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Abstract

We consider the isothermal Euler equations with phase transition between a liquid and

a vapor phase. The mass transfer is modeled by a kinetic relation. We prove existence and

uniqueness results. Further, we construct the exact solution for Riemann problems. We

derive analogous results for the cases of initially one phase with resulting condensation by

compression or evaporation by expansion. Further we present numerical results for these

cases. We compare the results to similar problems without phase transition.

1 Introduction

We study compressible multi phase flows without and with phase transitions relying on the
isothermal Euler equations with a non-monotone pressure-density function. Our main objective
is a detailed discussion of a thermodynamically based kinetic relation that controls the mass
transfer across a sharp interface between two coexisting phases. The derivation of the kinetic
relation is based on thermodynamics, especially on classical Hertz-Knudsen theory, see Bond
and Struchtrup [4]. To this end we study Riemann problems and show for various classes of
initial data the existence and uniqueness of solutions. We consider single phase initial data
describing condensation by compression or evaporation by expansion, as well as initial data
describing two differing adjacent phases. The case of multi phase flows without phase transition
mainly serves as illustration and as comparison with other treatments of the same subject in the
literature.

Phase transitions can be treated either by sharp interface models or by models that describe
the interface between two adjacent phases by a smooth transition within the setting of phase
field models. Sharp interface models are physically better founded while phase field models may
have numerical advantages. The available sharp interface models are surveyed in Zein [23].

The phase field model of Euler-Korteweg type by Dreyer et al. [9] establishes a sharp interface
limit that produces our kinetic relation, whereupon the mass flux across the interface is pro-
portional to the jump of the Gibbs free energy. A similar study of the same model by Benzoni-
Gavage et al. [3] ends up with a kinetic relation describing local equilibrium at the interface, i.e.
the Gibbs free energy is continuous.

The seminal paper by Abeyaratne and Knowles [1] considers a solid-solid phase transition and
describes the Riemann problem of the corresponding Euler system in Lagrangian coordinates.
For this reason the nonlinearities appearing there are different from the current study. The kinetic
relation in [1] relies on the same driving force as we use here. However, Abeyaratne and Knowles
relate the mass flux to the jump of the Gibbs free energy in a nonlinear manner.
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A very interesting review on the Riemann problem for a large class of thermodynamic consis-
tent constitutive models in the setting of Euler equation models by Menikoff and Plohr [14] is
restricted to a simple kinetic relation that results from the assumption of local equilibrium at the
interface. For isothermal processes local interfacial equilibrium is guaranteed by the continuity
of the Gibbs free energy.

Merkle [15] also considered the Riemann problem for the isothermal Euler system. Differences
to the current work are: He used the van der Waals equation to model the non-monotone
pressure-density dependence. We observed that it is better to model the pressure-density func-
tion by pieces of by three linear functions. This leads to a closer agreement with measured data,
e.g. for a substance like water. The kinetic relation introduced by Merkle does arise from ther-
modynamic motivations. But there are initial data for which it must be supplemented by further
assumptions in order to pick up a unique solution. Furthermore the structure of the solutions is
essentially different from those that we obtain here. Our solutions consist exclusively of three
types of elementary waves, namely classical shocks, rarefaction waves and phase transitions,
that separate a certain number of constant states. Merkle needs composite waves to construct
the solution.

The isothermal Euler system was also studied by Müller and Voss [18], [21]. They modeled the
fluid by a van der Waals equation, however, instead of a kinetic relation they exclusively applied
the Liu entropy condition in order to establish uniqueness. Consequently Müller and Voss also
need composite waves.

There are also studies of the same subject that use the Euler equations in a different man-
ner than they are used here. Despite the fact that in those studies the nonisothermal case is
considered, the main difference to our study concerns the application of a full Euler system to
each phase everywhere in space.Thus the number of balance equations is doubled. Addition-
ally there is an equation determining the local phase fraction. The basic paper is that of Baer
and Nunziatio [2]. However, it is restricted to 2-phase flows without phase transition. The main
aim of those models is to study phase mixtures such as e.g. bubbly flows or sprays. Zein et al.
[24] started from this approach and added the continuity of the Gibbs free energy across the
interface in order to allow for a phase transition.

For basics on conservation laws see the books of Toro [20], Lax [12], LeVeque [13], Smoller
[19], Kröner [11], Dafermos [5] and others. For thermodynamics see for instance Müller and
Müller [16] as well as Müller [17].

Next we describe the main results of the current study. Our kinetic relation can be obtained in
two different ways. It follows in the sharp interface limit that starts with the isothermal Navier-
Stokes-Korteweg model and ends up with the corresponding isothermal Euler equations, see
Dreyer et al. [9]. In this case the kinetic relation gives the mass flux across the interface as a
linear function of the jump of the Gibbs free energy and it is proportional to the Navier-Stokes
viscosities. A more physical derivation of the kinetic relation can be given in the setting of the
Hertz-Knudsen theory, its non-isothermal version is described in Bond and Struchtrup [4]. Here
the only difference between the two derivations is the factor of proportionality that is related to
the sound velocity at the gas side of the interface.

As a main consequence of this kinetic equation is the absence of composite waves in the so-

2



lution to Riemann problems. If we consider a Riemann problem where the left and right state
correspond to two different phases, our kinetic relation implies a solution that exclusively con-
sists of two classical waves and a phase transition in between. This construction is unique and
generates classes of initial data, for which existence of solutions is guaranteed.

If we consider a Riemann problem where the left a right state correspond to the same phase,
two cases may occur. Either the two states can be connected by only classical waves or if this
is not possible, nucleation of a the other phase is enforced by the kinetic relation. Also here we
prove existence and uniqueness.

The paper is organized as follows. In Section 2 we introduce the system of balances in the
bulk and across the interface. Details of the equations of state are given in Section 3, whereas
the entropy inequality is discussed in the following section. In Section 5 we obtain mathemati-
cal properties of the system considered. Moreover we discuss rarefactions and shocks for the
isothermal case. The main part of this section is Subsection 5.3. Here we introduce the kinetic
relation and prove a uniqueness result for the pressures at the phase interface. Moreover, we
derive monotonicity results for interface quantities. Based on these results we construct the ex-
act solution for the isothermal Euler euqations with phase transition, presented in Subsection
6.2. We prove uniqueness results within the class of Riemann problems as well as sufficient
conditions for solvability. In Section 7 we discuss the cases of condensation by compression
as well as evaporation by expansion. As before we prove several existence and uniqueness re-
sults. Also we present the exact solution for the Riemann problems considered. Finally we give
numerical examples for all cases considered. These are presented in Section 8.

2 Isothermal Euler equations

In our study we consider inviscid fluids under the isothermality assumption. This means, that
the temperature T0 is fixed. The phases are indicated by the value of mass density ρ and we
have the velocity v as a variable. The physical fields are assumed to depend on time t ∈ R≥0

and space x ∈ R. In regular points of the bulk phases we have the local mass conservation law
(1) and the balance law for momentum (2). These are

∂ρ

∂t
+
∂(ρv)

∂x
= 0 (1)

∂(ρv)

∂t
+
∂(ρv2 + p)

∂x
= 0 . (2)

In the momentum balance equation (2) there is a further quantity, pressure p. It is not among
the basic variables and is therefore called a constitutive quantity. This quantity is related to the
variable ρ in a material dependent manner by an equation of state. This will be given in Section
3. The system (1-2) is called system of isothermal Euler equations.

Across any discontinuity we have the jump conditions

Jρ(v −W )K = 0 (3)

ρ(v −W )JvK + JpK = 0 . (4)
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Here we use the jump brackets JΨK = Ψ′′ − Ψ′ for any physical quantity Ψ, where ′ and
′′ denote the one sided limits to the left left and right of the discontinuity, respectively, on the
horizontal x-axis. Further,W denotes the propagation speed of the discontinuity. The mass flux
Z across the discontinuity is given by

Z = −ρ(v −W ) (5)

with

Z =

{

Q shock wave
z phase boundary

and W =

{

S shock wave
w phase boundary

. (6)

For more details on interface relations see Dreyer [7, Sections 5-14] and Müller [17, Section
2.2.2, Chapter 3].

3 Equations of state

The pressure is related to the density by the equation of state

p = p(ρ) with p′(ρ) = a2 = const , (7)

where a denotes the speed of sound.

In particular, for the vapor phase V we use the ideal gas law

pV = ρV
kT0
m

(8)

for given temperature T0. Here k denotes the Boltzmann constant andm is the mass of a single
water molecule.

The liquid phase L is modeled as a compressible fluid whose pressure is related to the liquid
density by

pL = p0 +K0

(

ρL
ρ0

− 1

)

, (9)

where the pressure p0 and the density ρ0 denote arbitrary reference values. The constant K0

is the modulus of compression, which is temperature dependent. For convenience we choose
p0, ρ0, K0 at the saturation state, tabled in [22]. The data can also be found in [10].

In order to characterize the two phases we introduce two constant parameters, that will be
properly defined later on. Within a range 0 ≤ ρV ≤ ρ̃ the fluid is assumed to be in the vapor
state. For ρL ≥ ρm the liquid phase is present. Between the pure phases there are intermediate
states, whose pressure is defined by a linear function of negative slope. For more details see
Section 5.3.

According to the second law of thermodynamics the pressure is the derivative of the Helmholtz
free energy with respect to 1/ρ

p = − ∂ψ

∂1/ρ
.
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p

ρ~ ρ
m ρ

Figure 1: Equation of state: p(ρ)

The Gibbs free energy is defined by

g = ψ +
p

ρ
.

This quantity occurs in the entropy inequality for isothermal processes

ZJg +
1

2
(v −W )2K ≤ 0 . (10)

For details see Dafermos [5], Merkle [15], Müller and Voss [18].

4 Riemann problem

In our study we consider the Riemann problem for the isothermal Euler equations. This is given
by the balances (1-2), the equation of state (7) and the corresponding Riemann initial data

ρ(x, 0) =

{

ρ− for x < 0
ρ+ for x > 0

and v(x, 0) =

{

v− for x < 0
v+ for x > 0 .

(11)

We denote the solution to the Riemann problem by W. The solution consists of constant states
W = const, that are separated by waves or phase boundaries. We will denote neighboring
states by ′ and ′′, as done in Section 2. The Riemann problem is solved by self-similar solutions
of type W(t, x) = Ŵ(x/t).

5 Generic solution

In order to give the mathematical properties of the Euler system (1-2), we rewrite the system in
quasilinear form in terms of ρ and v

(

ρ
v

)

t

+

(

v ρ
a2

ρ
v

)(

ρ
v

)

x

=

(

0
0

)

.

The Jacobian matrix is

A =

(

v ρ
a2

ρ
v

)
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with the eigenvalues
λ1 = v − a and λ2 = v + a

as well as the corresponding right eigenvectors

r1 =

(

ρ
−a

)

and r2 =

(

ρ
a

)

.

The system is strictly hyperbolic. Finally we give the Riemann invariants

I1 = v + a ln ρ = const and I2 = v − a ln ρ = const (12)

across the left and right wave, respectively.

5.1 Rarefaction wave fans

Assume, the wave corresponding to λ1 is a (left) 1-rarefaction, then we use the Riemann invari-
ant given in (12)1 to obtain

v′ + a ln ρ′ = v′′ + a ln ρ′′ . (13)

For a left rarefaction the head speed is given by v′−a whereas the tail speed is given by v′′−a.
The slope inside the rarefaction fan is given by

dx

dt
=
x

t
= v − a .

Using (13) we obtain, that the solution W inside the fan is given by

W1fan =

{

v = a+ x
t

ρ = exp
(

v′−v
a

+ ln ρ′
) (14)

On the other hand, using (12)2 for a (right) 2-rarefaction we get

v′ − a ln ρ′ = v′′ − a ln ρ′′ . (15)

Analogously to the above calculations for a 2-rarefaction wave we have the head speed v′′ + a
and the tail speed v′ + a. The solution inside the fan is then given by

W2fan =

{

v = −a+ x
t

ρ = exp
(

v−v′′

a
+ ln ρ′′

)

.
(16)

5.2 Shocks

5.2.1 Entropy inequality across a shock wave

In this section we want to prove, that the Lax condition is equivalent to the entropy condition for
the systemconsidered. We take the case, where the states

(

ρ′

v′

)

and

(

ρ′′

v′′

)
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are separated by a shock wave, that propagates with speed S. W.l.o.g. we assume, that v′ = 0.
This assumption is used to simplify the following calculations and is only used in Section 5.2.1.
Due to v′ = 0 we have v′′ < 0. Then from the Rankine-Hugeniot conditions we obtain for S

S = − ρ′′v′′

ρ′ − ρ′′
(17)

and S =
−ρ′′v′′2 + a2(ρ′ − ρ′′)

−ρ′′v′′ .

This gives

v′′2 = a2
(ρ′ − ρ′′)2

ρ′ρ′′
. (18)

Further, the entropy inequality is given by

ρ′S

(

a2 ln
ρ′

ρ′′
+

1

2
S2 − 1

2
(v′′ − S)2

)

≤ 0 .

For the second factor we obtain using (12) twice, then (17) and (18)

a2 ln
ρ′

ρ′′
+

1

2
S2 − 1

2
(v′′ − S)2 = a2 ln

ρ′

ρ′′
+
Q2

2

(

1

ρ′2
− 1

ρ′′2

)

= a2 ln
ρ′

ρ′′
+
ρ′2S2

2

(

1

ρ′2
− 1

ρ′′2

)

= a2 ln
ρ′

ρ′′
+

ρ′2ρ′′2v′′2

2(ρ′ − ρ′′)2

(

1

ρ′2
− 1

ρ′′2

)

= a2 ln
ρ′

ρ′′
+ a2

ρ′ρ′′

2

(

1

ρ′2
− 1

ρ′′2

)

= a2
(

ln
ρ′

ρ′′
+
ρ′ρ′′

2

(

1

ρ′2
− 1

ρ′′2

)) = 0 , ρ′ = ρ′′

> 0 , ρ′ < ρ′′

< 0 , ρ′ > ρ′′

For the case ρ′ < ρ′′ we have from (18) S < 0, whereas for the second case ρ′ > ρ′′ this
leads to S > 0. In the first case we thus have from (17) and (18) that

S =
ρ′′

ρ′′ − ρ′
v′′ > v′′ and S = −a ρ′′√

ρ′ρ′′
< −a .

This implies the Lax condition a > −a > S > v′′ − a, which in general notation is given by

v′ + a > v′ − a > S > v′′ − a ,

see Lax [12]. Obviously in that case we have a left or 1-shock. Similarly in the second case we
have a right or 2-shock and we obtain the corresponding Lax condition

v′ + a > S > v′′ + a > v′′ − a .

In summary, for the isothermal Euler equations the entropy condition and the Lax condition are
equivalent. For this special system this is a more general result than that given in Dafermos [5].
Based on the explicit constitutive functions used here this statement is true for arbitrarily strong
shocks.
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5.2.2 Shock relations

Let us assume that the left wave is a shock wave, propagating with speed S1. As done in Toro
[20] we define relative velocities

v̂′ = v′ − S1 and v̂′′ = v′′ − S1 . (19)

We obtain the corresponding Rankine-Hugeniot conditions

ρ′v̂′ = ρ′′v̂′′ (20)

ρ′v̂′2 + p′ = ρ′′v̂′′2 + p′′ . (21)

For the mass flux Q1 we have

−Q1 = ρ′(v′ − S1) = ρ′′(v′′ − S1) = ρ′v̂′ = ρ′′v̂′′ . (22)

We substitute Q1 into (21) to obtain

−Q1v̂
′ + a2ρ′ = −Q1v̂

′′ + a2ρ′′ .

Solving for −Q1 and using the entropy condition discussed above this leads to

−Q1 = −a
2(ρ′′ − ρ′)

v̂′′ − v̂′
= −a

2(ρ′′ − ρ′)

v′′ − v′
> 0 , (23)

which gives us

v′′ = v′ +
a2(ρ′′ − ρ′)

Q1

. (24)

On the other hand using (22) to substitute v̂′ and v̂′′ in (23) we derive the relation

−Q1 = −a
2(ρ′′ − ρ′)

−Q1

ρ′′
+ Q1

ρ′

(25)

and get
Q2

1 = a2ρ′ρ′′ . (26)

In combination with (24) and Q1 < 0 this gives us across a left shock

v′′ = v′ − a2(ρ′′ − ρ′)
√

a2ρ′ρ′′
.

Finally, from (22) and (26) we obtain the speed of a left shock

S1 = v′ +
Q1

ρ′
= v′ −

√

a2ρ′ρ′′

ρ′
.

For a right shock the calculations are very similar. We obtain Q2 > 0 and

v′′ = v′ +
a2(ρ′′ − ρ′)
√

a2ρ′ρ′′
.
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as well as

S2 = v′ +
Q2

ρ′
= v′ +

√

a2ρ′ρ′′

ρ′
.

In general terms the result is given by

v′′ = v′ − a2|ρ′′ − ρ′|
√

a2ρ′ρ′′
and S = v′ +

Q

ρ′
. (27)

Remark 1. Note that our notation is similar to, but slightly different from the notation in the book
of Toro [20]. 2

5.3 Phase transition

5.3.1 Definition of the phases

In case, that the discontinuity represents a boundary between two phases we always have

ρV < ρL . (28)

Furthermore, from the mass and momentum balances (3-4) across the phase boundary togeth-
er with (5) and (6) we obtain

z2 = − p′ − p′′

1
ρ′
− 1

ρ′′

.

With the above relation for the densities (28) we conclude

pL ≥ pV and with pV ≥ 0 we have pL ≥ 0 . (29)

The second statement is due to the fact that we ignore surface tension. We define, see (9),

ρm =
ρ0
K0

(K0 − p0) , (30)

which gives pL(ρm) = 0. Corresponding to ρm we have to find ρ̃. This value is uniquely defined
by the equation of state (7), equation (30) and the Maxwell condition

∫ 1
ρV (p0)

1
ρ0

p(ρ) d
1

ρ
=

(

1

ρV (p0)
− 1

ρ0

)

· p0 .

After some calculations we obtain

K0

ρ0
ln
ρ0
ρm

+
kT0
m

ln
ρm

ρV (p0)
− ρm
ρm − ρ̃

kT0
m

ln
ρm
ρ̃

= 0 . (31)

This relation defines ρ̃ uniquely for sufficiently low temperatures T ≤ 633.15K . For higher
temperatures the definition of ρm gives a negative value. The critical temperature Tc for water is
given by Tc = 647.096K . For T0 = 573.15K we obtain ρ̃ = 36.515kg/m3, see Figure 2. The
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Figure 2: Equation of state: p(1/ρ) for T0 = 573.15K , dashed red: Maxwell line

corresponding reference values are given by p0 = 18.6664MPa, ρ0 = 1/0.00189451kg/m3

and K0 = 1/36.627 · 109Pa.

Furthermore we give the curves ρm(T ) and ρ̃(T ), see Figure 3a and the quotient ρ̃(T )/ρm(T ),
see Figure 3b. Obviously one has

ρ̃(T )/ρm(T ) < 1/4 (32)

for all temperatures 273.15K ≤ T0 ≤ 623.15K .

300 400 500 600
0

500

1000

T in K

ρ 
in

 k
g 

/ m
3

300 400 500 600
0

0.05

0.1

0.15

0.2

T in K

Figure 3: a) dashed red: ρ̃(T ), black: ρm(T ) b) ρ̃(T )/ρm(T )

Remark 2. In our notation all temperature dependent constants have index 0. If we choose T0
we have to use corresponding reference values ρ0, p0, K0. 2

Remark 3. Most estimations in this paper are based on the data tabled in [22]. Accordingly for
all temperatures usually means the finite number of discrete temperature values tabled in [22].
For the not tabled intermediate temperatures we have: If for monotonic temperature changes
the temperature dependent constants change monotonically, the estimations are also valid for
the intermediate temperatures. 2

5.3.2 A simple kinetic relation to describe phase transitions

Besides the balances for mass (3) and momentum (4) at the phase boundary we need a further
equation, that is called kinetic relation. This equation describes the rate of change of mass
across the interface. We choose

z =
pV√
2π

Jg + ekinK , (33)
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where V denotes the vapor phase. For details of the derivation see Dreyer et a. [8]. If the vapor
phase is to the left of the liquid phase, this results in

z =
pV√
2π

(

m

kT0

)
3
2
[

K0

ρ0
ln
ρL
ρ0

− kT0
m

ln
pV
p0

+
1

2
(vL − w)2 − 1

2
(vV − w)2

]

. (34)

Here V and L denote the vapor and the liquid phase, respectievely. Equation (35) gives the
kinetic relation for the case, that the vapor phase is to the right

−z = pV√
2π

(

m

kT0

)
3
2
[

K0

ρ0
ln
ρL
ρ0

− kT0
m

ln
pV
p0

+
1

2
(vL − w)2 − 1

2
(vV − w)2

]

. (35)

For the moment we restrict ourselves to the case, that the vapor phase is on the left side.
Therefore in this section we identify ′ (left state) with the vapor and ′′ (right state) with the liquid
phase.

If condensation and evaporation are excluded, we replace (33) by the new kinetic relation

z = 0 . (36)

This implies that vV = vL at the phase boundary, see (5) and (6).

5.3.3 Uniqueness of pL for given pV

If pV is given, we have to determine 4 unknowns, namely pL, vL, vV and z. At the interface
we have 4 conditions: two mass flux conditions (5), the interface momentum balance (4) and
furthermore the kinetic relation (34). Our goal is to determine an equation for pL. The interface
momentum balance can be written as

JpK = −z2J1
ρ
K . (37)

Because ρL > ρV we have
pL = pV ⇔ z = 0 .

This is the equilibrium case pL = pV = p0. Otherwise we have pV < pL .

In the following lemma we will make the assumption

−aV ρV ≤ z ≤ aLρL . (38)

It simplifies the calculations and later it turns out to be automatically satisfied due to physical
considerations, see Remark 6.

Lemma 1. Consider the isothermal case with 273.15K ≤ T0 ≤ 623.15K . Then for giv-
en interface pressure pV of the vapor phase with 0 ≤ pV ≤ p̃, the conditions (38) and the
corresponding equations of state (8), (9) define the liquid interface pressure pL, uniquely. Fur-
thermore by these relations the mass flux z is uniquely defined.
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Proof. We replace z in (37) by the kinetic relation (34) and get

JpK +

(

m

kT0

)3
p2V
2π

[

K0

ρ0
ln
ρL
ρ0

− kT0
m

ln
pV
p0

− 1

2
JpK

(

1

ρL
+

1

ρV

)]2

J
1

ρ
K = 0 . (39)

Next we define the functions

h(pV , pL) =

(

m

kT0

)3/2
1√
2π

[

K0

ρ0
ln
ρL
ρ0

− kT0
m

ln
pV
p0

− 1

2
JpK

(

1

ρL
+

1

ρV

)]

(40)

and

f(pV , pL) = JpK + h2(pV , pL)p
2
V J

1

ρ
K

for pV ≥ 0 and pL ≥ pV . The roots of the latter function are the solutions of (39).

1 Let us consider, pV = p0, i.e. the saturation pressure. Then for pL = p0 we have
f(p0, pL) = 0. So (p0, p0) is a solution of (39). It obviously satisfies (38) with z = 0.

2 We note, that
∂f

∂pV
(p0, p0) = −1 and

∂f

∂pL
(p0, p0) = 1 .

Accordingly in a neighborhood of pV = p0 relation (39) implicitely defines a function
pL(pV ) with p′L(pV ) > 0. This means, in a neighborhood of pV = p0 relation (39) has a
solution, that satisfies the inequalities (38).

3 By our assumption we consider a temperature regime, where in (9) we have

pL = p0 +K0
ρL
ρ0

−K0 < p0 +K0
ρL
ρ0

− (p0 − pV ) .

Therefore

1− pL − pV
K0

ρ0
ρL

> 0

and we conclude that

∂h

∂pL
(pV , pL) =

(

m

kT0

)3/2
1√
2π

[

1

2

(

1

ρL
− 1

ρV

)

+
1

2

pL − pV
K0

ρ0
ρL

1

ρL

]

< 0 .

For any fixed pV the function h(pV , pL) is strictly decreasing in pL. Due to pL ≥ pV it
attains its maximum at pL = pV .

4 Next we calculate

∂f

∂pL
(pV , pL) = 1− p2V · h2(pV , pL)

1

ρ2L

ρ0
K0

+ p2V h(pV , pL)
∂h

∂pL
(pV , pL)J

1

ρ
K

, .

Let us consider any p∗V , p
∗
L such that f(p∗V , p

∗
L) = 0 and (38) is satisfied. Let us further

consider that z > 0. Then we obtain

∂f

∂pL
(p∗V , p

∗
L) > 1− K0

ρ0

ρ0
K0

= 0 .

12



On the other hand, if z < 0 then

∂f

∂pL
(p∗V , p

∗
L) > 1− ρ∗2V

ρ∗2L

a2V
a2L

−
(

m

kT0

)3/2
p∗V√
2π
ρV aV

1

ρ∗2V
> 0 .

So p∗L is a simple root of f(p∗V , ·) with ∂f
∂pL

(p∗V , p
∗
L) > 0.

5 Because of f(p∗V , ·) → −∞ for pL → ∞ it is clear, that f has a further root p∗∗L > p∗L
with ∂f

∂pL
(p∗V , p

∗∗
L ) ≤ 0. Accordingly (p∗V , p

∗∗
L ) does not satisfy the inequality (38), see

step 4. Moreover, by monotonicity of h there is no further root pL > p∗L, that satisfies
(38), see step 3.

By the same arguments as before there is no further root pL < p∗L.

6 We have seen that in a neighborhood of pV = p0 for every fixed p∗V there exists a unique
p∗L such that f(p∗V , p

∗
L) = 0 and (38) are satisfied. Next we want to show that this is true

for every 0 ≤ pV < p0.

Assume, there exists a pV < p0 such that there is no solution pL with f(pV , pL) = 0.
Then by the previous results we conclude that there exist p∗V , p

∗
L with pV < p∗V < p0

such that f(p∗V , p
∗
L) = 0 and ∂f

∂pL
(p∗V , p

∗
L) = 0. Accordingly the solution (p∗V , p

∗
L) does

not satisfy the right hand side of inequalities (38). For (p∗V , p
∗
L) we estimate

z(p∗V , p
∗
L) < p∗V h(p

∗
V , p

∗
V ) < −

(

m

kT0

)(3/2)
p∗V√
2π

kT0
m

ln
p∗V
p0

= − aV√
2π
ρ∗V ln

p∗V
p0
.

The expression − aV√
2π
ρ∗V ln

p∗
V

p0
attains its maximum at p̂V = p0 exp(−1). Accordingly

we get

− aV√
2π
ρ∗V ln

p∗V
p0

≤ aV√
2π
ρ̂V < aLρL .

This contradicts the above statement that (p∗V , p
∗
L) does not satisfy the right hand side

of inequalities (38). We conclude, that for every fixed 0 < p∗V < p0 there exists a unique
p∗L, such that f(p∗V , p

∗
L) = 0 and (38) are satisfied.

7 Taking p∗V = p̃ one can easily check, that the root (p̃, pL(p̃)) satisfies (38). Accordingly
by an argumentation analogously to step 6 this is true for every p∗V with p0 ≤ p∗V < p̃.
Now the first statement of Lemma 1 is proven for all 0 ≤ p∗V < p̃.

Applying this solution to the kinetic relation (34) we obtain the mass flux z across the interface.
2

Remark 4. For shorter and more clear notation we will often use instead of ρL the quantity
(

pL−p0
K0

+ 1
)

ρ0 given by the equation of state (9). This fact one should keep in mind when

calculating partial derivatives ∂/∂pL. 2

Corollary 1. For every temperature 273.15K ≤ T0 ≤ 623.15K and given p∗V the first root of
f(p∗V , ·) satisfies (38).

13



Proof. It is obvious, that for pV = pL > p0 the function h is negative whereas for pV = pL <
p0 the function h is positive. Accordingly in the latter case we have

pV · h(pV , pL) < −
(

m

kT0

)3/2
pV√
2π

kT0
m

ln
pV
p0

≤ p0 exp(−1)

aV
√
2π

< aLρL . (41)

This proves the statement, that the right hand side of (38) is always satisfied.

For the left hand side of (38) this statement is clear by step 7 of the proof of Lemma 1. 2

5.3.4 Monotonicity of p∗L(p
∗
V )

Lemma 2. By (39) the implicitely defined function p∗L(p
∗
V ) is strictly increasing. Here p∗L denotes

the uniquely defined root of (39) for given p∗V .

Proof. By the implicit function theorem we know that

p∗
′

L (p∗V ) = − ∂f

∂pV
(p∗V , p

∗
L)

/

∂f

∂pL
(p∗V , p

∗
L) .

From the last subsection we know that ∂f
∂pL

(p∗V , p
∗
L) > 0. So we only have to show, that

∂f

∂pV
(p∗V , p

∗
L) < 0 .

We calculate

∂f

∂pV
(p∗V , p

∗
L) = −1 + p∗V · h2(p∗V , p∗L)

(

2

ρ∗L
− 1

ρ∗V

)

+ p2V · h(p∗V , p∗L)
∂h

∂pV
(p∗V , p

∗
L)J

1

ρ∗
K .

Let us assume that z < 0. Then

∂h

∂pV
(p∗V , p

∗
L) =

(

m

kT0

)3/2
1√
8π

(

J
1

ρ∗
K +

Jp∗K

ρ∗V p
∗
V

)

=

(

m

kT0

)3/2
1√
8π

(

1− z2

p∗V ρ
∗
V

)

J
1

ρ∗
K < 0

and consequently ∂f
∂pV

(p∗V , p
∗
L) < 0. If z > 0 and z ≤ ρ∗V aV then

∂f

∂pV
(p∗V , p

∗
L) < −1 +

(

m

kT0

)3/2
p∗V√
2π
ρ∗V

(

kT0
m

)1/2
1

ρ∗2V
< 0 .

Finally, for z > 0 and z > ρ∗V aV the above statement is obvious. 2

Corollary 2. During a condensation process both pressures are larger than the saturation pres-
sure

p0 < pV < pL

whereas during an evaporation process we have

pV < pL < p0 .

This is a direct consequence of the last lemma and the fact pL(p0) = p0.
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5.3.5 Monotonicity of zJ 1
ρ∗

K

Due to Lemma 1, for given p∗V the mass flux z is uniquely defined, because f(p∗V , pL) = 0 has
only a single admissible solution. Next we prove a further monotonicity relation.

Lemma 3. For given temperature 273.15K ≤ T0 ≤ 623.15K the expression zJ 1
ρ∗

K is strictly

increasing in p∗V , where z depends on the function p∗L(p
∗
V ) implicitely defined by (39).

Proof. We have

dzJ1
ρ
K

dpV
(p∗V , p

∗
L) =

(

∂zJ1
ρ
K

∂pV
+
∂zJ1

ρ
K

∂pL
p∗

′

L

)

(p∗V , p
∗
L) =

(

∂zJ1
ρ
K

∂pV
−
∂zJ1

ρ
K

∂pL

∂f
∂pV
∂f
∂pL

)

(p∗V , p
∗
L)

Using previous results we will show that

(

∂zJ1
ρ
K

∂pV

∂f

∂pL
−
∂zJ1

ρ
K

∂pL

∂f

∂pV

)

(p∗V , p
∗
L) > 0 . (42)

Calculating all the derivatives we obtain

(

∂zJ1
ρ
K

∂pV

∂f

∂pL
−
∂zJ1

ρ
K

∂pL

∂f

∂pV

)

(p∗V , p
∗
L) =

(

m

kT0

)3/2
1

ρ∗V
√
2π

{

J
1

ρ∗
K2
(

ρ∗V p
∗
V − z4

1

ρ∗2L

ρ0
K0

)

+

[

K0

ρ0
ln
ρ∗L
ρ0

− kT0
m

ln
p∗V
p0

− 1

2
Jp∗K

(

1

ρ∗L
+

1

ρ∗V

)]

ρ∗V
ρ∗L

(

1− ρ0
K0

p∗L
ρ∗L

)}

.

Let us first consider, that z > 0. Then for z2 ≤ ρ∗V ρ
∗
LaV aL the above statement is obvious.

Assume, z is positive with z2 > ρ∗V ρ
∗
LaV aL. Then because z > 0 we conclude

−kT0
m

ln
p∗V
p0

− 1

2
Jp∗K

(

1

ρ∗L
+

1

ρ∗V

)

> 0

=⇒ −kT0
m

ln
p∗V
p0

+
1

2
J
1

ρ∗
K

(

1

ρ∗L
+

1

ρ∗V

)

ρ∗V ρ
∗
LaV aL > 0

=⇒ −kT0
m

ln
p∗V
p0

− ρ∗L
2ρ∗V

a2V > 0

⇐⇒ ρ∗L + 2ρ∗V ln
p∗V
p0

< 0 . (43)

By some simple calculations we find, that for fixed ρ∗L the expression ρ∗L +2ρ∗V ln
p∗
V

p0
attains its

minimum for p̂V = p0 · exp(−1). Accordingly we have

ρ∗L + 2ρ∗V ln
p∗V
p0

≥ ρ∗L − 2ρ̂V > 0 .

This is a contradiction to (43) and we conclude z2 ≤ ρ∗V ρ
∗
LaV aL. This implies the above

statement for positive z.
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Now let us consider z < 0. We obtain

J
1

ρ∗
K2
(

ρ∗V p
∗
V − z4

1

ρ∗2L

ρ0
K0

)

+

[

K0

ρ0
ln
ρ∗L
ρ0

− kT0
m

ln
p∗V
p0

− 1

2
Jp∗K

(

1

ρ∗L
+

1

ρ∗V

)]

ρ∗V
ρ∗L

(

1− ρ0
K0

p∗L
ρ∗L

)

> J
1

ρ∗
K2
(

ρ∗2V a
2
V − ρ∗4V a

4
V

ρ∗2L a
2
L

)

+

[

K0

ρ0
ln
ρ∗L
ρ0

− kT0
m

ln
p∗V
p0

− 1

2
Jp∗K

(

1

ρ∗L
+

1

ρ∗V

)]

ρ∗V
ρ∗L

≥ a2V

(

J
1

ρ∗
K2ρ∗2V

(

1− ρ∗2V a
2
V

ρ∗2L a
2
L

)

−
√
2π
ρ∗V
ρ∗L

)

.

This expression is obviously positive, because ρV /ρL < 1/4, cf. (32). Accordingly the proof of
Lemma 3 is complete. 2

Remark 5. If we exclude phase transition, this means that we use the trivial kinetic relation
z = 0, Lemma 1 and Lemma 2 remain valid. It is quite evident, that we have p∗L = p∗V . The
expression zJ1

ρ
K of Lemma 3 becomes zero and is clearly non-strictly increasing in p∗V . 2

Remark 6. During the proof of Lemma 3 we observe that the smallest pL ≥ 0 with f(p∗V , pL) =
0 identically satisfies the inequalities

−aV ρV ≤ z ≤ √
aV aL

√
ρV ρL < aLρL , (44)

which is a sharper result than the inequality (38).

6 Explicit solutions of the Riemann problem for isothermal

Euler equations for two phases with different equations of

state

Now let us consider two phase flows, where from now on for all examples the left phase (initially
x < 0) is assumed to be water vapor, whereas the right phase (initially x > 0) is assumed to
be liquid water. The different phases are characterized by different equations of state, given in
(8) and (9). We consider the Riemann problem

ρ(x, 0) =

{

ρ− = ρV for x < 0
ρ+ = ρL for x > 0

and v(x, 0) =

{

v− = vV for x < 0
v+ = vL for x > 0 .

(45)
The solution consists of 4 constant states, that are separated by 2 classical waves and the
phase boundary. Accordingly we have three possible wave patterns, see Figure 4.

6.1 Case 1: Two-phase flow without phase transition

Let us first consider the case, where the phase transition is excluded, i.e. z = 0. In this case
we have
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a) b) c)

Figure 4: Wave patterns. Solid line: classical waves. Dashed line: Vapor-liquid interface

Lemma 4. There exists no solution of wave pattern types a) and c), which include the cases of
the coincidence of the classical waves with the phase boundary.

The lemma will be proven at the end of this section.

Now we consider Case b). For solutions of that type we use the following notations for the 4
constant states

WV =

[

ρV
vV

]

W
∗
V =

[

ρ∗V
v∗V

]

W
∗
L =

[

ρ∗L
v∗L

]

WL =

[

ρL
vL

]

. (46)

To find the exact solution we extend the procedure that is described for single gas flows by Toro
in [20]. We aim to derive a function

f(p,WV ,WL) = fV (p,WV ) + fL(p,WL) + (vL − vV ) , (47)

such that the only root p = p∗ is the solution for the pressure p∗V of the Riemann problem (1-2),
(45). The functions fV and fL are the increments that relate the initial velocities vV , vL to v∗V
and v∗L resp., only in terms of the initial data and the unknown solution p∗. This means that

v∗V = vV − fV (p∗,WV ) and v∗L = vL + fL(p∗,WL) . (48)

This procedure makes use of the constancy of pressure and velocity across the phase boundary,
v∗V = v∗L and p∗V = p∗L, which is due to z = 0.

Because p is constant in the star region, we choose p∗ to be the unknown and eliminate ρ∗V , ρ
∗
L.

However, for shorter notation we keep the initial data ρV , ρL.

We use the results in (13), (15) and (27). For a left wave we replace ′ and ′′ by V and ∗
V , resp. On

the other hand, for a right wave ′ and ′′ are replaced by ∗
L and L. We end up with the following

Theorem 1 (Solution of isothermal two-phase Euler equations without phase tra nsition).
Let f(p,WV ,WL) be given as

f(p,WV ,WL) = fV (p,WV ) + fL(p,WL) + ∆v , ∆v = vL − vV

where the functions fV and fL are given by

fV (p,WV ) =

{ p−pV√
ρV p

if p > pV (shock)

−aV ln pV + aV ln p if p ≤ pV (rarefaction)

fL(p,WL) =











p−pL
√

K0ρL

(

p−p0
K0

+1
)

if p > pL (shock)

−aL ln ρL
ρ0

+ aL ln
(

p−p0
K0

+ 1
)

if p ≤ pL (rarefaction)
.
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If the function f(p,WV ,WL) has a root p∗ with 0 < p∗ ≤ p̃ and with p̃ as in Section 3, this
root is unique and is the unique solution for pressure p∗V of the Riemann problem (1-2), (45).
The velocity v∗V can be calculated as follows

v∗V =
1

2
(vV + vL) +

1

2
(fL(p∗,WL)− fV (p∗,WV )) .

Proof. The function f is strictly monotone increasing in p with f(p,WV ,WL) → −∞ for
p → 0. Therefore f has at most one unique root, which is by construction the solution for
the pressure p∗V of the Riemann problem considered. The second part of the theorem is an
immediate consequence of (48). 2

For given initial data one can define the sets of states that can be connected to the initial
states by a single shock or rarefaction wave. These sets define curves in the p-v-phase plane,
where the intersection point (p∗, v∗) is the solution due to Theorem 1, see Figure 5. In Figure
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Figure 5: Wave curves in the p-v-phase plane

5 the black curve CV belongs to the vapor phase, whereas the red curve CL belongs to the
liquid phase. The solid lines denote those states, that can be connected to the initial states,
indicated by a star, by a rarefaction wave. Along the dash-dotted lines we have states, that may
be connected to the initial states by a shock wave. The wave curves in Figure 5 belong to the
data of the second example in Section 8.

Theorem 2 (Sufficient condition for solvability). Let us consider the Riemann problem (1-2),
(45). We have two cases.

� For pL < pV (ρ̃) = p̃ the above Riemann problem is solvable if and only if

f(p̃,WV ,WL) =
p̃− pV√
ρV p̃

+
p̃− pL√

ρ
L
(p̃− p0 +K0)

+ ∆v ≥ 0 .

� For pL ≥ p̃ the above Riemann problem is solvable if and only if

f(p̃,WV ,WL) =
p̃− pV√
ρV p̃

+ aL ln

(

pL − p0 +K0

p̃− p0 +K0

)

+∆v ≥ 0 .

Proof. As seen before f is strictly monotone increasing in p with f(p,WV ,WL) → −∞ for
p→ 0. Accordingly f has a unique root if and only if f(p,WV ,WL) ≥ 0 for p→ p̃. 2
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Remark 7 (Complete solution). Theorems 1 and 2 allow us to calculate the pressure and the
velocity in the star region as well as the interface velocity. From the equations of state (8) and
(9) we find the densities ρ∗V , ρ

∗
L of the star region respectively. In the case of shock waves the

relation (27) gives the shock speeds.

For a left (right) rarefaction wave the head and tail speeds can be obtained from (13) or (15)
respectively. The solution inside the fans is given by (14) respectively (16). 2

Finally we give the proof of Lemma 4. We denote the states between the classical waves with
two stars. The states between the right wave and the phase boundary have one star, also see
Figure 6. Assume that the solution is of wave pattern type c). Then the interface is moving with

ρ
V
, v

V

ρ
V*

,v
V*ρ

V**
,v

V**

ρ
L
,v

L

Figure 6: Notations, wave pattern type c)

speed w = vL = vV ∗. Let us further assume that the right wave is a shock wave moving with
speed S2. Obviously the condition w ≥ S2 must hold. To find S2 we use (27)1 and (27)2. We
replace ′ and ′′ by V ∗∗ and V ∗ resp. We obtain

S2 = w +
aV ρV ∗√
ρV ∗ρV ∗∗

,

which contradicts the condition w ≥ S2.

On the other hand if the right wave is a rarefaction wave, then the head speed is given by
aV + vV ∗, see Subsection 5.1. This is likewise a contradiction to the condition w = vL =
vV ∗ ≥ aV + vV ∗. If the phaseboundary lies within the rarefaction wave or at its tail we obtain
the analogous contradiction in the wave speeds.

Accordingly there is no solution of type c). In an analogous manner we may discuss the case of
wave pattern type a). 2

6.2 Case 2: Two-phase flow with phase transition

The lemma corresponding to Lemma 4 is much more complicated in this case. For this reason
we must discuss all three cases from Figure 4 and we start with Case b).

6.2.1 Solutions of type b)

To find the solution for the Riemann problem (1-2), (45) with phase transition we use the same
strategy as before. Due to phase transition we have v∗L 6= v∗V at the interface, which gives us a
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further term in the resulting algebraic equation. Moreover, a further challenge results from the
inequality of the pressures p∗L 6= p∗V . Nevertheless we are able to construct a function

fz(p,WV ,WL) = fV (p,WV ) + fL(p
∗
L(p),WL) + zJ

1

ρ
K + (vL − vV ) (49)

such that the only root p = p∗ is the solution for the pressure p∗V of the Riemann problem (1-2),
(45) with phase transition. The functions fV and fL relate the initial velocities vV , vL to v∗V
and v∗L respectively, only in terms of the initial data and the unknown solution p∗ as well as the
implicitely defined function p∗L(p

∗).

As before we use the results in (13), (15) and (27). For a left wave we repalce ′ and ′′ by V and
∗
V , respectively. On the other hand, for a right wave ′ and ′′ are replaced by ∗

L and L. We end up
with the following

Theorem 3 (Solution of isothermal two-phase Euler equations with phase transi tion). Let
fz(p,WV ,WL) be given as

fz(p,WV ,WL) = fV (p,WV ) + fL(p
∗
L(p),WL) + zJ

1

ρ
K +∆v , ∆v = vL − vV (50)

where the functions fV and fL are given by

fV (p,WV ) =

{ p−pV√
ρV p

if p > pV (shock)

−aV ln pV + aV ln p if p ≤ pV (rarefaction)

fL(p,WL) =















p∗
L
(p)−pL

√

K0ρL

(

p∗
L
(p)−p0
K0

+1

)

if p∗L(p) > pL (shock)

−aL ln ρL
ρ0

+ aL ln
(

p∗
L
(p)−p0
K0

+ 1
)

if p∗L(p) ≤ pL (rarefaction) .

The function p∗L(p) is implicitely defined by (39) and z is given by (34).
If the function fz(p,WV ,WL) has a root p∗ with 0 < p∗ ≤ p̃, see Section 3, this root is
unique.

If further
p∗ > pV we must have z > −aV

√

ρV ρ∗V . (51)

In this case the root p∗is the unique solution for the pressure p∗V for a b)-type solution of the
Riemann problem (1-2), (45) with phase transition and the complete solution is uniquely deter-
mined.

If there is no root or condition (51) is not satisfied the Riemann problem has no solution.

Proof. The function fz is strictly increasing in p. This follows from Lemma 2 and Lemma 3.
Further we have fz → −∞ for p → 0. Therefore fz has at most one unique root, which is by
construction the solution for p∗V of the considered Riemann problem.

Then by Lemma 1 the pressure p∗L(p) and the mass flux z are uniquely defined. The corre-
sponding densities can be obtained from the equations of state (8), (9). To find the velocities in
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the star regions one can use (13), (15) for rarefactions or (27) for shocks. The interface velocity
can be obtained from (5).

The further calculations are the same as in the case of isothermal Euler equations without phase
transition, see the proof for Theorem 1 and the remarks following. 2

Remark 8. The additional condition (51) in Theorem 3 is necessary to guarantee, that S1 ≤ w
in the case of a 1-shock propagating through the gas. If this condition is not satisfied, the root
p∗ of (50) is meaningless. 2

As in the case of no phase transition in the previous section, one can construct the solution
in the p − v−phase plane. We define the same sets of states as before. Moreover, for every
state, that can be connected to (pV , vV ) by a single wave, there exists a uniquely defined state
(p∗L, v

∗
L), that can be connected to (pV , vV ) by a phase boundary due to the kinetic relation

(34). These states define a further wave curve CL′ , see Figure 7. The red and black curves CL
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Figure 7: Wave curves in the p− v−phase plane

and CV are identical to the case before. The blue curve CL′ is newly defined, where the blue
solid (dash-dotted) part of CL′ corresponds to the black solid (dash-dotted) part of CV . The
intersection point of the blue and red curves CL′ and CL is the solution for (p∗L(p

∗
V ), v

∗
L) due to

Theorem 3. As before the wave curves in Figure 7 belong to the data of the second example in
Section 8.

Theorem 4 (Sufficient condition for solvability I). Let us consider the Riemann problem (1-
2), (45). If the Riemann problem considered for Case 1 is solvable, then the same Riemann
problem is also solvable taking into account phase transition due to the kinetic relation (34).

The proof is obvious by the monotonicity properties of fz. For details see the following corollary
and its proof.

Corollary 3. Let p∗ be the solution of the pressure in the star region of the Riemann problem
(1-2), (45) for Case 1. Then for the solutions p∗V and p∗L(p

∗
V ) of the same Riemann problem for

Case 2 we have

1 p∗ = p0 implies that p∗V = p∗L(p
∗
V ) = p0.

2 p∗ < p0 implies that p∗ < p∗L(p
∗
V ) < p0.

21



3 p∗ > p0 implies that p0 < p∗V < p∗.

Proof. The first statement is obvious. Now let us consider p∗ < p0. Consider that p∗L(p
∗
V ) =

p0. Then we have an equilibrium and therefore p∗V = p0 and further fz(p0,WV ,WL) =
f(p0,WV ,WL) > 0. Now fz(p0,WV ,WL) > 0 and we obtain due to the monotonici-
ty of fz that p∗L(p

∗
V ) < p0. On the other hand, if p∗L(p

∗
V ) = p∗ then fz(p

∗
V ,WV ,WL) <

f(p∗,WV ,WL) = 0 and we conclude the other inequality p∗ < p∗L(p
∗
V ). The argumentation

for the third statement is analogous. 2

Theorem 5 (Sufficient condition for solvability II). Let us consider the Riemann problem (1-
2), (45) with phase transition. This Riemann problem is solvable by a b)-type solution if and only
if

fz(p̃,WV ,WL) ≥ 0

and (51) is satisfied.

Proof. The statement is obvious, because the above requirement guarantees, that the function
fz has a root. 2

6.2.2 Further solutions

As in Section 6.1 we want to discuss the existence of further solutions for the Riemann problem
(1-2), (45) with phase transition. We obtain

Lemma 5. There is no solution of type a).

Proof. Assume, there is a solution of type a). Then analogously to solutions of type c) in Section
6.1 we denote the constant states by (ρV , vv), (ρL∗, vL∗), (ρL∗∗, vL∗∗), (ρL, vL), see Figure
6. Obviously in that case we have a condensation process and therefore z < 0. Assume the
left wave is a rarefaction wave, then the head speed is given by vL∗ − aL and

w =
z

ρL∗
+ vL∗ ≤ vL∗ − aL (52)

must hold. We obtain z ≤ −aLρL∗. This contradicts (38) and therefore there is no solution of
type a) with a left rarefaction.

Similarly, for a left shock wave

w =
z

ρL∗
+ vL∗ < vL∗ − aL

√

ρL∗∗
ρL∗

must hold. This is a stronger inequality than (52) and therefore it cannot be satisfied. This proves
the above statement. 2

Lemma 6. Consider the Riemann problem (1-2), (45) with phase transition. If pL ≥ p0 there is
no solution of type c).

Proof. A solution of type c) implies an evaporation process. This requires that pL < p0. 2
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Lemma 7. Consider the Riemann problem (1-2), (45) with phase transition. For sufficiently large
pL with pL ≤ p0 there is no solution of type c).

Proof. Assume, there is a solution of type c). Then analogously to the previous case of an
a)-type solution for a right rarefaction

w =
z

ρV ∗
+ vV ∗ ≥ vV ∗ + aV

must hold. On the other hand for a right shock wave we have

w =
z

ρV ∗
+ vV ∗ > vV ∗ + aV

√

ρV ∗∗

ρV ∗
.

Accordingly
z

ρV ∗
+ vV ∗ < vV ∗ + aV ⇐⇒ z

ρV ∗aV
< 1

is sufficient to guarantee, that there is no solution of type c). Due to z > 0 we obtain from (34)
by a simple estimate

z

ρV ∗aV
< − 1√

2π
ln
pV ∗

p0
.

Therefore, if

− 1√
2π

ln
pV ∗

p0
≤ 1 ⇐⇒ pV ∗ ≥ p0 exp(−

√
2π)

there is no solution of type c). By the strict monotonicity of pL(pV ∗) the proof is complete, see
Lemma 2. 2

Remark 9. Note that the inequality pL ≥ pL(p0 exp(−
√
2π)) is sufficient, but not necessary

for the statement of the above lemma. 2

7 3-Phase flow

7.1 Condensation by compression

Now let us consider the Riemann problem for the isothermal Euler equations with the following
initial data for ρV± ∈ [0, p̃]

ρ(x, 0) =

{

ρ− = ρV− for x < 0
ρ+ = ρV+ for x > 0

and v(x, 0) =

{

v− = vV− for x < 0
v+ = vV+ for x > 0 .

(53)
This means, we have a Riemann problem for a vapor phase only. Using the results of Section 5
we easily obtain

Theorem 6 (Solution of classical isothermal Euler equations). Let the function fV V be given
as

fV V (p,WV−,WV+) = fV−(p,WV−) + fV+(p,WV+) + ∆v , ∆v = vV+ − vV−
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where the functions fV− and fV+ are given by

fV−(p,WV−) =

{

p−pV −√
ρV −p

if p > pV− (shock)

−aV ln pV− + aV ln p if p ≤ pV− (rarefaction)

fV+(p,WV+) =

{

p−pV +√
ρV +p

if p > pV+ (shock)

−aV ln pV+ + aV ln p if p ≤ pV+ (rarefaction)
.

If the function fV V (p,WV−,WV+) has a root p∗ with 0 < p∗ ≤ p̃, this root is unique and is
the unique solution for pressure p∗V of the Riemann problem (1-2), (53). The velocity v∗V is given
by

v∗V =
1

2
(vV− + vV+) +

1

2
(fV+(p∗,WV+)− fV−(p∗,WV−)) .

In principle this result is known with some small modifications, see for instance the book of Toro
[20]. In the literature one usually looks for a pressure p∗, that is a root of the above algebraic
equation. Due to fV V → −∞ for p → 0 and fV V → +∞ for p → +∞ there is always
a solution. The latter case is physically not meaningful because a sufficiently high pressure in
a gas will lead to a phase transition to a liquid or solid phase. In contrast we only consider
solutions, that satisfy the inequality 0 < p∗ ≤ p̃, where p̃ denotes the maximally possible gas
pressure. As a consequence one can find Riemann initial data without solution. If this happens
we follow the following strategy.

Definition 1 (Nucleation criterion). If there is no solution to the Riemann problem (1-2), (53)
according to Theorem 6, then nucleation occurs. 2

If this criterion is fulfilled, we look for a solution with two transition fronts (phase boundaries) and
two classical waves. Next we discuss the possible wave patterns for condensation.

Lemma 8. If there is a solution of the Riemann problem (1-2), (53) consisting of two classical
waves and two phase boundaries, then no wave is propagating through the liquid. Waves may
only occur in the gas.

Proof. Assume, there is a solution with a classical wave propagating through the liquid phase.
W.l.o.g. this wave is a left going wave. We denote the states to the left and right of this wave
by L∗ and L∗∗, respectively. Furthermore, on the left hand side of this wave there is a phase
boundary propagating with speed w1. The state left to the phase boundary is denoted by V ∗.

Obviously we have a condensation process. Accordingly p∗ > p0 and pL∗ > p0. This config-
uration is impossible due to Lemma 5. Analogously we discuss the case of a right going wave.
2

We conclude, both waves propagate through the vapor phase. The possible wave patterns are
given in Figure 8.

Lemma 9. There are no solutions of wave pattern types d) and f).
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d) e) f)

Figure 8: Wave patterns. Solid line: classical waves. Dashed line: Vapor-liquid interface

Proof. Let us assume, that the solution is of wave pattern type d). This corresponds to solutions
of wave pattern type c) in Section 6.2.2, see Figure 4. We have seen, that such solutions only
can occur for very low pressures, that imply evaporation, see Lemma 6 and Lemma 7. Here
we have a condensation process, so wave pattern type d) is impossible. Analogously we can
exclude solutions of wave pattern type f). 2

Accordingly the only possible wave configuration is of type e). We use the notation as given in
Figure 9 and obtain

ρ
V−

, v
V− ρ

V+
, v

V+

ρ
L*

, v
L*

ρ
V**

, v
V**ρ

V*
, v

V*

Figure 9: Notations, wave pattern type e).

Lemma 10. Assume, there is a solution of wave pattern type e). Then pV ∗ = pV ∗∗.

Proof. For given pV ∗ the pressure pL∗ is uniquely defined, cf. Lemma 1. The function pL∗(pV ∗)
is strictly monotone, see Lemma 2. For the second phase boundary we have to use the modified
kinetic relation (35). We obtain the same pressure function pL∗(pV ∗∗) = pL∗(pV ∗) with the
same monotonicity properties as in Section 5.3.4. 2

Using the results of the previous sections and taking into account, that there are two phase
boundaries we can formulate the following

Theorem 7 (Solution of isothermal Euler equations for two gases with phase tra nsition).
Consider the Riemann problem (1-2), (53) and assume the nucleation criterion is satisfied. Let
fV V z(p,WV−,WV+) be given as

fV V z(p,WV−,WV+) = fV−(p,WV−) + fV+(p,WV+) + 2zJ
1

ρ
K + vV− − vV+ = 0 ,

where the functions fV− and fV+ are given by

fV−(p,WV−) =

{

p−pV −√
ρV −p

if p > pV− (shock)

−aV ln pV− + aV ln p if p ≤ pV− (rarefaction)

fV+(p,WV+) =

{

p−pV +√
ρV +p

if p > pV+ (shock)

−aV ln pV+ + aV ln p if p ≤ pV+ (rarefaction)
.

Here z is given by (34) and J1
ρ
K = 1

ρL∗

− 1
ρV ∗

. The function p∗L(p) is implicitely defined by (39).
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If the function fV V z has a root with p0 < p ≤ p̃, then this root is the only one. Furthermore,
this root is the unique solution for pressure pV ∗ = pV ∗∗ of the Riemann problem (1-2), (53) for
the vapor pressure in the star regions. The liquid velocity vL∗ can be calculated by

vL∗ =
1

2
(vV− + vV+) +

1

2
(fV+(p∗)− fV−(p∗)) .

Proof. By previous results it is obvious, that the function fV V z has at most one root. By con-
struction this root is the solution for the pressure of the vapor phase in the two star regions in
Figure 9.

The further calculations to find the complete solution are analogous to previous calculations. 2

Remark 10. Note, that vV ∗ 6= vV ∗∗ with vV ∗ + vV ∗∗ = 2vL∗. 2

Theorem 8 (Sufficient condition for solvability I). Consider the Riemann problem (1-2), (53).
This problem is solvable without phase transition if and only if

fV V (p̃,WV−,WV+) ≥ 0 .

Proof. This statement is obvious by the monotonicity of fV V . 2

Theorem 9 (Sufficient condition for solvability II). Consider the Riemann problem (1-2), (53)
and assume that the nucleation criterion due to Definition 1 is satisfied. Taking into account
phase transition this problem is solvable if and only if

fV V z(p̃,WV−,WV+) ≥ 0 .

Proof. This statement is obvious due to the monotonicity of fV V z. 2

7.2 Evaporation by expansion

In the following we consider the Riemann problem for the isothermal Euler equations with initial
data ρL± ≥ ρmin

ρ(x, 0) =

{

ρ− = ρL− for x < 0
ρ+ = ρL+ for x > 0

and v(x, 0) =

{

v− = vL− for x < 0
v+ = vL+ for x > 0 ,

(54)
i.e. the initial data only contain two states in a liquid phase.

We have seen, that at a planar phase boundary the liquid pressure is always positive. It is
known from applications, that negative liquid pressures are possible. They give rise to cavitation
in the liquid, see Doering [6]. Recall that in the liquid-vapor case a negative liquid pressure is
forbidden, see (29). Now, in the liquid-liquid case we may meet negative pressures. The smallest
pressure in the liquid is pmin.

Using that definition we obtain
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Theorem 10 (Solution of isothermal Euler equations for two states of a liquid wi thout
phase transition). Let fLL(p,WL−,WL+) be given as

fLL(p,WL−,WL+) = fL−(p,WL−) + fL+(p,WL+) + ∆v , ∆v = vL+ − vL−

where the functions fL− and fL+ are given by

fL−(p,WL−) =

{ p−pL−√
ρL−p

if p > pL− (shock)

−aL ln ρL−

ρ0
+ aL ln

(

p−p0
K0

+ 1
)

if p ≤ pL− (rarefaction)

fL+(p,WL+) =

{ p−pL+√
ρL+p

if p > pL+ (shock)

−aL ln ρL+

ρ0
+ aL ln

(

p−p0
K0

+ 1
)

if p ≤ pL+ (rarefaction)
.

If the function fLL(p,WL−,WL+) has a root p∗ with pmin ≤ p∗, this root is unique and is the
unique solution for pressure p∗L of the Riemann problem (1-2), (54). The velocity v∗L is calculated
from

v∗L =
1

2
(vL− + vL+) +

1

2
(fL+(p∗)− fL−(p∗)) .

Remark 11. For simplicity in our calculations we choose pmin = 0, but also lower values are
possible. Our theoretical results are general and do not depend on the special value of pmin.

Analogous to the above nucleation criterion we give the

Definition 2 (Cavitation criterion). If there is no solution of the Riemann problem (1-2), (54)
according to Theorem 10, then we may encounter cavitation. 2

If this criterion is fulfilled, we look for a solution involving a vapor phase with two transition fronts
(phase boundaries) and two classical waves. As before we discuss the possible wave patterns.

Lemma 11. Assume there is a solution of the Riemann problem (1-2), (54) consisting of two
classical waves and two phase boundaries. If further pL−, pL+ are sufficiently large then no
wave is propagating through the vapor.

The proof is analogous to the proof of Lemma 7. A sufficient lower bound for pL−, pL+ is given
in Remark 9.

Lemma 12. There is no solution of type d) and f), see Figure 8.

The proof is analogous to the proof of Lemma 5.
Accordingly we construct solutions of type e), the notations are analogous to the notations in
Figure 9. We obtain

Lemma 13. Assume, there is a solution of wave pattern type e). Then pL∗ = pL∗∗.

The proof is analogous to the proof of Lemma 10.
The next theorem addresses wave pattern type e).

27



Theorem 11 (Solution for isothermal Euler equations for two liquids with phas e transi-
tion). Consider the Riemann problem (1-2), (54) and assume the cavitation criterion is satisfied.
Let fLLz(p,WL−,WL+) be given as

fLLz(p,WL−,WL+) = fL−(pL(p),WL−)+fL+(pL(p),WL+)+2zJ
1

ρ
K+vL−−vL+ = 0 ,

with fL− and fL+ according to

fL−(p
∗
L(p),WL−) =







p∗
L
(p)−pL−√
ρL−p∗

L
(p)

if p∗L(p) > pL− (sh.)

−aL ln ρL−

ρ0
+ aL ln

(

p∗
L
(p)−p0
K0

+ 1
)

if p∗L(p) ≤ pL− (rf.)

fL+(p
∗
L(p),WL+) =







p∗
L
(p)−pL+√
ρL+p∗

L
(p)

if p∗L(p) > pL+ (sh.)

−aL ln ρL+

ρ0
+ aL ln

(

p∗
L
(p)−p0
K0

+ 1
)

if p∗L(p) ≤ pL+ (rf.) .

Here z is calculated from (34) and J1
ρ
K = 1

ρL∗

− 1
ρV ∗∗

. The function p∗L(p) is implicitely defined
by (39).

If the function fLLz has a root with pmin ≤ p, then this root is unique. Further, this root uniquely
determines the pressure p∗V of the Riemann problem (1-2), (54) for the vapor pressure in the
star region. Further, the vapor velocity vV ∗ is given by

vV ∗ =
1

2
(vL− + vL+) +

1

2
(fL+(p

∗
L(p∗))− fL−(p

∗
L(p∗))) .

Proof. Due to our previous results it is obvious, that the function fLLz has at most one root. By
construction this root is the solution for the pressure of the vapor phase in the star region.

The further calculations leading to the complete solution are analogous to previous calculations.
2

Theorem 12 (Sufficient condition for solvability I). Consider the Riemann problem (1-2),
(54). This problem is solvable without phase transition if and only if

fLL(pmin,WV−,WV+) ≤ 0 .

Proof. This statement is obvious due to monotonicity of fLL. 2

Theorem 13 (Sufficient condition for solvability II). Consider the Riemann problem (1-2),
(54) and assume the cavitation criterion is satisfied. If we admit phase transition, this problem is
always solvable.

Proof. This statement is obvious due to the fact that zJ1
ρ
K → −∞ for p∗V → 0. 2

8 Numerical results

In the following section we discuss some numerical examples. The calculations need the Boltz-
mann constant k and the mass of a single water molecule mW

k = 1.380658 · 10−23J/K and mW =
2 · 1.0079 + 15.9994

6.02205 · 1026 kg .
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The reference values used are tabled in [22].

8.1 Example 1: 2 phase flow, wave structure independent of pha se tran-
sition

We consider an example in which the wave structure does not depend on whether a phase
transition is modeled or not. The initial data and reference values for the first example are given
by

vV = −100m/s vL = 100m/s T0 = 293.15K K0 = 109/0.45836Pa
pV = 2300Pa pL = 1000Pa ρ0 = 1000/1.00184kg/m3 p0 = 2339Pa.

Figure 10 shows for z = 0 the solution for velocity, pressure and density as well as the wave
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Figure 10: Example 1, without phase transition
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Figure 11: Example 1, with phase transition

pattern. The phase boundary is indicated by the dotted red line. Figure 11 gives the solution
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for the same problem with z 6= 0, i.e. with phase transition. Both solutions have similar wave
pattern.

Note that in the plots for density and velocity the jump across the shock wave is so small that
it is not visible in the chosen scale. This is generally true for classical waves inside the liquid
phase. The difference is only visible in a local zoom.

The solutions to Example 1 for the intermediate states vV ∗, pV ∗, vL∗, pL∗ for both cases are
summarized in the following table

vV ∗ = 100.0002m/s vL∗ = 100.0002m/s vV ∗ = 42.5m/s vL∗ = 100.0004m/s
pV ∗ = 1335.3Pa pL∗ = 1335.3Pa pV ∗ = 1561Pa pL∗ = 1699.5Pa .

8.2 Example 2: 2 phase flow, wave structure depending on phase transi-
tion

We now consider an example in which the wave type changes when a phase transition is intro-
duced. The second example relies on

vV = −200m/s vL = −50m/s T0 = 473.15K K0 = 109/0.88383Pa
pV = 60000Pa pL = 100000Pa ρ0 = 1000/1.15651kg/m3 p0 = 1554670Pa .

In the case without phase transition the solution is composed of two rarefaction waves, see
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Figure 12: Example 2, without phase transition

Figure 12, whereas the solution with phase transition possesses two shock waves, see Figure
13. The corresponding wave curves are given in Figure 5 of Subsection 6.1 and Figure 7 of
Subsection 6.2. The solutions to Example 2 for the intermediate states vV ∗, pV ∗, vL∗, pL∗ for
both cases are summarized in the following table

vV ∗ = −50.057m/s vL∗ = −50.057m/s vV ∗ = −472m/s vL∗ = −49.905m/s
pV ∗ = 43531Pa pL∗ = 43531Pa pV ∗ = 10652Pa pL∗ = 19346Pa .
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Figure 13: Example 2, with phase transition

8.3 Example 3: Condensation by compression

In the third example the data are

vV− = 2.7m/s vV+ = −2.7m/s T0 = 363.15K K0 = 109/0.47316Pa
pV− = 70000Pa pV+ = 70000Pa ρ0 = 1000/1.03594kg/m3 p0 = 70182.4Pa.

The solution at time t = 0.001s is illustrated in Figure 14, including a zoom plot to show the de-
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Figure 14: Example 3, condensation by compression

tails. Further, the solutions to Example 3 for the intermediate states vV ∗, pV ∗, vL∗, pL∗, vV ∗∗, pV ∗∗
are summarized in the following table

vV ∗ = 0.465m/s vL∗ = 0 vV ∗∗ = −0.465m/s
pV ∗ = 70383.04Pa pL∗ = 70383.13Pa pV ∗∗ = 70383.04Pa .
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8.4 Example 4 and 5: Evaporation by expansion

At first we start from the data

vL− = −40m/s vL+ = 40m/s T0 = 363.15K K0 = 109/0.47316Pa
pL− = 60000Pa pL+ = 60000Pa ρ0 = 1000/1.03594kg/m3 p0 = 70182.4Pa

and show the result at time t = 0.001s in Figure 15. The same phenomenon is produced
now by different data, namely

vL− = −20m/s vL+ = 30m/s T0 = 363.15K K0 = 109/0.47316Pa
pL− = 30000Pa pL+ = 40000Pa ρ0 = 1000/1.03594kg/m3 p0 = 70182.4Pa.

The Example 4 consists of two rarefaction waves and two phase transitions, whereas Example
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Figure 15: Example 4, evaporation by expansion
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Figure 16: Example 5, evaporation by expansion

5 exhibits two shock waves and two phase transitions, see Figure 16. The data for the interme-
diate states vL∗, pL∗, vV ∗, pV ∗, vL∗∗, p∗∗ for both examples are given in
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vL∗ = −39.996m/s vV ∗ = 0 vL∗∗ = 39.996m/s
pL∗ = 55188Pa pV ∗ = 54665Pa pL∗∗ = 55188Pa

and

vL∗ = −23.9m/s vV ∗ = 4.3m/s vL∗∗ = 32.5m/s
pL∗ = 59185Pa pV ∗ = 58905Pa pL∗∗ = 59185Pa .
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