PAPER • OPEN ACCESS

Attosecond time delays in C_{60} valence photoemissions at the giant plasmon

To cite this article: T Barillot et al 2015 J. Phys.: Conf. Ser. 635 112074

View the article online for updates and enhancements.

You may also like

- Eelectrochemical Evaluation of Selfassembled Monolayers of N-Heterocyclic Carbenes on Gold and DFT Studies Junwei Mao, Pengfei Xu, Zhenju Zhou et al.
- Conformational effects in photoelectron <u>circular dichroism</u> S Turchini
- Probing molecular frame photoelectron angular distributions via high-order harmonic generation from aligned molecules C D Lin, Cheng Jin, Anh-Thu Le et al.

ECS Membership = Connection

ECS membership connects you to the electrochemical community:

- Facilitate your research and discovery through ECS meetings which convene scientists from around the world;
- Access professional support through your lifetime career:
- Open up mentorship opportunities across the stages of your career;
- Build relationships that nurture partnership, teamwork—and success!

Join ECS!

Visit electrochem.org/join

This content was downloaded from IP address 89.245.22.204 on 05/07/2022 at 08:51

Attosecond time delays in C_{60} valence photoemissions at the giant plasmon

T. Barillot*, M. Magrakvelidze[†], V. Loriot*, C. Bordas*, P-A. Hervieux¹, M. Gisselbrecht², P. Johnsson², J. Laksman², E. P. Mansson², S. Sorensen², S. E. Canton³, J. M. Dahlström⁴, G. Dixit⁵, M. E. Madjet⁶, F. Lépine^{* 1}, H. S. Chakraborty^{†1}

* Institut Lumiére Matière, UMR5306, Université Lyon 1-CNRS, 10 rue Ada Byron, 69622 Villeurbanne cedex, France [†] Department of Natural Sciences, D.L. Hubbard Center for Innovation and Entrepreneurship, Northwest Missouri State University, Maryville, Missouri 64468, USA

¹Institut de Physique et Chimie des Matériaux de Strasbourg, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France

² Department of Physics, Lund University, Box 118, 221 00 Lund, Sweden

³ Department of Synchrotron Radiation Instrumentation, Lund University, Box 118, 221 00 Lund, Sweden

⁴ Department of Physics, Stockholm University, Alba Nova University Centrum, S-106 91, Stockholm, Sweden ⁵ Max Born Institute, Max-Born-Strasse 2A, 12489 Berlin, Germany

⁶ Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha, Qatar

Synopsis We perform time-dependent local density functional calculations of the time delay in C_{60} HOMO and HOMO-1 photoionization at giant plasmon energies. A semiclassical model is used to develop further insights.

Oscillations of the correlated electron density in nanosize systems stimulated by external radiation can quantize, forming many-body quasi-partcle, the plasmon. For nanoclusters, the direct consequence of the plasmon is the formation of a giant resonance in the response spectra that holds promise in optical applications. For the C_{60} molecule, a giant dipole plasmon can be ionized by XUV photons around 20 eV which therefore can serve as a spectral laboratory to study the effects of the collective motions on the emission time delay.

We compute the phases of HOMO and HOMO-1 photoamplitudes of C_{60} , using the time-dependent local density approximation (TDLDA) [1] that includes many-particle correlation effects. Previous calculations [2] were improved by including a scheme that angle-integrates the dipole amplitudes to calculate the total phase, whose energyderivatives gave the Wigner-Smith time delays of emission. A semiclassical description is utilized to interpret some aspects of the result.

Numerical results for HOMO and HOMO-1 delay are presented in Figure 1(a). The LDA comparison with single-particle predictions, that omit correlations, clearly reveals the role of the plasmon to affect the delay. A roughly opposite delay pattern between the growing versus waning part of the plasmon resonance (peaked at 20 eV) is noted.

The complex interaction between the 240 valence electrons of C_{60} and the incident photon can be mimicked without solving the full timedependent many-body problem, by introducing

an effective Hamiltonian. Based on a semiclassical model, we show that the plasmon acts as a screening effect that modifies the phase of the electron wavepacket. It induces a local variation of the angular distribution which is accompanied by a variation of the photoemission delays on the attosecond timescale.

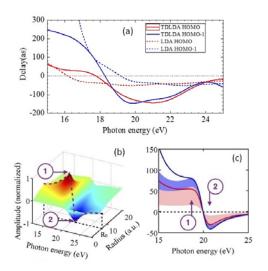


Figure 1. (a) TDLDA and LDA delays for HOMO and HOMO-1 emissions. (b) Real part of the screening potential. (c) Delays from semi-classical model.

This work was supported by NSF (USA) and ANR-10-BLAN-0428-01 "MUSES".

References

[1] M. Madjet et al 2010 Phys. Rev. A 81 013202

[2] T. Barillot et al 2015 Phys. Rev. A (accepted)

E-mail: franck.lepine@univ-lyon1.fr

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution $(\mathbf{\hat{H}})$ (cc) of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1