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1 Motivation 1

Abstract

We start from a basic model for the transport of charged species in heterostruc-

tures containing the mechanisms diffusion, drift and reactions in the domain

and at its boundary. Considering limit cases of partly fast kinetics we derive

reduced models. This reduction can be interpreted as some kind of projection

scheme for the weak formulation of the basic electro–reaction–diffusion sys-

tem. We verify assertions concerning invariants and steady states and prove

the monotone and exponential decay of the free energy along solutions to the

reduced problem and to its fully implicit discrete-time version by means of the

results of the basic problem. Moreover we make a comparison of prolongated

quantities with the solutions to the basic model.

1 Motivation

In semiconductor technology the redistribution of dopants in semiconductor het-
erostructures is described by models where drift-diffusion processes of up to twenty
different species (electrons, holes, dopants, differently charged vacancies, intersti-
tials, and dopant-defect pairs) and more than hundred different reactions between
these species like generation/recombination of defects, of electrons and holes, for-
mation and collapse of dopant-defect pairs, ionization of defects and pairs are taken
into account (see e.g. [3, 4, 7, 14]). Forced by such applications from semiconductor
technology we are interested in reduced models where some of the present kinetic
subprocesses are considered to be very fast. From a mathematical point of view such
assumptions of fast subprocesses decrease the number of continuity equations which
have to be taken into account. On the other hand, this reduction of the number of
equations leads to additional nonlinearities in the remaining equations. Often there
occur nonlocal constraints and nonlocal terms in the equations or in the boundary
terms (see e.g. the model equations in [8, 12, 13]).

The first aim of the paper is to present a general scheme how to deduce the re-
duced models from a basic model where all subprocesses are nearly of the same rate.
Second, we show that our scheme provides the possibility to carry over results con-
cerning energy estimates for the basic problem to the reduced ones. These principles
should be of interest also in other fields of applications of electro-reaction-diffusion
systems.

The paper is organized as follows. In Section 2 we introduce a basic model for
electro-reaction-diffusion processes and give some notation. The general assump-
tions and the weak formulation of the basic model are given in Section 3. In Section 4
we introduce our reduction scheme. Section 5 summarizes known results for the ba-
sic model which are relevant for the present paper. Assertions concerning invariants
and steady states of the reduced problem are derived in Section 6, the proof of en-
ergy estimates for the reduced model is given in Section 7. In Section 8 we make
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a comparison between solutions of the reduced and the basic model. Section 9
provides energy estimates for a fully implicit time-discrete version of the reduced
problem. Finally, in Section 10 we discuss four examples for the reduction of the
model equations in the case of fast kinetic subprocesses in more detail.

2 A basic model for electro-reaction-diffusion processes in
heterostructures

We consider a bounded domain Ω with boundary Γ = ΓN ∪ΓD ∪Γ0 and mesΓ0 = 0.
Let ν be the outer unit normal. We look at m electrically charged species Xi with
charge numbers qi and initial concentrations Ui : Ω → R+. Their concentrations
ui : R+ ×Ω → R+ as well as their chemical potentials vi : R+ ×Ω → R are changing
by chemical reactions taking place in Ω and at its boundary Γ, by diffusion processes
and, in addition, by a drift which is caused by the inner electric field. The relation
between concentrations and chemical potentials is assumed to be given by Boltzmann
statistics

ui = ui e
vi , i = 1, . . .m,

where ui : Ω → R+ are given reference densities. The function u0 =
∑m

i=1 qiui

represents the charge density. By v0 : R+ × Ω → R we denote the electrostatic
potential. Moreover, ζi := vi +qiv0 : R+×Ω → R corresponds to the electrochemical
potential of the i-th species. All functions are suitably scaled.

The driving forces for the particle flux of the i-th species is the gradient of the
electrochemical potential

ji = −Diui∇ζi = −Di ui∇(vi + qiv0), i = 1, . . .m,

with given diffusivity Di : Ω → R+.

We consider a finite set of mass action type reactions of the form

α1X1 + · · ·+ αmXm ⇋ β1X1 + · · ·+ βmXm

and denote by RΩ and RΓ the set of pairs (α, β) of stoichiometric coefficients α =
(α1, . . . , αm), β = (β1, . . . , βm) corresponding to all reactions running in Ω or at Γ.
For each species the reaction rates RΩ

i in the volume and RΓ
i at the boundary are

written as

RΣ
i =

∑

(α, β)∈RΣ

RΣ
αβ(αi − βi), i = 1, . . . , m,

RΣ
αβ = kΣ

αβ(x, v0, . . . , vm)
( m∏

k=1

eζkαk −

m∏

k=1

eζkβk
)
,

where the kinetic coefficients kΣ
αβ : Σ × R

m+1 → R+ are fixed functions, Σ = Ω, Γ.
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Now we are able to formulate the electro–reaction–diffusion system modelling the
transport of charged particles. Mass balance for each species coupled with a Poisson
equation for the electrostatic potential v0 lead to the following initial boundary value
problem

∂ui

∂t
+ ∇ · ji + Ri = 0 on (0,∞) × Ω,

ν · ji = 0 on (0,∞) × Γ,

ui(0) = Ui on Ω , i = 1, . . . , m,

−∇ · (ε∇v0) = fΩ +
m∑

i=1

qiui on (0,∞) × Ω,

ν · (ε∇v0) + τv0 = fΓ on (0,∞) × ΓN ,

v0 = vD on (0,∞) × ΓD,





(1)

where the initial densities Ui : Ω → R+, the dielectric permittivity ε : Ω → R+,
the capacity τ : ΓN → R+ are given. In many applications from semiconductor
technology all physical parameters ui, Di, kΣ

αβ, ε, τ and fΣ depend on the space
variable in a non-smooth way.

Without loss of generality we will assume that fΓ = 0 and vD = 0 (otherwise we
would have to use as a new variable the difference of v0 and the solution v̂0 of the
Laplace equation

−∇ · (ε∇v̂0) = 0 on (0,∞) × Ω,

ν · (ε∇v̂0) + τ v̂0 = fΓ on (0,∞) × ΓN ,

v̂0 = vD on (0,∞) × ΓD.

Let us collect some notation which we use in the paper. We assume that Ω ⊂ R
2 is a

bounded (strictly) Lipschitzian domain. The notation of function spaces Lp(Ω, Rk),
H1(Ω, Rk), k ∈ N, corresponds to that in [16]. With regard to the definition of
the space H1

0 (Ω ∪ ΓN) we refer to [6, Appendix]. If X is any Banach space X we
write 〈·, ·〉X for the corresponding dual pairing. By R

k
+, Lp

+ we denote the cones of
nonnegative elements. For the scalar product in R

k we use a centered dot. In our
estimates positive constants, which depend at most on the data of our problem, are
denoted by c.

3 Weak formulation of the basic model

Now we shall formulate a general evolution problem corresponding to the basic
model problem introduced in Section 2. We summarize the assumptions concerning



4 A. Glitzky

the data of the basic system our further considerations are based on:

Ω is a bounded Lipschitzian domain in R
2 , Γ := ∂Ω,

ΓD, ΓN are disjoint open subsets of Γ , Γ = ΓD ∪ ΓN ∪ (ΓD ∩ ΓN),

ΓD ∩ ΓN consists of finitely many points;





(2)

qi ∈ Z , ui, Ui ∈ L∞(Ω) , ui, Ui ≥ c > 0,

Di ∈ L∞(Ω) , Di ≥ c > 0 , i = 1, . . . , m,

U0 :=
∑m

i=1qiUi , q := (q1, . . . , qm) ∈ Z
m , fΩ ∈ L2(Ω),

ε ∈ L∞(Ω) , ε ≥ c > 0, τ ∈ L∞
+ (ΓN) , mes ΓD + ‖τ‖L1(ΓN ) > 0;





(3)

RΩ, RΓ are finite subsets of Z
m
+ × Z

m
+ ,

(α − β) · q = 0 ∀(α, β) ∈ RΩ ∪RΓ,

for Σ = Ω, Γ and (α, β) ∈ RΣ we define

RΣ
αβ := kΣ

αβ(x, y) (eα·ζ − eβ·ζ) , x ∈ Σ , y = (y0, y1, · · · , ym) ∈ R
m+1,

ζi := yi + qiy0 , i = 1, . . . , m, where

kΣ
αβ : Σ × R

m+1 → R+ satisfies the Carathéodory conditions,

kΣ
αβ(x, y) ≥ cR > 0 f.a.a. x ∈ Σ, ∀y ∈ R

m+1 with y0 ∈ [−R, R].






(4)

Finally, for the discussion of asymptotic properties we need a further assumption on
the structure of the reaction system which will be introduced later on (see (6)).

For the weak formulation of our basic problem we use as variables the m+1 dimen-
sional vectors of potentials and densities

v = (v0, v1, . . . , vm) , u = (u0, u1, . . . , um).

The initial value for u has to be understood as U = (U0, . . . , Um) with U0 =∑m
i=1 qiUi. We work with the function spaces

X := H1
0 (Ω ∪ ΓN) × H1(Ω, Rm) , W := X ∩ L∞(Ω, Rm+1)

and define operators A : W → X∗, E0 : H1
0 (Ω ∪ ΓN) → (H1

0 (Ω ∪ ΓN))∗, E : X → X∗
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by

〈A v, v〉X :=

∫

Ω

{ m∑

i=1

Diuie
vi∇ζi · ∇ζ i +

∑

(α, β)∈RΩ

RΩ
αβ(·, v) (α − β) · ζ

}
dx

+

∫

Γ

∑

(α, β)∈RΓ

RΓ
αβ(·, v) (α − β) · ζ dΓ,

〈E0v0, v0〉H1
0

:=

∫

Ω

{
ε∇v0 · ∇v0 − fΩv0

}
dx +

∫

ΓN

τv0v0 dΓ,

〈Ev, v〉X := 〈E0v0, v0〉H1
0

+

∫

Ω

m∑

i=1

uie
vivi dx, v ∈ X,

where ζi = vi + qiv0, ζ i = vi + qiv0, i = 1, . . . , m. As in [10] a weak formulation of
the basic problem (1) writes as

u′(t) + A v(t) = 0 , u(t) = Ev(t) f.a.a. t ∈ R+ ; u(0) = U,

u ∈ H1
loc(R+, X∗) , v ∈ L2

loc(R+, X) ∩ L∞

loc(R+, L∞(Ω, Rm+1)).

}
(P)

The concept of solution used in [9] is somewhat weaker.

The stoichiometric subspace S belonging to the system of volume and boundary
reactions occurring in the basic model equations is given by

S := span
{
α − β : (α, β) ∈ RΩ ∪RΓ

}
⊂ R

m.

Moreover we introduce the notation

U :=
{

u ∈ X∗ : u0 =
m∑

i=1

qiui , (〈u1, 1〉H1, . . . , 〈um, 1〉H1) ∈ S
}

and
U⊥ =

{
v ∈ X : ∇ζ = 0 , ζ ∈ S⊥ , ζi = vi + qiv0 , i = 1, . . . , m

}
.

One easily verifies that 〈u, v〉X = 0 for u ∈ U , v ∈ U⊥. Solutions (u, v) to (P) fulfill
the invariance property

u(t) ∈ U + U ∀t ∈ R+.

4 Reduction scheme for limit problems with partly fast ki-
netics

We derive weak formulations for reduced problems arising from our basic problem
(P) under the general assumption that during the evolution process the vector of
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potentials v = (v0, . . . , vm) underlies some restrictions which can be described in
that way that the vector v(t) lies in a closed subspace of X only. We assume that

we are given a Banach space X̃ and some linear operator L : X̃ → X such that all v
from that closed subspace of X can be parametrized by means of some vector ṽ ∈ X̃
with v = Lṽ. These assumptions are motivated by investigations concerning limits
of fast kinetic subprocesses. For examples we refer to the reductions carried out
in Section 10. Cf. e.g. the definitions of the operators L given in (19), (21), (22)

and (23) and the corresponding choices for X̃ in Subsection 10.1 – Subsection 10.4.
Generally, for the operator L we now assume the fundamental properties

L : X̃ → X linear, continuous, injective, Im L closed in X, U⊥ ⊂ Im L. (5)

Starting from our basic problem

u′(t) + Av(t) = 0, u(t) = Ev(t) f.a.a. t ∈ R+, u(0) = U

we proceed by some kind of Galerkin procedure. We are looking for states v ∈ Im L,
v = Lṽ. And correspondingly we only consider test functions h ∈ Im L, h = Lh̃,
h̃ ∈ X̃. This projection leads to

〈u′(t) + Av(t), Lh̃〉X = 〈L∗u′(t) + L∗ALṽ(t), h̃〉X̃

= 0 ∀h̃ ∈ X̃, f.a.a. t ∈ R+,

〈u(t) − Ev(t), Lh̃〉X = 〈L∗u(t) − L∗ELṽ(t), h̃〉X̃

= 0 ∀h̃ ∈ X̃, f.a.a. t ∈ R+.

This motivates the definitions

ũ := L∗u, Ã = L∗AL, Ẽ = L∗EL.

Since L∗ : X∗ → X̃∗ is linear and continuous from u ∈ H1
loc(R+, X∗) it follows that

L∗u ∈ H1
loc(R+, X̃∗). Furthermore, L∗u′(t) = (L∗u)′(t) f.a.a. t ∈ R+. In this

notation we formulate the reduced problem (P̃) arising from the basic problem (P)
under the additional assumptions concerning the fast kinetic subprocesses described
by the operator L

ũ′(t) + Ã ṽ(t) = 0 , ũ(t) = Ẽ ṽ(t) f.a.a. t ∈ R+ , ũ(0) = L∗U,

ũ ∈ H1
loc(R+, X̃∗) , ṽ ∈ L2

loc(R+, X̃),

Lṽ ∈ L2
loc(R+, X) ∩ L∞

loc(R+, L∞(Ω, Rm+1)).





(P̃)

Our aim is to carry over as most as possible of the results from the basic problem (P)

to the reduced problem (P̃). We assume the properties (5) for L to be satisfied.
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5 Results for the basic problem (P)

In this section we summarize notation, properties and results on energy estimates
for (P) which will be of importance for the analytical treatment of reduced model
equations in the case of fast kinetics of some of the involved processes. For the
proofs of the assertions stated in this section we refer to [9, 10].

Theorem 5.1 We assume (2) – (4). There exists a unique steady state (u∗, v∗) of
(P) in the sense that

Av∗ = 0 , u∗ = Ev∗ , u∗ ∈ U + U , v∗ ∈ W.

For the proof we refer to [9, Theorem 3.1]. Note that our concept of solutions implies
that Ui ≥ c > 0, i = 1, . . . , m, and therefore the Slater condition in [9],

m∑

i=1

∫

Ω

Uiκi dx > 0 for all κ ∈ S⊥, κ ≥ 0, κ 6= 0

is automatically fulfilled.

For the steady state (u∗, v∗) we define the quantities a∗
i := ev∗i +qiv∗0 , i = 1, . . . , m,

a∗ := (a∗
1, . . . , a

∗
m). Using [9, Lemma 5.1] we obtain that (a∗, v∗

0) ∈ M where

M :=
{

(a, v0) ∈ R
m
+ × H1

0 (Ω ∪ ΓN) :
m∏

i=1

aαi

i =
m∏

i=1

aβi

i ∀(α, β) ∈ RΩ ∪RΓ,

(E0v0, u1, . . . , um) ∈ U + U where ui := ui ai e
−qiv0 , i = 1, . . . , m,

}
.

The operator E is a strictly monotone potential operator with potential Φ: X → R,

Φ(v) =

∫

Ω

{ε

2
|∇v0|

2 − fΩv0 +

m∑

i=1

ui(e
vi − 1)

}
dx +

∫

ΓN

τ

2
v2
0 dΓ,

Φ is continuous, strictly convex and subdifferentiable. The free energy F : X∗ → R

corresponds to the conjugate functional of Φ,

F (u) := Φ∗(u) = sup
v∈X

{
〈u, v〉X − Φ(v)

}
, u ∈ X∗.

If u ∈ (H1
0(Ω ∪ ΓN))∗ × L2

+(Ω, Rm) then the free energy at the state u is given by

F (u) =

∫

Ω

{ε

2
|∇v0|

2 +

m∑

i=1

(
ui(ln

ui

ui
− 1) + ui

)}
dx +

∫

ΓN

τ

2
v2
0 dΓ,

where E0v0 = u0 (cf. [11, Lemma 3.2]). Next, we define the dissipation rate

D(v) := 〈A v, v〉X, v ∈ W.
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Note that by the definition of the operator A the dissipation rate is nonnegative for
all v ∈ W . Moreover, we have D(v) = 0 if and only if v ∈ U⊥ if and only if Av = 0.
We cite the following result concerning the boundedness and the decay of the free
energy from [10, Theorem 3.2].

Theorem 5.2 We assume (2) – (4). Let (u, v) be a solution to (P). Then

F (u(t2)) ≤ F (u(t1)) ≤ F (U) for t2 ≥ t1 ≥ 0,

‖v0(t)‖H1 +

m∑

i=1

‖ui(t) lnui(t)‖L1 +

∫ t

0

D(v(s)) ds ≤ c ∀t ∈ R+,

where c depends only on the data.

For assertions concerning the exponential decay of the free energy we need the
additional assumption that

M ⊂ int R
m
+ × H1

0 (Ω ∪ ΓN). (6)

Theorem 5.3 We assume (2) – (4) and (6). Then for every R > 0 there exists a
cR > 0 such that

F (Ev) − F (u∗) ≤ cR D(v)

for all v ∈ MR :=
{
v ∈ W : F (Ev) − F (u∗) ≤ R, Ev ∈ U + U

}
.

Theorem 5.4 Let (2) – (4) and (6) be satisfied. Then there exist constants λ, c > 0
depending only on the data such that

F (u(t)) − F (u∗) ≤ e−λt(F (U) − F (u∗)),

‖v0(t) − v∗

0‖H1 +

m∑

i=1

‖ui(t) − u∗

i ‖L1 ≤ ce−λt/2 ∀t ≥ 0

if (u, v) is a solution to (P).

For the proofs of the last two theorems we refer to [9, Theorem 5.2, Theorem 5.3].
Theorem 5.3 is based on an indirect proof such that the decay rate of the free energy
in Theorem 5.4 can not be given explicitly. There are papers where for special
situations an explicit rate of convergence is proved. Gajewski and Gärtner [5] did
this for the van Roosbroeck system with magnetic field. Desvillettes and Fellner [2]
provide an explicit rate of convergence for a reaction-diffusion system of two species
and the reaction 2X1 ⇋ X2 and one invariant and for a system of three species, the
reaction X1 + X2 ⇋ X3 and two invariants, respectively.

Additionally, in [10] we proved that (P) has at most one solution. Under some
restrictions concerning the order of the reactions we there obtained solvability and
global bounds for the solution to (P). Now we derive energy estimates for the reduced

problem (P̃).
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6 Invariants and steady states for the reduced problem (P̃)

We define
Ũ :=

{
ũ ∈ X̃∗ : ũ = L∗u , u ∈ U

}

as well as
Ũ⊥ =

{
ṽ ∈ X̃ : v = Lṽ ∈ U⊥

}
.

We obtain the relation 〈ũ, ṽ〉X̃ = 0 ∀ũ ∈ Ũ , ∀ṽ ∈ Ũ⊥.

Lemma 6.1 Let (ũ, ṽ) be a solution to (P̃). We suppose (2) – (4) for (P) and (5)
for L. Then the invariance property

ũ(t) − L∗U ∈ Ũ ∀t ∈ R+

is fulfilled.

Proof. Let h̃ ∈ Ũ⊥ be arbitrarily given. Then Lh̃ ∈ U⊥ and 〈ALṽ, Lh̃〉X = 0. Here
we used that 〈Av, v〉 = 0 for v ∈ W , v ∈ U⊥. We evaluate

d

dt
〈ũ, h̃〉X̃ = 〈L∗ALṽ, h̃〉X̃ = 〈ALṽ, Lh̃〉X = 0

which proves the assertion. �

The steady states for problem (P̃) are pairs (ũ∗, ṽ∗) fulfilling

Ãṽ∗ = 0 , ũ∗ = Ẽṽ∗ , ũ∗ − L∗U ∈ Ũ , Lṽ∗ ∈ W , ṽ∗ ∈ X̃.

Theorem 6.1 We suppose (2) – (4) for (P) and the properties (5) for L.
i) Then (u∗, v∗) is a steady state of (P) if and only if (ũ∗, ṽ∗) is a steady state of

(P̃) and ũ∗ = L∗u∗, v∗ = Lṽ∗.

ii) There is exactly one steady state of (P̃).

Proof. 1. (=⇒). If (u∗, v∗) is a steady state of (P) then Av∗ = 0 which implies that

v∗ ∈ U⊥ ⊂ Im L. Since L is injective there exists a unique ṽ∗ ∈ X̃ with v∗ = Lṽ∗.
Next we define ũ∗ := L∗u∗ and obtain that ũ∗ = L∗u∗ = L∗Ev∗ = L∗ELṽ∗ = Ẽṽ∗.
Moreover, ũ∗ − L∗U = L∗(u∗ − U) ∈ Ũ and Ãṽ∗ = L∗ALṽ∗ = L∗Av∗ = 0.

2. (⇐=). If (ũ∗, ṽ∗) is a steady state of (P̃) we define v∗ := Lṽ∗ , u∗ := E Lṽ∗. Then

the relation ũ∗ = Ẽṽ∗ = L∗ELṽ∗ = L∗u∗ is satisfied. Furthermore, from Ãṽ∗ = 0 it
follows 0 = 〈Ãṽ∗, ṽ∗〉X̃ = 〈ALṽ∗, Lṽ∗〉X = D(v∗). Thus v∗ ∈ U⊥ and Av∗ = 0. Next

we show that u∗ − U ∈ U . Let v ∈ U⊥ ⊂ Im L be arbitrarily given. Then v = Lṽ,
ṽ ∈ Ũ⊥ and by ũ∗ − L∗U ∈ Ũ we conclude 〈u∗ − U, v〉X = 〈L∗u∗ − L∗U, ṽ〉X̃ =

〈Ẽṽ∗ − L∗U, ṽ〉X̃ = 〈ũ∗ − L∗U, ṽ〉X̃ = 0 which gives the assertion.
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3. (Existence). The existence of a steady state of (P̃) follows by step 1 and
Theorem 5.1.

4. (Uniqueness). If we would have two steady states of (P̃) (ũ∗i, ṽ∗i), i = 1, 2, then
by the second step v∗i = Lṽ∗i, i = 1, 2, would be components of the steady state
of (P). By Theorem 5.1 the steady state of (P) is unique which means v∗1 = v∗2.
Since the operator L is injective it follows ṽ∗1 = ṽ∗2. From u∗1 = u∗2 we find
ũ∗1 = L∗u∗1 = L∗u∗2 = ũ∗2. �

7 Energy estimates for the reduced problem (P̃)

We define the energy functionals and carry over the convex structure from (P) to

(P̃). At first we introduce the functional Φ̃ : X̃ → R,

Φ̃(ṽ) := Φ(Lṽ).

By the properties of L and Φ (cf. Section 5) this functional is continuous, strictly
convex and subdifferentiable and the relation

∂Φ̃(ṽ) = L∗∂Φ(Lṽ) = L∗ELṽ = Ẽṽ

holds. Again, the free energy F̃ : X̃∗ → R is defined as the conjugate functional
of Φ̃,

F̃ (ũ) := Φ̃∗(ũ) = (ΦL)∗(ũ) = sup
ṽ∈X̃

{
〈ũ, ṽ〉X̃ − Φ(Lṽ)

}
.

On the other hand, since Φ is convex and continuous (cf. [15, Sect. 3]) we have

F̃ (ũ) = (L∗Φ∗)(ũ) = inf
{
F (u) : u ∈ X∗, L∗u = ũ

}
, (7)

where F is the free energy for the basic system. If F̃ is subdifferentiable at ũ, ũ = Ẽṽ
then we obtain

F̃ (ũ) = F (u) where u = ∂Φ(Lṽ) = Ev. (8)

Finally, we introduce the dissipation rate D̃ : X̃ ∩ {ṽ ∈ X̃ : Lṽ ∈ W} → R for the

reduced system (P̃) by

D̃(ṽ) := D(Lṽ) = 〈ALṽ, Lṽ〉X = 〈L∗ALṽ, ṽ〉X̃

= 〈Ãṽ, ṽ〉X̃ , ṽ ∈ X̃ ∩ {ṽ : Lṽ ∈ W}.

Since D is nonnegative for all v ∈ W it follows that D̃(ṽ) ≥ 0 for all ṽ with Lṽ ∈ W .

The functional F̃ is convex and lower semicontinuous. If (ũ, ṽ) is a solution to (P̃)

then ∂F̃ (ũ(t)) = ṽ(t) f.a.a. t ∈ R+. Moreover, ∂F̃ (ũ∗) = ṽ∗ ∈ Ũ⊥. Thus along any
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solution (ũ, ṽ) to (P̃) the function t 7→ eλt
(
F̃ (ũ(t))− F̃ (ũ∗)

)
with λ ∈ R is absolutely

continuous and we obtain (cf. [1, Lemma 3.3])

eλt
(
F̃ (ũ(t)) − F̃ (ũ∗)

)
−

(
F̃ (L∗U) − F̃ (ũ∗)

)

=

∫ t

0

eλs
{
λ
(
F̃ (ũ(s)) − F̃ (ũ∗)

)
+ 〈ũ′(s), ∂F̃ (ũ(s)) − ∂F̃ (ũ∗)〉X̃

}
ds

=

∫ t

0

eλs
{
λ
(
F̃ (ũ(s)) − F̃ (ũ∗)

)
− 〈Ã(ṽ(s)), ṽ(s) − ṽ∗〉X̃

}
ds

=

∫ t

0

eλs
{
λ
(
F̃ (ũ(s)) − F̃ (ũ∗)

)
− 〈Ã(ṽ(s)), ṽ(s)〉X̃

}
ds.

(9)

Theorem 7.1 We suppose (2) – (4) for (P) and (5) for the operator L. Let (ũ, ṽ)

be a solution to (P̃). Then

F̃ (ũ(t)) +

∫ t

0

D̃(ṽ(s)) ds ≤ F (U) ∀t ∈ R+.

Proof. 1. We set λ = 0 in the relation (9). Since along solutions (ũ, ṽ) to (P̃) it is

guaranteed that Lṽ ∈ W for a.a. s ∈ R+ we have that 〈Ã(ṽ(s)), ṽ(s)〉X̃ = D̃(ṽ(s)) ≥
0 for a.a. s ∈ R+. This leads to the desired estimate if one takes into account that
by (7) we have F̃ (L∗U) ≤ F (U). �

Theorem 7.2 Let (2) – (4) and (6) for (P) as well as (5) for the operator L be
satisfied. Then there exists a constant λ > 0 depending only on the data such that

F̃ (ũ(t)) − F̃ (ũ∗) ≤ e−λt(F (U) − F̃ (ũ∗)) ∀t ≥ 0 (10)

if (ũ, ṽ) is a solution to (P̃).

Proof. If (ũ, ṽ) is a solution to (P̃) then for a.a. s ∈ R+ the following properties

are fulfilled. We have ũ(s) = Ẽṽ(s) and therefore by (8) and Theorem 6.1 and
Theorem 7.1

F̃ (ũ(s)) − F̃ (ũ∗) = F (ELṽ(s)) − F (u∗) ≤ F (U) − F (u∗) =: R.

Moreover Lṽ(s) ∈ W and, since by Lemma 6.1 L∗(ELṽ(s)−U) = Ẽṽ(s)−L∗U ∈ Ũ
we find ELṽ(s)−U ∈ U . Thus Lṽ(s) belongs to a set MR occurring in Theorem 5.3
on which there is given an estimate of the free energy by the dissipation rate. By
Theorem 5.3 we conclude that

F̃ (ũ(s))− F̃ (ũ∗) = F (ELṽ(s))−F (u∗) ≤ cRD(Lṽ) = cRD̃(ṽ) = cR〈Ã(ṽ(s)), ṽ(s)〉X̃ .

Setting now λ = 1/cR we thus obtain from (9) the estimate (10). �
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8 Comparison with solutions to the basic problem

Let (ũ, ṽ) be a solution to (P̃). We ask in what sense we can prescribe the behaviour

of a solution to (P) by means of solutions to (P̃). For this purpose we define for

quantities ṽ ∈ X̃ and ũ ∈ X̃∗ quantities
⌣
v ∈ X and

⌣
u ∈ X∗ by prolongation

⌣
v := Lṽ,

⌣
u := ELṽ. (11)

According to Theorem 6.1 we find by applying the transformation (11) to the steady

state (ũ∗, ṽ∗) of (P̃) that

(
⌣
u
∗
,

⌣
v
∗
) = (ELṽ∗, Lṽ∗) = (u∗, v∗) (12)

corresponds to the steady state of (P). Additionally, cf. (8), for ũ, where F̃ is

subdifferentiable, we have F̃ (ũ) = F (
⌣
u). This means for the steady states F̃ (ũ∗) =

F (u∗) and for solutions (ũ, ṽ) to (P̃)

F̃ (ũ(t)) = F (
⌣
u(t)) f.a.a. t ∈ R+. (13)

Moreover we obtain the following conclusions from energy estimates for (P) and (P̃).

Theorem 8.1 We suppose (2) – (4) and (6) for (P) as well as (5) for the operator
L to be satisfied. Let (u, v) be a solution to (P) and let (

⌣
u,

⌣
v) be prolongated via

(11) from a solution (ũ, ṽ) to (P̃). Then there exist constants λ, c > 0 depending
only on the data such that

|F (
⌣
u(t)) − F (u(t))| ≤ ce−λt,

‖
⌣
v0(t) − v0(t)‖H1 +

m∑

i=1

‖
⌣
ui(t) − ui(t)‖L1 ≤ ce−λt/2 f.a.a. t ∈ R+.

Proof. Because of (12) and (13) we obtain by Theorem 7.2 that

F (
⌣
u(t)) − F (u∗) ≤ e−λt(F (U) − F (u∗)) f.a.a t ∈ R+. (14)

Therefore Theorem 5.4 and the triangle inequality lead to the first estimate. For all
(û, v̂0) ∈ X∗ × H1

0 (Ω ∪ ΓN) with û − u∗ ∈ U and E0v̂0 = û0 the estimate

‖v̂0 − v∗

0‖
2
H1 +

m∑

i=1

‖
√

ûi −
√

u∗
i ‖

2
L2 ≤ c(F (û) − F (u∗)) (15)

is valid (cf. [9, p.827]). By relation (11) we find
⌣
u0(t) = E0(Lṽ(t))0 = E0

⌣
v 0(t).

Next we show that
⌣
u(t) − u∗ ∈ U f.a.a. t ∈ R+. Let v ∈ U⊥ ⊂ Im L be arbitrarily

given. Then v = Lṽ, ṽ ∈ Ũ⊥ and by Lemma 6.1 we conclude

〈
⌣
u(t) − u∗, v〉X = 〈L∗⌣

u(t) − L∗u∗, ṽ〉X̃ = 〈Ẽṽ(t) − ũ∗, ṽ〉X̃ = 〈ũ(t) − ũ∗, ṽ〉X̃ = 0 a.e.
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which gives the assertion. Thus we can apply inequality (15) to (
⌣
u(t),

⌣
v 0(t)) as well

as to (u(t), v0(t)) f.a.a. t ∈ R+. Together with (14) and Theorem 5.4 we obtain

‖
⌣
v 0(t) − v0(t)‖

2
H1 ≤ c

(
‖

⌣
v 0(t) − v∗

0‖
2
H1 + ‖v0(t) − v∗

0‖
2
H1

)
≤ ce−λt f.a.a. t ∈ R+.

Analogously we find

‖
√

⌣
ui(t) −

√
ui(t)‖

2
L2 ≤ ce−λt f.a.a. t ∈ R+. (16)

Using (13), Theorem 7.1 and the estimate
∑m

i=1 ‖ûi‖L1 ≤ F (û) + c for elements
û = Ev̂ with v̂ ∈ X we have ‖

⌣
ui(t)‖L1 ≤ c a.e. in R+. From Theorem 5.2 it follows

‖ui(t)‖L1 ≤ c for all t ∈ R+. Therefore, using (16), we conclude for i = 1, . . . , m
that

‖
⌣
ui(t) − ui(t)‖L1 ≤ ‖

√
⌣
ui(t) −

√
ui(t)‖L2‖

√
⌣
ui(t) +

√
ui(t)‖L2

≤ ce−λt/2 a.e. in R+. �

Remark 8.1 If the assumptions of Theorem 8.1 are fulfilled and in addition ṽ has
the following regularity properties

(Lṽ)0 ∈ C(R+, H1), (Lṽ)i ∈ C(R+, L2) ∩ Cw∗(R+, L∞), i = 1, . . . , m,

then the assertions of Theorem 8.1 hold for all t ∈ R+.

9 Energy estimates for a fully implicit time-discrete version
of problem (P̃)

Our aim is to approximate problem (P̃) by a discrete–time problem which saves the
important property of monotonous and exponential decay of the free energy along
trajectories of the discrete–time system to its equilibrium value. In [9, Section 6]
we proved this property for the fully implicit discrete–time scheme corresponding to
(P).

We assume that we are given sequences of partitions {Zn}n∈N of R+,

Zn =
{
t0n, t1n, . . . , t

k
n, . . .

}
, t0n = 0 , tkn ∈ R+ , tk−1

n < tkn , k ∈ N

with tkn → +∞ as k → ∞. Let

hk
n := tkn − tk−1

n , Sk
n := (tk−1

n , tkn] , hn := sup
k∈N

hk
n.

For a given partition Zn of R+ and a given Banach space B we introduce the space
of piecewise constant functions

Cn(R+, B) :=
{
ũ : R+ −→ B : ũ(t) = ũk ∀t ∈ Sk

n , ũk ∈ B , k ∈ N

}
.
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We define the difference operator ∆n : Cn(R+, X̃∗) −→ Cn(R+, X̃∗) by

(∆nũ)k :=
1

hk
n

(ũk − ũk−1) , ũ0 := Ũ ,

where Ũ = L∗U is the initial value of problem (P̃). For n ∈ N, we investigate the
problem

∆nũn(t) + Ãṽn(t) = 0, ũn(t) = Ẽṽn(t) ∀t ∈ R+,

ṽn ∈ Cn(R+, X̃), Lṽn ∈ Cn(R+, X) ∩ Cn(R+, L∞(Ω, Rm+1)).



 (P̃n)

This fully implicit scheme can be written in more detail as

ũk
n + hk

nÃṽk
n = ũk−1

n , ũk
n = Ẽṽk

n , ṽk
n ∈ X̃ , Lṽk

n ∈ W , k ∈ N , ũ0
n = L∗U.

First, let us note that solutions of the discrete–time problems (P̃n) fulfil the same

invariance property as solutions of the continuous problem (P̃),

ũn(t) ∈ Ũ + L∗U ∀t ∈ R+. (17)

This assertion proves as follows: Similar to Lemma 6.1 we obtain

〈∆nũn(s), h̃〉X̃ = 0 ∀h̃ ∈ Ũ⊥, ∀s ∈ R+.

Thus ∫ tkn

0

∆nũn(s) ds = ũk
n − L∗U ∈ Ũ ∀k ∈ N

which gives the assertion. Furthermore, each discrete–time problem (P̃n) has the

same steady state (ũ∗, ṽ∗) as the continuous problem (P̃).

Theorem 9.1 We suppose (2) – (4) for (P) as well as (5) for the operator L to
be satisfied. Let h > 0 be given and let Zn be any partition of R+ with hn ≤ h.
Then the free energy F̃ decreases monotonously along any solution (ũn, ṽn) to the

discrete–time problem (P̃n), i.e.,

F̃ (ũn(t2)) ≤ F̃ (ũn(t1)) ≤ F (U) for t2 ≥ t1 ≥ 0.

If additionally (6) is satisfied, then there exists a constant λ > 0 such that

F̃ (ũn(t)) − F (u∗) ≤ e−λt(F (U) − F (u∗)) ∀t ≥ 0

for any solution (ũn, ṽn) to (P̃n).
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Proof. Let (ũn, ṽn) be a solution to (P̃n). Since ũl
n = Ẽṽl

n we have ṽl
n ∈ ∂F̃ (ũl

n)
which implies

〈ũl
n − w̃, ṽl

n〉X̃ ≥ F̃ (ũl
n) − F̃ (w̃) ∀w̃ ∈ X̃∗.

We derive some discrete version of the estimate (9). Let k > j ≥ 0 and λ ≥ 0. Then
we conclude that

eλ tkn
(
F̃ (ũk

n)−F (u∗)
)
− eλ tjn

(
F̃ (ũj

n) − F (u∗)
)

=
k∑

l=j+1

{(
eλ tln − eλ tl−1

n
)(

F̃ (ũl
n) − F (u∗)

)
+ eλ tl−1

n
(
F̃ (ũl

n) − F̃ (ũl−1
n )

)}

≤

k∑

l=j+1

{
eλ tl−1

n
(
eλ hl

n − 1
)(

F̃ (ũl
n) − F (u∗)

)
+ eλ tl−1

n 〈ũl
n − ũl−1

n , ṽl
n〉X̃

}

≤

k∑

l=j+1

{
eλ tl−1

n eλ h λ hl
n

(
F̃ (ũl

n) − F (u∗)
)
− eλ tl−1

n hl
n〈Ãṽl

n, ṽ
l
n〉X̃

}

≤
k∑

l=j+1

hl
n eλ tl−1

n

{
eλ h λ

(
F (ELṽl

n) − F (u∗)
)
− D(Lṽl

n)
}

.

At first, since the dissipation rate D is nonnegative, by setting λ = 0 we obtain

F̃ (ũk
n) ≤ F̃ (ũj

n) ≤ F̃ (L∗U) ≤ F (U) ∀k ≥ j ≥ 0

which means
F̃ (ũn(t2)) ≤ F̃ (ũn(t1)) ≤ F (U) ∀t2 > t1 ≥ 0.

Next, we fix R > F (U) − F (u∗). Since ũn fulfils the invariance property (17) and

ũn = Ẽṽn, we find that ELṽl
n−U ∈ U and Lṽl

n ∈ W for l ∈ N. Thus the Lṽl
n, l ∈ N,

belong to the set MR defined in Theorem 5.3. If we now choose λ > 0 such that
λ eλ hcR ≤ 1 and set j = 0 Theorem 5.3 implies that

F̃ (ũk
n) − F (u∗) ≤ e−λ tkn

(
F (U) − F (u∗)

)
∀k ∈ N

and the second assertion of the theorem follows. �

10 Examples for the reduction of the model equations in
the case of fast kinetic subprocesses

10.1 Example 1: Some fast volume reactions

Our aim is to reduce the basic model under the assumption that the kinetic of a part
of the involved reactions is very fast. In many applications by physical reasons such
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assumptions are justified (see e.g. [7]). Let RΩ
0 ⊂ RΩ be a subset of fast volume

reactions. Then

kΩ
αβ → ∞ a.e. in Ω ∀(α, β) ∈ RΩ

0 .

To guarantee that the reaction terms remain bounded a.e. in Ω we have to require

eα·ζ = eβ·ζ ∀(α, β) ∈ RΩ
0 . (18)

Having in mind that q ∈ S⊥ (cf. (4)) the relations (18) mean that we have to look
for states (u, v) where the vector of chemical potentials vch = (v1, . . . , vm) fulfills the
property

(α − β) · ζ = (α − β) · vch = 0 ∀(α, β) ∈ RΩ
0 .

In other words, vch(t, x) ∈ S⊥
0 a.e. in R+ × Ω where

S0 := span{α − β : (α, β) ∈ RΩ
0 }.

S⊥
0 is a closed subset of R

m. We introduce M := dim S⊥
0 = m−dim S0. Then there

exist a permutation matrix Π, a set of indices {i1, . . . , iM} and a linear, injective

mapping L̃ : R
M → R

m with Im Π−1L̃ = S⊥
0 such that a.e.

Πvch = L̃ṽch where ṽch = (vi1, . . . , viM ), L̃ṽch = (ṽch, (L̃ṽch)M+1, . . . , (L̃ṽch)m).

By the closed range theorem, since the mapping L̃ is injective, and Im L̃ is closed, the
adjoint operator L̃∗ is surjective. Pointwise we have vch = Π−1L̃ṽch. The mapping
Π−1L̃ can be carried over to an operator on space functions Π−1L̃ : (H1)M → (H1)m.

Since Π is bijective and linear the operator Π−1L̃ is linear, injective and continuous.
Thus the complete transformation of the potentials , ṽ = (ṽ0, ṽch) to v = (v0, vch) is
prescribed by v = Lṽ where the operator

L :=


 1 0

0 Π−1L̃


 : H1

0 (Ω ∪ ΓN) × (H1)M → H1
0 (Ω ∪ ΓN) × (H1)m (19)

is linear, injective, continuous and Im L is closed. Again we obtain that the adjoint
operator L∗ : (H1

0(Ω ∪ ΓN))∗ × (H1)∗m → (H1
0 (Ω ∪ ΓN ))∗ × (H1)∗M is surjective.

Lemma 10.1 The operator L has the property

U⊥ ⊂ Im L.

Proof. Let v ∈ U⊥ be given arbitrarily. Then v = (0, ζ) + (1,−q)v0. Because of (4)

and v ∈ U⊥ we have q, ζ ∈ S⊥ ⊂ S⊥
0 = Im L̃ such that q = L̃q̃, ζ = L̃ζ̃. Therefore

v = L(v0, ζ̃ − q̃v0) ∈ Im L. �
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10.2 Example 2: Some fast boundary reactions

Next, we reduce the basic model under the assumption that the kinetic of a part
of the involved boundary reactions is very fast. Let RΓ

0 ⊂ RΓ be the subset of fast
boundary reactions. Then

kΓ
αβ → ∞ a.e. on Γ ∀(α, β) ∈ RΓ

0 .

Analogously we define

S0 := span{α − β : (α, β) ∈ RΓ
0}. (20)

By the same arguments as in the case of fast kinetics for volume reactions the limit
case of fast boundary reactions now leads to conditions for the traces of the vector
of chemical potentials

γ(vch) ∈ S⊥

0 .

Here γ denotes the trace operator. Again we define M := dimS⊥
0 . Let L′ : (H1)M →

(H1)m be the linear, continuous, injective operator, let {i1, . . . , iM} be the set of
indices and let Π be the permutation operator as derived in Subsection 10.1 which
would ensure that

Πvch = L′v′, v′ = (vi1 , . . . , viM ), vch ∈ S⊥

0 (a.e. on Ω)

for S0 defined in (20). Then we have γ(vch) ∈ S⊥
0 , too. We define the operator

L : H1
0 (Ω ∪ ΓN) × (H1)M × (H1

0 (Ω))m−M → H1
0(Ω ∪ ΓN) × (H1)m,

Lṽ =
(
ṽ0, Π

−1(L′v′ + (0, v′′))
)
, ṽ = (ṽ0, v

′, v′′).
(21)

By the properties of Π and L′ the operator L is linear and continuous.

Lemma 10.2 The operator L is injective.

Proof. Since L is linear it suffices to show that from Lṽ = 0 it follows ṽ = 0: Let
Lṽ = 0. Then (Lṽ)0 = ṽ0 = 0. Since Π is bijective we have L′v′ + (0, v′′) = 0.
Because of L′v′ = (v′, (L′v′)M+1, . . . , (L

′v′)m) we conclude that (L′v′)i = v′
i = 0,

i = 1, . . . , M . This implies L′v′ = 0 and thus v′′ = 0, which in summary gives ṽ = 0.
�

Lemma 10.3 Im L = {v ∈ X : γ(vch)(x) ∈ S⊥
0 a.e. on Γ}.

Proof. 1. Let v ∈ Im L. Then v = (ṽ0, Π
−1(L′v′ + (0, v′′))) = Lṽ where ṽ =

(ṽ0, v
′, v′′) ∈ H1

0 (Ω ∪ ΓN ) × (H1)M × (H1
0 (Ω))m−M . Thus v ∈ X. Since v′′ ∈

(H1
0 (Ω))m−M we have γ(Π−1(0, v′′)) = 0. And therefore by the construction of the

operators Π and L′ it follows γ(vch) = γ(Π−1L′v′) ∈ S⊥
0 a.e. on Γ.
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2. Let be v ∈ X with γ(vch) ∈ S⊥
0 . We set ṽ = (ṽ0, v

′, v′′) with ṽ0 = v0, v′ =
(vi1 , . . . , viM ) and

v′′

j = (L′(vi1 , . . . , viM ))j+M − (Πvch)j+M , j = 1, . . . , m − M,

and obtain that v = Lṽ. �

Thus by Lemma 10.3 Im L is closed and the operator L∗ : H1
0 (Ω∪ΓN )∗×((H1)∗)m →

H1
0 (Ω ∪ ΓN)∗ × ((H1)∗)M × (H1

0 (Ω)∗)m−M is surjective.

Lemma 10.4 The operator L has the property

U⊥ ⊂ Im L.

Proof. Let v ∈ U⊥ be given arbitrarily. Then v = (0, ζ) + (1,−q)v0 ∈ X, where
ζ ∈ S⊥ is constant. By Lemma 10.3 we have to show that v ∈ {v ∈ X : γ(vch)(x) ∈
S⊥

0 a.e. on Γ} = Im L. First, since ζ = const and ζ ∈ S⊥ ⊂ S⊥
0 we find that

γ(ζ) = ζ ∈ S⊥
0 . Second, by (4) q ∈ S⊥ ⊂ S⊥

0 and it results γ(qv0) = qγ(v0) ∈ S⊥
0

a.e. on Γ. Therefore we obtain γ(ζ − qv0) = γ(vch) ∈ S⊥
0 and v ∈ X which together

means that v ∈ Im L. �

10.3 Example 3: Fast diffusion of some species

Without loss of generality we now assume that for the last m − k species

Di → ∞, i = k + 1, . . . , m,

(otherwise additionally permutation matrices must be used). To guarantee that
the flux terms in the last m − k continuity equations remain bounded a.e. in Ω
we have to require that ∇ζi = 0 which means vi + qiv0 = ζi = const a.e. in Ω,
i = k + 1, . . . , m. Thus the chemical potentials vi may be expressed by ζi − qiv0 for
i = k + 1, . . . , m. We define the operator

L : H1
0 (Ω ∪ ΓN) × (H1)k × R

m−k → H1
0 (Ω ∪ ΓN) × (H1)m,

Lṽ := (v0, v1, . . . , vk, ζk+1 − qk+1v0, . . . , ζm − qmv0),
(22)

where ṽ = (ṽ0, . . . ṽm) = (v0, . . . , vk, ζk+1, . . . , ζm). We get v = Lṽ with a linear,
continuous, injective operator L. Im L = H1

0 (Ω∪ΓN)×(H1)k×(H1
0 (Ω∪ΓN )+R)m−k

is closed in X. Again the adjoint operator L∗ : (H1
0 (Ω∪ΓN))∗ × (H1)∗m → (H1

0 (Ω∪
ΓN ))∗ × (H1)∗k × R

m−k is surjective and the relation

U⊥ ⊂ Im L

is satisfied. For the last assertion we argue as follows. Let v ∈ U⊥ be given ar-
bitrarily. Then ζi = vi + qiv0 is constant for i = 1, . . . , m and we obtain that
v = L(v0, . . . , vk, ζk+1, . . . , ζm) ∈ Im L.
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10.4 Example 4: Fast diffusion of some species and fast re-
actions between these species

An example for such a reduction is the elimination of electrons and holes from
electro–reaction–diffusion systems prescribing problems from semiconductor tech-
nology by the assumptions that the diffusion of the electrons and holes as well as
the generation/recombination of electrons and holes is very fast (Dn, Dp → ∞,
k → ∞ in k(eζn+ζp − 1) ). These assumptions are very common in the modeling of
dopant diffusion in semiconductor technology (see e.g. [14]). In [10, 11] we carried
out this special reduction and investigated the concrete arising problem.

Without loss of generality we now assume that for the last m − k species

Di → ∞, i = k + 1, . . . , m

(otherwise again permutation matrices have to be used). Moreover we suppose

kαβ → ∞ ∀(α, β) ∈ R⋄ :=
{
(α, β) ∈ RΩ ∪RΓ : αi = βi = 0, i = 1, . . . , k

}
.

To guarantee that the flux terms in the last m − k continuity equations remain
bounded a.e. in Ω we have to require that ∇ζi = 0 which means vi + qiv0 = ζi =
const a.e. in Ω, i = k+1, . . . , m. Thus the chemical potentials vi may be expressed
by ζi−qiv0 for i = k+1, . . . , m. Moreover to keep the reaction terms for all reactions
from R⋄ bounded it is necessary that ζ · α = ζ · β for all (α, β) ∈ R⋄. If we define

S⋄ := span
{
(αk+1 − βk+1, . . . , αm − βm) : (α, β) ∈ R⋄

}
⊂ R

m−k

then the relation (ζk+1, . . . , ζm) ∈ S⋄
⊥ ⊂ R

m−k must be satisfied. Let K :=
dim S⋄

⊥ = m−k− dim S⋄. Then there exists a linear, injective mapping L⋄ : R
K →

R
m−k and ζ⋄ ∈ R

K such that

(ζk+1, . . . , ζm) = L⋄ζ
⋄,

Im L⋄ = S⋄
⊥ is closed and L∗

⋄ is surjective. Let M := k+K. We define the operator

L : H1
0 (Ω ∪ ΓN) × (H1)k × R

K → H1
0 (Ω ∪ ΓN ) × (H1)m,

Lṽ := (v0, v1, . . . , vk, (L⋄ζ
⋄)1 − qk+1v0, . . . , (L⋄ζ

⋄)m−k − qmv0),
(23)

where ṽ = (ṽ0, . . . , ṽM) = (v0, . . . , vk, ζ
⋄
1 , . . . , ζ

⋄
K). We thus obtain v = Lṽ with a

linear, continuous, injective operator L with closed range. For the injectivity one
argues as follows: From Lṽ = 0 we obtain v0 = · · · = vk = 0, L⋄ζ

⋄ = 0. Since L⋄ is
injective we find ζ⋄ = 0.

Again the operator L∗ : (H1
0 (Ω ∪ ΓN))∗ × (H1)∗m → (H1

0 (Ω ∪ ΓN))∗ × (H1)∗k × R
K

is surjective.
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Lemma 10.5 The operator L has the property

U⊥ ⊂ Im L.

Proof. Let v ∈ U⊥ be given arbitrarily. Then ζi = vi + qiv0 is constant and ζ ∈ S⊥.
Therefore ζ⊥(α − β) for all (α, β) ∈ R⋄ which induces that the shorted vector

(ζk+1, . . . , ζm) ∈ S⋄
⊥ = Im L⋄.

Thus there exists an ζ⋄ ∈ R
K such that (ζk+1, . . . , ζm) = L⋄ζ

⋄. Now, for ṽ =
(ṽ0, . . . , ṽM) with ṽi = vi, i = 0, . . . , k, and ṽk+i = ζ⋄

i , i = 1, . . . , K, we have
v = Lṽ ∈ Im L. �

Remark 10.1 In [12, 13] we considered pair diffusion models from semiconductor
technology. These model equations can be obtained by a reduction from systems of
type (1) by a suitable operator L with properties (5). Also in [8] such a reduced model
is investigated. But, in the three cited papers we did the required energy estimates for
the reduced models by hand and did not use the principle introduced in the present
paper in Section 6 – Section 8 to carry over the results concerning energy estimates
for the basic system to the reduced one.
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[6] H. Gajewski and K. Gröger, Initial boundary value problems modelling heteroge-
neous semiconductor devices, Surveys on analysis, geometry and mathematical
physics (B.-W. Schulze and H. Triebel, eds.), Teubner-Texte zur Mathematik,
vol. 117, Teubner, Leipzig, 1990, pp. 4–53.

[7] K. Ghaderi and G. Hobler, Simulation of phosphorus diffusion in silicon using
a pair diffusion model with a reduced number of parameters, J. Electrochem.
Soc. 142 (1995), 1654–1658.

[8] A. Glitzky, Electro-reaction-diffusion systems with nonlocal constraints, Math.
Nachr. 277 (2004), 14–46.
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