.35 2.59
a From cyclic voltammetry in n-Bu4NPF6/THF. Potentials in V vs. ferrocene/ferrocenium: half-wave potentials
E1/2 for (partially) reversible processes; cathodic peak potentials Epc for irreversible reductions (irr); accuracy of
potentials: ±0.003 V. b Second oxidation at 0.28 V. c Second oxidation at 0.31 V. d From Ref. [37]. e From Ref. [48].
f From Ref. [52], measured in MeCN.

The reductions of the NˆCˆN complex [Pt(bdq)(Cl)] (3) and the CˆNˆC-coordinated
[Pt(dba)(dmso)] were both markedly lower (more negative) and completely irreversible.
When comparing these fully fused CˆNˆN (naphen) and NˆCˆN (bdq) complexes with those
of the nonfused derivatives [Pt(phbpy)(Cl)] and [Pt(dpb)(Cl)] (Hphbpy = 6-phenyl-2,2′-
bipyridine; Hdpb = 2,6-di(2-pyridyl)benzene), we found that also for the latter the symmet-
ric derivative [Pt(dpb)(Cl)] showed an irreversible reduction behaviour. Remarkably, the
3,5-dimethylated derivative [Pt(Me2dpb)(Cl)] showed reversible reduction waves [48].

The oxidation processes were all irreversible and 0.35 V for the four naphen and
thnaphen complexes, with the complexes containing the Cl− coligand somewhat higher vs.
C≡CPh. The value of the symmetric complex 3 was slightly higher and as expected from
the doubly anionic character of the dba ligand, the potential of the complex [Pt(dba)(dmso)]
was far higher. Interestingly, for the nonfused ligands, the potential of the NˆCˆN (dpb)
complex was lower than the CˆNˆN (phbpy) derivative which is in line with the two pyridyl
groups lowering the σ-donation power of the carbanionic phenyl core in dpb.

The electrochemical band gaps ∆E = Ox1 − Red1 were thus very different and in-
creased from 1.89 eV [Pt(naphen)(C≡CPh)] (1b) to 2.19 for [Pt(thnaphen)(Cl)] (2a) within
the CˆNˆN series of the naphen and thnaphen complexes. They were markedly exceeded
by the NˆCˆN coordinated bdq derivative (2.50 eV) and the CˆNˆC complex [Pt(dba)(dmso)]
(2.91 eV) (Table 1). Overall, the band gaps decreased along the series dba > dpb~bdq >
phbpy > thnaphen > naphen, and the C≡CPh coligands markedly lowered them compared
with the Cl derivatives for the thnaphen and naphen complexes.
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The DFT-calculated contributions to the highest occupied molecular orbital (HOMO)
and lowest unoccupied molecular orbital (LUMO) showed the expected higher symmetry
for 3 compared with 1a (Figure S20), but for both complexes, we found the assumed
essentially Pt-based HOMO with large contributions of the Cl coligand. Only for 3, a
marked ligand contribution was found in the central phenyl core. The ligand-based LUMO
of 3 was completely symmetric and distributed over the entire bdq− ligand, while for 1a,
the LUMO was centred at the phenanthroline core, as expected. Although these calculations
confirmed the preliminary assignment of the redox processes, they failed to explain the
significant difference between 1a and 3 concerning their reversibility.

2.3. UV-Vis Absorption Spectroscopy

The four complexes containing the CˆNˆN ligands naphen and thnaphen as well as
X = Cl or C≡CPh coligands showed intense and structured band progressions from 220 to
300 nm (Figure 2, Figures S22 and S26, full data in Table S1) and partially structured bands
in the range from 300 to 400 nm with markedly lower intensity. Very similar bands were
also observed for the protoligands (Figure S21), and they can be assigned to transitions
into π−π* states for both the protoligands and complexes. For the complexes, additional
long-wavelength broad bands had their maxima in the 400 to 500 nm range (Table 2) and
tailed down to cut-off values (i.e., where the absorption spectra reached the baseline) of
550 to 600 nm. The naphen complexes 1a and 1b showed more intense features at low
energy, and the optical cut-offs were markedly red-shifted compared with the thnaphen
derivatives 2a and 2b. The two C≡CPh complexes 1b and 2b similar cut-off energies as
the Cl derivatives, but much higher intensities of the bands dominating the 400 to 500 nm
range. The band energies or the symmetric NˆCˆN complex 3 were not very different from
those of the naphen or thnaphen derivatives 1a and 2a, but the relative intensities deviated
largely. In particular, the very intense band system peaking at 461 nm for 3 had equivalents
for the unsymmetric complexes of only fractional intensity (Figure 2, Table 2). However,
the optical cut-off was markedly higher (578 nm) and was very similar to the value found
for the CˆNˆC complex [Pt(dba)(dmso)].
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Figure 2. UV-Vis absorption spectra (molar absorption coefficients as a function of wavelength) of 1a,
2a, and 3 in CH2Cl2. Validity range: c = 1 × 10−6 M to 1 × 10−4 M in CH2Cl2 at 298 K.

The optical band gaps derived from the cut-offs were slightly higher for the naphen and
thnaphen complexes than the electrochemical band gaps, which represents the difference
between the vertical Franck–Condon excitation and the geometrically “relaxed” redox
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states. Remarkably, the difference was very small for the thnaphen complexes 2a and
2b. For the two symmetric complexes 3 and [Pt(dba)(dmso)], the electrochemical band
gaps were higher than the optical values. This is quite unexpected for the above-discussed
reasons but agrees quite well with the irreversible character of the electrochemical reduction,
which probably led to excessively negative values.

Table 2. Long-wavelength UV-Vis absorptions of the [Pt(L)(X)] complexes a.

[Pt(L)(X)] λ (ε) λ (ε) λ (ε) λ (ε) Cut-Off b
Echem
Gap (eV) c

(nm) (eV)

1a 401 (3.4) 428 (2.6) 461 (2.7) 523 (0.9) 600 2.07 1.93

1b 390 (5.1) 433 (2.5) 464 (3.3) 534 (1.2) 606 2.05 1.89

2a 383 (9.8) 428 (2.3) 452 (1.0) 524 (0.1) 563 2.20 2.19

2b 387 (9.7) 430 (5.3) 451 (5.0) 533 (0.3) 563 2.20 2.16

3 384 (4.1) 433 (4.8) 461 (7.7) 493 (0.6) 568 2.18 2.47

[Pt(dba)(dmso)] d 409 (3.9) 461 (1.0) 498 (1.8) 529 (2.3) 580 2.14 2.91
a Absorption maxima λabs in nm (ε in 103 M−1 cm−1) in CH2Cl2 (298 K). b The “cut-off” is defined as the
wavelength of zero absorption and is obtained through extrapolation of the low-energy slope of the lowest energy
absorption band. c Electrochemical gap = ∆E = Ox1 − Red1 (see Table 1). d From Ref. [37], measured in THF.

2.4. Steady-State Photoluminescence Spectroscopy

The complex 1a showed a partially structured photoluminescence peaking at 628 nm
when excited at 350 nm in fluid CH2Cl2 at 298 K (Figure 3, Table 3). For the C≡CPh
derivative 1b, while the maximum was only slightly red-shifted (632 nm), the vibrational
progression was less pronounced (Figure 3). Interestingly, the symmetric isomer 3 showed
an even more pronounced vibronic structure, and it was also blue-shifted (586 nm) when
compared with 1a (Figures S24 and S25). The two analogous thnaphen complexes 2a and
2b were markedly blue-shifted and showed poorly structured emission profiles with an
almost identical maximum peaking at around 570 nm when compared with the naphen
analogues. For the complexes [Pt(phbpy)(X)] containing the flexible CˆNˆN ligand phbpy−,
marked differences were found for X = Cl vs. C≡CPh [53–55]. [Pt(phbpy)(Cl)] emitted
at 565 nm at 298 K [54], whereas [Pt(phbpy)(C≡CPh)] showed an emission maximum at
582 nm [55] (in CH2Cl2). Both spectra were markedly blue-shifted with respect to the
naphen complexes.
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Figure 3. Left: Normalised photoluminescence spectra of [Pt(naphen)(Cl)] (1a) and [Pt(naphen)(C≡CPh)]
(1b) in fluid Ar-purged CH2Cl2 solution at 298 K and in a frozen glassy matrix (CH2Cl2:MeOH 1:1) at 77 K.
Right: Normalized photoluminescence spectra of 1a and 1b in fluid Ar-purged CH2Cl2 solution at 298 K
and in a frozen glassy matrix (CH2Cl2:MeOH 1:1) at 77 K (λex = 350 nm). In all cases, c = 1× 10−5 M.
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The differently pronounced vibrational progression of the emission spectra was mostly
due to the varying contributions of 3MLCT or 3LC character [8–10,46,53,56,57]. In the case
of the naphen complexes 1a and 1b, the LC character was more prominent compared to
the thnaphen derivatives 2a and 2b and thus, a more defined vibronic progression was
observed. The CˆNˆC derivative [Pt(dba)(dmso)] emitted at 588 nm [37], thus markedly
blue-shifted compared to the naphen complex. Thus, it is possible to correlate the emission
wavelength with the donor strength of the ligand: naphen− < dba2− ≤ bdq < thnaphen−.
Compared to 298 K, the emission of the naphen and thnaphen complexes in the frozen
glassy matrices (CH2Cl2:MeOH 1:1) revealed a marked blue-shift (30–40 nm), which was
essentially due to a weaker charge transfer stabilization by restricted solvent reorientation
at 77 K, hence decreasing the 3MLCT character of the emissive state. This led to an enhanced
vibrational progression, which was also due to the reduced density of the solvent-related
roto-vibrational states. The photoluminescence quantum yields ΦL between 0.06 and 0.14
at room temperature for the naphen and thnaphen complexes were massively increased to
0.95 at 77 K. In addition, 3 showed only a very small blue-shift (7 nm) upon cooling. It also
had already shown a quite high ΦL at 298 K, which might be in part related to the massive
blue-shift of the emission and can thus be explained by the energy gap law. On the other
hand, besides the pronounced vibronic structure at both 298 and 77 K, the small shift upon
cooling and the high ΦL were in line with a high LC contribution to the emitting state.

Table 3. Selected photophysical data of the Pt complexes a.

λem,max τ (air, 298 K)/ns τ(Ar, 298 K)/ns τ (77 K)/µs ΦL (air) ΦL (Ar) ΦL (77 K)

1a 628 (298 K)
604 (77 K)

τ = 517 ± 1 τ = 4955 ± 2
τ1 = 24.7 ± 0.6 (63%)
τ2 = 13.8 ± 0.8 (37%)

τav_amp = 20.57 ± 0.05
<0.02 0.08 0.90

1b 632 (298 K)
602 (77 K)

τ = 452.6 ± 0.9 τ = 4146 ± 3
τ1 = 29.8 ± 0.5 (24%)

τ2 = 16.38 ± 0.19 (76%)
τav_amp = 19.64 ± 0.03

<0.02 0.06 0.80

2a 570 (298 K)
530 (77 K)

τ = 394.0 ± 0.6 τ = 2205 ± 6
τ1 = 16.3 ± 0.3 (25%)

τ2 = 10.14 ± 0.12 (75%)
τav_amp = 11.637 ± 0.014

<0.02 0.24 0.95

2b 571 (298 K)
531 (77 K)

τ = 253.2 ± 0.2 τ = 1512 ± 1
τ1 = 9.14 ±0.04 (13%)

τ2 = 6.505 ± 0.006 (87%)
τav_amp = 6.857 ± 0.002

<0.02 0.14 0.85

3 586 (298 K)
581 (77 K)

τ = 534 ± 3 τ = 39,930 ± 30
τ1 = 65.6 ± 0.3 (55%)
τ2 = 23.7 ± 0.3 (45%)

τav_amp = 46.66 ± 0.08
<0.02 0.32 0.80

a Obtained under different conditions: dilute air-equilibrated (air) or argon-purged samples (Ar) in fluid CH2Cl2
solution at RT or frozen glassy matrices of CH2Cl2:MeOH 1:1 at 77 K, irradiated at λex = 350 nm. Emission maxima,
λem,max; photoluminescence quantum yields ΦL (accuracy ± 0.02); lifetimes τ. For the biexponential decays at
77 K, the amplitude-weighted average lifetimes (τav_amp) are shown. Raw time-resolved photoluminescence
decays including individual fitting components and their relative amplitudes (for biexponential decays) are
available in the ESI, Figures S30–S44.

In air-equilibrated solutions, the ΦL of all of the complexes was below 0.02 and
drastically increased in Ar-purged solutions, which is indicative of a triplet emission. In
addition, the photoluminescence lifetimes (τ) significantly increased when going from
air-equilibrated (250 to 530 ns) to Ar-purged solutions (1510 to 39,930 ns) at 298 K with the
NˆCˆN complex 3 far above the CˆNˆN derivatives. At 77 K, they were in the µs range of 7
to 20 µs for the naphen and thnaphen complexes and a remarkable 46 µs for 3.

For the [Pt(phbpy)(C≡CPh)] complex containing the more flexible phbpy ligand, a
pronounced blue-shift of about 40 nm was reported when going from 298 K (CH2Cl2) to
the frozen glassy matrix of MeOH/EtOH at 77 K (582 to 540 nm) alongside an increased
vibrational progression [55], very similar to what we observed for the naphen and thnaphen
complexes 1a, 1b, 2a, and 2b. In addition, the ΦL of the two C≡CPh complexes were only
marginally higher (0.06 and 0.14) than those of the phbpy derivative (0.04). Thus, the
increasing rigidity along the series phbpy < thnaphen < naphen had no large effect on the
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ΦL. However, the lifetimes at 298 K (around 4 and 1.5 µs) were much shorter for the phbpy
complex (0.4 µs), thus fitting nicely to this series. For the chlorido complex [Pt(phbpy)(Cl)],
the emission maximum also shifted to higher energy when going from 298 K (CH2Cl2) to
77 K (MeOH/EtOH frozen glassy matrix) (565 to 540 nm) alongside a pronounced vibronic
structure at 77 K [54]. So, for both the Pt Cl and C≡CPh complexes of the flexible phbpy−

ligand, the character of the excited state shifted towards a higher 3LC character, in quite a
similar way as we found for the naphen derivatives. Unfortunately, the ΦL for the phbpy
complexes have not been reported, so we can only state that the rigidification of the ligands
along the series phbpy < thnaphen < naphen significantly increased the lifetimes of both
the Cl and C≡CPh complexes. All three Pt C≡CPh complexes showed broad emission
profiles at 298 K indicative of a large 3MLCT contribution and narrowed emission at 77 K,
in line with an increased 3LC character. So, at 298 K, the L’LCT contributions from the
C≡CPh ligand seemed to not be particularly pronounced.

For complex 3, the effect of the rigidification was already obvious from the notorious
red-shift of the emission band at 586 nm (298 K) when compared to the [Pt(dpb)(Cl)] deriva-
tive containing the flexible dipyridyl-benzene ligand that emits at 491 nm [52]. The vibra-
tional structure of the emission and thus, the high 3LC character of the emitting state seemed
to be similar. The lifetime of [Pt(dpb)(Cl)] at 77 K (glassy diethyl ether/isopentane/EtOH
2:2:1) was reported as 7.0 µs [57]. Thus, the rigidity of the bdq ligand compared to the
flexible dbp ligand in the isoleptic complexes significantly enhanced the lifetime to 45 µs.

As shown in Figures S24 to S29, minimal traces of the metal-free ligands were detected.
It is worth mentioning that as the fluorescence quantum yield (ΦF of the ligands (Hnaphen,
Hthnaphen, and Hbdq) alone was ≈40%, even negligible trace amounts could be detected
by modern photoluminescence spectrometers (a trace amount below 0.01% of a highly fluo-
rescent species can be detected, even if the main yet weak triplet emitter is pure according
to usual standards, including NMR and elemental microanalysis, where our compounds
showed a purity > 99%). However, this minimal ligand contribution did not practically
affect the ΦL of the complexes (as confirmed when processing the emission spectra on the
integrating sphere, no changes were detected whether the ligand fluorescence was included
or not) or the lifetimes (as shown in Table 3, at RT, all the decays were monoexponential).

2.5. Time-Resolved Emission and Transient Absorption Spectroscopy on [Pt(naphen)(Cl)] (1a)

Furthermore, nanosecond time-resolved emission and transient absorption (TA) spec-
troscopy were carried out. For these experiments, 1a was dissolved in CH2Cl2 under an N2
atmosphere, and the sample was excited at 355 nm. Figure 4 shows the transient emission
spectra at selected time points, which spectrally matched with the steady-state emission
spectrum with its structured shape showing maxima at 630 and 680 nm (Figure 4A).

The shoulder in the steady-state emission at about 760 nm was not observed in the
transient spectra, most likely due to the limited signal-to-noise ratio in the ns time-resolved
experiment. The absence of spectral shifts in the time range probed indicates that any
excited state of relaxation affecting the emissive state was completed within 30 ns. The
kinetic analysis of the time-resolved emission data yielded a lifetime of 3 µs (Figure S45).

In addition, the ns TA spectra (Figure 4B) were dominated by the contributions of the
emission, which were accompanied by a rather weak excited-state absorption (ESA) in the
range from 500 to 590 nm. Both the ESA and emission features were found to decay with
the same time constant of 3 µs (see also Figure S45). The concerted decay of the long-lived
emission and ESA signals indicates that the emission stems from the phosphorescence of
the mixed 3LC/3MLCT state of the complex. Due to the limited time resolution in the ns
experiments, we did not observe the features of the 1LC/1MLCT, which apparently relaxed
within the temporal resolution of our experiment via ISC to the 3LC /3MLCT state.
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3. Materials and Methods
3.1. Materials

First, 2-((dimethylamino)methyl)-3,4-dihydronaphthalen-1(2H)-one hydrochloride
was prepared previously as reported [50]. The complex [Pt(bdq)(Cl)] (3) and the Hbdq
ligand were prepared as previously described [47] and correctly analysed.

3.2. Preparation of the Protoligand 5,6,8,9-Tetrahydronaphtho[1,2-b][1,10]phenanthro-
line (Hthnaphen)

Under inert conditions, a solution of 0.74 g 6,7-dihydroquinolin-8(5H)-one (5.0 mmol,
1 equivalent) in 20 mL DMF was heated to 160 ◦C. Subsequently, a suspension of 1.44 g
2-((dimethylamino)methyl)-3,4-dihydronaphthalen-1(2H)-one hydrochloride (6.0 mmol,
1.2 equivalents.) and 2.00 g NH4OAc (26 mmol) in 15 mL DMF was added dropwise within
45 min. Stirring at 160 ◦C was continued for 2 h, and, after cooling to room temperature, the
solvent was removed in vacuo. The sticky residue was treated with 15 mL water, alkalised
by adding dilute aq. NaOH and extracted with CH2Cl2 (4 × 25 mL). The combined organic
extracts were neutralised by washing with water and dried over Na2SO4. The solvent was
removed under reduced pressure, and the residue was purified by column chromatography
(silica, CH2Cl2/acetone = 10/1). Finally, the oily crude product was washed with n-hexane
(2 × 5 mL) to give a grey-yellow solid. Yield: 1.01 g (3.55 mmol, 71%). 1H NMR (500 MHz,
CDCl3): δ = 8.74 (dd, 1H, J = 1.7, 7.6 Hz), 8.62 (dd, 1H, J = 1.3, 7.7 Hz), 7.54 (dd, 1H, J = 1.7,
7.6 Hz), 7.41–7.19 (m, 4H), 7.21 (dd, 1H, J = 4.8, 7.3 Hz), 2.97 (m, 4H), 2.93 (m, 4H) ppm;
HR-ESI-MS (+) m/z = 285.13922 [M+H]+ (calc. 285.13918).

3.3. Preparation of the Protoligand Naphtho[1,2-b][1,10]phenanthroline (Hnaphen)

Under ambient conditions, 185 mg Hthnaphen (0.65 mmol, 1 equivalents.) and 100 mg
Pt/C (10%) in 4 mL nitrobenzene were heated up to 210 ◦C. After four days, additional
50 mg Pt/C (10%) was added, and the reaction mixture was heated up to 210 ◦C for another
two days. Then, the mixture was filtered through Celite and rinsed three times with a
mixture of CH2Cl2/MeOH (10:1). The solvent was removed under reduced pressure, and
the raw product was purified by column chromatography (silica, gradient CHCl3→ CHCl3
+ 2%MeOH). The product was obtained as an off-white solid. Yield: 111 mg (0.40 mmol,
61%). 1H NMR (300 MHz, CDCl3): δ = 9.90 (d, J = 7.8 Hz, 1H), 9.32 (dd, 1H, J = 1.6, 4.4 Hz),
8.71 (s, 1H), 8.29 (dd, 1H, J = 8.0, 1.6 Hz), 7.95 (t, 2H, J = 8.2 Hz), 7.88–7.75 (m, 5H), 7.70 (dd,
1H, J = 4.4, 8.0 Hz) ppm; HR-ESI-MS (+) m/z = 281.10751 [M+H]+ (calc. 281.10732).
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3.4. Syntheses of the Complexes [Pt(CˆNˆN)(Cl)]—General Description

The corresponding ligand and 208 mg K2[PtCl4] (0.5 mmol) were suspended in glacial
acetic acid (60 mL). The suspension was heated up to 110 ◦C for three days. Formation
of a precipitate was observed over time. After cooling down to room temperature, the
precipitate was filtered off and washed consecutively with acetic acid, water, and diethyl
ether. From the aqueous phase, unreacted K2[PtCl4] was recovered. The crude precipitated
products were carefully recrystallised from mixtures of CH2Cl2/diethyl ether (v:v = 2:1).

3.4.1. [Pt(naphen)(Cl)] (1a)

From 80 mg Hnaphen (0.29 mmol, 1 equivalent) and 144 mg K2[PtCl4] (0.35 mmol,
1.2 equivalents); red solid. Yield: 115 mg (0.23 mmol, 78%). Elemental anal. found
(calcd. for): C20H11ClN2Pt (509.85): C 47.11 (47.12), H 2.20 (2.17), N 5.48 (5.49). 1H NMR
(600 MHz, CD2Cl2): δ = 9.14 (dd, 1H, J = 4.9, 1.3 Hz), 8.79 (s, 1H), 8.55 (d, 1H, J = 8.2 Hz),
8.03 (d, 2H, J = 9.0 Hz), 7.97 (dd, 1H, J = 4.9, 8.2 Hz), 7.85–7.82 (m, 2H), 7.79 (d, 1H,
J = 7.0 Hz, JPt-H = 49 Hz,), 7.70 (d, 1H, J = 8.9 Hz), 7.65–7.60 (m, 2H) ppm; EI-MS(+) (70 eV)
m/z = 510 [M]+, 473 [M-Cl]+, 280 [Hnaphen]+.

3.4.2. [Pt(thnaphen)(Cl)] (2a)

From 28 mg Hthnaphen (0.1 mmol, 1 equivalent) and 50 mg K2[PtCl4] (0.12 mmol,
1.2 equivalents); orange solid. Yield: 48 mg (0.093 mmol, 93%). Elemental anal. found
(calcd. for): C20H15ClN2Pt (513.88): C 46.77 (46.75), H 2.90 (2.94), N 5.45 (5.45). 1H NMR
(600 MHz, CD2Cl2): δ = 8.61 (d, 1H, J = 5.0 Hz, H6’), 7.76 (d, 1H, J = 7.7 Hz; H4’), 7.50
(dd, 1H, J = 7.7, 5.3 Hz, H5’), 7.35 (s, 1H, H4), 7.23 (d, 1H, JPt-H = 44 Hz, J = 7.5 Hz, Hb),
7.08 (t, 1H, J = 7.5 Hz, Hc), 6.81 (d, 1H, J = 7.5 Hz, Hd), 3.18 (t, 2H, J = 7.7 Hz, CH2),
3.10 (t, 2H, J = 7.6 Hz, CH2), 2.99 (m, 4H, CH2) ppm. EI-MS(+) (70 eV) m/z = 514 [M]+,
478 [M-Cl]+, 476 [M-Cl-H2]; ESI-MS(+): m/z = 590.047 [M+Cl+CH3CN]+ (calc. 590.051),
519.115 [M-Cl+CH3CN]+ (calc. 519.115), 285 [Hthnaphen]+

.

3.5. Syntheses of the Complexes [Pt(CˆNˆN)(C≡CPh)]—General Description

The chlorido complexes [Pt(CˆNˆN)(Cl)] were dissolved in degassed CH2Cl2. Pheny-
lacetylene, CuI (8 mol%) and NEt3 were added. The reaction mixture was stirred at room
temperature overnight in the absence of light. The resulting dark solution was treated with
diethyl ether until no further solid precipitated. The precipitate was filtered off and thor-
oughly washed with diethyl ether and water. Optionally, the product can be recrystallised
from CH2Cl2 and diethyl ether. The products were recrystallised from mixtures of CH2Cl2
and diethyl ether (v:v = 1:2).

3.5.1. [Pt(naphen)(C≡CPh)] (1b)

From 70 mg 1a (0.135 mmol), 45 µL phenylacetylene (0.411 mmol), 2.1 mg CuI
(0.011 mmol), 1.3 mL NEt3 in 50 mL CH2Cl2; orange solid. Yield: 78 mg (0.135 mmol,
99%). Elemental anal. found (calcd. for): C28H16N2Pt (575.52): C 58.44 (58.43), H 2.80 (2.80),
N 4.85 (4.87). 1H NMR (300 MHz, CD2Cl2): δ = 9.19 (d, J = 3.9 Hz, JPtH = 18 Hz, 1H), 8.67
(s, 1H), 8.46 (d, J = 7.3 Hz, 1H), 7.93 (t, J = 8.2 Hz, 2H), 7.83–7.74 (m, 3 H), 7.65–7.55 (m,
4 H), 7.33 (t, J = 7.5 Hz, 2H), 7.21 (t, J = 7.4 Hz, 1H) ppm; EI-MS(+) (70 eV) m/z = 575 [M]+,
284 [Hnaphen]+.

3.5.2. [Pt(thnaphen)(C≡CPh)] (2b)

From 51.4 mg 2a (0.1 mmol), 32 µL phenylacetylene (0.292 mmol), 1.5 mg CuI (0.008 mmol),
0.8 mL NEt3 in 50 mL CH2Cl2; orange solid. Yield: 52 mg (0.09 mmol, 90%). Elemental anal.
found (calcd. for): C28H20N2Pt (579.55): C 58.08 (58.03), H 3.50 (3.48), N 4.81 (4.83). 1H
NMR (300 MHz, CD2Cl2): δ = 8.64 (d, 1H, J = 5.4 Hz, JPtH = 18 Hz), 7.67 (d, 1H, J = 7.7 Hz),
7.46 (d, 2H, J = 7.3 Hz), 7.37–7.25 (m, 4H), 7.16 (t, 1H, J = 7.4 Hz), 7.03 (t, 1H, J = 7.6 Hz),
6.78 (d, 1H, J = 7.4 Hz), 3.18 (d, 2H, J = 6.7 Hz), 3.11 (d, 2H, J = 6.7 Hz), 2.98–2.95 (m, 4H)
ppm; EI-MS(+) (70 eV) m/z = 579 [M]+, 284 [Hthnaphen]+.
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3.6. Instrumentation
1H, 13C and correlation spectra were recorded on a Bruker Avance II 300 MHz spectrom-

eter equipped with a double resonance (BBFO) 5 mm observe probe head with z-gradient
coil, a Bruker Avance III 499 MHz spectrometer with a TCI Prodigy 5 mm probe head with
z-gradient coil (1H/19F 13C 15N 2H), or a Bruker Avance II+ 600 MHz spectrometer with
a L.T. TBI 5 mm probe head with z-gradient coil (1H 31P X 2H) (all Bruker, Rheinhausen,
Germany). 1H and 13C chemical shifts were reported relative to tetramethylsilane (TMS).
UV–vis absorption spectra were recorded on a Varian 50 Scan spectrophotometer. Elemen-
tal analyses were obtained using a HEKAtech CHNS EuroEA 3000 analyser (HEKAtech,
Wegberg, Germany). EI-MS spectra in the positive mode were measured using a Finnigan
MAT 95 mass spectrometer (Thermo Finnigan Mat, Bremen, Germany). HR-ESI-MS(+)
spectra were measured using a Thermo Scientific LTQ Orbitrap XL mass spectrometer via
electron spray ionisation and a FTMS analyser (ThermoFisher Scientific, Waltham, MA,
USA). Simulations were performed using ISOPRO 3.0 (Mike Senko, Sunnyvale, CA, USA).
Electrochemical measurements were carried out in 0.1 M n-Bu4NPF6 solution in THF or
CH2Cl2 at 298 K and at 100 mV/s scan rate if not stated otherwise, using a three-electrode
configuration (glassy carbon working electrode, Pt counter electrode, Ag/AgCl pseudo
reference electrode), and a Metrohm Autolab PGSTAT30 or µStat400 potentiostat (Metrohm,
Filderstadt, Germany). The potentials were referenced against the ferrocene/ferrocenium
redox couple as internal standard.

3.7. Photophysical Measurements

Steady-state excitation and emission spectra were recorded on a FluoTime 300 spec-
trometer from PicoQuant (Berlin, Germany) equipped with a 300 W ozone-free Xe lamp
(250–900 nm), a 10 W Xe flash-lamp (250−900 nm, pulse width ca. 1 µs) with repetition
rates of 0.1–300 Hz, double excitation monochromators (Czerny–Turner type, grating with
1200 g/mm, blaze wavelength: 300 nm), diode lasers (pulse width < 80 ps) operated
by a computer-controlled laser driver PDL-828 “Sepia II” (repetition rate up to 80 MHz,
burst mode for slow and weak decays), two double-grating emission monochromators
(Czerny–Turner, selectable gratings blazed at 500 nm with 2.7 nm/mm dispersion and
1200 grooves/mm or blazed at 1200 nm with 5.4 nm/mm dispersion and 600 grooves/mm)
with adjustable slit width between 25 µm and 7 mm, and Glan–Thompson polarisers
for excitation (Xe-lamps) and emission. Different sample holders (Peltier cooled sample
mounting unit ranging from −15 to 110 ◦C and adjustable front face sample holder). Two
detectors, namely a PMA Hybrid-07 (transit time spread FWHM < 50 ps, 200–850 nm)
and a H10330C-45-C3 NIR detector (transit time spread FWHM 0.4 ns, 950–1700 nm) from
Hamamatsu (Hamamatsu Photonics, Ltd., Shizuoka, Japan). Steady-state and fluorescence
lifetimes were recorded in TCSPC mode by a PicoHarp 300 (minimum base resolution 4 ps)
or in MSC mode by a TimeHarp 260, where up to several ms can be detected. Emission and
excitation spectra were corrected for source intensity (lamp and grating) by standard cor-
rection curves. Lifetime analysis was performed using the commercial EasyTau 2 software
(PicoQuant). The quality of the fit was assessed by minimising the reduced chi-squared
function (χ2) and visual inspection of the weighted residuals and their autocorrelation.
Luminescence quantum yields were measured with a Hamamatsu Photonics absolute PL
quantum yield measurement system (C9920-02) equipped with a L9799-01 CW Xenon light
source (150 W), monochromator, C7473 photonic multichannel analyser, and integrating
sphere and by employing U6039-05 PLQY measurement software (Hamamatsu Photonics).
All cuvettes used were round quartz cuvettes, and the solvents were of spectrometric grade
(Uvasol®, Merck, Darmstadt, Germany).

3.8. Nanosecond Time-Resolved Emission/Transient Absorption

Nanosecond emission/transient absorption spectra were collected to study the long-
lived excited state of the complex [58]. In detail, pump pulses centred at 355 nm were
generated using a Continuum Surelite Nd:YAG laser (Soliton, Gilching, Germany) with
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a pulse duration of 5 ns and a pulse-to-pulse repetition rate of 10 Hz. A 75 W xenon arc
lamp provided the probe light. Spherical concave mirrors were used to focus the probe
light into the sample and to refocus the light on the entrance slit of a monochromator
(Acton, Princeton Instruments, Acton, MA, USA). The probe light was detected by a
Hamamatsu R928 photomultiplier tube (Hamamatsu Photonics) mounted on a five-stage
base at the monochromator exit slit, and the signal was processed by a commercially
available detection system (Pascher Instruments AB, Lund, Sweden). By switching off
the probe light, emission decay could be detected with ns-temporal resolution with the
same set-up [59]. The initial signals, i.e., up to 30 ns after photoexcitation, tend to result in
contributions from the experimental response function and are hence not considered. The
samples were prepared under inert conditions in degassed CH2Cl2 by performing several
freeze–pump–thaw cycles. The OD of the samples at the excitation wavelength was around
0.35 in a 1 cm cuvette. For all measurements, the pump power was fixed at 0.4 mJ.

3.9. DFT Calculations

Quantum chemical calculation based on the density functional theory (DFT) were
carried out using the so-called “resolution of identity“ Coulomb approximation [60,61],
which was implemented in the program package TURBOMOLE [62] under the TMoleX [63]
platform. Molecular structures were first geometry-optimised using the hybrid functional
B3LYP [64–66] and the double-ξ valence basis set def-SV(P) [67]. Further optimisations
used the triple-ξ valence basis set def2-TZVP [68] for C, H, N, O, and LAN-L2DZ for Pt
using effective core potentials (ECP) (n−1) by Hay and Wadt [69–71].

4. Conclusions

In this work, we were able to compare the tridentate CˆNˆN-coordinated and fully con-
densated cyclometalating ligand naphen− (Hnaphen = naphtho[1,2-b][1,10]phenanthroline)
and its slightly more flexible tetrahydro-derivative thnaphen− (Hthnaphen = 5,6,8,9-
tetrahydro-naphtho[1,2-b][1,10]phenanthroline) with the NˆCˆN-coordinating bdq− chro-
mophore (Hbdq = benzo[1,2-h:5,4-h’]diquinoline) in their corresponding Pt(II)X complexes
(X = Cl (1a, 2a, and 3) or C≡CPh (1b and 2b)) and the previously reported CˆNˆC ligand
dba2− (H2dba = dibenzo[c,h]acridine) in the corresponding complex [Pt(dba)(dmso)]. We
synthesised the new naphen and thnaphen complexes and were able to reproduce the
synthesis of the complex [Pt(bdq)(Cl)] (3) in very good yields.

The cyclic voltammetry showed reversible reductions for the CˆNˆN complexes, with
markedly fewer negative potentials (around−1.6 V, vs. ferrocene) for the species containing
the fully condensated naphen ligand (1a and 1b) compared with the thnaphen (around
−1.9 V) derivatives 2a and 2b. Together with the irreversible oxidations at around +0.3 V
for all of the complexes, the naphen made a difference in the electrochemical gap of about
0.3 V (1.9 vs. 2.2). The bdq complex 3 with its NˆCˆN pattern was completely different.
The irreversible reduction at around −2 V was comparable to the first reduction in the
CˆNˆC-coordinated complex [Pt(dba)(dmso)]. Both ligand systems lacked a good electron
acceptor as the phenanthroline unit in the CˆNˆN ligand naphen.

Long-wavelength UV-Vis absorption bands were found around 520 to 530 nm for
the CˆNˆN-coordinated species, and the C≡CPh complexes 1b and 2b appeared red-
shifted compared with the Cl derivatives 1a and 2a. The CˆNˆC-coordinated complex
[Pt(dba)(dmso)] was at almost the same energy. The NˆCˆN-coordinated bdq complex was
markedly blue-shifted (493 nm).

The steady-state photoluminescence spectra of the CˆNˆN-coordinated naphen and
the thnaphen complexes at 298 K in solution showed poorly structured emission spectra
peaking at around 630 nm and 570 nm for the thnaphen. The bdq complex showed a
pronounced vibrational progression and an emission maximum at 586 nm, very similar
to what has been reported for the CˆNˆC complex [Pt(dba)(dmso)] (588 nm). While the
vibronic structure indicated a higher LC character for the NˆCˆN bdq and CˆNˆC dba
complexes compared with the CˆNˆN-coordinated naphen and tmnaphen complexes, the
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blue-shift was a result of the different NˆCˆN or CˆNˆC vs. CˆNˆN coordination with the
best acceptor unit NˆN found exclusively in the naphen and thnaphen complexes. The
photoluminescence quantum yields ΦL significantly increased when going from Ar-purged
solutions at 298 K (0.06 to 0.24) to frozen glassy matrices at 77 K (0.80 to 0.95), alongside
prolonged lifetimes τ (few ns to 7.20 µs) for the naphen and thnaphen complexes. Due
to their rigidity, they showed far longer lifetimes (~×10) than [Pt(phbpy)(X)] (X = Cl or
C≡CPh), i.e., the derivatives containing the more flexible CˆNˆN ligand. For the rigid
bdq and dba complexes, the ΦL at 298 K was markedly higher (around 0.3) and the τ
much longer (ca. 4 µs and 16 µs). At 77 K, the ΦL were about 0.8 and the lifetimes
more than 10 times longer. Thus, they outperformed the derivatives containing the more
flexible ligands based on dipyridylbenzene and diphenyl-pyridine. The nanosecond time-
resolved study on [Pt(naphen)(Cl)] (1a) showed a phosphorescence signal originating from
a mixed 3LC/3MLCT excited state with an emission lifetime of 3 µs, in agreement with the
steady-state data. The CˆNˆN-coordinated naphen and thnaphen complexes are interesting
candidates for a red emission >600 nm, and their performance in various host materials
will be studied in the near future. The symmetric NˆCˆN- or CˆNˆC-coordinated complexes
emitted at wavelengths <600 nm and were already good emitters at 298 K in fluid solution.
In addition, their potential for electro-optical devices such as OLEDs will be prospectively
investigated.
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