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Abstract

The energy dependence of the tunneling coefficient for a cylindrical semicon-
ductor nanowire, i.e. a one-dimensional electron gas, with one or two constric-
tions is studied. Using the R-matrix formalism the localization probabilities at
the resonant energies can be computed. They give decisive information about the
physical meaning of the resonant peaks and dips that appear. The nanowire with
two constrictions yields a well-defined system for the experimental evidence of the
quasi-bound states of the evanescent channels. Clearly marked dips due to them
should appear in the linear conductance at low temperatures.

1 Introduction

The quantum point contact (QPC) in a two-dimensional electron gas (2DEG) is nowa-
days, after 25 years, a well-known mesoscopic system that shows a striking quantum
effect, namely the linear conductance at low temperatures is quantized in units of 2e2/h
in absence of magnetic field [1, 2]. This system is a clear experimental evidence of a bal-
listic conductor, whose electrical conductance is described by the two-terminal Landauer
formula [3, 4, 5, 6, 7]. The measured quantized conductance is interpreted as the contact
conductance for two-terminal systems multiplied with the total tunneling coefficient at
the Fermi energy EF

G(VG) =
2e2

h
Tr{tt†}(EF ;VG), (1)

where 2 is the spin degeneracy. The contact conductance e2/h is due to the contact
between a ballistic conductor, where elastic processes take place, and the two reservoirs,
where dissipative processes take place [4, 9]. The N×N transmission matrix t describes
the elastic scattering at the boundaries of the constriction, where N is the number of the
conducting channels (i.e. open energy channels) in the leads. For a separable potential
with no channel mixing [8], i.e. tij = δij, the trace yields an integer number, interpreted as
the number of the conducting channels in the quantum point contact. The conductance
steps are experimentally not perfectly sharp. Their shape can be explained in detail by the
mode-conversion behavior at the interfaces between the narrow constriction and the wide
2DEG regions [5, 8]. The quantization in G(VG) appears because the boundaries of the
constriction, especially its width w, change continuously with the gate voltage VG, while
the number of the conducting channels at the Fermi energy changes necessarily stepwise,
see Fig. 1. The above formula gives also an explanation for the resonant structure of the
conductance steps in case of sufficiently long constrictions [5, 10]. The conductance of
the quantum point contact is proportional to the constriction width w but independent
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(a) (b)

Figure 1: (a) A simple rectangular confinement potential in the plane of a 2DEG for
modeling a constriction of width w and length L; x is the transport direction, while y is
the confinement direction. (b) Idealized quantized conductance at low temperatures for
a constriction of the same width w = 2R′ in 2DEG and in 3DEG.

of its length L, as long as it is long enough such that the evanescent channels do not
play an important role [5]. Furthermore, Eq. (1) helps to understand the experimental
washing out of the steps in case of an energy averaging, either due to a finite temperature
[11] or due to a finite source-drain bias [12].

The quantization of the conductance is not restricted to constrictions in 2DEG. It also
appears for constrictions in a three-dimensional electron gas (3DEG). Many theoretical
[13, 14, 15, 16, 17, 18, 19, 20, 21, 22] and experimental [23, 24] studies analyze the
quantization of the conductance of metallic particles or quantum wires between two
3DEGs. One difference to the case of 2DEG is that the sequence of the conductance
steps is given by the degeneracy of the transversal modes that depends on the geometry
of the cross-section of the constriction [24, 15]. For example, for a cylindrical constric-
tion the linear conductance increases either in steps of 2e2/h or 4e2/h (i.e. two quantum
conductance units), because of the azimuthal degeneration: the quantum numbers m
and −m contribute equally to the conductance [14], see Fig. 1(b). In Fig. 1(b) the quan-
tized conductance for a cylindrical constriction in a 3DEG is compared to the quantized
conductance for a constriction with the same width w = 2R′ in a 2DEG. As one can
see, at the same Fermi energy (i.e. at the same gate voltage VG), there are much more
conducting channels open in the case of a cylindrical quantum point contact. All the
studies in 3DEG treat only one constriction and they were driven by the idea to determine
the cross section of an atomic-scale contact or of a small connecting metallic nanowire
from the conductance measurements.

In the last few years the interest in the semiconductor nanowires has increased progres-
sively. Semiconductor nanowires are structures with an extremely high aspect ratio and a
diameter less than 100 nm. Nowadays, almost all semiconductor materials can be grown
as nanowires. The carrier confinement in two directions make them very attractive for
applications in nano-opto-electronic devices [25, 26]. One could produce constrictions
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also in nanowires by different methods. One method could be to define the constrictions
electrostatically, like in the first experiments [1, 2] so that the width, i.e. the radius, of
the constrictions can be changed by an external gate voltage [27]. But for the nanowires,
it is possible to define a quantum point contact by incorporating a double-barrier po-
tential [28], even though the variation of the width of the constriction is not so easy.
The constrictions can be also produced by etching the nanowires or growing nanowire
heterostructures with different diameters. In those cases where the width of the constric-
tions are fixed the conductance measurements are done by varying the Fermi energy by
illuminating the sample [2, 29]. A nanowire with a constriction provides a simple well-
defined structure for studying both theoretically and experimentally the quantum point
contact in a one-dimensional electron gas.

In this paper we study the tunneling coefficient in a cylindrical semiconductor nanowire
with one or two symmetric rectangular constrictions. Doping the ends of the nanowire,
the Fermi wavelength becomes comparable to the width of the nanowire and the mean
free path between the contacts may be larger than the nanowire length. Thus, the
nanowire becomes an ideal system for studying the ballistic transport of electrons. A
proper modeling of the ballistic transport in semiconductor nanowires can be performed
only in the frame of quantum mechanics, either microscopic modeling (i.e. first prin-
ciples or ab-initio) or mesoscopic modeling (i.e. within effective mass approximation).
The tunneling coefficient is the key quantity for the linear conductance in mesoscopic
systems, see Eq. (1). We use the R-matrix formalism [30, 31, 32, 33, 34, 35] for solving
the multi-channel scattering problem in cylindrically symmetric systems. So that, this
method allows the computation of the tunneling coefficient very efficiently. Furthermore,
this method allows the computation of the scattering wave functions inside the scattering
region. The mapping of the localization probabilities inside the scattering region helps in
the physical interpretation of the tunneling peaks and dips. A large energy interval is con-
sidered, so that we are beyond the single subband regime [36]. In Refs. [37, 38] cylindrical
nanowires with two constrictions are analyzed but only between the first two thresholds
and for the magnetic quantum number zero, i.e. E ∈ [E

(0)
⊥,1, E

(0)
⊥,2]. A resonant tunneling

effect is evidenced and it is shown that the width of the resonant peaks decreases with
decreasing the cross-section of the constrictions. In this paper are presented results for
higher energies and it is shown that the region between the two constrictions plays the
role of an attractive potential. It was shown that an attractive scattering potential either
in a quantum wire [39, 40, 41, 36, 42, 43] or in a nanowire [34] yields quasi-bound states
of evanescent channels that appear as dips in the transmission coefficient. Also quan-
tum point contacts with impurities were subjects of theoretical [44, 45, 46, 47] as well
as experimental studies [48, 49, 50, 51, 52]. The experimental realizations of quantum
point contacts with impurities, especially with attractive impurities, introduce unwanted
effects, such that the interpretation of the measured conductance is not straightfor-
ward. The nanowire with two constrictions is a much simpler structure that could offer
an ideal system for studying the quasi-bound states of the evanescent channels. The
effective attractive potential is provided by the nanowire itself.
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Figure 2: Sketches of a nanowire with one or two constrictions and the corresponding
scattering potential V (z, r) in the reduced two-dimensional model.

2 Model

We consider in this paper a cylindrical semiconductor nanowire with one or two rect-
angular constrictions of width b and separation w, see Fig. 2. The constrictions can
be produced by different techniques as is discussed in the introduction. We are aware
that rectangular constrictions are an idealization, but they offer the most pronounced
resonant features [5, 53].

We model the electronic transport in semiconductor nanowires within the single-band
effective mass approximation. Details of our method for cylindrically symmetric systems
are given in Ref. [34]. We introduce here very shortly some terms and definitions. The
envelope functions are computed as solutions of the Schrödinger type equation[

−~2

2
∇ ·
(
M (r)−1∇

)
+ V (r)

]
Ψ(r) = EΨ(r), (2)

with scattering boundary conditions [34]. For a layered heterostructures one has to use
a position dependent effective mass tensor M (r)−1, but in the case of nanowires with
constrictions one can consider a position-independent mass tensor M . Depending on
the material and on the crystal growth orientation, one can have an isotropical effective
mass tensor, which is the case we consider in this paper. The extension of the model for
position-dependent and anisotropic effective mass tensor is also possible [54].

The scattering potential V (r) has a position dependence only inside the scattering region
z ∈ [−dz, dz] and is constant or separable in the asymptotic regions, i.e. leads |z| > dz.
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We consider here the case of constant potentials in the leads, i.e. V (r, z < −dz) = V1

in the source and V (r, z > dz) = V2 in the drain and hard-wall confinement inside the
nanowire. In the linear regime we have the same potential in the leads, i.e. V1 ' V2. The
scattering region has to include the constrictions, see Fig. 2.

Considering a cylindrical nanowire and a cylindrically symmetric scattering potential, one
can reduce the tree dimensional scattering problem (2) to a series of two-dimensional
scattering problems[

− ~2

2m∗

(
∂2

∂r2
+

1

r

∂

∂r
− m2

r2
+

∂2

∂z2

)
+ V (r, z)

]
ψ(E; r, z) = Eψ(E; r, z), (3)

defined over an unbounded domain, i.e. r ∈ [0, R], z ∈ (−∞,∞), where m = 0,±1,±2, . . .
is the magnetic quantum number and describes the θ-dependence of the scattering wave
function Ψ(r) = ψ(E; r, z)eimθ/

√
2π. Each equation (3) for a specified m can be solved

independently on other m values. In the asymptotic regions Eq. (3) is separable, so

that the solutions are in these regions combinations of the transversal modes φ
(m)
n (r)

multiplied by the incoming and outgoing plane waves along the z-direction exp(±ikzz).
Among all possible combinations, one chooses as suitable solutions the scattering states
ψ

(s)
nm(E; r, z), where the lead index s and the energy channel index n set up the in-

coming part of them. The coefficients of the outgoing combinations are the so-called
multi-channel scattering matrix elements. The same coefficients give also the tunnel-
ing probabilities T

(m)
nn′ (E) for an electron incident in the lead s on energy channel n

to be transmitted into the lead s′ 6= s on energy channel n′. A numerically efficient
method to compute the multi-channel scattering matrix S is the R-matrix formalism
[30, 31, 32, 33, 34, 35]. In general, one can not neglect in the above computation the
contributions of the evanescent channels. The R-matrix formalism provides also the scat-
tering wave functions inside the scattering region, whose localization probabilities give
decisive information about the physical meaning of the resonant states.

The transversal modes φ
(m)
n (r) and their corresponding energies E

(m)
⊥,n are solutions of

the radial equation in the leads,

− ~2

2m∗

[
d2

dr2
+

1

r

d

dr
− m2

r2

]
φ(r) = E⊥φ(r), (4)

with Dirichlet (hard-wall) boundary condition on the surface of the cylindrical nanowire,
i.e. φn(R) = 0. The transversal modes are expressed in terms of the Bessel functions of
the first kind, Jm and one has

E
(m)
⊥,n =

~2

2m∗

(xmn
R

)2

(5)

with xmn the nth root of Jm(x). These modes define the energy channels. All channels

below the energy of the incident electron, i.e. E
(m)
⊥,n < E, are called conducting or open

channels. For a given energy E there is finite number of open channels in each asymptotic
region, i.e. s = 1, 2 for source and drain, respectively, and all other channels are called
evanescent or closed channels.
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Following the Landauer formula [3, 4, 7] the linear conductance for a cylindrical nanowire
with a scattering potential V (z, r) at zero temperature is defined as

G =
2e2

h

∑
m

T (m)(E) =
2e2

h

∑
m

∑
n,n′

T
(m)
nn′ (E), (6)

where T (m)(E) =
∑

n,n′ T
(m)
nn′ (E) is the total tunneling coefficient for a fixed magnetic

quantum number m. The above formula for the linear conductance is specific for systems
that confine electrons in two spatial directions [14].

3 Nanowire with a constriction: a cylindrical quantum
point contact

We consider a nanowire with radius of R = 5 nm that contains a constriction of width
b = 8 nm, whose radius R′ can be controlled electrostatically by a gate voltage VG,
see Fig. 2. We model the constriction with a very high rectangular potential barrier, i.e.
V = 10 eV. We consider for our modeling a scattering region of 2dz = 32 nm and an
effective mass m∗ = 0.19m0.

The total tunneling coefficient T (m) as a function of the total energy E of the incident
electron for two quantum numbers m = 0 and m = ±1 are presented in Fig. 3. Without
constriction, i.e. R = R′, the tunneling coefficient increases with one each time the total
energy reaches the energy of a transversal energy channel in the leads E

(m)
⊥,n , indicated

by vertical dot-dashed lines. The tunneling coefficient for a fixed m shows deviations
from this staircase characteristic when a constriction appears. Due to the supplemental
confinement in the constriction region, R′ < R, an effective one-dimensional barrier
of the height V

(m)
n appears for every transport channel n. So, the tunneling coefficient

for every channel n, i.e. T
(m)
nn takes values close to one only for energies higher than

V
(m)
n . A good approximation for the height of this effective one-dimensional barrier is
V

(m)
n ' E

′(m)
⊥,n −E

(m)
⊥,n , where E

′(m)
⊥,n is the energy of the mode n in a infinitely long cylinder

of radius R′, see Eq. (5). So, the jumps appear approximately at E
′(m)
⊥,n , i.e. the energy

channels in the constriction, indicated with dotted vertical lines. At higher energies this
approximation breaks down, due to the finite length of the constriction. Based on this
approximation, one can also understand the energy intervals between the steps. Those
intervals increase quadratically with the energy due to the hard-wall lateral confinement
that we have considered. In turn, decreasing the radius of the confinement, the plateaus
will become longer. It is also clear, by comparing the plots in Fig. 3 that the positions
and the lengths of the plateaus depend on the magnetic quantum number m through
E
′(m)
⊥,n .

Furthermore, a resonant structure appears superimposed on the staircase characteris-
tic. The tunneling coefficient for every channel n, i.e. T

(m)
nn , behaves like in the one-

dimensional case, i.e. for energies above the barrier appear oscillations due to the Fabry-
Pérot resonances [5, 53, 10]. The tunneling peaks arise from the interference effects
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Figure 3: Tunneling coefficient T (m) versus total energy E of an incident electron for a
nanowire with a constriction with R′ = 4 nm and for magnetic quantum numbers m = 0
and m = ±1.

m = 0 E = 0.092 eV E = 0.159 eV E = 0.384 eV E = 0.453 eV

n = 1

n = 2

Table 1: The localization probabilities |ψ(s)
nm(E; z, r)|2 in the domain z ∈ [−20, 20] nm

and r ∈ [0, 5] nm for the resonant energies in Fig. 3 for m = 0. Bright colors mean high
values.

between forward and backward propagation of electrons in the constriction region. The
resonances become more obvious for higher plateaus, because the height of the effective
barrier V

(m)
n increases with the channel index n. The energy of these resonances can be

approximated as the energy levels in a rectangular infinite potential well of width b, i.e.
E

(m)
FP,i − E

′(m)
⊥,n ∝ (~2/2m∗)(i/b)2, where i is the order of the Fabry-Pérot resonance.

The localization probabilities |ψ(s)
nm(E; z, r)|2 of the electrons incident from source (s =

1) are represented as color maps in Table 1 for the resonant energies that appear in the
tunneling coefficient in Fig. 3 for m = 0. Bright colors mean high values. As one can
see, for the first two energies, E = 0.092 eV and E = 0.159 eV, there is a maximum
of the localization inside the constriction, i.e. (z, r) ∈ [−4, 4] × [0, 4] and the number
of the nodes in the z-direction corresponds to the order of the Fabry-Pérot resonance.
For the next two energies, E = 0.384 eV and E = 0.453 eV the second energy channel
inside the nanowire gets also open. For the electrons propagating within this channel, i.e.
n = 2, the localization probabilities have a maximum inside the constriction and show a
resonant behavior, i.e there is a clear zero node in the r-direction. For the electrons with
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the same energy, but propagating within the first channel, i.e. n = 1, the localization
probability does not show a resonant behavior, although there is a maximum inside the
constriction. In conclusion, for every Fabry-Pérot type resonant peak in the transmission,
only one wave function shows a resonant behavior, namely that of the last propagating
channel [5, 55].

These results for a one-dimensional electron gas with a cylindrical constriction are to be
expected, because they are similar to the quantization of the conductance in a cylindri-
cally symmetric quantum point contact [6, 14]. It is clear that using the conductance
formula (6) and considering that every magnetic quantum number m different from zero
is double degenerated, see Eq. (3), one obtains in the conductance the quantized values
2e2/h in the sequence 1, 3, 5, 6, 8, 10, ... [13], as presented in Fig. 1(b).

4 Nanowire with two constrictions. A cylindrical quan-
tum point contact with an attractive potential

We consider now the same nanowire with two constrictions as in Fig. 2. For simplicity,
the constrictions are considered identical of length b1 = b2 = 8 nm and of radius R′,
that can be varied continuously by an external gate voltage. The distance between the
constrictions is w = 8 nm. Of course, in order to remain in the coherent ballistic transport
regime, the geometrical dimensions of the constrictions and the distance between them
have to be smaller than the elastic mean free path of the conduction electrons. We model
again the constrictions by high rectangular barriers, i.e. V = 10 eV. We also consider the
total length of the scattering region 2dz = 32 nm. The scattering potential is in this case
not separable, so it mixes the energy channels n. Nevertheless, it produces conductance
quantization, too [8].

The idea of considering systems with two or more quantum point contacts was followed by
many research groups. Shortly after the first experiments on the quantum point contact
[2], the same group has measured the conductance of a double-split-gate structure, i.e.
two quantum point contacts in series [29]. For this structure an anomalous resistance due
to the 2DEG wide region between the quantum point contacts alters the conductance
quantization. The realization of two quantum point contacts in series on a nanowire
will eliminate this anomalous resistance. Another configuration of two adjacent quantum
point contacts in 2DEG was also used for studying the solid-state electron optics [11, 6].
The idea to consider a sequence of two constrictions along a quantum wire was also
exploited in the realization of single-electron transistors [56, 57, 58]. But in these systems
the active region is between the constrictions and consists in fact of a quantum dot that is
studied. The gate that is changed in the conductance measurements controls mainly the
number of the electrons inside the quantum dot, by changing the confining potential,
i.e. changing its shape. In the first experiments the gate controls simultaneously the
constrictions [56, 57] while in the other experiments the constrictions are kept by another
gates at specified values, defining in such a way the coupling between the quantum dot
and the reservoirs [58]. In the configuration proposed here, the nanowire plays a key role
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providing the confinement of the carriers in two directions without supplemental gates,
so that it offers a unique opportunity for the study of the ballistic conductance through
two quantum point contacts in series.

Figure 4: Tunneling coefficient T (m) versus total energy E of an incident electron for a
nanowire with two constrictions with R′ = 4 nm.

The total tunneling coefficient T (m)(E) for this structure is presented in Fig. 4 for
two different values of the magnetic quantum number m = 0 and m = ±1. One can
recognize the staircase structure of the tunneling coefficient, but there are clear tunneling
peaks and dips. The vertical lines have the same meanings as in Fig. 3.

In order to understand the physical meaning of these peaks and dips, we will analyze the
localization probabilities |ψ(s)

nm(E; z, r)|2 for the electrons with these energies incident
from the source, presented in Table 2. The energy of the first resonance E = 0.057
eV is located between E

(0)
⊥,1 and E

′(0)
⊥,1 . The localization probability for this energy has

a pronounced maximum between the constrictions, i.e. (z, r) ∈ [−4, 4]× [0, 5] nm. For
this energy, only one energy channels is open, so that a simple picture of non-mixing
transmission channels can be applied. In turn, the two constrictions yield an effective
double-barrier potential for the propagation within the energy channel n. The double-
barrier potential yields resonances, that appear as tunneling peaks for energies below
the height of the effective barrier V

(m)
n . This peak is very similar to the peak obtained

by McEuen [48] and interpreted in terms of a hydrogenic donor atom. The position
of this resonance with respect to the first energy channel in the nanowire can be also
approximated as the lowest energy level in a rectangular infinite well of width w, so that
E

(m)
res − E(m)

⊥,1 ∝ (~2/2m∗)(1/w)2. The number of the resonant peaks can increase with

m due to the increase of the effective potential barriers V
(m)
n . These resonances do not

appear for higher quantization plateaus because of the non-separability of the scattering
potential.

The next resonant energy E = 0.078 eV is greater than E
′(0)
⊥,1 , and the localization

probability shows two pronounced maxima over the regions of the constrictions, z ∈
[−12,−4] ∪ [4, 12] nm and r ∈ [0, 4] nm. This is a Fabry-Pérot type resonance and
its energy with respect to first energy channel in the constriction is set up by 1/b, i.e.

E
(m)
FP,1 − E

′(m)
⊥,1 ∝ (~2/2m∗)(1/b)2.

For the next two resonances E = 0.264 eV and E = 0.332 eV that correspond to the
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first two dips in the tunneling coefficient there are two energy channels open in the
nanowire, i.e. n = 1 and n = 2. The localization probabilities for the electrons with
these energies show maxima between the constrictions, i.e. z ∈ [4, 4] nm and r ∈ [0, 5]
nm for both channels. This is a difference to the Fabry-Pérot type resonances, where
only one energy channel provides the resonances.

m = 0 E = 0.057 eV E = 0.078 eV E = 0.264 eV E = 0.332 eV

n = 1

n = 2

m = 0 E = 0.384 eV

n = 1

n = 2

Table 2: The localization probabilities |ψ(s)
nm(E; z, r)|2 in the domain z ∈ [−20, 20] nm

and r ∈ [0, 5] nm for the energies of the peaks and dips in the tunneling coefficient from
4 of a nanowire with two constrictions for m = 0.

The energies of the dips are always between [E
(m)
⊥,n , E

′(m)
⊥,n ], so that the channel n is not

yet open in the constrictions. We interprete these resonances as quasi-bound states of
the evanescent channels inside the constrictions [34]. It was shown that an attractive
scattering potential either in a quantum wire [39, 40, 41, 36, 42, 43] or in a nanowire [34]
yields quasi-bound states of evanescent channels that appear as dips in the transmission
coefficient. Both constrictions play the role of only one quantum point contact between
the two reservoirs, and the piece of the nanowire between the constrictions plays the
role of an effective attractive potential, because the transversal energy channels inside
this region are lower than inside the constrictions. This interpretation is sustained also
by the fact that the localization probabilities for both channels, i.e. n = 1 and n = 2,
show a similar structure in the region between the constrictions. Both open channels in
the nanowire propagate through the constrictions as an effective quantum point contact
using the first open channel in the constrictions, but at those specific energies they reach
the quasi-bound states of the second (evanescent) channel inside the constrictions. For
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these quasi-bound states a back resonant reflection appears for both open channels. The
number of nodes in the r-direction gives the information about the evanescent channel
inside the constrictions. There is one node in the r-direction for both energies indicating
that the second energy channel in the constrictions is used. The number of the nodes in
the z-direction gives the order of the quasi-bound states of the evanescent channel. For
the first dip there is no node in the z direction for z ∈ [−4, 4] nm, while for the second
dip there is one node in the z direction. The dips are well-separated from the subband
E
′(0)
⊥,2 , so that the localization probabilities do not extend much over the region between

the constrictions. A characteristic of the quasi-bound states of the evanescent channels
is that their localizations extend much more over the region of the attractive potential
[34]. The energetical position of the dip i with respect to the evanescent subband E

′(m)
⊥,n

∆i ∝
~2

2m∗

[
x2
mn

(
1

R′2
− 1

R2

)
− i2

w2

]
(7)

is determined by the geometrical parameters R, R′ and w. In such a way, the conduc-
tance of a quantum point contact with an attractive impurity is not independent on the
quantum point contact length. In our case, the length of the effective quantum point
contact is b1 + b2 + w.

At the next energy, E = 0.384 eV, the localization probabilities differ for the energy
channels n = 1 and n = 2. Only the localization probability for the second channel
shows a resonant structure inside the constrictions, while the propagation of the electron
on the first energy channel is not resonant. We interprete this energy as a Fabry-Pérot
type resonance of the second energy channel. The node in the r-direction shows a clear
evidence of the second energy channel in the nanowire that is converted also to the
second energy channel in the constrictions.

Quantum point contacts with impurities were subjects of theoretical [44, 45, 46, 47]
as well as of experimental studies [48, 49, 50, 51, 52]. Especially, in the last decade a
new technique was developed in order to study single quantum dots. Quantum point
contacts are defined by lithography with an atomic force microscope and subsequent
wet-chemical etching, such that one quantum dot is contained within the lithographically
defined constriction [59, 49, 50, 52] The conductance resonances in Fig. 5 in Ref. [50]
could be interpreted as signature of quasi-bound states due to the evanescent channels.
This interpretation has to be treated with care because of the complexity of the structure.
In Ref. [48] it is shown that a peak in the quantized conductance can appear before the
turn-on of the first transverse mode, just similar with our result in Fig. 4. This peak is
interpreted in terms of an unwanted and uncontrollable ”hydrogenic” donor atom.

As one can see, the experimental realizations of quantum point contacts with impurities,
especially attractive impurities, introduce unwanted effects produced by supplemental
features of the system, i.e. supplemental gates in order to confine the region between the
quantum point contacts or supplemental self-organized quantum dots that also influence
the wide regions of the 2DEG, such that the interpretation of the measured conductance
is not straightforward. The nanowire with two constrictions is a much simpler structure
that could offer an ideal system for studying the quasi-bound states of the evanescent
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channels. The effective attractive potential is provided by the nanowire itself and the
transport is coherent through two quantum point contacts in series. Of course, the
region of the nanowire between the two constrictions can be regarded as a quantum
dot. The difference to the single-electron transistor studies [56, 57, 58] is that the gate
voltage does not change the alignment of the energy levels of the quantum dot with
respect to the Fermi level, but the widths of the quantum point contacts.

We present in Fig. 5 a comparison between the tunneling coefficients for a cylindrical
nanowire with a constriction and with two constrictions for the first two subbands for a
fixed magnetic quantum number m. The vertical dashed and dotted lines have the same
meanings as in Fig. 3. The influences of the geometrical parameters R, R′, b and w on
the resonant energies are also schematically indicated.

Figure 5: Tunneling coefficient T (m) for a cylindrical nanowire with one or two constric-
tions, for a specific magnetic quantum number m. The influences of the geometrical
parameters on the resonant energies are also shown.

5 Conclusions

We have studied a one-dimensional electron gas, i.e. cylindrical semiconductor nanowire,
with one or two constrictions. Following the Landauer formula, the linear conductance
at low temperature is given by the total tunneling coefficient at the Fermi energy. Using
the R-matrix formalism, we have computed the energy dependence of the tunneling
coefficient for both systems. Representing the localization probabilities at the resonant
energies we could identify the physical meaning of them. It was shown that the nanowire
with two constrictions yields a very simple and accurate system for the experimental
evidence of the quasi-bound states of the evanescent channels. These quasi-bound states
provide dips in the tunneling coefficient, an effect very well-known theoretically but
not yet evidenced experimentally. Many experiments for quantum point contacts with
impurities in 2DEG show deviations from the clear conductance quantization, that give
hints to the existence of these quasi-bound states.
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[38] Lev Baskin, Pekka Neittaanmäki, Boris Plamenevsky, and Oleg Sarafanov. Asymp-
totic Theory of Resonant Tunneling in 3D Quantum Waveguides of Variable Cross-
Section. SIAM J. Appl. Math., 70:1542, 2009.

[39] Philip F. Bagwell. Evanescent modes and scattering in quasi-one-dimensional wires.
Phys. Rev. B, 41:10354, 1990.

[40] S. A. Gurvitz and Y. B. Levinson. Resonant reflection and transmission in a con-
ducting channel with a single impurity. Phys. Rev. B, 47:10578, 1993.
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