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1 IntrodutionPeriodi struture problems largely exist in the siene and engineering and of-ten they are modeled by partial di�erential equations with periodi oe�ientsand/or periodi geometries. In order to numerially solve these equations ef-�iently one usually on�nes the spatial domain to a bounded omputationaldomain (in a neighborhood of the region of physial interest). The usual strat-egy is to introdue so�alled arti�ial boundaries and impose adequate bound-ary onditions. For wave-like equations, the ideal boundary onditions shouldnot only lead to well�posed problems, but also mimi the perfet absorp-tion of waves traveling out of the omputational domain through the arti�ialboundaries. Right in this ontext, these boundary onditions are usually alledarti�ial (or transparent, non-re�eting in the same spirit) in the literature.The interested reader is referred to a ouple of review papers [2℄, [11℄, [12℄,[24℄ on this researh topi.Arti�ial boundary onditions (ABCs) for the Shrödinger equation and re-lated problems has been a hot researh topi for many years [2℄. Sine the�rst exat ABC for the Shrödinger equation was derived by Papadakis [16℄25 years ago, many developments have been made on the designing and imple-menting of various ABCs, also for multi-dimensional and nonlinear problems.However, the question of exat ABCs for periodi strutures still remainedopen, and it is a very up-to-date researh topi, f. the urrent papers [8℄,[9℄, [10℄, [13℄, [21℄, [22℄, [23℄, [27℄. These kind of new ABCs an be appliedin many physial problems, e.g. in optial appliations from miro and nano�tehnology [15℄, [20℄ and semiondutor superlatties. We refer to the bookfrom Bastard [4℄ or the review by Waker [25℄ for more details on superlattietransport modelling.Very reently, Zheng [29℄ derived exat ABCs for the Shrödinger equation ofthe form
iut + uxx = V (x)u, x ∈ R, (1a)

u(x, 0) = u0(x), x ∈ R, (1b)
u(x, t) → 0, x → ±∞. (1)The initial funtion u0 ∈ L2(R) is assumed to be ompatly supported in aninterval [xL, xR], with xL < xR, and the real potential funtion V ∈ L∞(R) issupposed to be sinusoidal on (−∞, xL] and [xR, +∞). It is well�known thatthe system (1a) has a unique solution u ∈ C(R+, L2(R)) (f. [17℄, [18℄, e.g.):Theorem 1 Let u0 ∈ L2(R) and V ∈ L∞(R). Then the system (1a) has aunique solution u ∈ C(R+, L2(R)). Moreover, the �energy� is preserved, i.e.

‖u(., t)‖L2(R) = ‖u0‖L2(R) , ∀t ≥ 0.2



More preisely, Zheng [29℄ assumed
V (x) = VL + 2qL cos

2π(xL − x)

SL

, ∀x ∈ (−∞, xL],

V (x) = VR + 2qR cos
2π(x − xR)

SR
, ∀x ∈ [xR, +∞),where SL and SR are the periods, VL and VR are the average potentials, andthe nonnegative numbers qL and qR relate to the amplitudes of sinusoidal partof the potential funtion V on (−∞, xL] and [xR, +∞), respetively. Let usnote that Galiher [10℄ also onsidered the same problem but with a generalperiodi potential. Formally he set up at eah arti�ial boundary point anexat Dirihlet-to-Dirihlet mapping, whih is nonloal in both time and spae.The organization of the paper is as follows. In Setion 2, we onjeture an ele-gant analytial expression of the impedane operator for general periodi prob-lems and present an exat ABC in a form of Dirihlet-to-Neumann mapping.In Setion 3 we use this result to ompute bound states for the Shrödingeroperator. Finally, in Setion 4 we show how the results an be generalized tothe time�dependent Shrödinger equation, a di�usion equation and a seondorder hyperboli equation and present a onise numerial example.2 A onjeture on the impedane expressionLet us start with the following general seond order ODE

− d

dx

(

1

m(x)

dy

dx

)

+ V (x)y = ρ(x)zy, ∀x ≥ 0, (2)where z denotes a omplex parameter whose value spae is to be determined.We assume that the funtions m(x), V (x) and ρ(x) are all S�periodi in
[0, +∞) and entrally symmetri in eah period, i.e.,
m(x) = m(S−x), V (x) = V (S−x), ρ(x) = ρ(S−x), a.e. x ∈ [0, S]. (3)The symmetry ondition (3) simply implies that the even extensions of thesefuntions to the whole real axis are still S�periodi. Moreover, we assume thatthe funtions m(x), V (x) and ρ(x) are su�iently smooth and bounded, i.e.there exist several onstants M0, M1, V0 and ρ0, suh that
0 < M0 ≤ m(x) ≤ M1 < +∞, V (x) ≥ V0, ρ(x) ≥ ρ0 > 0, ∀x ∈ [0, S].By introduing the new variable

w =
1

m(x)

dy

dx
,3



the seond order ODE (2) is transformed into a �rst order ODE system
d

dx







w

y





 =







0 V (x) − ρ(x)z

m(x) 0













w

y





 , ∀x ≥ 0. (4)This paper is onerned with the L2-solution of (2) in [0, +∞). More preisely,we would like to know for what z the ODE (2) possess an L2-solution y(x),and in this ase what is the impedane I := y′(0)/y(0), namely the quotientof Neumann data over Dirihlet data evaluated at x = 0.For any two points x1 and x2, the ODE system (4) uniquely determines alinear transformation from the two�dimensional vetor spae assoiated with
x1, to the same spae assoiated with x2. We identify this transformation withthe 2-by-2 matrix T (x1, x2), whih satis�es the same form of equation as (4),namely:

d

dx
T (x1, x) =







0 V (x) − ρ(x)z

m(x) 0





T (x1, x), ∀x1 ≥ 0, ∀x ≥ 0. (5)This transformation matrix T satis�es the following properties:
T (x, x) = I2×2, det T (x1, x2) = det T (x1, x1) = 1, (6a)

T (x2, x3)T (x1, x2) = T (x1, x3), (6b)
T (x1 + S, x2 + S) = T (x1, x2). (6)Aording to (6a), the matrix T (0, S) has two eigenvalues σ( 6= 0) and 1/σ with

|σ| ≤ 1. Their assoiated eigenvetors are denoted by (c+, d+)⊤ and (c−, d−)⊤.If |σ| < 1, then T (0, x)(c±, d±)⊤ yields two linearly independent solutions ofthe ODE system (4). By setting σ = eµS with Re µ < 0 it is straightforward toverify that e∓µxT (0, x)(c±, d±)⊤ are periodi funtions. Therefore, we onludethat
y+ := T (0, x)(c+, d+)⊤ = eµxe−µx T (0, x)(c+, d+)⊤is L2-bounded, while
y− := T (0, x)(c−, d−)⊤ = e−µxeµx T (0, x)(c−, d−)⊤is not. For the L2-bounded solution y+, the impedane I is thus given as

I :=
y′

+(0)

y+(0)
= m(0)

c+

d+

. (7)We remark that σ and (c+, d+)⊤ depend on z, and hene the impedane I alsodepends on z. In the sequel we will refer to σ as the Floquet's fator [3,14,19℄.It typially re�ets how fast the L2-bounded solution of the ODE (2) deaysto zero when x tends to +∞: the smaller its modulus, the faster. Also note4



that σ(z̄) = σ(z) and I(z̄) = I(z) holds. The impedane (7) is omputed after
T (0, S) is obtained (f. the impedane plots in Figs. 5, 6 for some values of z).In general, the matrix T (0, S) annot be represented with a simple analytialexpression in terms of the funtions m(x), V (x) and ρ(x). However, it an beomputed su�iently aurately by integrating the ODE (5) (setting x1 = 0)in the interval [0, S] with the initial data T (0, 0) = I2×2. Sine this task is astandard issue, the detailed disussion is omitted here.We onsider in the sequel three ases:Case A: m(x) = ρ(x) = 1, V (x) = 2 cos(2x);Case B: m(x) = ρ(x) = 1 + cos(2x)/5, V (x) = cos(2x);Case C: m(x) = ρ(x) = 1 + cos(2x)/5, V (x) = sin(2x).Figs. 1�3 show the modulus of σ, whih denotes the eigenvalue of T (0, S)with a smaller modulus. We observe that apart from some intervals in thereal axis, for any z in the omplex plane, σ has a modulus less than 1, thusthe seond order ODE (2) has a nontrivial L2-solution. Furthermore, it turnsout that the ending points of these intervals are exatly the eigenvalues of thefollowing harateristi problem :Find λ ∈ R and a nontrivial y ∈ C1

per[0, 2S], suh that
− d

dx

(

1

m(x)

dy

dx

)

+ V (x)y = ρ(x)λy. (8)We note that the symmetry ondition (3) is not neessary for the above state-ments (In fat Case C does not satisfy (3)). We admit that the above state-ments have not been proven up to this time, but a vast number of othernumerial evidenes also support their validity.If the oe�ient funtions m(x), V (x) and ρ(x) satisfy the symmetry ondition(3), then the harateristi problem (8) has a nie property: all the eigenvaluesan be lassi�ed into two di�erent groups
a1 < a2 < a3 < . . . and b1 < b2 < b3 < . . . ,where the eigenvalues ar are assoiated with even eigenfuntions, and br withodd eigenfuntions. Besides, it holds that

a1 < min(a2, b1) ≤ max(a2, b1) < min(a3, b2) ≤ max(a3, b2) < . . .For the Shrödinger equation (SE) with a periodi osine potential, a speialase of (2) with m(x) = ρ(x) = 1 and V (x) = 2q cos(2x), the seond author5



Fig. 1. Case A: Modulus of σ with respet to z.

Fig. 2. Case B: Modulus of σ with respet to z.6



Fig. 3. Case C: Modulus of σ with respet to z.[29℄ made a onjeture upon the impedane expression
ISE(z) = − +

√
−z + a1

+∞
∏

r=1

+
√−z + ar+1

+
√
−z + br

, Im z > 0,where +
√· denotes the branh of the square root with positive real part. Thebranh ut is set as the negative real axis. Intensive numerial tests in [29℄veri�ed the validity of this formula. Sine formally ISE(z̄) = ISE(z) for any zwith Im z 6= 0, it is thus tempting to generalize the above onjeture to ourgeneral seond order ODE (2), i.e.,
I(z) = −

√

m(0)ρ(0) +
√
−z + a1

+∞
∏

r=1

+
√−z + ar+1

+
√
−z + br

, Im z 6= 0. (9)Remark 2 For a better understanding of the impedane ondition (9) let usdisuss how to obtain the onstant oe�ient ase from the more general for-mula (9). The impedane for onstant oe�ients is given by
I(z) = −√

mρ +

√

−z +
V

ρ
= − +

√

m(V − ρz).7



All the eigenvalues of (8) are
λn =

(nπ
S

)2 + mV

mρ
.The eigenspae of λ0 is the set of onstant funtions. For n > 0, the eigenvalue

λn is degenerate. Its eigenspae is two�dimensional, spanned by cos(πx/S) and
sin(πx/S). Notie that cos is even and sin is odd. Thus we have

an = λn−1, n ≥ 1, and bn = λn, n ≥ 1.Sine ar+1 = br for any r ≥ 1, the equation (9) yields
I = −√

mρ +
√
−z + a1 = − +

√

m(V − ρz),the orret impedane expression.Let us onsider another two numerial tests:Case D: m(x) = ρ(x) = 1, V (x) =
+∞
∑

n=−∞

e−16(x−π/2−nπ)2 ,Case E: m(x) = 1, V (x) = 0, ρ(x) = 1 + cos(2x)/5.Case D orresponds to the Shrödinger equation with a periodi Gaussianpotential, f. Fig. 4, and Case E ould arise from a seond order hyperboliwave equation in a periodi medium.
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Fig. 4. Periodi Gaussian potential funtion V (x) =
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Figs. 5 and 6 show the impedane funtion I(z) when z is very lose to the realaxis. It an be learly seen that the impedane turns out to be either real orpurely imaginary. Those real intervals with purely imaginary impedane areexatly those values of z for whih the ODE (2) has no nontrivial L2�solution.In the engineering literature these intervals are alled pass bands, while theiromplementary intervals are alled stop bands. Several remarks have to bemade at this point.
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∑+∞

n=−∞ e−16(x−π/2−nπ)2 .Remark 3 The impedane I(z) beomes muh more ompliated as z ap-proahes the real axis if one of the oe�ient funtions m(x), V (x) and ρ(x)is not entrally symmetri, f. (3).Remark 4 The eigenvalues ar and br an be omputed with a high-auraysolver for the harateristi problem (8). The �rst few eigenvalues are listedin Tables 1 and 2 with 6 digits. We observe that the relative di�erene between
ar+1 and br deays very fast when r inreases.Remark 5 If the oe�ient funtions m(x) and ρ(x) are onstant and V (x) =
2q cos(2x) with q > 0, then the general ODE (2) is redued to the well�knownMathieu's equation [3,19℄. In this ase, we obtain

a1 < b1 < a2 < b2 < a3 < b3 < . . . .However, in general this property does not hold, and we an only expet the9
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r ar+1 br r ar+1 br r ar+1 br0 1.30811(-1) 5 2.51111(1) 2.51730(1) 10 1.00142(2) 1.00141(2)1 1.00842(0) 1.26431(0) 6 3.61574(1) 3.61260(1) 11 1.21141(2) 1.21141(2)2 4.25428(0) 4.03081(0) 7 4.91344(1) 4.91486(1) 12 1.44141(2) 1.44141(2)3 9.06010(0) 9.22586(0) 8 6.41442(1) 6.41386(1) 13 1.69141(2) 1.69141(2)4 1.61965(1) 1.60886(1) 9 8.11403(1) 8.11423(1) 14 1.96141(2) 1.96141(2)Table 1Case D: The �rst several eigenvalues of (8) with m(x) = ρ(x) = 1 and V (x) =

∑+∞
n=−∞ e−16(x−π/2−nπ)2 .

r ar+1 br r ar+1 br r ar+1 br1 9.08164(-1) 1.10938 5 2.51315(1) 2.51328(1) 9 8.14157(1) 8.14157(1)2 4.06748 3.98676 6 3.61880(1) 3.61877(1) 10 1.00512(2) 1.00512(2)3 9.04010 9.06316 7 4.92536(1) 4.92537(1) 11 1.21618(2) 1.21618(2)4 1.60896(1) 1.60838(1) 8 6.43296(1) 6.43296(1) 12 1.44735(2) 1.44735(2)Table 2Case E: The �rst few eigenvalues of (8), where m(x) = 1, V (x) = 0 and ρ(x) =
1 + cos(2x)/5. Notie that a1 = 0.following

a1 < min(a2, b1) ≤ max(a2, b1)) < min(a3, b2) ≤ max(a3, b2) < . . . .Remark 6 The stop bands are haraterized as
(−∞, a1), (min(a2, b1), max(a2, b1)), (min(a3, b2), max(a3, b2)), . . .10



and the pass bands are given by
(a1, min(a2, b1)), (max(a2, b1), min(a3, b2)), (max(a3, b2), min(a4, b3)), . . .Now let us onsider the expression (9) with the in�nite produt limited to Rfators:

IR(z) = −
√

m(0)ρ(0) +
√
−z + a1

R
∏

r=1

+
√−z + ar+1

+
√
−z + br

, Im z 6= 0. (10)Figs. 7 and 8 show the maximum errors between the impedane I(z) and
IR(z) on 4001 equidistant points on three segments of the upper half omplexplane. We detet that these errors beome very small with inreasing R. Thisobservation has also been made for many other numerial tests. It is thusreasonable to onjeture that the limit of IR(z) as R tends to +∞ is theimpedane I(z), i.e. the formula (9) states the orret impedane expression.
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lim

ǫ→0+
Im I(z0 + ǫ) = 0.Due to the symmetry property of the impedane, i.e. I(z̄) = I(z), we ande�ne

I(z0) = lim
ǫ→0+

I(z0 ± ǫ).Hene the impedane expression (9) still an be onsidered valid. If z0 lies inone of the pass bands, the ODE (2) has no nontrivial bounded L2-solution. Inthis ase, we have to speify what kind of solution is really what we are seekingfor. The impedane of this solution is thus the one-sided limit of I(z0 + ǫ) aseither ǫ → 0+ or ǫ → 0−. In most ases, this hoie an be made naturallyunder physial onsiderations.3 Bound states for the Shrödinger operatorAs a �rst appliation of the impedane expression (9), we onsider the follow-ing bound state problem for the Shrödinger operator :Find an energy E ∈ R and a nontrivial real funtion u ∈ L2(R), suh that
−d2u

dx2
+ V (x)u = Eu, x ∈ R, (11)12



where
V (x) =







2 + 2 cos(πx), |x| > 1,

0, |x| < 1.The potential funtion V (x) is periodi in R\(−1, 1). In order to ensure thatthe solution u has a bounded L2-norm, the energy E must be valued in thestop bands. The �rst few eigenvalues of the harateristi problem (8) with
m(x) = ρ(x) = 1 and V (x) = 2 − 2 cos(πx) (NOT V (x) = 2 + 2 cos(πx)) arelisted in Table 3.

r ar+1 br r ar+1 br0 1.80087 3 2.42294(1) 2.42345(1)1 3.41926 5.41414 4 4.14920(1) 4.14919(1)2 1.20349(1) 1.18359(1) 5 6.36935(1) 6.36935(1)Table 3The �rst few eigenvalues of (8) with m(x) = ρ(x) = 1 and V = 2 − 2 cos(πx).The �rst three stop bands are given by
(−∞, 1.80087), (3.41926, 5.41414), (11.8359, 12.0349).If E is a bound state energy, then it must be an eigenvalue of the followingnonlinear harateristi problem :Find an energy E ∈ R and a nontrivial real funtion u ∈ L2(−1, 1), suh that

−d2u

dx2
+ V (x)u = Eu, x ∈ (−1, 1), (12a)
−du

dx
(−1) = I(E)u(−1), (12b)

du

dx
(1) = I(E)u(1). (12)A diret disretization of the above problem (12) leads to a very ompliatednonlinear algebrai equation with respet to E, and its solvability is not om-pletely lear. Atually, the problem (12) is equivalent to the following �xedpoint problem. For a given energy E we an solve the linear harateristiproblem :Find a funtion Φ(E) ∈ R and a nontrivial real funtion u ∈ L2(−1, 1), suhthat

−uxx + V (x)u = Φ(E)u, x ∈ (−1, 1), (13a)
−du

dx
(−1) = I(E)u(−1), (13b)

du

dx
(1) = I(E)u(1). (13)13



The bound state energy thus satis�es E = Φ(E), i.e. E is a �xed point of thefuntion Φ(E). Notie that Φ(E) is a multi�valued funtion and hene a seriesof bound states are expeted.Fig. 9 shows the �rst three branhes of Φ(E) being restrited to [−8, 15]. Thetime-harmoni Shrödinger equation is disretized by 50 eighth-order �niteelements in [−1, 1]. I(E) is approximated by I14(E), whih is equal to I(E)within mahine preision if |E| < 20. Three bound states exist in this energyrange. By performing the Newton�Ste�enson iterations, the energies are foundto be E0 = 0.642647, E1 = 4.88651 and E2 = 12.0164. Our omputations showthat these values do not hange within 6 digits by re�ning the �nite elementmesh.
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Fig. 10. The ground state and the �rst two exited bound states.4 Exat arti�ial boundary onditions for time�dependent prob-lemsBased on the fundamental impedane expression (9), exat arti�ial boundaryonditions an be derived for many time-dependent periodi struture prob-lems, e.g., the Shrödinger equation (SE)
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= V (x)u,the di�usion equation (DE)
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− L(x)u,and the seond order hyperboli equation (HE)
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.Here, the oe�ients V (x), ρ(x), m(x) and L(x) are supposed to be entrallysymmetri periodi funtions at in�nity. Moreover, ρ(x) and m(x) are positive,and L(x) is nonnegative. The impedanes for these three equations are givenby
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and
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, (15)and
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. (16)In equations (14)�(16) the variable s with Re s > 0 denotes the free argumentin the Laplae domain. Notie that due to our assumption, all oe�ients arand br in (15) and (16) are nonnegative and thus the formulas (15), (16) arewell-de�ned. The numerial solution to the Shrödinger equation in onjun-tion with the ABC (14) has been investigated in [29℄. Similar tehniques anbe used for the di�usion equation with the ABC (15) with minor modi�a-tions. In the sequel we will fous on a seond order hyperboli equation in atwo�dimensional setting.To do so, we onsider the propagation of eletromagneti waves in a waveguidewith avity, f. the shemati map Fig. 11. For a TM polarized eletromagnetiwave, the eletri �eld E is governed by the equation
∂2E
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+
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∂z2
− ǫ(x, z)

c2

∂2E

∂t2
= 0. (17)The relative dieletri permittivity ǫ, depending only on x after the arti�ialboundary, is supposed to be periodi. We assume that this waveguide is en-losed with a perfet ondutor and hene we have a homogeneous Dirihletboundary ondition E = 0 on the physial boundary.

Cavity 

Wave In Periodic Media 

Artificial Boundary Fig. 11. Shemati map of a waveguide with avity.On the semi-in�nite slab region [0, +∞) × [0, 1], the harateristi deompo-sition an be applied with respet to the z variable. The eigenvalues are givenby n2π2 and the eigenfuntions are sin(nπz), n ≥ 1. An exat ABC in the16



frequeny domain is thus set up as
Ên
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Ên(0, s), n ≥ 1. (18)Here, Ên(x, s) denotes the n-th mode of Ê(x, z, s) in the z-diretion de�nedas
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Ê(x, z, s) sin(nπz)dz, x ≥ 0, n ≥ 1.
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(20)
Here, ∗ denotes a onvolution with respet to the time variable t and J1 is theBessel funtion of �rst order. In a real implementation the in�nite summation17



terms in (20) have to be trunated. By simply keeping the �rst Kn terms weobtain
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 ,

(21)and
wn

Kn+1(t) = En(0, t).If we want to resolve the n-th mode in the z-diretion, we typially set Kn ≥ 0.In order to ensure the approximating auray of the ABC, Kn should beinreased for larger values of n. Of ourse, if we are not interested in the
n-th mode at all, we only need to set Kn = −1. In the following numerialexample, we simply set Kn = 10 for any n = 0, 1 · · · , N , and Kn = −1 forany n = N + 1, · · · , where N denotes the number of modes in the z-diretionwe want to resolve.Numerial Example. We now study the wave �eld generated by a periodidisturbane at the left physial boundary

E(−2, z, t) = sin(πz)
+∞
∑

n=0

e−160(t−(n+0.5))2 , z ∈ (0, 1).The wave speed is set to 1, and the dieletri permittivity ǫ is set to be
ǫ(x, z) =







1 , x < 0,

1.2 − 0.2 cos(2πx) , x > 0.We limit our omputational time interval to [0, 6]. Due to the �nite wavepropagation speed (at most 1), we an ompute a referene solution Eref ina large domain (−2, 4) × (0, 1) ∪ (−1, 0) × (1, 2) with small mesh sizes ∆x =
∆z = 0.00125 and ∆t = 0.000625. The leap-frog entral di�erene shemeis employed in all the omputations. We use the standard fast evaluationtehnique proposed by Alpert, Greengard and Hagstrom [1℄ for the onvolutionoperations involved in the ABC (21). The poles and weights are taken fromthe webpage of Hagstrom. The relative L2-error is de�ned as

||Eref(·, ·, t) − Enum(·, ·, t)||L2

||Eref(·, ·, 6)||L2

,where Eref stands for the referene solution, while Enum denotes the numerialsolution. 18



In Figs. 12 and 13 we ompare the numerial solutions with the referenesolutions at two di�erent time steps. No di�erene an be observed with eyes.
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Fig. 12. At time t = 3. The number of modes is 10. The ontour lines are
−1 : 2/21 : 1. ∆x = ∆z = 0.005. ∆t = 0.0025. The referene solution is obtained bytaking ∆x = ∆z = 0.00125 and ∆t = 0.000625.
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In Fig. 14 we depit the errors when di�erent number of modes in the z-diretion are used. The auray of the numerial solutions is greatly improvedfor large number of modes.

0 0.2 0.4 0.6 0.8 1
−0.05

0

0.05

0.1

0.15

0.2

z

E
(2

,z
,6

)
Reference
Num. Modes=3
Num. Modes=5
Num. Modes=7
Num. Modes=10
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