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Abstract

We study the following nonlinear and nonlocal elliptic equation in R™
(—A)Y’u=chu?+u” in R",
where s € (0,1), n > 2s, € > 0 is a small parameter, p = 225 ¢ ¢ (0,1),

n—2s’
and h € LY(R")NL>(R"). The problem has a variational structure, and this
allows us to find a positive solution by looking at critical points of a suitable
energy functional. In particular, in this paper, we find a local minimum and
a mountain pass solution of this functional. One of the crucial ingredient is
a Concentration-Compactness principle.

Some difficulties arise from the nonlocal structure of the problem and
from the fact that we deal with an equation in the whole of R™ (and this
causes lack of compactness of some embeddings). We overcome these diffi-
culties by looking at an equivalent extended problem.







CHAPTER 1

Introduction

1.1. Fractional critical problems

A classical topic in nonlinear analysis is the study of the existence and
multiplicity of solutions for nonlinear equations. Typically, the equations
under consideration possess some kind of ellipticity, which translates into
additional regularity and compactness properties at a functional level.

In this framework, an important distinction arises between “subcritical”
problems and “critical” ones. Namely, in subcritical problems the exponent
of the nonlinearity is smaller than the Sobolev exponent, and this gives that
any reasonable bound on the Sobolev seminorm implies convergence in some
LP-gpaces: for instance, minimizing sequences, or Palais-Smale sequences,
usually possess naturally a uniform bound in the Sobolev seminorm, and this
endows the subcritical problems with additional compactness properties that
lead to existence results via purely functional analytic methods.

The situation of critical problems is different, since in this case the expo-
nent of the nonlinearity coincides with the Sobolev exponent and therefore
no additional LP-convergence may be obtained only from bounds in Sobolev
spaces. As a matter of fact, many critical problems do not possess any
solution. Nevertheless, as discovered in [12], critical problems do possess
solutions once suitable lower order perturbations are taken into account.
Roughly speaking, these perturbations are capable to modify the geome-
try of the energy functional associated to the problem, avoiding the critical
points to “drift towards infinity”, at least at some appropriate energy level.
Of course, to make such argument work, a careful analysis of the variational
structure of the problem is in order, joint with an appropriate use of topolog-
ical methods that detect the existence of the critical points of the functional
via its geometric features.

Recently, a great attention has also been devoted to problems driven by
nonlocal operators. In this case, the “classical” ellipticity (usually modeled
by the Laplace operator) is replaced by a “long range, ferromagnetic inter-
action”, which penalizes the oscillation of the function (roughly speaking,
the function is seen as a state parameter, whose value at a given point of the
space influences the values at all the other points, in order to avoid sharp
fluctuations). The ellipticity condition in this cases reduces to the validity
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6 1. INTRODUCTION

of some sort of maximum principle, and the prototype nonlocal operators
studied in the literature are the fractional powers of the Laplacian.

In this paper we deal with the problem
(1.1.1) (—A)Y’u=chu! +uP inR",
where s € (0,1) and (—A)? is the so-called fractional Laplacian, that is
u(@) — u(y)

where ¢, s is a suitable positive constant (see [21, 37] for the definition
and the basic properties). Moreover, n > 2s, ¢ > 0 is a small parameter,
0<qg<l1 p= Zf—%i is the fractional critical Sobolev exponent, and h

satisfies
(1.1.3) h € LY(R™) N L=(R™),
(1.1.4)  and there exists a ball B C R" such that iréfh > 0.

y for x € R",

Notice that condition (1.1.3) implies that
(1.1.5) he L"(R") for any r € (1,+00).

In the classical case, that is when s = 1 and the fractional Laplacian
boils down to the classical Laplacian, there is an intense literature regarding
this type of problems, see [1, 2, 3, 4, 5, 6, 9, 12, 17, 18, 20, 30, 31],
and references therein. See also [26], where the concave term appears for
the first time.

In a nonlocal setting, in [8] the authors deal with problem (1.1.1) in a
bounded domain with Dirichlet boundary condition. Problems related to
ours have also been studied in [33, 34, 36].

Furthermore, in [22], we find solutions to (1.1.1) by considering the
equation as a perturbation of the problem with the fractional critical Sobolev
exponent, that is

(—=A)u = wits  in R™.

Indeed, it is known that the minimizers of the Sobolev embedding in R"
are unique, up to translations and positive dilations, and non-degenerate
(see [22] and references therein). In particular, in [22] we used perturbation
methods and Lyapunov-Schmidt reduction to find solutions to (1.1.1) that
bifurcate from these minimizers. The explicit form of the fractional Sobolev
minimizers was found in [19] and it is given by

Cx

for a suitable ¢, > 0, depending on n and s.

(1.1.6) z(z) =

In order to state our main results, we introduce some notation. We set

_ [u(z) —u(y)]?
[ ]Hs R" . Cns//IR2n ‘:L‘—y|n+25 dxdy,
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and we define the space H® (R™) as the completion of the space of smooth
and rapidly decreasing functions (the so-called Schwartz space) with respect
to the norm [u] . gn) + [[ll 125 (gny, Where

2n
n—2s

2 =

S

is the fractional critical exponent. Notice that we can also define H*(R") as
the space of measurable functions u : R” — R such that the norm [u] fsrny

[[ul| 725 (gny 1s finite, thanks to a density result, see e.g. [23].

Given f € L8 (R”) where 3 := we say that u € H*(R") is a (weak)
solution to (—A)*u = f in R™ if

//Rzn y))yﬁf;s) — @(y)) drdy = /Rn fodx,

for any o € H*(R").
Thus, we can state the following

et

THEOREM 1.1.1. Let 0 < ¢ < 1. Suppose that h satisfies (1.1.3) and
(1.1.4). Then there exists £g > 0 such that for all € € (0,e9) problem (1.1.1)
has at least two monnegative solutions. Furthermore, if h > 0 then the
solutions are strictly positive.

This result can be seen as the nonlocal counterpart of Theorem 1.3 in
[3]. To prove it we will take advantage of the variational structure of the
problem. The idea is first to “localize” the problem, via the extension in-
troduced in [16] and consider a functional in the extended variables. More
precisely, this extended functional will be introduced in the forthcoming
formula (1.2.10). It turns out that the existence of critical points of the
“extended” functional implies the existence of critical points for the func-
tional on the trace, that is related to problem (1.1.1). The functional in the
original variables will be introduced in (1.2.2), see Section 1.2 for the precise
framework.

The proof of Theorem 1.1.1 is divided in two parts. More precisely, in
the first part we obtain the existence of the first solution, that turns out to
be a minimum for the extended functional introduced in the forthcoming
Section 1.2. Then in the second part we will find a mountain pass solution,
by applying the Mountain Pass Theorem introduced in [7].

Notice that in [22] we have proved that if h changes sign then there
exist two distinct solutions of (1.1.1) that bifurcate from a non trivial critical
manifold. Here we also show that there exists a third solution that bifurcates
from w = 0. This means that when h changes sign, problem (1.1.1) admits
at least three different solutions.

Let us point out that, when h changes sign, the solution u; . found in [22]
can possibly coincide with the mountain pass solution that we construct in
this paper. One additional information produced by Theorem 1.1.1 is that
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this solution is of mountain pass type. It would be an interesting open
problem to investigate on the Morse index of the solutions found.

So the main point is to show that the extended functional satisfies a
compactness property. In particular, for the existence of the minimum, we
will prove that a Palais-Smale condition holds true below a certain level, see
Proposition 3.2.1. Then the existence of the minimum will be ensured by
the fact that the critical level lies below this threshold.

In order to show the Palais-Smale condition we will use a version of
the Concentration-Compactness Principle, see Section 2.2, and for this we
will borrow some ideas from [28, 29]. Differently from [8], here we are
dealing with a problem in the whole of R™, therefore, in order to apply
the Concentration-Compactness Principle, we also need to show a tightness
property (see Definition 2.2.1). Of course, fractional problems may, in prin-
ciple, complicate the tightness issues, since the nonlocal interaction could
produce (or send) additional mass from (or to) infinity.

As customary in many fractional problems, see [16], we will work in an
extended space, which reduce the fractional operator to a local (but possibly
singular and degenerate) one, confining the nonlocal feature to a bound-
ary reaction problem. This functional simplification (in terms of nonlocal-
ity) creates additional difficulties coming from the fact that the extended
functional is not homogeneous. Hence, we will have to deal with weighted
Sobolev spaces, and so we have to prove some weighted embedding to obtain
some convergences needed throughout the paper, see Section 2.1.

A further source of difficulty is that the exponent ¢ in (1.1.1) is below 1,
hence the associated energy is not convex and not smooth.

In the forthcoming Section 1.2 we present the variational setting of the
problem, both in the original and in the extended variables, and we state
the main results of this paper. In particular, we first introduce the material
that we are going to use in order to construct the first solution, that is
the minimum solution. Then, starting from this minimum, we introduce
a translated functional, that we will exploit to obtain the existence of the
mountain pass solution.

1.2. An extended problem and statement of the main results

In this section we introduce the variational setting of the problem, we
present a related extended problem, and we state the main results of this
paper.

Since we are looking for positive solutions, we will consider the following
problem:

(1.2.1) (=A)’u =chul +uf  in R™
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Hence, we say that u € H*(R") is a (weak) solution to (1.2.1) if for every
v E HS(R”) we have

//R% iz |$ _))(Z(f;z = v)) dxdy = /n h(z)ul (z)v(x) dx+/ uf (z)v(z).

n

It turns out that if u is a solution to (1.2.1), then it is nonnegative in R™ (see
the forthcoming Proposition 1.2.3, and also Section 4.2 for the discussion
about the positivity of the solutions). Therefore, u is also a solution of
(1.1.1).

Notice that problem 1.2.1 has a variational structure. Namely, solutions
to (1.2.1) can be found as critical points of the functional f. : H*(R") — R

defined by
Cn,s |u ) —u(y)[?
=" dx d
//Rzn |z — y|nt2s Y

1
arEs h(z) ul™ (z) do — ] WP () da.
However, instead of working with this framework derived from Definition
1.1.2 of the Laplacian, we will consider the extended operator given by [16],
that allows us to transform a nonlocal problem into a local one by adding
one variable.

For this, we will denote by Rﬁ“ = R" x (0,+00). Also, for a point
X e Rf_“, we will use the notation X = (z,y), with x € R™ and y > 0.

Moreover, for € R™ and r > 0, we will denote by B,(z) the ball in R”
centered at x with radius r, i.e.

By(z):={2' e R": |z —2/| < r},

and, for X € R and r > 0, B} (X) will be the ball in R:"! centered at
X with radius 7, that is

BFX):={X"e R |X - X'| <r}.

(1.2.2)

Now, given a function v : R” — R, we associate a function U defined
in R?fl as
ZQS

C"vs(mz ¥ 22)nt2e)/2”

(1.2.3) U(-,2) =uxPs(,2), where Pys(x,2):=

Here ¢, s is a normalizing constant depending on n and s.
Set also a :=1 — 2s, and

1/2

(1.2.4) ] = (m/ VU2 dx> ,
Rn+1

where ks is a normalization constant. We define the spaces

Hs (RTL+1 ) W
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and
Hi R = {U = U\Rnﬂ st. U e HS (R,

(1.2.5) )
Ulz,y) = Uz, —y) a.e. in R" x R},

endowed with the norm

1/2
[Ula := <n/ y“|VU|2dX> .
R+

From now on, for simplicity, we will neglect the dimensional constants c,, s
and k. It is known that finding a solution u € H*(R™) to a problem

(=A)’u= f(u) inR"
is equivalent to find U € H(R':) that solves the local problem
div(y*VU) =0 in R}
ou
— lim y* — = .
yi10n+y ov f(U)

and that this extension is an isometry between H*(R") and H? (Riﬂ) (again
up to constants), that is,

where we make the identification u(x) = U(x,0), with U(z,0) understood
in the sense of traces (see e.g. [16] and [13]).
Also, we recall that the Sobolev embedding in H*(R") gives that

< [ul}

S||UHL2* Hs(Rn)?

(R™)
where S is the usual constant of the Sobolev embedding of H*(R"), see for
instance Theorem 6.5 in [21]. As a consequence of this and (1.2.6) we have
the following result.

PROPOSITION 1.2.1 (Trace inequality). Let U € HE(RY). Then,

(1.2.7) SIUC 01721 gy < UG-

Therefore, we can reformulate problem (1.2.1) as
div(y*VU) =0 in R,
(1.2.8)

li 8U— h
_yi»%lv“y = € u+—|—u+

In particular, we will say that U € H. S(R"*1) is a (weak) solution of problem
(1.2.8) if

(1.2.9) /R VU)X = [ (ch@UL(@,0)+ UL (. 0)p(a,0)
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for every ¢ € HS(RQ‘_H). Likewise, the associated energy functional to the
problem (1.2.8) is

1 a €
F.(U) ;:2/n+ly |VU|?dX — .| /nh(x)Ufl(x,O) dx
(1.2.10) R '
— m e U_€+1(¢’E,O) dx.

Notice that for any U,V € HZ(R"™) we have

(G(U),V) = / Yy VU, VV)dX
Ry

(1.2.11)
e[ W@V (2,0)V(z,0)dz - / U? (2,0) V(x,0) da.
RTL n
Hence, if U is a critical point of JF, then it is a weak solution of (1.2.8),
according to (1.2.9). Therefore u := U(+,0) is a solution to (1.2.1).
Moreover, if U is a minimum of JF;, then u(x) := U(x,0) is a minimum
of fe, thanks to (1.2.6), and so u is a solution to problem (1.2.1).
In this setting, we can prove the existence of a first solution of problem
(1.2.8), and consequently of problem (1.2.1).

THEOREM 1.2.2. Let 0 < ¢ < 1 and suppose that h satisfies (1.1.3) and
(1.1.4). Then, there exists g > 0 such that F. has a local minimum U, # 0,
for any e < 9. Moreover, U. — 0 in HS(R') when e — 0.

We now set u. := Uc(+,0), where U; is the local minimum of F. found
in Theorem 1.2.2. Then, according to (1.2.6), u. is a local minimum for {,
and so a solution to (1.2.1).

Notice that, again by (1.2.6),

[UE]HS(R'IL) - [Us]a — 0 as € — 0.

In this sense, the solution u. obtained by minimizing the functional bifur-
cates from the solution u = 0.

Furthermore, u. is nonnegative, and thus u. is a true solution of (1.1.1).
Indeed, we can prove the following:

PROPOSITION 1.2.3. Let u € H*(R™) be a nontrivial solution of (1.2.1)
and let U be its extension, according to (1.2.3). Then, u >0 and U > 0.

PrROOF. We set u_(z) := —min{u(z),0}, namely u_ is the negative
part of u, and we claim that
(1.2.12) u_ =0.

For this, we multiply (1.2.1) by u— and we integrate over R™: we obtain

/n(—A)Su u_dr = /n (eh(z)ud +uh) u_dz = 0.
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Hence, by an integration by parts we get

(12.13) [, ) o) =) g g,

|z — y[r 2

Now, we observe that

(1.2.14) (u(x) —u(y))(u-—(2) = u—(y)) = lu—(z) —u_(y)*

Indeed, if both u(z) > 0 and u(y) > 0 and if both u(z) < 0 and u(y) < 0 then
the claim trivially follows. Therefore, we suppose that u(x) > 0 and u(y) < 0
(the symmetric situation is analogous). In this case

(u(z) = u(y))(u—(2) = u-(y)) = —(u(z) — u(y))u(y)
:—u(a:)u(y)—Hu( )12 = Juy)f? = Ju-(z) — u-(y)?,

which implies (1.2.14).
From (1.2.13) and (1.2.14), we obtain that

lu_(z) — u_(y)|?
<
//R?" |:c — |n+23 dedy <0

and this implies (1.2.12), since u € H*(R"). Hence u > 0. This implies that
U > 0, being a convolution of u with a positive kernel. ([

We can also prove the existence of a second solution of problem (1.2.8),
and consequently of problem (1.1.1).

THEOREM 1.2.4. Let 0 < q < 1 and suppose that h satisfies (1.1.3) and
Q.1.4). Then, there exists €y > 0 such that F. has a mountain pass solution
U: #0, for any € < gp.

To prove the existence of a second solution of problem (1.2.8) we consider
a translated functional. Namely, we let U; be the local minimum of the
functional (1.2.10) (already found in Theorem 1.2.2), and we consider the
functional J; : Hj(Rfrl) — R defined as

1
(1.2.15) J.(U) = / Yy VU dX — [ G(z,U(z,0))dz,
2 Jpr e
where
U
G(z,U) ::/ g(x,t)dt,
0
and

(1.2.16) g(x,t) := {5’1(5’7)(((]5 +1)1 - U+ (U +t)P = UL, ift >0

0 if t <0,
Explicitly,
h
Ge,0) = M8 (0 0y U - en@yvsU,
(1.2.17) 4 .
+ —— ((U: + Up Pt —Uurt) —vru,.

p+1
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Moreover, for any U,V € Hj(RiH), we have that

(1.2.18) (IL(U),V) = / " y"(VU,VV)dX — / g(z,U(x,0)) V(z,0)dx.
R R"

Notice that a critical point of (1.2.15) is a solution to the following problem
div(y?VU) =0 in R7H,

. U
—yli)%l+y ey =g(z,U(,0)).

(1.2.19)

One can prove that a solution U to this problem is positive, as stated in
the forthcoming Lemma 1.2.5. Therefore, U := U, + U > 0, thanks to
Proposition 1.2.3. Also, U will be the second solution of (1.2.9), and so U :=
U(-,0) will be the second solution to (1.1.1).

LEMMA 1.2.5. Let U € HER), U # 0, be a solution to (1.2.19).
Then U is positive.

PROOF. We first observe that, if U is a solution to (1.2.19), then u :=
U(-,0) is a solution of

(1.2.20) (—A)°u=g(x,u) inR".

Now, we set u_(z) := —min{u(z),0}, namely u_ is the negative part of u,
and we claim that

(1.2.21) u_ = 0.

For this, we multiply (1.2.20) by u_ and we integrate over R™: we obtain

/n(—A)Su u_dr = /n g(z,u)u_ dx.

Recalling the definition of g in (1.2.16), we have that

/ g(z,u)u_dz =0.

Hence, by an integration by parts we get

(1.2.22) //RQ" (u(z) — ug))(u;(x) —u-) dy =0,

+2

Now, we observe that

(1.2.23) (u(@) = u(y))(u-(2) = u-(y)) > lu—(z) — u-(y)*.
Indeed, if both u(z) > 0 and u(y) > 0 and if both u(z) < 0 and u(y) < 0 then

the claim trivially follows. Therefore, we suppose that u(x) > 0 and u(y) < 0
(the symmetric situation is analogous). In this case

(u(z) = u(y))(u—(2) = u-(y)) = —(u(z) = u(y))u(y)
= —u(@)uly) + [u)]* = [uy)* = [u—(z) - u_(y)]?,
which implies (1.2.23).
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From (1.2.22) and (1.2.23), we obtain that

lu_(z) — u_(y)[?
drdy <0
//R |x— s OO

and this implies (1.2.21), since u € H*(R™). Hence u > 0. This implies that
U > 0, being a convolutlon of u with a positive kernel. O

The next sections will be devoted to the proof of Theorems 1.2.2 and
1.2.4.

More precisely, for this goal some preliminary material from functional
analysis is needed. The main analytic tools are contained in Chapter 2.
Namely, since we will work with an extended functional (that contains
also terms with weighted Sobolev norms), we devote Section 2.1 to show
some weighted Sobolev embeddings and Section 2.2 to prove a suitable
Concentration-Compactness Principle.

The existence of a minimal solution is discussed in Chapter 3. In par-
ticular, in Section 3.1 we deal with some convergence results, that we need
in the subsequent Section 3.2, where we show that under a given level the
Palais-Smale condition holds true for the extended functional. Then, in
Section 3.3 we complete the proof of Theorem 1.2.2.

In Chapter 4, we discuss some regularity and positivity issues about the
solution that we constructed. More precisely, in Section 4.1 we show some
regularity results, and in Section 4.2 we prove the positivity of the solutions
to (1.1.1), making use of a strong maximum principle for weak solutions.

Then, in Chapter 5 we deal with the existence of the mountain pass
solution. We first show, in Section 5.1, that the translated functional intro-
duced in Section 1.2 has U = 0 as a local minimum (notice that this is a
consequence of the fact that we are translating the original functional with
respect to its local minimum).

Sections 5.2 and 5.3 are devoted to some preliminary results. We will ex-
ploit these basic lemmata in the subsequent Section 5.4, where we prove that
the abovementioned translated functional satisfies a Palais-Smale condition.

In Section 5.5 we estimate the minimax value along a suitable path
(roughly speaking, the linear path constructed along a suitably cut-off min-
imizer of the fractional Sobolev inequality). This estimate is needed to
exploit the Mountain Pass Theorem via the convergence of the Palais-Smale
sequences at appropriate energy levels. With this, in Section 5.6 we finish
the proof of Theorem 1.2.4.



CHAPTER 2

Functional analytical setting

2.1. Weighted Sobolev embeddings

For any r € (1,4+00), we denote by L’"(RT}FH, y®) the weighted Lebesgue
space, endowed with the norm

1/r
HUHLr(RQH,ya) = </}R”+1 yulr dX) :
+

The following result shows that H;(RQL_H) is continuously embedded in
L2~/(R1+1 ya)'

PROPOSITION 2.1.1 (Sobolev embedding). There exists a constant S>0
such that for all U € HZ(RTHY) it holds

1/2y 1/2
(2.1.1) (/ Y |U> dX) <S5 (/ Y| VU |? dX> ,
R:L:kl R'r;fﬁl

where v =1+

n—2s

PROOF. Let us first prove the result for U € C§°(R"™1). If s € (0,1/2),
inequality (2.1.1) is easily deduced from Theorem 1.3 of [14]. By a den-
sity argument, we obtain that inequality (2.1.1) holds for any function
U e H;(R1+l). Indeed, if U € Hj(RT‘l), then there exists a sequence
of functions {Uy}ren € C§°(R™1) such that Uy converges to some U in
H?(R"™1) as k — oo, where U = U in R and U is even with respect to
the (n + 1)-th variable. Hence, for any k, we have

1/2~
[ovwax) <s( [ vopa
R R+

A 1/2
<8 </ y“\VUﬁdX) :
Rn+1

Moreover, given two functions of the approximating sequence, there holds

(/ Y| Uy, — U |* dX) <8 </ Y V(U — Un))? dX) — 0,
R’ffl Rn+1

15

1/2

(2.1.2)
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and thus, up to a subsequence,

Uy — U in L2 (R}, y%),

U — U a.e. in R'frl.

Hence, by Fatou’s Lemma and (2.1.2) we get

1/2v
(/RM yalUIZ"’dX> = (/RM y“IUIZde>
+ +
1/2~
< lim (/ y“|Uk\27dX>
k—-+oco Ri’"’l
1/2
y“|VUk|2dX>
+1

< lim S (/
(2.1.3) k=too \Jry

. 1/2
< lim S(/ |y|“|VUk|2dX>
k—4o00 Rn+1

. B 1/2
=S(/ |y|a|vv|2dX>
Rn+1
1/2
S<2/ y“|VU|2dX> ,
Ri“

which shows that Proposition 2.1.1 holds true for any function U € H? (R,
up to renaming S.

On the other hand, the case s = % corresponds to the classical Sobolev
inequality, so we can now concentrate on the range s € (1/2, 1), that can be
derived from Theorem 1.2 of [25] by arguing as follows.

Let us denote

1/2~

w(X) == ly|*.
Thus, it can be checked that
(2.1.4) w € A, for every g € (2 —2s,2],

where A, denotes the class of Muckenhoupt weights of order ¢. Since in
particular w € Ag, by Theorem 1.2 of [25], we know that there exist positive
constants C' and § such that for all balls By ¢ R"!, all u € C§°(Bg) and
all v satisfying 1 < v < ”TH + 4, one has

(2.1.5)

1 , 1/2v 1 , 1/2
U deX) < CR< VU de) .
(w(BR> /BR‘ | (@) Jy, VU
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In particular, it yields
w(Be) = [ lypax - i de dy
Bg ]2 +y2 <R?
— / |§|aRn+l+a d€ dn — CRa+n+l —_ CR2—25+TL

In2+€2<1
with C independent of R. Thus,
1

Rw(Br)?>» 2 =CR )

and plugging this into (2.1.5) we get

1/2y (1—7)(2—2s+n) 1/2
(/ ]U|27de) <CRYTUE </ |VU\2de) ,
Br Br

where C'is a constant independent of R. In particular, if we set v = 1+£,
then

1 1+(1*’Y)(§;25+n)

14 (I1—=9)(2—2s4+n) _o,
2y
and the inequality holds for every ball with the same constant. It remains
to check that this value of v is under the hypotheses of Theorem 1.2 of [25],
that is, 1 < v < ”TH + 9. Keeping track of ¢ in [25], this condition actually
becomes

n—+1

I<yS ——5
K n+1—%’

for every ¢ < 2 such that w € A,. Thus, by (2.1.4), we can choose any
q € (2—2s,2). Since 7 is clearly greater than 1, we have to prove the upper
bound, that is,

n+1

~
n—2 n-+ 737

1+

but this is equivalent to ask

n—2s+2
< - - =
qx n1

Since we can choose ¢ as close as we want to 2 — 2s, this inequality will be

true whenever
n—2s+2
2—2s < ———,
n—+1

which holds if and only if s > % Summarizing, we have that

1/2y 1/2
(2.1.6) (/ |y|“|U|27dX> <C (/ |y|“VU|2dX> ,
Bgr Br
where v = 1—|—# and C'is a constant independent of the domain. Choosing

R large enough, it yields

1/2v 1/2
(2.1.7) </ ly||U > dX) <C (/ ly|*|VU|? dX) :
Rn+1 Rn+1
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Consider now U € H, j(R’frH). We perform the same density argument as in
the case s € (0,1/2), with the only difference that instead of (2.1.3) we have

1/2v 1/2y
(/ y“|U|2VdX> :</ y“|0|27dx>
R1+1 R1+1

1/2~
< lim (/ y“|Uk|2WdX>
k—+o0 RT—I

1/2~
< lim ( / |y|aUk|27dX)
k——+o0 Rn+1

A 1/2
< lim s(/ y|“|VUk|2dX)
k—+o00 Rn+1

R B 1/2
=s(/ |y“|VU|2dX)
Rn+1
1/2
S<2/ ya|VU|2dX> . 0
Rn+1

+

We also show a compactness result that we will need in the sequel.
More precisely, we prove that H (Rﬁ“) is locally compactly embedded in
LQ(RT'l, y®). The precise statement goes as follows:

LEMMA 2.1.2. Let R > 0 and let § be a subset of H(R'YY) such that

sup/ Y| VU 2 dX < +oo.
Ued JRT

Then J is precompact in LQ(BE, ye).

ProoOF. We will prove that J is totally bounded in LQ(BE, y®), i.e. for
any € > 0 there exist M and Uy,...,Uy € L?(Bf,y?%) such that for any
U € J there exists i € {1,..., M} such that

(2.1.8) ||U7;_U|‘L2(B§,ya) <6.

For this, we fix € > 0, we set

(2.1.9) A= sup/ Y| VU[*dX < 400
Ued JRYH!

and we let

b

2 1 =17 =D (a+1D)

(2.1.10) n = 8(“) i :
2524 \ |Bg|

where v and S are the constants introduced in the statement of Proposition
2.1.1, and |Bpg| is the Lebesgue measure of the ball Br in R".
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Now, notice that
(2.1.11) if X € B N{y >n} then y* > min{n®, R*}.

Indeed, if a > 0 (that is s € (0,1/2]) then y* > n®, while if a < 0 (that is
s € (1/2,1)) then we use that y < R, and so y* > R®, thus proving (2.1.11).
Analogously, one can prove that

(2.1.12) if X € Bf;N{y >n} then y* < max{n?, R*}.

Therefore, using (2.1.11), we have that, for any U € §,

A> / Y| VU2 dX > min{na,R“}/ IVU|? dX.
BEn{y=n} Bfn{y=n}

Hence,

/ IVU|?dX < +o0
BEn{y>n}

for any U € J. So by the Rellich-Kondrachov theorem we have that J is
totally bounded in LQ(BE N{y > n}). Namely, there exist Uy,..., Uy €
L?(B{ N{y > n}) such that for any U € J there exists i € {1,..., M} such
that

52

(2.1.13) 10 = Ull2sgotwznd) < 5o oy

Now for any ¢ € {1,..., M} we set

o L ify >,
0 if y <n.

Notice that U; € L*(Bj,y®) for any i € {1,...,M}. Indeed, fixed i €
{1,..., M}, we have that

/ U2 dX = / ya|Ui|2dX+/ Y| Ui |* dX
Bt Bhn{y<n} BEn{y>n}

R
= 0+/ YU 2 dX
BEn{y>n}

< max{na,Ra}/ U2 dX < o0,
BEn{y>n}

thanks to (2.1.12) and the fact that U; € L*(By N{y > n}) for any i €
{1,...,M}.

It remains to show (2.1.8). For this, we first observe that
(2.1.14)

1U: = Ul ywpax + [ y°|U; — U2 dX.

BEn{y>n}

B} ye :/
wv) B ngy<n)
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Using the Holder inequality with exponents v and % and Proposition 2.1.1
and recalling (2.1.9) and (2.1.10), we obtain that
a(y—1)

/ yUPdx = / Y UPy 7 dX
Bhn{y<n} Bfn{y<n}

1 =1
v Y
< / Y |U)? dX / y*dX
Bin{y<n} Bfn{y<n}
y—1
N B v (at)(v=1)
< 52/ Yy |VU|? dX (' Rl ) T
R1+1 a + 1
|Br|\ ™7 @mo-n
. (a+1)(y—1)
< S%4 BRI 7
S (a + 1) T
_ €
= 5
Moreover, making use of (2.1.12) and (2.1.13), we have that
B - 2
/ yo|U; — U2 dX < max{n®, R%} U; — U2 dX < =
BEn{y>n} BEn{y=n} 2
Plugging the last two formulas into (2.1.14), we get
2 2
2 &8 _ e
|Us — U||L2(Bg7ya) < o + 5 =
which implies (2.1.8) and thus concludes the proof of Lemma 2.1.2. 0

2.2. A Concentration-Compactness Principle

In this section we show a Concentration-Compactness Principle, in the
spirit of the original result proved by P. L. Lions in [28] and [29]. In par-
ticular, we want to adapt Lemma 2.3 of [29]. See also, [3, 32], where this
principle was proved for different problems.

For this, we recall the following definitions:

DEFINITION 2.2.1. We say that a sequence {Uy}ren is tight if for every
1 > 0 there exists p > 0 such that

/ Y| VULI?dX <n for any k.
RYTN\BSF

DEFINITION 2.2.2. Let {u}reny be a sequence of measures on a topo-
logical space X. We say that p converges to p in X if and only if

tm [ odu = [ odn
k—+oo J x X
for every ¢ € Cy(X).

This definition is standard, see for instance Definition 1.1.2 in [24]. In
particular, we will consider measures on R™ and RT‘I.
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PROPOSITION 2.2.3 (Concentration-Compactness Principle). Let {Uj }ren
be a bounded tight sequence in Hj(Rfrl), such that Uy converges weakly to
U in HS(RQ‘_H). Let p,v be two nonnegative measures on R?fl and R™
respectively and such that

221 Ii a 2 =
(2.2.1) Jm VU = p
and

2.2.2 li %=
(2:2.2) i |Uk(,0)% = v

in the sense of Definition 2.2.2.
Then, there exist an at most countable set J and three families {x;};cs €

R™, {vj}jer, {kj}jes, v, i = 0 such that

(1) v =|U(z,0)* + Zuj&cj,
jeJ
(i) = y*[VUP + D 1i0(s,.0);
jedJ

(iil) pj > SV?/Q: forall j € J.

PROOF. We first suppose that U = 0. We claim that
(2.2.3)

2/2;
</ (2, 0)]% dV) <C - ©*dp, for any ¢ € C§°(RT),
+

for some C' > 0. For this, let ¢ € CSO(R:‘_H) and K :=supp(¢). By
Proposition 1.2.1, we have that

e2a) ([ 1et0@o)
for a suitable positive constant C. By (2.2.2), we deduce

25t [ @U@ OP = [ e 0P dn

2/2%
Qde) < [ IV ix.
Rf'l

On the other hand, the right hand side in (2.2.4) can be written as

/ YV (U dX —/ VU dX + / YUR|Vpf? dX
Rn+1 R:L:‘—l R1+1

+

(2.2.6) +2/ B yro U (Vo,VU) dX.
)

Now we observe that
(2.2.7) [Ukla < C

for some C' > 0 independent of k, and so, by Lemma 2.1.2, we have that, up
to a subsequence,

(2.2.8) Uy converges to U = 0 in L2

2 (R y%) as k — oo,
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Therefore,

k—+oo Jpnt+l

(2.2.9) lim Yy UL Ve?dX < C lim / Yy U2 dX = 0.
:ﬁ k—+oco J i

Also, by the Hélder inequality and (2.2.7),

/R”“ Y4 Uk (Vo,VUg) dX

+

1/2
< / Yo VU dX / YVl U dX
Ri+1 R:l_+1
1/2 1/2
< o[ vt (/ ya|Uk|2dX)
]Ri“ K
1/2
< c(/ y“|Uk|2dX) ,
K

where C' may change from line to line. Hence, from (2.2.8) we have that

1/2

lim Yo Uk (Vo,VUg) dX = 0.
k——+oc0 Ri+l

Thus, plugging this and (2.2.9) into (2.2.6), and using (2.2.1), we obtain

lim Y|V (U dX = ” du.

k—+oco Rn+1 Rn+1

Therefore, taking the limit in (2.2.4) as k — +oo, and using (2.2.5), we get

(/n lo(z,0)]% dy) C/ o2 du, for all p € C§° (R,

which shows (2.2.3) in the case U = 0.
Let us consider now the case U # 0. First, we define a function Vj :=
Uk — U, and we observe that V; € H3(R:™), and

(2.2.10) Vj. converges weakly to 0 in HZ(R"™) as k — +oo.

Also, we denote by

(2.2.11) 7= lim |Vi(z,0)%
k—o0

and Q= klim YV V|2,
—0Q0

where both limits are understood in the sense of Definition 2.2.2. Then, we
are in the previous case, and so we can apply (2.2.3), that is
(2.2.12)

2/2;
(/ [l 0) dﬁ) < C/Rnﬂ GPdi,  for all g € CO(RTHY).
+
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Furthermore, by [11], we know that
i / |(90Vk)(x’ 0)|2: do = lim / |(QPU1€)($7 O)|2§ d$—/ |(‘PU)($7 0)|2; dz,
k—oo Jrn k—oo Jrn R
that is, recalling (2.2.11),

[ oo ar= [ po)

Therefore
(2.2.13) v=v+|U(z,0)
On the other hand,

/ Y o? | VU2 dX :/ y“apQNU]ZdX+/ Y O* IV Va2 dX
RZ+1 Ri+1 Ri+l

2 g — / (U (, 0)[% da.
R?L

2

+2/ Y o* (VVi, VU) dX.
R+

Now we take the limit as k — o0, we use (2.2.2), (2.2.11) and (2.2.10),
and we obtain

2 a, 2 2 2 g~
dp = dXx d
/Riﬂso i /Riﬂy@IVUI +/Ri+1s0 i,
i.e.,

(2.2.14) p= i+ y*| VU

Now, since inequality (2.2.12) is satisfied, we can apply Lemma 1.2 in
[28] to 7 and fi (see also Lemma 2.3 in [29]). Therefore, there exist an at
most countable set J and families {z;};c; € R", {vj}jer, {1j}jes, withv; >
0 and p; > 0, such that

V= Z yjéxj and ﬂ = Z Mja(xj,O)'
jeJ jed
So the proof is finished, thanks to (2.2.13) and (2.2.14). O






CHAPTER 3

Existence of a minimal solution and proof of
Theorem 1.2.2

3.1. Some convergence results in view of Theorem 1.2.2

In this section we collect some results about the convergence of sequences
of functions in suitable L"(R™) spaces. We will exploit the following lem-
mata in the forthcoming Section 3.2, see in particular the proof of Proposi-
tion 3.2.1.

The first result that we prove is the following:

LEMMA 3.1.1. Let vy € L% (R, [0,4+00)) be a sequence converging to
some v in L% (R™). Then

2

(3.1.1) klim lvl(z) — v¥(z)| @ dz =0
—+00 JRn

(3.1.2) and  lm | [of(2) - WP ()| 7 dx = 0.
—+00 JRn

Proor. For any t > —1, let

(87— 1)
t) = —7-~"——
sy =
We have that (14 ¢)? =1+ gt + o(t) for ¢ close to 0, and therefore
gt + o(?)]
t) = LT

as t — 0. In addition, f(—1) =1 and
tl}gloo f(t) =1L
As a consequence, we can define

L := sup f(t)
t>—1

and we have that L € [1,+00). Now we show that
(3.1.3) la? — b7 < L|a — b|?

for any a, b > 0. To prove this, we can suppose that b # 0, otherwise we are
done, and we write ¢ := ¢ — 1. Then we have that

la? — b1 = b7|(1 4+ t)7 — 1] < Lb?|t|? = L|a — b|Y,
which proves (3.1.3).

25
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As a consequence of this and of the convergence of vy, we have that
2% .
/ vg(@) — vi(2)] 0 da < L/ g (z) — v(x)|* dz — 0,
n R"

as k — 400, which establishes (3.1.1). Now we prove (3.1.2). For this,
given a > b > 0, we notice that

a
al — P = p/ =1 dt < paP~(a —b) < pla+ b’ (a —b).
b

By possibly exchanging the roles of a and b, we conclude that, for any a,
b >0,

la? — 0P| < p(a -+ b)P~ta — b|.
Accordingly, for any a, b > 0,

PP [T < pis (adb) iE ja—b|THE = it (ab) TR |q—b|TES

We use this and the Holder inequality with exponents ”1523 and Zt—g‘z to
deduce that

/ | (z) — vp(x)}% dx
R’ﬂ

2n

8sn
< pm / (Uk-(x) + U(LL’)) (n—2s)(n+2s)
Rn

2n 2n % 2n :-T»%
< prFzs (/ (vg(z) + v(z)) "2 dx) </ ok () — v(z)|"—= dx)
n Rn

vg(z) — v(z)|% dx

= p"+23||’0k+’0”L2§(Rn) ||'Uk _UHLQ;(R")'

From the convergence of vg, we have that [|vg + vl ;21 gy < [J0kll 2z gey +
[0l L2t gy 1s bounded uniformly in &, while [[vg — v]| 25 gy in infinitesimal
as k — 400, therefore (3.1.2) now plainly follows. O

Next result shows that we can deduce strong convergence in L% (R™)
from the convergence in the sense of Definition 2.2.2.

LEMMA 3.1.2. Let vy € L% (R",[0,400)) be a sequence converging to

. 2 .
some v a.e. in R". Assume also that v,* converges to v% in the measure
sense given in Definition 2.2.2, i.e.

(3.1.4) lim vzzgodac:/ v2pdo
k—+0co JRrn n

for any ¢ € Ch(R™).
In addition, assume that for any n > 0 there exists p > 0 such that

(3.1.5) / vi; (x)dz <.
R™\B,

Then, vy — v in L% (R™, [0, 4+00)) as k — +oo.
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PRrROOF. First of all, by Fatou’s lemma,
. 2% *
(3.1.6) lim vt dr > v% dz.
k—>+00 ]Rn n

Now we fix n > 0 and we take p = p(n) such that (3.1.5) holds true. Let ¢, €
C3°(Bp+1,10,1]) such that ¢, =1 in B,. Then, by (3.1.5)

/vi:da:</ vi:dx—Fné/R vi:gppdx—kn.

P
Hence, exploiting (3.1.4),
lim vz: dr < lim U,z:gop dr+n= / UQ;QDP dxr +n.
k—+oco Jrn k—+oco Jrn Rn
Since ¢, < 1, this gives that
. 23 2%
lim vy dxg/ v dx + 1.
k—-+o00 R n
Since 1 can be taken arbitrarily small, we obtain that
lim vZ: dr < / v%s dax.
k?—>+OO R” n
This, together with (3.1.6), proves that
i % — Ik 2% 2 o 2
kllglliloo Hvk”L2§ (R™) - kl{l}}oo Rn vk: dr = /Rn v de = H,UHL2§ (Rn)’

This and the Brezis-Lieb lemma (see e.g. formula (1) in [11]) implies the
desired result. 0

3.2. Palais-Smale condition for F;

In this section we show that the functional ¥, introduced in (1.2.10)
satisfies a Palais-Smale condition. The precise statement is contained in the
following proposition.

PROPOSITION 3.2.1 (Palais-Smale condition). There ezists C,c; > 0,
depending on h, q, n and s, such that the following statement holds true.
Let {Uptreny C HS(RTTY) be a sequence satisfying
(i) lim F(Uk) = ce, with
k—+4o00

— +1 n
(3.2.1) Ce + c1e/7 + Cera < 5527
n
where v = 1 + n—223
Proposition 1.2.1,
(ii) lim FL(Uy) =0.
k—+o00

and S is the Sobolev constant appearing in

Then there exists a subsequence, still denoted by {Uy}ren, which is strongly
convergent in HS(R'TT) as k — +oo.
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REMARK 3.2.2. The limit in ii) is intended in the following way

. ’
L T O ey ), gt
— lm swp @0V =
k——+o00 VeHg(Ri"'l)
[Vla=1

where L(Hj(RiH),Hj(RiH)) consists of all the linear functional from
X AN )
A3 RY) in H(RTH).

First we show that a sequence that satisfies the assumptions in Propo-

sition 3.2.1 is bounded.

LEMMA 3.2.3. Let e, k > 0. Let {Ug}tren C Hj(RﬁH) be a sequence
satisfying

(3.2.2) F(Up)|+ sup  [(FLUk), V)| <k,
VEHg(RTl)
[V]a=1
for any k € N.
Then there exists M > 0 such that
(3.2.3) [Ugla < M

PROOF. If [Ux], = 0 we are done. So we can suppose that [Uy], # 0 and
use (3.2.2) to obtain

|Fo(Uk)| < K, and ‘ <(Ug), Ux/[Ugla >|

Therefore, we have that
1
(3.2.4) Fe(Uk) — m@é(Uk), Uk) < & (1+ [Ukla) -
On the other hand, by the Holder inequality and Proposition 1.2.1, we obtain

F.(Uy) - pilw;(Uk), UL)

= (5 2 N R q+1
N (2 p+1>/Rn+1y [VU["dX E( +1 p—|—1>/ h(z)(Uk)$™ (z,0) d

(i—pil)[1 sc( - p+1)nnp NG

From this and (3.2.4) we conclude that [Ug], must be bounded (recall also
(1.1.5) and that ¢+ 1 < 2). So we obtain the desired result. O

In order to prove that &F. satisfies the Palais-Smale condition, we need to
show that the sequence of functions satisfying the hypotheses of Proposition
3.2.1 is tight, according to Definition 2.2.1.

First we make the following preliminary observation:
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LEMMA 3.2.4. Letm := %. Then there exists a constant C = C(n, s, p, q, |l Lm@ny) >
0 such that, for any o > 0,
s 1 1 ~ ptl
7ﬂ”k”<mu—z>mhmmw“>—&p«

PROOF. Let us define the function f : (0,+00) — R as

S 1 1
fla)im et —coa™, o= i (g g Il

Differentiating, we obtain that
fl(@) = a?((p+ Dera?™ " — (g + 1)ea),

and thus, f has a local minimum at the point

1
_ . co(q+1)\ e
=c3zer—a, c3=-c3(n,s,p,q,|h|pmnEwny) = —/———= .
@i e, o= calnys g o) = (2EY
Evaluating f at @, we obtain that the minimum value that f will reach is

ptl
f(@) = cagia,

with ¢4 a constant depending on n, s, p, ¢ and [|h||pmgn). Therefore, there
exists C = C(n, s,p,q, ||h]|Lm(rny) > 0 such that

_ ptl
fla) =2 f(@) 2 —Cev=d,
for any o > 0, and this concludes the proof. O

The tightness of the sequence in Proposition 3.2.1 is contained in the
following lemma:

LeEMMA 3.2.5 (Tightness). Let {Uy}tren C HE(RTY) be a sequence sat-
isfying the hypotheses of Proposition 3.2.1.
Then for all m > 0 there exists p > 0 such that for every k € N it holds

/ Y| VUL? dX +/ (UR)% (2,0) da < 7.
RYTIN\BY RM\{B,N{y=0}}

In particular, the sequence {U}ren is tight.

PROOF. First we notice that (3.2.2) holds in this case, due to condi-
tions (i) and (ii) in Proposition 3.2.1. Hence, Lemma 3.2.3 gives that the
sequence {Uy }ren is bounded in HE (R, that is [Uy], < M. Thus,

Uy—=U in Hj(RiH) as k — +o0

(3.2.5) .
and Uy — U a.e. in R’}f as k — +oo.

Now, we proceed by contradiction. Suppose that there exists g > 0
such that for all p > 0 there exists k = k(p) € N such that
(3.2.6) / Y|\ VUL|? dX +/ (Uk)i(x,O) dx = np.
Ri+l\B+

p RA\{B,n{y=0}}
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We observe that
(3.2.7) k— 400 as p— +oo.

Indeed, let us take a sequence {p;};cn such that p; — +oo as i — 400, and
suppose that k; := k(p;) given by (3.2.6) is a bounded sequence. That is,
the set F':= {k; : i € N} is a finite set of integers.

Hence, there exists an integer k* so that we can extract a subsequence
{ki, }jen satisfying k;, = k* for any j € N. Therefore,

(328) / y“|VUk*|2 dX+/ (Uk*)ig(ﬂﬁ,O) dx > Mo,
RIF\BY, RM\(By,, N{y=0}}

for any j € N. _
But on the other hand, since Uy belongs to Hg(R:™) (and so Uy«(+,0) €
L% (R™) thanks to Proposition 1.2.1), for j large enough there holds

/ Yo VU 2 dX +/ (V)% (2,0)dz < ™,
RIFN\BY, R™\{By, 1{y=0}} 2

which is a contradiction with (3.2.8). This shows (3.2.7).

Now, since U given in (3.2.5) belongs to € HZ(R™), by Proposi-
tions 2.1.1 and 1.2.1, we have that, for a fixed ¢ > 0, there exists r. > 0
such that

/ Y| VU|? dX+/ YU > dX+/ U (z,0)|% dz < e.
RYTN\BL RYFN\BL R\ {B.N{y=0}}

Notice that
(3.2.9) re — +o00 as e — 0.

Moreover, by (?.2.3) and again by Propositions 2.1.1 and 1.2.1, we obtain
that there exists M > 0 such that

(3.2.10)/ y“|VUk|2dX+/ y“|Uk|27dX+/ |Uj(2,0)[% da < M.
Ri+1 R:‘L:'—l Rn

Now let j. € N be the integer part of % Notice that j. tends to +oo
as € tends to 0. We also set

Il = {(:c,y) ER?»+1:T+Z < |(m,y)| <T+(l+1)}7 l:0717 7j€'
Thus, from (3.2.10) we get

jit
(jg + 1)5 > ?E
Je
> Y [vuraxs [ppaxcs [ e oPid).
1=0 I I ILn{y=0}
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This implies that there exists [ € {0,1,---,j.} such that, up to a subse-
quence,

(3.2.11) /y“|VUk|2dX+/ y"|Uk|27dX+/ Ui (z,0)|% dz < e.
Iy Ir I;n{y=0}

Now we take a cut-off function y € C§°(R"™,[0,1]), such that

<
o =y S,
and
(3.2.13) Vx| < 2.
We also define
(3.2.14) Vi:=xUr and Wy := (1 —x)Uy.

We estimate

(FL(UR) = FL(Vk), Vi)

/ Y VU, VVi) dX — ¢ / h(2) () (2, 0) Vi(z, 0) da
RTA n

3.2.15
(3.2.15) —/ (Uk)ﬁ(:c,owk(x,())dx—/ (Vi TV dX
Rr R

+ €/n h(x)(Vk)‘fl(x,O) dx + /]R” (Vk)zfl(x,O) dx

First, we observe that

/ o y“(VUk, VVk> dX — y“(VVk, VVk> dX'
R}

n+1
R+

< / VUL —de+/ Y VUV [V x| dX

I I

(3.2.16)

+2/ya|Uk||VUk|vX||x|dX+/ya|Uk|2|vX|2dX

I I

= A1+ Ay + A3 + A4

By (3.2.11), we have that A; < Ceg, for some C' > 0. Furthermore, by the
Holder inequality, (3.2.13) and (3.2.11), we obtain

1/2 1/2
Ay < 2/y“\VUk|Uk|dX<2</ ya‘VUkyde> (/ y“!Uklde>
I I I

1 1 l

1/2v 1/2m
< 2172 (/ y“Uk|27dX> (/ y(a’v)de> ,
I; I

l l
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2-2
where m = % Since (a—a m=a = (1—2s) > —1, we have

that the second integral is finite, and therefore, for ¢ < 1,

1/2~
Ay < Cel/? (/ y“|Uk|2'y dX) < Cel2e1/2y < Cel/“’,

l

where (3.2.11) was used once again. In the same way, we get that As <
Ce'/7. Finally, by (3.2.11),

1/~ 1/m
A4<C7</yﬂUM%dX> (/y@—ﬂmdx> < CeM,
I I

l l

Using these informations in (3.2.16), we obtain that

‘/ L, V(YU V) dX — ya<VVk,VVk>dX‘ < Ce'/,
R

n+1
R+

up to renaming the constant C.
On the other hand, since p+ 1 = 2}, by (3.2.14) and (3.2.11),

(UR)% (2, 0) Vie(,0) — (Vi) (,0)) da

( < / 11— Pl [Uk(z, 0) P+ e
R R™

< C Ui (z,0)|% dz < Ce.
In{y=0}

In the same way, applying the Holder inequality, one obtains

/n h(x) (Ur)4 (2, 0) Vi(z,0) — (V)1 (2, 0) dz

< [ @I =3V, 0)17 da
<l [ U0 do < Ce
EN{y=0
All in all, plugging these observations in (3.2.15), we obtain that
(3.2.17) (FL(UR) = FL(VR), Vi)| < CM/7.
Likewise, one can see that
(3.2.18) (FL(UR) — FLWi), Wi)| < CM/7.
Now we claim that
(3.2.19) HFL(V2), Vi) < CeY7 + op(1),

where op(1) denotes (here and in the rest of this paper) a quantity that
tends to 0 as k tends to +o0o. For this, we first observe that

(3.2.20) [Vila < C,
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for some C' > 0. Indeed, recalling (3.2.14) and using (3.2.12) and (3.2.13),
we have

Vile = YV Vi dX
Rn+1

+

= / y“lVXIQIUkI2dX+/ an2|VUk:|2dX+2/ y* x Uy, (VU, Vx)dX
R1+1 Rn+1 Rn+1

+ +

1/2 1/2
4/y“|Uk|2dX+[Uk]2+C</ y“|VUk|2dX) (/ y“|Uk|2dX>
I I I+

1 l 1

1/ 1/2v
C(/ y“|Uk|27dX> + U2 + C [Ukla (/ y“|Uk|27dX> ,

I I

N

N

where the Hélder inequality was used in the last two lines. Hence, from
Proposition 2.1.1 and (3.2.3), we obtain (3.2.20).
Now, we notice that

{FLV), Vil < HTL(VR) = FL(UR), Vie)| + {FL(UR), Vie)| < C Y7 + [(FLUR), Vi),

thanks to (3.2.17). Thus, from (3.2.20) and assumption (ii) in Proposition
3.2.1 we get the desired claim in (3.2.19).
Analogously (but making use of (3.2.18)), one can see that

(3.2.21) [(FLWR), Wi)| < Ce/7 + oy(1),

From now on, we divide the proof in three main steps: we first show lower
bounds for F.(Vj) and F. (W) (see Step 1 and Step 2, respectively), then in
Step 3 we obtain a lower bound for F.(Uy), which will give a contradiction
with the hypotheses on F., and so the conclusion of Lemma 3.2.5.

Step 1: Lower bound for F.(Vi). By (3.2.19) we obtain that

1 1
(3.2.22) Fe(Vi) > Fe(Vi) — 5 (FLVE), Vi) — 5Ce7 + o (1),
Using the Holder inequality, it yields
1 11 o
F(VE) = 5LV = (5 = 7 ) A+ O e
1 1 +1
$ +1 1 1 +1
= ﬁ“(vk)-i-('ao)uipﬂ(ﬂgn) —€ (fl‘l‘l - 2) ||h| L™(Rn) |(Vk)+('70)‘|%p+1(]gn)7
1
with m = 2 * (recall (1.1.5)). Therefore, from Lemma 3.2.4 (applied here
p—q

with o := [|(Vk)+(+,0) [ Lp+1(rn)) We deduce that

1 _ ptl
Fe(Vk) — 5(?2(‘@,‘/1@) > —Cera.
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Going back to (3.2.22), this implies that

(3.2.23) F.(Vi) = —coe'Y — Cerma + (1)

Step 2: Lower bound for F.(Wy). First of all, by the definition of Wy in
(3.2.14), Proposition 1.2.1 and (3.2.3), we have that

[ @)W (0.0) da| <l g [V (- O) 12

1,28 (R™)

<& C Il | k)1 (|95

<eC||hl|pm@n Ukl < Ce.

(3.2.24)

Thus, from (3.2.18) we get

‘/ YOI VW|? dX — / WP (2, 0) da

(3.2.25) < [(FLWR), Wi)| +

. /R h() (W), 0) da

< CeY7 4 0,(1),
where (3.2.21) was also used in the last passage. Moreover, notice that
Wy, = Uy in R\ B, 7., (recall (3.2.12) and (3.2.14)). Hence, using
(3.2.6) with p:=7+1+ 1, we get

(3.2.26)

Y VW2 dX + (W) (2, 0) da
+1\ g+
RTTNBY R\(B, ;741 N{y=0}}

= Y| VU? dX + (UR) (2, 0) da = 1o,
+1\ p+
RYTNBY R™\{B, ;141 N{y=0}}

for k = k(p). We observe that k tends to +o00 as ¢ — 0, thanks to (3.2.7)
and (3.2.9).
From (3.2.26) we obtain that either

/ (Wi (2,0)do > ™2
RP\{B, , 741"{y=0}}
or

/ VW2 X >
RYTI\BT

r4l4+1

In the first case, we get that

/ (W) (2, 0) (e, 0) > /R e (W) (2,0) da(z, 0) >
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In the second case, taking ¢ small (and so k large enough), by (3.2.25) we
obtain that

[ w0t s [ e wmax - ce - o)

> / Y VW2 dX — CeY7 — 0(1)
Rn+1\B+
+i+1
7o
e

Hence, in both the cases we have that

(3.2.27) / (W2 (2, 0) dz > %
Rn
Now we define ¢ := ap Wy, with
p—1 [Wk]2
ap = | .
W)+ (5 O pors ey

Notice that from (3.2.21) we have that

Wil < W4 (055 g +

< I We)+(, )||I£ﬁ1 &y T C Y7 4 o(1)

where (3.2.24) was used in the last line. Hence, thanks to (3.2.27), we get
that

(3.2.28) a7t <14+ 0V 40 (1).
Also, we notice that for this value of ay, we have the following;:
1 1 1
[el2 = Q2WAI2 = o (W) (s O 85 L gy = 1800+ O o
Thus, by (1.2.6) and Proposition 1.2.1, we obtain

hbk( )]HS(RTL) [QIZJkE

< =
1)+ GOy 1)+ C 0) i1 gen
0+ GO
a H (’(/Jk)-‘r(? 0)”%p+1(Rn)

. / h(z) (W) (2,0) dx| + C 7 + o (1)
R'I’L

= [[(¥r)+ (-, )llpri(Rn

In the last equality we have used the fact that p + 1 = 2%. Consequently,
1
1)+ C O ey

H( ) ( )||Lp+1 R'n) p+1 Sn/Qs p+1
875 A

This together with (3.2.28) give that
ptl 1
S < (14 GV 4 o (1) 7 [(Wi)4- (- 0) 10t e

< ||(Wk)+(70)||1[7::i1(Rn) +051/7+0k(1>'
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Also, we observe that
1

1 s
2 p+l

Hence,
1 s
Fe(Wk) — §<9§(Wk)aWk> = 5||(Wk)+('70)||§ﬁ1(ugn)
L g+1
: <q+1 2) /nh(ac)(wk)+ (2,0) da
> %5"/25 — OV + o4 ().

Finally, using also (3.2.21), we get

(3.2.29) F.(Wy) > %5"/25 — CY7 4 04(1).

Step 3: Lower bound for F.(Uy). We first observe that, thanks to (3.2.14),
we can write

(3.2.30) U =1 —x)Uk + xUp = Wi + V.
Therefore

F.(Up) =F-(Vi) + F-(Wy) +/ Y (V Vi, VIV dX

n+
RY

1
o1 ) (Ve)? (2, 0) da

€ +1

1
(3.2.31) + 011 Lo (Wk)’fl(% 0) dx

€ 1

1 [ @R w0 da
1
p+1 /g

_ 13
q+1 R

_|_

(Uk)z—o:_l (x) O) dx

h(z)(U) 4 (2,0) da.

On the other hand,
/ y* (VVi, VIW;) dX
R+

1 1
=5 / Yy (VUg — VVi, VVi) dX + 5 Yy (VU — VWi, VW) dX.
2 Ri_'—l 2 Ri+l
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Recall also that, according to (1.2.11),

(FL(Ux) — FL(Vi), Vi)
- / Yy (VU — VVi, VVi) dX
R+

—E/n h(z)(Ug)%(2,0) Vi(z,0) do — /Rn(Uk(%O))i Vi(2,0) dx

w2 [ h) W @0y det [ (R @0 do
and

(Fe(Uk) = FL(Wi), W)
= / ya<VUk - VWk, VWk> dX
R

—€ - h(z)(Ug)% (z,0) Wi (z,0) do — Rn(Uk)’jr(a:,O) Wi(z,0) dz

+e / nh(m)(Wk)fl(az,O) dz + /R H(Wk)]f’l(x,o) dz.

Hence, plugging the three formulas above into (3.2.31) we get

T (U) = To(V) + To(Wi) + 1) — TV ) + ST — FLWa), W)
- pil (W (@, 0 da + q-eTl @V @0 de

1 p+l € +1
— de+ —— [ h(z)(Wy)? d
s Lm0 S [ @) w0 do

1
—— U )P (2,0) do —
P Rn(kh( ) 01 fan

h(z)(Ug)% (2, 0) Vi(z,0) do + % /n(Uk)f_(a:, 0) Vi(z,0) dzx

< h(z)(U) T (2, 0) da

+

N ™

%\%\\

3

M) VD (@0 do = 5 [ (R (,0)ds

_|_
NI NI N M

%\

n

3

h(z)(Ug)% (2, 0) Wi(z,0) dx + % / (Ur): (2,0) Wi(z,0) dz

@)W w0 do = 5 [ (W (@,0) e
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Notice that all the integrals with ¢ in front are bounded. Therefore, using
this and (3.2.17) and (3.2.18) we obtain that

(3.2.32)
H:E(Uk) = H:E(Vk) + Srs(Wk)
1

p+1J/gn

1 " 1

- [ O w0 e+ 5 [ G0Vl 0 do
1

5 [0 w0 de g [ O w.0) Wie,0)do

1
(Vi)2 ™ (2,0) da + | / (W) (2,0) da
Rn

1
5 [ om0y ds - e

for some positive C'. We observe that, thanks to (3.2.30),

n

[ 0,0 Viw 0o+ [ (WL (2,0) Wi(a,0) d
= Rn(Uk)’jr(a:,O) (Vi(z,0) + W(x,0)) dx

_ / (U2 (2, 0) d.
]Rn

Therefore, (3.2.32) becomes
?g(Uk) > ?g(Vk) + ?E(Wk)

1
—— [ (V)P N2, 0) dx +
Pt 1 Rn(k?)-i- (z,0) dx P+ 1 Jen

_ L p+1 - 1/ p+1
1 1
3 / (U (2,0) d — / (W) (@, 007+ dx — '
R7 R™
=T (Vi) + F(Wy)
1 1

(3 o17) [ (00870 - (B 00) - (W) (0,0)) do — €17

= ?E(Vk) + ?E(Wk)

n (1 - 1) (U (2,0) (1= X" (,0) — (1~ x(,0))"*) do — C/7,
2 -

1

(Wi)? (x,0) dz

p+1
where (3.2.14) was used in the last line. Since p +1 > 2 and
1—xP(x,0) — (1 — x(2,0)P™ >0 for any z € R",
this implies that

F(Up) = Fo (Vi) + Fo (W) — Ce.
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This, (3.2.23) and (3.2.29) imply that

—

y2

F(Uk) = 2 gn/2s _ c1e'/7 — Cer—a 4 op(1).
n
Hence, taking the limit as k¥ — +o0o we obtain that

cazkhm F(Uy) = S"/Qs—cs/ ~ Cera 7,

—+

which is a contradiction with assumption (i) of Proposition 3.2.1. This
concludes the proof of Lemma 3.2.5. O

PROOF OF PROPOSITION 3.2.1. By Lemma 3.2.5, we know that {Uk}keN
is a tight sequence. Moreover, from Lemma 3.2.3 we have that [Ug], <
M, for M > 0. Hence, also {(Ug)+}ren is a bounded tight sequence
in HZ(R™™). Therefore, there exists U € HZ(R’-™) such that

U)s =T in H®RL).

Also, we observe that Theorem 1.1.4 in [24] implies that there exist
two measures on R” and R, v and y respectively, such that (Uk) (m 0)
converges to v and y |V(Uk)+|2 converges to p as k — +00, according to
Definition 2.2.2.

Hence, we can apply Proposition 2.2.3 and we obtain that
(3.2.33)

(Uk)?s(-,O) converges to v = UQS(-, 0) + > ey Vibs; as k — +oo, with v; > 0,

(3.2.34) B
Y|V (Ur)+|? converges to p > y*|VU|* + > jet Hid(z; 0) a8 k — +o0, with p; >0,
and
2/2; .
(3.2.35) pj = Sv2% for all j € J,

where J is an at most countable set.

We want to prove that p; = v; = 0 for any j € J. For this, we suppose
by contradiction that there exists j € J such that p; # 0. We denote
X, := (x;,0). Moreover, we fix § > 0 and we consider a cut-off function
s € COO(R:L_H, [0, 1]), defined as

L if X € B, (X)),

95(X) = {o, if X € (B (X;)),

with |Ves| < 5
We claim that there exists a constant C' > 0 such that

(3.2.36) (¢ (Ui)+la < C.
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Indeed, we compute

052 = [ VU P X

—/ Y Vs (U)% dX + / Y BRIV (Vi) 42 dX
By (X;) B (X;

12 / Y b5 (Un)+ (V5. V(Up) 1) dX
B (X;)

N

CQ
2/ ya|Uk|2dX+/ y*|VU|* dX
0 Bf (X;) T (X5
2C
+— y*|Ug| VU] dX
6 B+(X)

8 J

1/
C / YO\ UL*Y dX +/ Y| VU > dX
B (X;) B (X;)

5 J 5 J

1/2y 1/2
+C (/ Y| UL[*Y dX) </ y“|VUk|2dX>
Bf(X;) Bf (X))

< CM?
up to renaming C, where we have used Proposition 2.1.1 and Lemma 3.2.3
in the last step. This shows (3.2.36).
Hence, from (1.2.11), (3.2.36) and (ii) in Proposition 3.2.1 we deduce
that
(3.2.37)

0= lim (FL(Uk), 05(Uk) +)

N

k—o0

= lim (/ Yy (VU, V(¢s(Ux)+)) dX
R+

e / H@)os(@ U @, 0)de — | ¢5(x,0)(U) (2,0) dx)

k—o0

~ lim ( i or VT U Pog X + i o VO V) U 0X

—¢ / h(@)s(x,0)(Uk)F ™ (2, 0) do — ¢5<x70><Uk>i“(w70>dx).
n R’n

Now we recall that p+ 1 = 2%, and so, using (3.2.33) and (3.2.34), we have
that

(3.2.38) lim / 65(2,0) (U2 (2,0) dz = ¢5(x,0) dv
k—+4o00 Rn Rn

(3.2.39) and lim YOV (Ur) 1?5 dX :/ bs dj.
+1 Ri—FI

k
—+00 Ri
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Also, we observe that supp(¢s) C B; (X;). Moreover [(Uk)+ (5 0) s gy =
[(Ug)+]la < M, thanks to (1.2.6) and Lemma 3.2.3. Finally, the Holder
inequality and Proposition 1.2.1 imply that ”(Uk)Jr(’vO)HL?(B;'(mj)) < C, for

a suitable positive constant C. Hence, we can apply Theorem 7.1 in [21]
and we obtain that
(3.2.40)

(Ug)+(-,0) converges to U(-,0) strongly in L"(Bj (z;)) as k — +oo0, for any r € [1,2].
Therefore,

‘/R" h(l’)¢5($,0)(Uk)T—l($,O) dx —/ h(m)qﬁg(x,O)Uqul(x,O) dx

n

- / h(z) 65 (2, 0)((Ue) (2, 0) — T (,0)) da
B (X;)n{y=0}

—q+1
< |1l oo @ny (UL (2,0) = T (2,0)) da

)

/B(;* (X;)N{y=0}

which together with (3.2.40) implies that

(3.2.41)
Jin [ h@)os(e. 0O @0 e = [ gy @ O T 0) do

Finally, taking the limit as § — 0 we get

lim li h L0) (U (z,0) d
oy AR M O 0
— lim h(z)s(z,0) T (2,0) dz = 0.
6=0) B (x;)n{y=0}
Also, by the Holder inequality and Lemma 3.2.3 we obtain that

(3.2.43)
/R”“ Yy (V(Uk)4,Vos5)(Ur)4 dX

- ‘ / y“<V<Uk>+,V¢5><Uk>+dX‘
B (X;)
1/2 1/2
<</ y“|VUk|2dX) (/ ya(UwivadX)
By (X;) B (X;)
<ur (f
B+

s (X5)

1/2
Y (Ur)% | Vs|? dX) )

Notice that, since {(Uy)+} is a bounded sequence in Hz(R"), using Lemma 2.1.2,
we have

(3.2.44) lim y*(Ug)2 | Vs|? dX :/ YU Vs dX.
By (X;)

k—-+o0 B; (X;)
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Moreover, by the Holder inequality,
(3.2.45)

1/~ 1/
/ T Vs? dX < ( / T dX) ( / y Vs> dX) ,
BF (X;) B (X;) B} (X;)

where

— 2542
(3.2.46) I ke ey

2

Thus, taking into account that |Ves| < %, we have

L 1
< / Y Vsl dX) < 5 ( / e dX)
Bf (X)) 0% \ JBf (x))

C? ntita
< — ~!
We recall (3.2.46) and that a = 1 — 2s, and we obtain that
1
ntoTe 9oy,
g

and so

1y
(/ y“|V<z>a|2’*’dX> <2
B (X;)

This and (3.2.45) give that

1/
/ y U |Vs|? dX < O ( / Tiat dX) ,
BF(X;) Bf(X;)

Hence
1/~
lim YU’ |Vs]? dX < C? lim / v dX =0.
0=0JBf(X;) =0 \JB{ (X))

From this and (3.2.44) we obtain
(3.2.47)

lim lim Y (Up)2 | V5|2 dX = lim Y U |Vs|2 dX = 0.
60—0 k—+oc0 Bg—(X]‘) +’ ‘ 6—0 B;—(.Xj) ‘ ‘

Using (3.2.38), (3.2.39), (3.2.42) and (3.2.47) in (3.2.37), we obtain that
0= lim lim (F(Uy), ds(Uk)+)
6—0 k—o0

= lim (/R sdn= [ oa.0) du)

= lim / b5 du—/ ps(z,0) dl/>
5*(]( B (X;) BF (X;)N{y=0}

>Mj_yj7

(3.2.48)
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thanks to (3.2.33) and (3.2.34). Therefore, recalling (3.2.35), we obtain that

2/25
vi = i = Syj .

Hence, either v; = p; = 0 or 1/;*2/2* > S. Since we are assuming that
p; # 0, the first possibility cannot occur, and so, from the second one, we
have that

(3.2.49) vj > S"/%

Now, from Lemma 3.2.3 we know that [(Ug)+(-,0)]s < M. Moreover
we observe that ¢ + 1 < 2 < 2%. Hence Proposition 1.2.1 and the compact
embedding in Theorem 7.1 in [21] imply that

||(Uk)+(7 0) - U(> 0) ”L?f (R™) <2M
and  (Up)4(-,0) — U(-,0) in LEFY(R™) as k — +o0.

Therefore, recalling (1.1.5) and (1.1.3), and using the Holder inequality, we
obtain

/Rn h(z) (Uy)+ (2,0) — TU(,0)) " dx'

</ h(l’)lI(Uk)+(w70)—U(%O)Iq“d:w/ |h(@)] |(Uk)+(2,0) = U(x,0)|"" da

Br R"\Bp
< Nl oo @y | ((Uk)+ = T) (5 0) | Lot () + 10l Lommi By 1((UR)+ = U) (-, O)II%(R”)
< CI(UR)+ =T 0l pasi By + M) | Lo g\ )

1 1
where « satisfies — = 1 — % Hence, letting first Kk — +o0o0 and then
« S

R — 400, we conclude that

. q+1 _ 77q+1
(3.2.50) Jim - h(x)(Uy)4" (:c,O)da:—/nh(:r)U (2,0) dz.

On the other hand, let {¢m}men € C5°(R™) be a sequence such that
0<¢n<land lim ¢,(x) =1 for all x € R™. Thus, by (3.2.33), we have
m—0o0

that

lim (Uk)ﬁj_l(x,O)da:} lim (Uk)’f_l(;v,O)(pmdx:/ Om dv.
k—+oco Jrn k—+oco Jrn n

Furthermore, by Fatou’s lemma and (3.2.49),

lim Om dv 2/ dv > §"/% —|—/ UpH(x,O) dz.
]Rn n n

m—00



44 3. EXISTENCE OF A MINIMAL SOLUTION AND PROOF OF THEOREM 1.2.2

So, using the last two formulas we get

lim/ U7 (2,0)de = lim lim/ (U7 (2,0) dz
R Rn

k—o00 m——+0o0 k—o0o

(3.2.51) > lim Om dv

m—-+oo Rn

> §5n/% +/ 7" (2,0) da.
Now, since [Ug], < M (thanks to Lemma 3.2.3), from (ii) in Proposition
3.2.1 we have that

li ! =

and so, by hypothesis (i) we get

k—o0

1
(3.2.52) lim (?E(Uk) — 5(9’2(Uk), Uk>> =c..
On the other hand,

Jim (?s(Uk) - %("ﬂ(Uk), Uk>)

-l <(; _ pi1> /Rnwk){;“(x, 0)do — & <q—|1—1 - ;) / h(@)(U) T (2, 0) dw) .

We notice that
1 1 S

2 p+1 )
and so from (3.2.50) and (3.2.51) we obtain that

I CACARETACANCAY

)

k—o0
— 1 1 —
> %Sn/Qs + Z/n Up+1(x’0) dr — ¢ <q+1 — 2> /n h(aj)UthLl(aj,O) dx
S an/2s . S 1 1 —
> 287 4 OO oy~ 2 (5 ) Al T O e

> fsn/Qs o 66%,
n
where we have applied Lemma 3.2.4 with a := [[U(-,0)||fp+1(gn) in the last
line. This and (3.2.52) imply that

S ~ ptl
ce > 28" _ Ceva,
n

which gives a contradiction with (3.2.1).
Therefore, necessarily p; = v; = 0. Repeating this argument for every
j € J, we obtain that pu; = v; = 0 for any j € J. Hence, by (3.2.33),

(3.2.53) lim / (U)% (2, 0)p da = / T (2,0)p dz,
k—+o0 JRrn Rn
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for any ¢ € Co(R™).

Then the desired result will follow. Indeed, we use Lemmata 3.1.1
and 3.1.2, with vg(z) := (Uy)+(z,0) and v(z) := U(x,0). More precisely,
condition (3.1.4) is guaranteed by (3.2.53), while condition (3.1.5) follows
from Lemma 3.2.5. This says that we can use Lemma 3.1.2 and obtain that
(Ug)+(-,0) — U(-,0) in L2 (R™,[0,+00)). With this, the assumptions of
Lemma 3.1.1 are satisfied, which in turn gives that

_ 2%
Jim [0 (.0) - T 0 dw =0
and lim [ (U (2,0) — T (x,0)| 7% do = 0,
k—+oco JRrn

Therefore, we can fix § € (0,1), to be taken arbitrarily small in the sequel,
and say that

/ |(Uk)z-(xa 0) - (Um)j_(x, 0)‘§ dx
(3.2.54) " 3
+ [ IO 0 - U 0 e < 5

for any k, m large enough, say larger than some k().
Let us now take @ € H;(RT’l) with

(3.2.55) (@], = 1.

By assumption (ii) in Proposition 3.2.1 we know that for large k (again, say,
up to renaming quantities, that k& > k. (9)),

[(FL(Uk), @)| < 6.

This and (1.2.11) say that
| /R o V(TUL), V(X)) dX
— [ 1) O .00t o | (O (@ 0)0(w) do| <
where ¢(z) := ®(z,0). In particular, for k, m > ki(5),
| [ V00 (00, V00
e [ hla) (U (.0) = (Un ) (0,0)) o) d
[ (O0) = U, 0) 6w o] < 25
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So, using the Holder inequality with exponents Wﬁn—%) 25 = q(n2f2.s)
and 27 = = 25, and with exponents =3 L nf_"zs and 2%, we obtain
/R"'H ya<v(Uk(X) - Um(X))v V(I)(X)> dX‘
< L h(z) ((Uk)4(2,0) = (Un)4(z,0))d(z) dz
+ / ((Uk) (2,0) — (Up)" (=, 0))¢(9[:) dx| + 20
n+2s—q(n—2s)
__2n 2n
< |:/ |h($)|n+257q(n725) dx:|
o q(n—2s) 2%
| L 00t 0) - @t @l a7 [ e ad]

n+2s 1
2n 2n * 23
| [ 1w - @peo#a] T e s
R™ Rn
Thus, by (1.1.5) and (3.2.54),

n+2s

(Rn)+05 n H¢||L2* R™) +24,

/R Yy (V(U(X) = Un(X)), VO(X)) dX | <

for some C' > 0. Now, by (1.2.7) and (3.2.55), we have that ||¢||L2§(Rn) <

S—1/2[®], = §~1/2, therefore, up to renaming constants,

< 0o,

/R Y (V(U(X) = Un(X)), V(X)) dX

for some C', v > 0, as long as k, m > k,(9). Since this inequality is valid for
any ® satisfying (3.2.55), we have proved that

[Uk - Um}a g 0677
that says that Uy, is a Cauchy sequence in H? (Riﬂ), and then the desired

result follows. O

3.3. Proof of Theorem 1.2.2
With all this, we are in the position to prove Theorem 1.2.2.

PROOF OF THEOREM 1.2.2. We recall that (1.1.5) holds true. Thus,
applying the Holder inequality and Proposition 1.2.1, for U € H, g(Riﬂ) we
have

1
FU) > g[U]3—01|lU+( )15t gy — €2 Il (e 1T+ (5 O) 1 3 oy

1
> S0P - aluRt - ealvlgt,



3.3. PROOF OF THEOREM 1.2.2 47

We consider the function

1
o(t) = §t2 — &Pt — ettt ¢

WV

0.

Since ¢+1 < 2 < p+1, we have that for every £ > 0 we can find p = p(e) > 0
satisfying ¢(p) = 0 and ¢(t) < 0 for any ¢ € (0, p). As a matter of fact, p is
the first zero of the function ¢.

Furthermore, it is not difficult to see that

(3.3.1) pe) =0 ase—0.
Thus, there exist ¢y > 0 and g9 > 0 such that for all € < &g,

{S"E(U) > —cp if [Ula < p(o),

(3.3.2) F.(U) > 0 if [U]a = p(eo)-
]

Now we take ¢ € C§°(R"), ¢ > 0, [¢]a = 1, and such that supp(p(-,0)) C
B, where B is given in condition (1.1.4). Hence, for any ¢ > 0,

F.te) = s g / B (2, 0) dr — T / (2,0 da
c 2 q+1 n ’ p+1 Jgn ’
1, € gtl. 1 P +1
< -t — ——t"infh [ o7 (2,0)dx — P (2, 0) da.
2 q+1 B Jp p+1J/p

This inequality and condition (1.1.4) give that, for any ¢ < g¢ (possibly
taking ep smaller) there exists ¢ty < p(gg) such that, for any ¢ < to, we have

F(typ) <O0.
This implies that

iei= inf F.(U) <.
Ve R, [U]a<p(c0)

This and (3.3.2) give that, for 0 < e < &,
—00 < —¢cg L 1. < 0.
Now we take a minimizing sequence {Uy} and we observe that
5 n
lim lim J.(Uy) = limi. <0< —9572.
i TeUh) = e <0<

Hence, condition (3.2.1) is satisfied with ¢ := i., and so we can apply
Proposition 3.2.1 and we conclude that i, is attained at some minimum U..

Finally, since [Uc], < p(g0), (3.3.1) implies that U. converges to 0 in
H? (R™1) as e tends to 0. This concludes the proof of Theorem 1.2.2. O






CHAPTER 4

Regularity and positivity of the solution

4.1. A regularity result

In this section we show a regularity result that allows us to say that a
nonnegative solution to (1.1.1) is bounded.

PROPOSITION 4.1.1. Let u € H*(R™) be a nonnegative solution to the
problem

(—A)Yu = f(z,u) in R™,

and assume that | f(z,t)| < C(1+ [t|P), for some 1 < p<2f—1 and C > 0.
Then u € L>®(R™).

PROOF. Let 8> 1 and T > 0, and let us define

0, ift<0
pt)=<t%, if0<t<T,
BTA=Yt—T)+ TP, ift >T

Since ¢ is convex and Lipschitz,

(4.1.1) o(u) € H*(R™)
and
(4.1.2) (~A) ) < ¢ (u)(~A)*u

in the weak sense.
We recall that (1.2.6) and Proposition 1.2.1 imply that, for any u €
H3(R™),
||u||L2;(Rn) < 572[U]H5(Rn).
Moreover, by Proposition 3.6 in [21] we have that
[u] s gmy = (=) 2w 2 (ny.-

Hence, from (4.1.1), an integration by parts and (4.1.2) we deduce that

i) 2 gy < 5" /R (—A) (w2 do

=5 / ou)(=A)p(u)de < S [ ou) ¢ (u)(—A)udz.
]Rn

49
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Therefore, from the assumption on v and f we obtain
Iy < ST ) @)1 403 da
L2s (R™) -
= 5 (/ o(u) SD/(U) dz +/ o(u) (p/(u) w21 dx) )

Using that o(u)¢'(u) < Bu?’~1 and uy’(u) < Be(u), we have

(4.13) (Rn«o(unﬁ)wzgwﬁ ( [ e Rn(so(u))?u?i*dx),

where C' is a positive constant that does not depend on (3. Notice that the
last integral is well defined for every T in the definition of ¢. Indeed,

/n(w(u))2u2z2dx :/{ <T}(¢(U))2u23*2 d:c+/{ >T}(90(u))2 E2 4y

< TZB—Z/ u® dx + C u® dx < +00,
n Rn

where we have used that § > 1 and that ¢(u) is linear when v > T. We
choose now (3 in (4.1.3) such that 28 — 1 = 2%, and we name it (31, that is,

21
==

Let R > 0 to be fixed later. Attending to the last integral in (4.1.3)
and applying the Holder’s inequality with exponents r := 2%/2 and ' :=

(4.1.5)
2,252 gy — 2022 da U202 do
[ Etae = [ e [ ()

(4.1.4) P :

*
2% -2

2 2/23 2%
< / MRQ;*1 dx + (/ (p(u))? d:z:) / u* dx
{u<R} u n {u>R}

By the Monotone Convergence Theorem, we can choose R large enough so
that

*
2% -2

2*
* s 1
2
us dx < ——,
</{u>R} ) 2CH

where C'is the constant appearing in (4.1.3). Therefore, we can absorb the
last term in (4.1.5) by the left hand side of (4.1.3) to get

(/n(gp(u))% dm) 7 <208, (/n u* dx + R%1 . (p(w)*® d:r> ,

u
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where (4.1.4) is also used. Now we use that o(u) < v’ and (4.1.4) once
again in the right hand side and we take T' — oco: we obtain

2/2%
(/ u?sh da:) <206 </ u? dr + Rzz_l/ u* dl’) < +00,

and therefore
(4.1.6) u e L%PHRM).

Let us suppose now > 1. Thus, using that ¢(u) < v? in the right
hand side of (4.1.3) and letting T — oo we get

2/2;
(4.1.7) (/ u?h dm) <Cp (/ w1 dx —|—/ u?Pe—2 dm) .

Furthermore, we can write
b

w1 = oy ,

25%:1;) and b := 20 — 1 — a. Notice that, since 8 > (31, then
0 < a,b < 2%. Hence, applying Young’s inequality with exponents

r:=25/a and 1 :=2%/(2%-a),

a * 2* —Qa ﬁ
/ uPldr < / u? dx + =2 / u?-e dx
n 2; n 2: n
< / u®s dx + / P22 gy

<C (1 +/ u2Bt2—2 d;v) ,

with C' > 0 independent of 3. Plugging this into (4.1.7),

2/2%
(/ uQif’dx> <05(1+/ u2f6’+222dm>,

with C changing from line to line, but remaining independent of 3. There-
fore,
(4.1.8)

1 1
. 25 (6-1) 1 x 2(6-1)
<1+/ w28 dx) < (CB)2BD <1+/ u2B+25-2 dx) ,

that is (2.6) in [8, Proposition 2.2]. From now on, we follow exactly their
iterative argument. That is, we define G,,+1, m > 1, so that

2Bmit + 2 — 2= 2B

with a =

there holds

Thus,
2

Bm+1 — 1= (2)m (B —1),
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and replacing in (4.1.8) it yields

1 1
* 25 Bmy1—-1 N S * 25 (Bm—-1)
(1+/ u255m+1 d;C> +1 < (Cﬁm+l)2(ﬁm+l_1) (1+/ UQS,B,,L d;C> ]

Defining C,41 := CBm+1 and

1
* 25 (Bm—1)
Am = <1 +/ u25ﬁm d$> ,

we conclude that there exists a constant Cy > 0 independent of m, such that

m+1 1
,6 —
Amr < [T 6,777 41 < GoAv.
k=2

Thus,
thanks to (4.1.6). This finishes the proof of Proposition 4.1.1. O

COROLLARY 4.1.2. Let u € H*(R™) be a solution of (1.2.1) and let U
be its extension, according to (1.2.3).
Then u € L®(R™), and U € L®(R").

ProOF. First we observe that u© > 0, thanks to Proposition 1.2.3. More-
over, since u is a solution to (1.1.1), it solves
(=A)’u= f(z,u) inR"

where f(z,t) := eh(x)t? + . Tt is easy to check that f satisfies the hy-
potheses of Proposition 4.1.1. Hence the boundedness of u simply follows
from Proposition 4.1.1.

Let us now show the L™ estimate for U. According to (1.2.3), for
any (z,z) € R,

U(x,z) = /n u(z —y) Ps(y, z) dy.

Therefore,
U2 < ellmeny [ Pun2)dy = ey,

for any (z,z) € RT‘l, which implies the L*°-bound for U, and concludes the
proof of the corollary. ([

Finally, we can prove that a solution to (1.2.1) is continuous, as stated
in the following:

COROLLARY 4.1.3. Let u € H*(R™) be a solution of (1.2.1) and let U
be its extension, according to (1.2.3).

Then u € C*(R™), for any o € (0,min{2s,1}), and U € C(Riﬂ).
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PRrROOF. The regularity of u follows from Corollary 4.1.2 and Proposi-
tion 5 in [35], being w a solution to (1.2.1). The continuity of U follows from
Lemma 4.4 in [15]. O

4.2. A strong maximum principle and positivity of the solutions

In this section we deal with the problem of the positivity of the solutions
to (1.2.1). We have shown in Proposition 1.2.3 that a solution of (1.2.1) is
nonnegative. Here we prove that if h > 0 then the solution is strictly
positive.

Following is the strong maximum principle for weak solutions needed for
our purposes:

PROPOSITION 4.2.1. Let u be a bounded, continuous function, with u > 0
in R" and (—A)*u > 0 in the weak sense in . If there exists x, € Q such
that u(x,) = 0, then u vanishes identically in R™.

PROOF. Let R > 0 such that Bgr(z,) C Q. For any r € (0,R), we
consider the solution of
{(—A)Svr =0 in By(x,),

(421) UVr =1U in R™ \ Br($*)

Notice that v, may be obtained by direct minimization and v, is continuous
in the whole of R™ (see e.g. Theorem 2 in [35]). Moreover, if w, := v, — u,
we have that (—A)*w, < 0 in the weak sense in B, (z4), and w, vanishes
outside B, (z4). Accordingly, by the weak maximum principle for weak so-
lutions (see e.g. Lemma 6 in [35]), we have that w, < 0 in the whole of R,
which gives that v, < u. In particular,

(4.2.2) vp(zy) < u(zy) = 0.

The weak maximum principle for weak solutions and the fact that v, = u >0
outside B, (z,) also imply that v, > 0 in R™. This and (4.2.2) say that
(4.2.3) I%Ln vp = vp(xx) = 0.

In addition, v, is also a solution of (4.2.1) in the viscosity sense (see e.g.
Theorem 1 in [35]), hence it is smooth in the interior of B,(z,), and we can
compute (—A)*v,(z,) and obtain from (4.2.3) that

0— or(@s +y) + vr(@h — y) — 20, () dy > 0.
" |y|n+2s
This implies that v, is constant in R", that is v.(z) = v.(z,) = 0 for

any © € R™. In particular 0 = v,(x) = u(x) for any = € R™ \ B,(z4). By
taking r arbitrarily small, we obtain that u(x) = 0 for any =z € R™ \ {z,},
and the desired result plainly follows. ([

Thanks to Proposition 4.2.1 we now show the positivity of solutions of
(1.2.1).



54 4. REGULARITY AND POSITIVITY OF THE SOLUTION

COROLLARY 4.2.2. Let u € H*(R™), u # 0, be a solution of (1.2.1).
Suppose also that h > 0. Then, u > 0.

PROOF. First we observe that u € C*(R™)NL>(R"), for some a € (0, 1),
thanks to Corollaries 4.1.2 and 4.1.3. Also, by Proposition 1.2.3 we have that
u > 0. Moreover, since u is a solution to (1.2.1) with h > 0, then u satisfies

(—=A)*u >0 inR".
This means that the hypotheses of Proposition 4.2.1 are satisfied, and so if

u is equal to zero at some point then u must be identically zero in R™. This
contradicts the fact that u # 0, and thus implies the desired result. O



CHAPTER 5

Existence of a mountain pass solution and proof of
Theorem 1.2.4

5.1. Existence of a local minimum for J.

In this section we show that U = 0 is a local minimum for J..

PROPOSITION 5.1.1. Let U be a local positive minimum of F. in H (R,
Then U =0 is a local minimum of J. in Hé(Riﬂ).

PROOF. Let U be a local minimum of F. in HZ(R"™). Then, there
exists n > 0 such that

(5.1.1) F (U +U) = F(U.), if uwe HI R st. [Ula <.

Moreover, since Ue is a positive critical point of ¥, we have that, for every
Ve H3(R T,

/ +1 y* (VU VV) dX — Ue(x,0)PV (,0) dx
(5.1.2) Ry R"

- 6/ h(z)Us(z,0)?V (x,0) dz = 0.

Now, we take U € H3(R"™) such that
(5.1.3) [Ula <.

From (1.2.15) and (1.2.17), we have that

1
5.(U) = 2/Rn+1 Y|\ VU> dX

+

- il/ h(z) ((Us + Up)TH — Ut dx—i—e/ h(z) UdU, dx

q n n
1
—m ((UE+U+)p+1—U£+1) d$+/ U£U+d£lf
Rn n

55
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On the other hand, recalling the definition of F; in (1.2.10), we have that
Fe(Us + Uy) — Fe(U:)
= 1/ Y| VU, |? dX +/ Yy (VU., VUL dX
R R+

2
—qi [ [ ) (U + U)T — Ut da
1
[ — p+1 _ grp+1
p+ 1 o ((Ug + U+) UE ) dx
1
= = Yy |VUL 2 dX + Yy (VU., VU;) dX
2 R R’j{“
—qi [ [ ) (U + U — Ut da
1
[ — p+1 _ grp+l
p+ 1 o ((Ug + U+) UvE ) d.’L’,

where in the last equality we have used the fact that both U, and U. 4+ Uy
are positive. Hence, the last two formulas give that

1
I.(U) = 2/ +1y“\VU_FdX+3;(UE+U+)—s—fg(Ug)
RY

—/ y* (VU VU4 ) dX
R+
—l—s/ h(z)UdU4 dx + UPU, dx.

Rn
Using (5.1.2) with V := U, we obtain

1
J.(U) = 3 /Rn+1 Yy VU_2dX + F.(U. + Uy) — F(U).
+

Moreover, we observe that [U4], < n, thanks to (5.1.3). Hence, from (5.1.1)
we deduce that

1
I.(U) > / y | VU_|?dX > 0 =17.(0).
2 R1+1

This shows the desired result. O

5.2. Some preliminary lemmata towards the proof of
Theorem 1.2.4

In this section we show some preliminary lemmata, that we will use in
the sequel to prove that a Palais-Smale sequence is bounded.
We start with a basic inequality.
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LEMMA 5.2.1. For every 6 > 0 there exists Mg > 0 such that the follow-
ing inequality holds true for every a, 8 = 0 and m > 0:
(5.2.1)
(Oé—i—ﬁ)m-H _am-i-l - (m—i—l)am,@—ﬁ((a—l—ﬁ)m _am) < (5ﬁm+1 —|—M5am+1.

PRrROOF. First of all, we observe that the left hand side of (5.2.1) vanishes
when a = 0, therefore we can suppose that
(5.2.2) a # 0.
For any 7 > 0, let
fer) =047 -1 —(m+1)r— T(A+7)™=1).

We observe that
f(7)

lim
T—+oo 7M1

therefore there exists 75 > 0 such that Tf"(L:')l < 0 for any 7 > 75. Let also

=0

My := max f(7).
T€[0,75]

Then, by looking separately at the cases 7 € [0, 75] and 7 € [75, +00), we see
that

f(r) < o™t 4+ M.
As a consequence, recalling (5.2.2) and taking 7 := 3/,
(a+ )" —a™ = (m+1)a™B = B((a+ )" —a™)
=™ (1 )™ 1= (e )7 = (1 7)™ - 1)
= " (r)
ozm+1(57'm+1 + Mj)
= 68! + Mya™ L, N

N

We recall (1.2.16) and (1.2.17), and we have the following estimates.

COROLLARY 5.2.2. For any U € H(R™) and any 6 € (0,1), we have
that

(5.2.3)
1 «
/R G(l‘, U(l‘, 0))_]mg(x7 U(x7 0)) U($, 0) dr < C(8+6)||U+(7 O)Higzg* (Rn)+c6,57

for suitable C', Cs. > 0. Moreover,

10+ 0 gy
(5.2.4) / g(z,U(x,0)) U(z,0) dz > g —C.,

for a suitable C; > 0.
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PROOF. By (1.2.16) and (1.2.17), we can write g = g1 + g2 and G =
G1 + Go, where

g1(z,t) = eh(z) ((Ue(z,0) + t4)? — Ud(x,0)),
go(x,t) == (Uc(z,0) 4+t )P — UP(x,0),

Gl 1) = SN (U 0,0) + 1) — U7 (0,0)) = eh()U2(,0)
and Ga(z,t) :== pil((Us(x’O) +t)PH —UPT(2,0)) — UP(2,0) Ly

We observe that for any 7 > 0,

T T
(1+r)q—1=q/ (1+9)q1d9<q/ 071 do = 79
0 0

and  (1+7)™" —1=(¢+ 1>/ (1+6)7do < (g+1)(1+7)77,
0
since g € (0,1). Therefore, taking 7 :=t, /U,
(Ue+t)1=UI=U((1+7)7—1) < UIr? =t
and

(U + )7 — UIH = UIH (14 77 - 1)
<(q+ DU+ 7)07 = (¢ + 1) (Us +t4) %

As a consequence,

lg1] < elh|td
and  |Ga| < e|l(U. +£0) s + lh|UTE, < 2e|h|(Un + t4)Ey .

Thus we obtain

|G1(x,t)| + |g1(z, 0)t] < 2e|h|(Us +t4)% 4 + €|h|tffrl < 3elh|(Us + t4)%t 4.
Since U, is bounded (recall Corollary 4.1.2), we obtain that
(5.2.5) |G1(z,t)| + |g1(x, t)t| < Celh| (1 + tiﬂ),

for some C' > 0. By considering the cases t € [0,1] and t4 € [1,4+00), we
see that

< 4,
since ¢ < p. This and (5.2.5) give that

(5.2.6) |G (,1)] + g1 (, )t < Celh| (1 +¢7),
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up to changing the constants. Now we fix 6 € (0,1). Using (5.2.1) with o :=
Ug, 8 :=t4 and m := p, we have that

Gl 1) — pi g, 1)t
= (T UP) U2y — (U 4 U
= (s Ay =™ — et Da”B — B((a + )" - a™)
1

N

p+1 (6ﬂm+1 +M am+1)

< St MsUPHL
This, together with (5.2.6), implies that

G(z,t) — gz, t)t

p+1

G1($,t)
Celh| (1 + tp“ St MyUPH
Cle + )t + C|h| + M;UPH.

As a consequence, and recalling that p + 1 = 2%, we obtain

(0t + Gala 1) ~ ilgg(x,t)t
)+

NN

G(z,U(z,0))———g(z,U(x,0)) U(z,0) dz < C(e+9)||Ux(-,0

] —|—Cg7€
Rn

2
2
for some C, C5. > 0. This proves (5.2.3) and we now focus on the proof

of (5.2.4). To this goal, for any 7 > 0, we set £() := - — (1 +7)P + 1. We
observe that ¢(0) = 0 and

lim {(71) = —o0,

T——+00
therefore

L :=sup/(7) € [0, +00).
720
As a consequence,
P P
1 P 1=——4r)2——-L.
(1+7) ) >
By taking 7 := U—* this implies that
92(x,U) = U+ Up)P —UP =UP((1+7)P — 1)

P UP
f (;—L>:2+—LU§’.

Integrating this formula and using the Young inequality, we obtain

T+ (-, O3 oy

4

(5.2.7) /Rn g2(x,U(x,0)) U(x,0)dx > - Cq,
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for some C. > 0. On the other hand, by (5.2.6), we have that

/ 01(2, U (z,0)) U, 0) da
Rn

< e [ h@)] (04U ,0)) da
1

< O+ Cel|Us (- 0)Hii+1(ngn)'

By combining this and (5.2.7), we get

/ 9z, U(x,0)) U(x,0) dz
-

= /ngl(x,U(x,O))U(m,O)dx+/ g2(x,U(x,0)) U(x,0) dz

n

+1
||U+('7 O) ||§P+1(Rn)
2 3 -,
if £ is small enough, up to renaming constants. Recalling that p + 1 = 2,
the formula above gives the proof of (5.2.4). O

Finally, we recall (1.2.15) and (1.2.18) and we show the following:

COROLLARY 5.2.3. Lete, k > 0. There exists M > 0, possibly depending
on Kk, €, n and s, such that the following statement holds true.
For any U € HZ(RHY) such that

D)+ sup  |(IL(U), V)| <&
VeHg(R1+1)
[Vla=1
one has that
Ul < M.

PRrROOF. If [U], = 0 we are done, so we suppose that [U], # 0 and we
obtain that

, U
<35(U),@> < K.
This and (1.2.18) give that
(5.2.8) ‘[U]g — /Rn g(z,U(z,0))U(x,0)dz| < K [Ul,.

Therefore

K+ @ I.(U) — % <[U]§ - /Rng(x,U(%O))U(x,O) dfﬂ)

WV

= — - G(z,U(z,0))dx + ;/ng(x,U(x,O))U(x,O) dx
1
= o1 Rng(m,U(m,O))U(m,O)dm— RnG(ij(xv()))dx

N <; _ 1) /R o, U, 0)U (x, 0) da.

p+1
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Consequently, by fixing 6 € (0,1), to be taken conveniently small in the
sequel, and using (5.2.3) and (5.2.4),

K Ua 2%
o o UL 0%, - G
1 _ 1 ||U+(’0)||%2§(]R") _C
2 p+1 8 I

for suitable C', Cs. and C; > 0. By taking § and e appropriately small, we
thus obtain that

23
K[U]a 1 1 ||U+(70) LQ;(Rn)
K+ 2 a5 Ve,
2 2 p+1 16
up to renaming the latter constant (this fixes § once and for all). That is
2*
(5.2.9) 104 0)%; gy < Ma(Ua +1),

for a suitable M7, possibly depending on x, €, n and s.
Now we recall (5.2.8) and (5.2.3) (used here with ¢ := 1), and we see
that

K [Ula
K+
p+1
> 00) - 7 (Wi [ e U0)ui) i)
(3-17) DB+ [ ol U@ 0pu(0)d
- [=_— z,U(x x x
2 p+1) T T fp I :
- G(z,U(z,0))dz
R’ﬂ
1 1 2 2%
= P - : by — Les
> (57537 0B - W0 oy~ €
for suitable C, C. > 0. As a consequence,
2
[U]i < MQ([U]G + ”U-‘t-(?O) LE;(Rn) + 1)7

for a suitable Ms, possibly depending on k, €, n and s. Hence, from (5.2.9),
[U)7 < Ms([U]a + +1),

for some M3, possibly depending on k, €, n and s. This implies the desired
result. O

5.3. Some convergence results in view of Theorem 1.2.4

In this section we collect two convergence results that we will need in
the sequel.

The first one shows that weak convergence to 0 in H ;(RT‘I) implies a
suitable integral convergence.
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LEMMA 5.3.1. Let a, B > 0 with a + 3 < 25, Let Vi € HI(REH)
be a sequence such that Vi converges to 0 weakly in Hj(]R’}fl). Let U, €
HE (R, with Uy(+,0) € L®(R™), and ¢ € L*(R™) N LP(R™), where

+00 if a+ 8 =23,

and

. {2533“[3 ifa+pB <2k,
400 ifa+ 0 =27,
Then, up to a subsequence,

im [ o) |(V)+(2,0)[ |Us(e, 0)] da = 0.
—+00 JRn

PROOF. Since weakly convergent sequences are bounded, we have that [Vj], <
C,, for every k € N and a suitable C, > 0. Accordingly, by (1.2.6), we ob-
tain that [Uk]Hs(Rn) < C,, where vg(x) := Vi(2,0). As a consequence, by
Theorem 7.1 of [21], we know that, up to a subsequence, vy converges to

some v in L] (R™) for any v € [1,2}), and a.e.: we claim that

(5.3.1) v =0.
To prove this, let n € C§°(R™) and ¢ be the solution of
(5.3.2) (—=A)*p =nin R™.

Also, let ¥ be the extension of ¢ according to (1.2.3). In particular, div(y*VW¥) =
0 in RT‘l, therefore

/ div(y* Vi, V) dX = Yy (VVi,, V) dX.
Ri-Fl R1+1

The latter term is infinitesimal as & — 400, thanks to the weak convergence
of Vi in H? (R’}fl). Thus, using the Divergence Theorem in the left hand
side of the identity above, we obtain

lim vg(2)0y®(x) dx = 0.
k*F‘rOO R
That is, recalling (5.3.2) and the convergence of vy,
/ v(z)n(z)dr = lim vg(z)n(z) de = 0.
n k——+o00 R

Since 7 is arbitrary, we have established (5.3.1).
Now we set u,(z) := U,(z,0) and we observe that u, € L% (R"), thanks
to Proposition 1.2.1. Therefore, we can fix £ > 0 and find R, > 0 such that

/ luo(z) | dx < e.
R™\ B,
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In virtue of (1.2.7), ||vgl| f2z@n) < S™ 1/2¢,. Consequently, using the Holder
inequality with exponents a, 2%/« and 2%/3, we deduce that

(5.3.3)
/ [0 (@)[ | (V)4 (@, 0)|" |Un(, 0| da
R™\Bg,

/R"\BR
B8

< llzagen (S712C) % €.

e

B
2% i 2%
) % dr / |Us(,0) % dr
R™\ B,

Now we fix v := . Notice that v € (1,2%), thus, using the convergence
of v and (5.3.1), We see that

< Yl pawny

a+2

kgffoo |vkllzr(Br.) = 0

In addition,

/ |u0({L') 2*+O‘ d:)j ||Uo||Loo(Rn)/ |Uo | C*,

for some C, > 0. Therefore we use the Holder inequality with exponents b,

2* 2% .
2= 2% and S;a, and we obtain

a 2a

dim [ (@) (V)4 (@,0)[* |Un(e, 0)]” da
——+00 BRE

2 8

. K 9 b |2t
< ||¢|\Lb(Rn) kl{ljrﬂoo [/B |Uk($)’7:| [/R |uo(x ot dx}
Re n
= 0.

From this and (5.3.3), we see that

o 8
Jim @)V @ 0 [Us(a, 0 do < [[9llzagery (5712C,) 2.

The desired result then follows by taking € as small as we wish. (]
As a corollary we have

COROLLARY 5.3.2. Let Vi, U, and ¢ as in Lemma 5.5.1. Then
(5.3.4)

1o + (Vi)) (5 O s gy = 06l 21 gy + I (Vi)+ (5 O) s gy + 0k(1),

and

(5.3.5)

- (@) (U + (Vie) ) (2,0) = U (2,0)) da| < C + or(1),

for some C > 0.
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PRrOOF. Formula 5.3.4 plainly follows from Lemma 5.3.1, by taking ¢ :=
1 (notice that p+1 = 2%).
To prove (5.3.5), we use Lemma 5.3.1 to see that

(5.3.6)

[ 0@ (U + () ) (2,0) = U (2.0)) d

= Rn¢(m)(Uo+(Vk)-&-)qul(va)dx_ Rnw(az)Ug“(x,O)dx
= [ @U@0+ [ @0 @0 et o) - [ o@)Us w0 ds
R™ R Rn

= /. (@) (Vi) (,0) dz 4 ok (1).

By Holder inequality with exponents % and 2+ and by Proposition

2f—q-1 g+l
1.2.1 we have that

@Y (@0 de

25 —q-1 a+1

< ([ wor=eow) T ([ gfeod)

q;l
<Iol s (/ <vk>?:<x,o>dm)s
L2§—q—1 (R") R™
g+1

<SSl s [Viela-
[25—q-1 (Rn)

Now notice that in this case o + 5 = ¢+ 1 < 2%, and so ¢ € L*(R"),

*

with a = ﬁ, by hypothesis. Moreover, since V; is a weakly convergent

sequence in HZ(R), then V4 is uniformly bounded in HZ(R:™). Hence

W(z)(Vi) ' (2,0) dz < C,
Rn

for a suitable C' > 0. Plugging this information into (5.3.6), we obtain that

U(x) (Uo+ (Vi) )" (2,0) = US (2,0)) da| < C+ op(1),
RTL
as desired. O

Now we show that, under an assumption on the positivity of the limit
function, weak convergence in H$(R"*!) implies weak convergence of the
positive part.

LEMMA 5.3.3. Assume that W, is a sequence of functions in HS(R':)
that converges weakly in H® (R to W € HE (R,
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Suppose also that for any bounded set K C Rfrl, we have that
inf W > 0.
K

Then, up to a subsequence, (Wy,)4+ € HE(RTY) and it also converges weakly
in HE(RT) to W.

ProoF. Notice that |[V(Wp)+| = [VWi|x{w,, >0y < [VWi| a.e., which
shows that (W,,)+ € Hs(R").

We also recall that, since weakly convergent sequences are bounded,
(5.3.7) Sup/ YV Wi|? dX < C,,

meN RTLI

for some C, > 0.

Now we claim that

for any ® € C§° (R,

(5.3.8) .
lim y " (VWp)4, V) dX = y" (VIW, V) dX.

m—-+00 n+1 n+1
R+ R+

For this, we let K be the support of ®. Up to a subsequence, we know
that W,, converges a.e. to W. Therefore, by Egorov Theorem, fixed ¢ >
0, there exists K. C K such that W,, converges to W uniformly in K,
and |K \ K.| < e. Then, for any X € K,

1
> W =W | oo () = inf W[ Wy =W || poo (i) = = i :
Win(X) 2 W(X) =W W 12wy > i Wl Won =W |1,y > 5 i W >0

as long as m is large enough, say m > m. (K, ).
Accordingly, V(W,,)+ = VW, a.e. in K¢ if m > m, (K, ) and therefore
(5.3.9) lim YUY (Win)4, VBY X = | 42 (VW,V®) dX.
m—+oo [y K.

Moreover, for any n > 0, the absolute continuity of the integral gives that
/ Yy IV dX +/ Y IVe*dX <,
K\K. K\K.

provided that ¢ is small enough, say ¢ € (0,e4(n)), for a suitable e,(n). As
a consequence, recalling (5.3.7),

+

/ YT (W) 1, V) dX
K\K:

< \// yaIV(Wm)+I2dX~\// y Vel dX
K\K. K\K.
+\// ya|VW|2dX.\// Yo | VD[2 dX
K\K: K\K.

< VO +n.

/ y* (YW, V®) dX
K\K.
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Using this and (5.3.9), we obtain that

lim Y V(W) 4, VB) dX — y (YW, V) dX‘

m—-+oo n+1 n+1
R R

= lim Yy (V(Wp,)4, V) dX—/ y VW, Vo) dX‘
K

m—-400 K

< lim Yy (V(Wp)4,VO)dX — y VW, V) dX
m—+00 Ji\ K. K\K.

< v Con+n.

By taking 1 as small as we like, we complete the proof of (5.3.8).
~ Now we finish the proof of Lemma 5.3.3 by a density argument. Let ® €
H(R%) and € > 0. We take &, € C5°(R’™) such that

/ Y V(P — )2 dX <e.
R+

The existence of such ®. is guaranteed by (1.2.5). Then, recalling (5.3.7)
and (5.3.8) for the function ®., we obtain that

lim / Y V(W) s, VB dX —
R+

m—-+o00o

Yy (VW, V) dX‘

n+1
R+

<

i [ (T W), V02 X -
R+

m—-4o00

y* (VW, Vo) dX‘

n+1
R+

+ <\/00+ \// y”IVWIZdX> \// Y V(2 — @) |2 dX
R1+1 R1+1

< 0+ <\/00+\// . ya|vvv|2dx> Ve
R

Accordingly, by taking e as small as we please, we obtain that

lim y VW), V) dX = y VW, V) dX,
m—-+oo Rn+l Rn+1
+ +
for any ® € Hg(RT}FH), thus completing the proof of Lemma 5.3.3. O

5.4. Palais-Smale condition for J.

Once we have found a minimum of J., we apply a contradiction procedure
to prove the existence of a second critical point.

Roughly speaking, the idea is the following: let us suppose that U = 0
is the only critical point; thus, we prove some compactness and geometric
properties of the functional (based on the fact that the critical point is
unique), and these facts allow us to apply the Mountain Pass Theorem, that
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provides a second critical point. Hence, we reach a contradiction, so U =0
cannot be the only critical point of J..

As we did in Proposition 3.2.1 for the minimal solution, also to find the
second solution we need to prove that a Palais-Smale condition holds true
below a certain threshold, as stated in the following result:

ProprosiTION 5.4.1. There exists C > 0, depending on h, ¢, n and s,
such that the following statement holds true. Let {Uy}ren C HE(R'M!) be a
sequence satisfying

(1) kll}I_iI_loo I (Ug) = ce, with

1 n
(5.4.1) . +Ce?r < %57
where v = 1 + n—22$
Proposition 1.2.1,
(i) lim JL(Ug) =0.
k——o00

and S is the Sobolev constant appearing in

Assume also that U = 0 is the only critical point of J.. .
Then {Uy}ren contains a subsequence strongly convergent in HZ (R,

REMARK 5.4.2. The limit in (ii) is intended in the following way

. /
G 19 Ol gty rp )

— lim sup (T2 (Ur), V)| =0,
h=+00 ¢ fra (R11),[V] a1

where L(Hg(RTrl),H;(RﬁH)) consists of all the linear functionals from
. N
(R in F5(RY).

We observe that a sequence that satisfies the assumptions of Proposi-
tion 5.4.1 is weakly convergent. The precise statement goes as follows:

LEMMA 5.4.3. Let {Ugtren C HZ(R™™) be a sequence satisfying the
hypotheses of Proposition 5.4.1. Assume also that U = 0 is the only critical
point of J.. '

Then, up to a subsequence, Uy, weakly converges to 0 in H;(RTFI) ask —
+00.

PROOF. Notice that assumptions (i) and (ii) imply that there exists k >
0 such that

9(Ue)l+  sup  |(IL(UR), V)| < k.
ngg(RTrl)
[V]a=1

Hence, by Corollary 5.2.3 we have that there exists a positive constant M
(independent of k) such that

(5.4.2) [Ukla < M.
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Therefore, there exists a subsequence (that we still denote by Uy) converging
weakly to some function Uy, € H] (]R?fl), that is,

(5.4.3) Up = Us  in Hi(RT),
as k — +o0o. We now claim that
(5.4.4) Usx = 0.

For this, we first observe that, thanks to (5.4.2) and Theorem 7.1 in [21],
we have that

(5.4.5) Ur(+,0) = Uso(+,0) in Li{ .(R™), 1<a<2;,
and so
(5.4.6) Uk(+,0) = Ux(-,0) a. e. R™.

Let now ¥ € CP(R™1), ¢ = ¥(-,0) and K := supp()). According
to (1.2.18),

(I.(U,), T) = / Y (VUL VO X — [ gle, Unle, 0)(z) du

Ri+l Rn
_ / Y (VU V) dX — / oz, U, 0))i(z) de.
R+ K

Thanks to (5.4.3), we have that

(5.4.7)

(5.4.8) / VULV X [ T V) dx
R

R+
as k — +o0o0. Moreover, (5.4.6) implies that
9(z,Ui(+,0)) — g(x,Ux(-,0)) a. e R
as k — 4o00. Also, notice that
(1+r)P—-1<CA+1rP),

for any » > 0 and for some positive constant C' > (0. Hence, recalling
that U. > 0, thanks to Proposition 1.2.3, we can use this with r := ¢/U;
and we obtain that

(Ue + 1)) —UP = UP [<1+[Z)p—1] <Cur <1+é§,) —CUP ).
This, formulas (3.1.3) and (1.2.16) give that
(5.4.9) lg(z,t)| < C(UF 4+ tP) + €lh|.
Hence, for any k£ € N,
(5410) g, Ul 0))|[9] < Clo] (U2 (,0) + UL (z,0)) + |l ],

This means that the sequence g(-, Ug(-,0)) is bounded by a sequence that is
strongly convergent in L{ (R™). Moreover, by Theorem 4.9 in [10] we have

loc
that there exists a function f € L%OC(R”) such that, up to a subsequence,

(5.4.11) Cly| (UP(-,0) + UL(:,0)) +el[n] < [f].
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Formulas (5.4.10) and (5.4.11) together with (5.4.6) imply that we can use
the Dominated Convergence Theorem (see e.g. Theorem 4.2 in [10]) and we
obtain that

/ o, Uiz, 0))(x) dex — / 9, U (2, 0))) () diz,
K K

as k — 4o00. Using this and (5.4.8) into (5.4.7) we have

OO ) = [ TV VX~ [ gl U 0)la) e = (02U, 9),

R+

as k — 4o00. On the other hand, assumption (ii) implies that
(Ie(Uk), ¥) = 0

as k — 4o00. The last two formulas imply that

(5.4.12) (1L(Uso),¥) =0, for any ¥ € C§°(RH).

Let now ¥ € HS(R™*!), with ) := ¥(-,0). Then by (1.2.5) there exists a
sequence of functions ¥,,, € C§°(RTH), with ¢y, := ¥,,(+,0), such that

(5.4.13) Uy, — ¥ in H3(RTH) as m — +oc.
By Proposition 1.2.1 this implies also that
(5.4.14) P — 1 in L% (R™) as m — +oc.

Therefore, from (5.4.12) we deduce that for any m € N
(5.4.15)

0= (I(Ux), ¥p) = /R"“ Y (VUs, V¥,,) dX—/Rn g(x, Uso(,0)) o (z) dz.

Now, (5.4.13) implies that

/ Y (VU0 V) dX — Y (VUso, V) dX
R

n+1
R+

< [ VULV - ] ax

R+
< / y“|VUoo|2dX-\// Y|V (¥, — ¥)[2dX — 0,
Ri+1 Ri«l»l
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23
251

as m — +o00. Moreover, by Holder inequality with exponents 2% and
we get

| 9o Ul 0)n(a) da = [ gla Ul 0))(e) d

< [ 9@ Unla, )] [on(o) — 6(0)] da
R
<O [ U+ UR) (o) = v@) date [ bl ta(a) =~ v(a)| do

*

co([wrrvna) T ([ o - v i)

ve(LnFae) T ([ o - v )"

2*]7 _ O%
5T = 2%, we have

where we have used (5.4.9). Furthermore, noticing that
that

* *
25 25p

(UP +UL)ET < (Uz 4 Uso) %7 < (U + Uso)™
up to renaming constants. Thus, since Uy, Us € HE(R'FT!), and h € L7(R")
for every 1 < r < 400, by Proposition 1.2.1 we deduce that

| 9o Unle,0)bn(a) da = [ gla, Ul 0))(a) do

<C (/R () — ()% dx) K

as m — 400, thanks to (5.4.14). All in all and going back to (5.4.15) we
obtain that
0= lim (I (Us), ¥m) = (TL(Ux), ¥),

m—-+00

and this shows that (5.4.12) holds true for any ¥ € H*(R"*!). Namely, Uy,
is a critical point for J.. Since U = 0 is the only critical point of J., we
obtain the claim in (5.4.4). This concludes the proof of Lemma 5.4.3. [

As we did in the first part to obtain the existence of the minimum, (see
in particular Lemma 3.2.5), to prove Proposition 5.4.1 we first need to show
that the sequence is tight, according to Definition 2.2.1. Then we can prove
the following:

LEMMA 5.4.4. Let {Ugtren C HZ(R™™) be a sequence satisfying the
hypotheses of Proposition 5.4.1. Assume also that U = 0 is the only critical
point of J..

Then, for all n > 0 there exists p > 0 such that for every k € N there

holds
/ % odx <.
RPN\ B

voax Ui(z.0)

) R™\{B,n{y=0}}
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In particular, the sequence {U}ren is tight.

PRrROOF. From Lemma 5.4.3 we have that
U;—0 in H;(Ri“) as k — +oo

(5.4.16) .
and Ug(-,0) - 0 a.e. in R" ask — 4o0.

Now we proceed by contradiction. That is, we suppose that there exists ny >
0 such that for every p > 0 there exists k € N such that

(5.4.17) / ya|VUk]2 dX+/ (Uk)i_:(x,()) dx = np.
RYTIN\B R\ (B,N{y=0})

Proceeding as in (3.2.7), one can prove that actually k — 400 as p — +00.

Let U, be the local minimum of the functional &, found in Theorem 1.2.2.
Since U. € H3(R"™), from Propositions 2.1.1 and 1.2.1 we have that for
any € > 0 there exists r := r. > 0 such that

/R " +ya|ng‘2 dX+/R o +ya,UE|2vdX

n B} n B}

(5.4.18) " -

+/ \U.(z,0)|% dz < e,
R\ (B n{y=0})

where v := 1+ n—225' Moreover, by (5.4.2) and again by Propositions 2.1.1

and 1.2.1 we deduce that

/ y“VUk|2dX+/ ya|Uk|27dX+/ U (,0)|% da
Ri+1 R7+L+l Rn

(5.4.19) +/ Y| V(U + U2 dX +/ y*(|U| + Uo)? dX
R+ R+

+ [ (U0 + Ul 0% do < N
]Rn

for some M > 0. }
Now let j. € N be integer part of %, and set, for any [ € {0,1,...,5:}

L= {(z,y) e R+ U< ()| <+ 1413
Notice that j. — +oo as e — 0. Therefore, by (5.4.19) we have that

M
(Je+1)e > ?5

Je

22(/1

y“|VUk|2dX+/ y“|Uk|2'YdX+/ |Ur(x,0)|* da
= 1 Il Il

N{y=0}

+/ vV (U + U.)? dX +/ Y (|Up| + U)* dX
I I

+/ (IUx(z,0)| + Us(w,0)) da).
Ln{y=0}
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This implies that there exists [ € {0,1,...,7:} such that, up to a subse-
quence,

/ YV dX + / YU dX + / U(, 0)[% da
I; Iy Iin{y=0}

I

(5.4.20) n / Y|V (U + U2)[2 dX + / y (U] + U)> dX
Iy

+/ (|Uk(z,0)| + Us(2,0))% dz < e.
Iin{y=0}

Let now x € C°(RTH,[0,1]) be a cut-off function such that

L zy)| <7+,
5.4.21 xT,Yy) = _ and |Vx| <2.
( ) x(@,y) {07 ) >+, Vx|
Define, for any k € N,
(5.4.22) Wl,k = XUk and Wg’k = (1 - X)Uk

Hence Wy i, + Wy i, = Uy, for any k € N. Moreover,
(5.4.23) Wik, Woy, =0 in HE(RTEM,

as k — +00. Indeed, for any ¥ € H3(R}™) with [¥], = 1 and § > 0, we
have that

)
gfa
2

/ y* VU, V) dX
R+

for any k sufficiently large, say k > k(9), thanks to (5.4.16). Moreover, the
compactness result in Lemma 2.1.2 implies that

2 52
G 2dx < 2
/Izy| k| 16
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for k large enough (say k > k(6), up to renaming k(8)). Therefore, recall-
ing (5.4.22) and (5.4.21) and using Hoélder inequality, we obtain that

/ y (VWi g, V) dX
R+

- / YV (x UL), V) dX
Ri“

< / y'x(VU, V) dX +/ Yo UL(Vx, V) dX
R+ R7+!
< / y*(VUg, V) dX +/ Y| UL| Vx| V| dX
R1+1 R1+1
0
< +2\// y“|Uk|2dX-\// Yo V|2 dX
2 Rr+1 R+
+ +
0 0
— 492
2+ 4
= 4,

which proves (5.4.23) for W . The proof for W5y, is similar, and so we omit
it.
Furthermore, from (5.4.23) and Theorem 7.1 in [21] we have that

(5.4.24)
Wix(-,0)—0 ae R”,

and (U: + W x)(+,0) — U(+,0) in Li (R"), V1< a <25, i=1,2,

as k — +o0. Notice also that there exists a positive constant C' (independent
of k) such that

(5.4.25) [Ue + Wikla < C,

for ¢ € {1,2}. Let us show (5.4.25) only for W i, being the proof for Wy
similar. From (5.4.22) we obtain that

Wil = / YA VW2 dX = / VIV (U P dX
R1+1 R:i+1
< 2/ an2’VUk|2dX+2/ YUV X2 dX
R1+1 Ri—}—l
<2M +8/ Y| UL? dX < 2M + 8C,

I

for some C' > 0 independent of k, thanks to (5.4.2), (5.4.21) and Lemma 2.1.2.
This, together with the fact that U. € H(R'}), gives (5.4.25).
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Therefore, using hypothesis (ii),

(5.4.26) kEToo<j/5(U’“)’ U.+ W) =0, i=1,2.

On the other hand, by (1.2.18),

(5.4.27)
[(TL(UR) = IL(Wi k), Ue + W)

< / - ya<V(1—X)Uk,V(UE+WLk)> dX
7

_|_

[ B (Ut (Wi 2)" = e+ (000407 (@ 0)(U + W) (.0 d

+

[ (et (V002 = U+ (04 ) (2.0 + Wi 2,0) da
=1+ I, + Is.

To estimate I, notice that Iy < I11 + I1 2, where

I 1

/ y*(V(1 = x)Ux, VU:) dX‘
Ry

and 1172 =

/R"+1 ya<V(1 — X)Uk, V(XUk)> dX‘ )

We split further Iy 1 as

Ia

)

+

< / V(1 = ) (YU, VU) dX
RTA\B:J

/ y*Up(V(1 = x),VU:) dX‘

Iy

Since B;F C B:H’ by Holder inequality, (5.4.18) and (5.4.2) we have that

/ (1 — ) (YU, VU.) dX
R1+1\B+

7‘+f

< ¢/ ye|VUL[?dX - \// yo|VU-|2dX < Me'/?.
Ry RET\BS
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Moreover, by (5.4.21) and applying twice the Holder inequality (first with
exponent 1/2 and then with exponents vy and %) we obtain that

‘/ Yy Ur(V(1 - x), VU:) dX
I

1/2 1/2
<2 </ y“IUkIQdX> (/ y“IVUeIQdX>
Iy Iy

1/2
<2 /y“|Uk|2dX / Y| VU|*dX
I Ri“
=1 1
2y 2~
<0</ y“dX) (/ y“|Uk|2”de> < Ce/?,
I I

1/2

[
up to renaming constants, where (5.4.20) was used in the last line. Hence,
I, < CeY?,

for a suitable constant C' > 0. Let us estimate I o:

Ly < / YUV (1~ x), V) dX | +

/ Y Upx(V(1 = x), VUy) dX
Iy

It

+ +

/ Y1 — ) [VU? dX

I

/ y*(1 — X)Ur(VUy, Vx) dX‘ .

Iy

Thus, in the same way as before, and using (5.4.20) once more, we obtain
that I 2 < CeV/?7 for some C > 0. Therefore

(5.4.28) I < CeV/?,

for some positive constant C'.
We estimate now I,. For this, we first observe that formulas (3.1.3)
and (5.4.22) give that

(U + (Wik)4)? = (Uz + (Uk)+)"] < LIWi )+ = (Ur) 4] = L(U)§ 11— X%,
for a suitable constant L > 0. Consequently, applying Hoélder inequality

: 23 2 * i
with exponents F1Tq g and 2% we obtain that

B e [+ V100,00~ U+ 00 )] U2+ Wil do
]Rn
< 8L/ |R|(Uk)L|Us + W1 | dae
]Rn

L25-1—gq (Rn) n R”

Ce,

N

N
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for some C > 0, thanks to (1.1.5), (5.4.2) and Proposition 1.2.1.
To estimate I3, let us define the auxiliary function
f(t) = (Ue + tx(Up)y + (1 = 8)(Uk)4)", ¢ €]0,1].
Thus, recalling (5.4.22), we have that
[(Ue + W) +)? = (Ue + (Ur)+)?| = (U + x(Ur)+)" — (U + (Ur)+)"|

~ 150 - g0 = | [ F0a

p(1— ) (U /0 1Us + tx(Uk)s + (1 — (U)o [P~ dt

<p(1 =) (Un)+(Ue + (Up)4 )P~ < C(1 = x)(Ug)+ UE™H + C(1 = x) (Ug)}.

for a suitable positive constant C'. Therefore,
B <O [ (1= x(@0) (U .0V 2,0 ds
+ [ =@ 0) U (2. O (,0) d
+ [ @0/~ (. 0)U2 (,0) (U2 (2. 0) o

Ir
+ [ @01~ (. 0) W 2,0) )
It
=it I31+ I32+ I35+ I34.

Concerning I3 and I32 we are in the position to apply Lemma 5.3.1 with
Vi := Uy, U, := U and 9 := 1 — x(+,0) (notice that & := 1 and (3 := p and
a :=p and (3 := 1, respectively). So we obtain that both I3; = ox(1) and
1372 = Ok(l).

Moreover, using Holder inequality with exponent % and %‘Ll, Propo-
sition 1.2.1 and (5.4.20), we have

I33 < / Ung (x,0) dz / (Uk)]—?:_l(xa 0) d < Certt,
Iy Iy

1

for a suitable C' > 0. Finally, making use of (5.4.20) once again we obtain
that I3 4 < Ce¢, for some C' > 0. Consequently, putting all these informations
together we get

I3 < Caﬁ + or(1).
All in all, from (5.4.27) we obtain that
1
(5.4.29) |<32(Uk) — jlg(WLk), U. + Wl,k” < Ce?r + Ok(l).
Likewise, it can be checked that

(5.4.30) (TL(UR) — T2 (W), Us + Wag)| < Ce?7 + oy (1).
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Therefore, using this and (5.4.26),

(5.4.31) (I (W), Us + Wis)| < O +op(1),  i=1,2.

From now on we organize the proof in three steps as follows: in the
forthcoming Step 1 and 2 we show lower bounds for J.(W; 1) and J.(Wa ),
respectively. Then, in Step 3 we use these estimates to obtain a lower bound
for J.(Uy) that will give a contradiction with the assumptions on J., and so
the desired claim in Lemma 5.4.4 follows.

Step 1: Lower bound for J.(W1 ). From (1.2.15) and (1.2.18) we have

(5.4.32)
1

Je(Wik) — §<32(W1,k)a Ue + Wik

1
_ / Y (VU., VIV, ) dX

2 R1+1

S / h(a) (U + (W) )" (2.0) — UT (2,0)) da
qg+1 Jgn

+e€ h(x)Ud(x,0)(W; i)+ (z,0) dz

]Rn

=L (W W) @ 0) - U7 (2, 0)) de

p+1Jgn ’

+ [ U0 .0 da

+ ;/n h(z) (U + (W) 4)%(z,0) — U(z,0)) (Us + Wiyg) (x,0) d

+ ;/n (Ue + W1 k)1)P(x,0) — Us(,0)) (U + Wi ) (z,0) d.

Thanks to (5.4.23), we have that

lim y (YU, VWi 1) dX = 0.

k +1
——+00 Ri

Moreover, from Lemma 5.3.1 applied here with V}, := Wy 4, U, := U, ¢ := h,
«a:=1 and § := ¢q we have that

(5.4.33) klim h(x)Ud(z,0) (W1 i)+ (x,0) dx = 0.

—+o0 JRn
Analogously, by taking Vj, :== Wy, Uy := U, 9 := 1, a:=1 and 8 := p in
Lemma 5.3.1 (notice that in this case a + 5 =p+1 =2} and ¢ € L>®(R"))
we obtain that

(5.4.34) lim UP(z,0)(W1 k)+(z,0)dx = 0.
k—>+00 R"
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Taking the limit as k¥ — +oo in (5.4.32) and using the last three formulas,
we obtain that

(5.4.35)
. 1
kgrfoo jE(Wl,k) - §<J/5(W1,k)a U: + Wl,k>
. 9
= i (=5 [ ) (@4 W0 0,0) - 07 0,0) e
1
[ R0 - U, 0)

+§/hw«m+mnuw%m—wwmnm+mmwmm:
.

1

g (O W) 7.0 = U2(,0) (U + Wi) (2,0) d).
Rn

Now we observe that if x € R™ is such that W ;(z,0) < 0, then

(UE + (Wl,k)—&-)q(l‘:o) - Ueq(xvo) = UEq(l‘,O) - Usq(xvo) = Ov

and so

h(x) (Ue + (Wi k)+) (2, 0) = Ud(,0)) (Ue + Wig) (2,0) dz

n

h(@) (U + (Wi)4)"(2,0) = Ul(2,0)) (Us + (Wig)4) (2,0) dx

n

I
T~

h(x)(Ue + (W1 ) 4) (2, 0) da — /Rn h(x)US (2,0) da

~ [ h@)U.0) (W) (.0) d

[ () (U (W10 ,0) = U2 (2,0)) da

I
\

_ / h(@) U4z, 0) (W) (2, 0) da.

Analogously

[ (et (W17 (2.0) = U2(,0)) (U + Wa) (2.0)d

= /n ((Ue + (Wig) )P (2,0) — UPF(,0)) dx—/R UP(2,0)(Wi )4 (2, 0) de.

n
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Therefore, using once more (5.4.33) and (5.4.34), from (5.4.35) we obtain
that

(5.4.36)
Jm Je(Wip) = 1< JeWik), Ue + Wig)
= Jdim (=5 [ @) (04 (W00 (@.0) = U2 (0.0) da
- L+ ) .0) = U2 (0,0))
4 ‘;/ h(@) (Us + (W) )T (2, 0) — U (2,0)) do
-
13

=5 [ @U@ 0 (W) ,0) do

3 [ (e 07007 ,0) - 027 5,0)
R’ﬂ

~5 [ U0/ 0.0 o)

= Jdim (=5 [ @) (O (W00 (@.0) = U2 (0.0) da
1

o L
/ W) (U + (W) )T (2,0) — DT (2,0)) de

(U + (Wi) )P (@, 0) = U (2,0)) da

N ™

= m (- (q+ ) h(a) (U + (Wan)+)™ (2,0) — U (2,0) da

- <2 B 1) /Rn ((Ue + (Wig) )P (2,0) — UPF(2,0)) dx).

p+1
Now we claim that

(5.4.37) kgrfoo /Rn h(z) (U: + (Wig)+)" (2,0) — U (2,0)) dz = 0.
For this, notice that if x € R" \ B, 7, then Wjx(x,0) = 0, thanks to
(5.4.22) and (5.4.21). Therefore, for any x € R" \ B, 7, we have that
(Us + (Wig)+) ™ (@,0) = UT(2,0) = UL (2,0) — U (2,0) = 0.
Thus
[ 1) (@ + (72,007 0.0) = U2 2.0)) do

(5.4.38)
- /B W) (U + (W1)5)™ (2, 0) — US(2,0)) dX

r4+i+1
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Thanks to (5.4.24), we have that W ;(-,0) converges to zero a.e. in R", and
so (Wi x)+(,0) converges to zero a.e. in R", as k — 4o00. Therefore

U + (WLk)‘fl(x,O) — UIt(2,0) for a.e. z € R",

as k — 4o00. Moreover the strong convergence of Wi x(-,0) in Lilotl(]R”)
(due again to (5.4.24)) and Theorem 4.9 in [10] imply that there exists a
function F € Lfotl(R”) such that | g(z,0)| < |F(z)] for a.e. € R™. This

and the boundedness of U, (see Corollary 4.1.2) give that
h(Ue + (W) )™ < RI(Ue|+ W)™ < ClR(L+[FITY) € LH(B,y1p),

for a suitable C' > 0. Thus, the Dominated Convergence Theorem applies,
and together with (5.4.38) give the convergence in (5.4.37).
Consequently, from (5.4.36) and (5.4.37) we obtain that

(5.4.39)
lim <j€(Wl,k)
k—oc0

_ <1 _ 1) lim /n ((Us + (Wl,k)Jr)pH(x’ 0) — Ugﬂ(m’m) dz >0

1
- §<J§(W1,k), Us + Wl,k))
2 p+ 1/ k>

(recall that p + 1 = 2% > 2). In particular, by (5.4.31) and (5.4.39), there
holds

(5.4.40)
1 1
JeWig) =3e(Wig) — §<9/5(W1,k), Us + Wiyg) + 5(3/5(W1,k), Us + Wig)

1 1
>1.(Whg) — §<9/5(W1,k), Ue + Wig) — Ce?i + ok(1)

> —Ce? + op(1),

where C' is a positive constant that may change from line to line.
Formula (5.4.40) provides the desired estimate from below for J. (W x).
Next step is to obtain an estimate from below for J.(Ws i) as well.

Step 2: Lower bound for J.(Wyy). We first observe that formula (3.1.3)
implies that there exists a constant L > 0 such that

‘(Ue + (W27k)+)q(x70) - Ug(x70)| < L(Wlk)i(l"o)

Hence

€ /n W) (Ue + (W) 1)!(,0) = Ud(2,0)) (Ue + Wa)(2,0) da

< z—:/n \h(2)||(Uz + (Wap)+)(,0) — Ud(z,0)| |(Us + W) (z,0)| da
S gL/n () [(Wo) % (2, 0)|(Us + Wok)(2,0)| dz

<L (/ ()] (Wa )2 (, 0)U (z, 0) da +/ ()| (War) ™ (2, 0) da:) |

n
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Thanks to Lemma 5.3.1 (applied here with Vj, := Wy, U, := Uy, ¢ := h,
a:=q and 3 := 1) we have that

lim |h(x)|(Wa ) (z,0)Ue(x,0) dz = 0.
k*F‘rOO Rn
Moreover, by Holder inequality with exponents 2*72317(1 and q2fl we obtain
that
[ @[Vt (2.0) do
. 25-1-q a+1
*275 2% 2% 23
< (/ |h(z)|%-1-a da:) (/ (Wa)¥ (2, 0) de)
R R

g+1

2% 2; +1
<o [ weod)” <cugt<c.
Rn

for some constant C' > 0, where we have also used (1.1.5), Proposition 1.2.1
and Corollary 4.1.2. The last three formulas imply that

[ B (U + (Wa))(,0) = U2, 0) (Us + Waa)(,0) da| < Ceor(D),

for a suitable C' > 0. This, together with (1.2.18), (5.4.23) and (5.4.31)
(with ¢ = 2) gives

(5.4.41)

+

= (IL(Wa e, Us + Way,) — /

n+
RY

L y“(VWg,k, VU5>, dX

b [ B (U + (W) )7(2,0) = U(2,0) (U + Wa),0) da
+ /n (U + (Wa)4+)P(x,0) — UP(,0)) (Us + Wa ) (x,0) dz

<&%+%m+/<wauwmfmm—wwmxm+mwmmw-

n

Now notice that if x € R™ is such that W5} < 0 then
(Ue + (War)+)P(2,0) — UE(z,0) =0,

and so

(Uz + (War)4)"(,0) = UZ(2,0)) (Us + Wa)(,0) dx

n

(Ue + (Wap)1+)"(2,0) = UL(,0)) (Us + (War)4) (2, 0) d

n

I
—r—

(U + (W) )7 (0.0) = U2 (0.0)) do = | U2, 0)( W) (,0) o

n
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According to Lemma 5.3.1 (applied here with Vj, := Wy, Uy := Ug, ¢ :=1,
a:=1 and [ := p) we have that

lim UP(x,0)(Wa )+ (x,0) dx = 0.
k—>+00 ]Rn

Therefore, (5.4.41) becomes

/ ya|VW2,l<:|2 dX
Rn+1
(5.4.42) +

< / ((Us + (War) s P* (@, 0) — UPM(2,0)) da + e + op(1).
R'ﬂ

Furthermore, it is not difficult to see that that there exist two constants
0 < ¢1 < ¢ such that

1 p+l _ 1 _ ¢ptl
c1<( + 1) t
tr+t

(Wa i)+
Ue

Thus, setting t := , one has

(Us + (Way) 4 )PH — Ut = ypt!

(1+ <W>+> - 1}

U

Wor)l (W Wo )Pt

< U7 e, ( 2,£)++( 2.k)+ +( 2,k)1+
Ut U. Urt

= U (War )5 + caUP (Wap) 4 + (Wor)7

Therefore

Rn((Us + (WQ,k)—F)p—"_l(xv 0) - UgH_l(xv 0)) dx

<02/n UP(z,0)(Wa )+ (z,0) dx+02/ (Wzk)]jr(x,O)UE(x,O) dx

+ / (Wa )7 (2, 0) da.
Rn

Applying Lemma 5.3.1 once more, we obtain that

lim UP(z,0)(Wak)+(x,0)dz =0
k—-+o00 Rn

and lim (Wa i) (2,0)Us (2, 0) dz = 0.
k—+oo Jpn

Hence, going back to (5.4.42), we get

(5.4.43) / VWX < / (Wai )2 (2, 0) de + CeT + op(1).
R n

+
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Now we observe that, thanks to (5.4.22), Wy, = Uy, outside B, 7, ;. So,
using (5.4.17) with p :=r 4+ 1+ 1, we have

/ YV Wy l* dX + / (We)¥ (2,0) da
RYTNBF R™\(B, 1 141M{y=0})

_/ 1 y“IVUk|2dX+/ (U)5 (2,0 dz > 1,
Ri+ \B+ Rn\(B7-+f+1m{y:0})

r4l4+1

for some k that depends on p. This implies that either

/ VI VW2 dX > 2
R1+1\B+ 2

r4+l+1

or

/ (War )2 (2,0) do > 1.
ReA\{B, 1 711N{y=0}} 2

In the first case we have

/ Y| VW 2 dX > / Y VW 2 dX > o
Riﬂ R1+1\B+ 2

r+l+1

From this and (5.4.43) it follows
(5.4.44) / (Wa )P (,0) dz > %

In the second case, this inequality holds trivially.
Accordingly, we can define vy, := o, W 1, where

(Wa k)2

(5.4.45) ol h= ‘
(W k) (-, 0) 175 o

We claim that

2
(G446)  [Waal? < | War)s (05 oy +Co7T +0n(D),
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for a suitable positive constant C. For this, notice that (1.2.18), (5.4.23)
and (5.4.31) give

(5.4.47)
(Wasl = QW) U+ Wag) = [ 5" (VU VW2 dX
RY

b [ B (U + (War))7(2,0) = U2,0) (U + Wag)(,0) da
+ /n (U + (Wa)4+)P(x,0) — UP(,0)) (Us + Way)(x,0) dz

< Ce + or(1)

el W) (Us + (War)4) (2, 0) = Ud(x,0)) (U + Wa)(z,0) do

+ /n (U + Wa)4+)P(x,0) = UP(x,0)) (Us + Way)(,0) de.
We can rewrite

[ 1) (U + (W) .0) = U2, 0) (U + Woy) (2. 0) o
- / W) ((Us + (Wap) )" (2,0) — US (,0)) de
/’h YU (2, 0)(Wa) (2, 0) da
Rn

= [ B (U (Vo)) (@.0) = U1 (,0) da+ ou(1),
where we have applied once again Lemma 5.3.1. Analogously,

/n ((Us + (War)4)"(2,0) = UL(,0)) (Us + Wa ) (2, 0) da

= (et W) (,0) = U2 (2,0)) o+ 041,
RTL
Plugging these informations into (5.4.47), we obtain that

(Woil2 <5/ hz) (Uz + (War) 1) (2,0) — U (2,0)) da

R

(5.4.48) +:én«Ue+(th+V+%%0)—l¥+%%0»<m

+Ce? + og(1).
So using (5.3.5) into (5.4.48) we obtain

(5.4.49) W2l </n (U + (Wa) )P (2,0) — UPH(2,0)) da

1
+Ce® + og(1),
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up to renaming constants. Now we use (5.3.4) with Vi, := Wy}, and U, := U,
and we get

N

(W2 / (U + (W) P (,0) dr / UPH(2,0) do

O™ + op(1)
1
= Iz + (War) )5 0)I7E &) ~ Ve ||pp+1(Rn)+C€2” + ox(1)

= (War)+ (. 055 gy + CF +04(1),

and this shows (5.4.46).
From (5.4.45), (5.4.46) and (5.4.44) we have that

(Wa.rla

<1+ Ce? +op(1).
[(Wape)+ (-, )IILW Rn)

-1
(5.4.50) b =

Notice also that, with the choice of oy in (5.4.45), it holds
[Wila = aiWarls = af T I (Wa ) G O gy = 11(800)+ (O o -

Hence, by (1.2.6) and Proposition 1.2.1, we have that

< [wk( )]Hs(Rn) _ Wk]z
S M@ O By~ T+ (5002

Let1(Rn)
1)+ G O 5 ey

1@+ OB g

= [1(W1)+ C O s (-

Accordingly,
1)+ G O
1 Lp R n/2s
1V )4 (L OZEL oy = B s,
k k

where we have used the fact that p —1 = 2f —2 = ngs. This, together
with (5.4.50), gives that

2
S5 (14 CertT + op(1 ))P i |(War)+ (-, O)||Lp+1(R”)
(5.4.51)

< (Wa )+ (-, 0)||1£ﬁ1(Rn) +Ce? + or(1).
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Moreover, by (5.4.23) and Lemma 5.3.1 we have that

1
Je(Wak) — §<32(W2J<), Us + Wa )

= —/ y"(VWay, VU:) dX
R+

_q—i 1 /Rn h(z) (Us + (Wap)1) " (2,0) — UL (2,0)) d
b [ B 0) (W) (0,0) do
e [ W27 0) - U 0,0)

+/ Uf(z,0)(Wak)+(z,0) dx

5 [ @) (Ut (Wap)1)7(2,0) = U0, 0)) (Us + Wai)(0.0)) da

5 [ (U (W21 (0,0) = U2(@.0)) (U + W) 2.0)) do

. (1 _ ;) / h(x) (U + (Wag) )™ (2,0) — U (2,0)) du

+ (2 - > /R ((Us + (War) )" (2,0) = UEF (2,0)) dx + ox(1).

We observe that 5 — ﬁ = 2. Thus, using (5.3.5) we have that

1
Je(Wak) — §<j/e(W2,k)a Ue + Wag)
> 8/ (U + (Wa)4)Pt (2, 0) — UPT(2,0)) do — Ce + ox(1),

n

for some C' > 0. Therefore, using (5.3.4) with Vj, := Wy, and U, := U,, we
have that

1 s
Je(War) = 5Oe(Wap), U + Wag) > 5||(W2,k)+||’2ﬁ1(w) — Ce+ox(1).
Furthermore, by (5.4.51),
1 s L
Je(Wak) = 5 (Te(Wap), Us + Wag) > —S"/% = Ce?7 + o4(1).
This and (5.4.31) give the desired estimate for J.(WW5 ), namely
(5.4.52) 9. (Way) > %S"/Qs — O+ op(1).

Step 3: Lower bound for J.(Uy). Now, keeping in mind the estimates
obtained in (5.4.40) and (5.4.52) for J.(W; ) and Jc(Wsy) respectively,
we will produce an estimate for J.(Uy). Indeed, notice first that Uy =
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XUk +(1—=x)Uy = Wy, +Wa i, thanks to (5.4.22). Hence, recalling (1.2.15),
we have

jE(Uk)
= js(Wl,k) JFJE(WQ,k) +/Rn+l ya<VW1,k,VW27k> dX
g i 1 /R () ((Ue + (Ug)4) " (2,0) = UL (,0)) da
v [ M@V 0/ ,0) do
R'ﬂ
[+ 00277 @0 - 02 0,0) da

+ [ U200 (.0) da

+

qi 1 /R h(@) (Ve + (Wi)4)"" (2,0) = U (2,0)) da

e /R BV, 0)( Wi k) (,0) d
1

o S

- [ U0 W) (0.0) da

rE /R h(@) ((Us + (Wer) )" (2,0) — U (2,0)) do

e /R B()UL(, 0) (W) (,0) d
1

i S

- [ U 0) (W) s (5,0 o

(Ue + (W1 ) 4)PtH(2,0) — UPT(2,0)) da

+

((Ue + (WQ,k)-‘r)erl(x? 0) - Uén—‘rl(xa 0)) dx
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Thanks to Lemma 5.3.1 we have that

lim h(z)U4(x,0)(Ug)+(z,0)dz = 0,
k—+oco JRrn

lim UP(x,0)(Ug)+(z,0) dz,
kﬂ+oo R

lim h(x)UX(z,0)(Wi )+ (x,0)dz =0,
k—+oco Jrn

lim [ UP(x,0)(Wig)4(z,0)dz =0,
kﬂ+00 R

lim h(x)UZ(z,0)(Wa )+ (x,0) dx
k—+oco Jrn

and lim UP(z,0)(Wai)+(x,0)dr = 0.
kH+OO R

Therefore,

JE(Uk) = jg(Wl,k)+jg(W27k)+/‘ ya<VW1,k,VW2,k> dXx

n+1
R+

4 i 1 /R h(@) ((Ue + (Uy)+)" (2, 0) = USTH(2,0)) dz
—pil - ((Ue + (Uk) 4 )P+ (2,0) = UL (2,0)) da

*y i 1 /R h(z) (U + (Wig)+)* (2, 0) = U (2,0)) do
+pi1 Uz 4 (W) )7 (@,0) = UZ (2, 0)) de

o [ B (O (7)) 020) = U2 (0,0))
e [ (U (Wap) P4 (2,0) = UPF (2,0)) do+ on(1).

p+1 Rn
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Since the terms with ¢ in front are bounded (see (5.3.5) and notice that it
holds also for Uy, and W 1), we have that

(5.4.53)
9o (Ur) > 9-(Wig) + (W) + /R UYWL VIV ) dX
+
1
=541 L (et U4y (@,0) ~ U2 (2, 0) da
1
o1 o (U4 (W07 (@,0) = U2 (2,0)) de
o1 L, (U= (Woi) ) (@,0) = UF (@,0)) da
R'ﬂ
—Ce+ Ok(l).

Now notice that

/ y (VWi g, VW) dX
R+

1
(5.4.54) _ 2/ YV (U~ Wag), VW) dX
4
1
+ 2/ . ya<v(Uk - W2,k), VWQ,]Q dX.
R

Moreover, from (1.2.18) we have that for any i € {1, 2}
(92(Uk) = 3e(Wir), Us + Wik)

_ / YV Uk = Wig), V(Wi + U2) dX
=)

—e [ h@) (U + W)~ U (U + W) do
(5459 [+ W~ UD) Wt Wi da
R?’L
e [ B (Uert (Wi )7 = U) (U + Wi) do

+ [ ((Ue + (Wig)+)" = UP) (Ue + Wig) da.
R’Il
We claim that
(5.4.56)

[ 1) (U (U270, 0) = U2(,0)) (U + Wi ,0)di < €+ on(1)

and [ ha) (U + (Wea) )"(2,0) = U2(,0)) (U + Wig) (. 0) do < €'+ 04 (1),
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for some C' > 0. Let us prove the first estimate in (5.4.56). For this, we
notice that if x € R™ is such that Uy(x,0) > 0 then also W;(z,0) > 0,
thanks to the definition of W;, given in (5.4.22). Hence

[ 1) (U + (U027, 0) = U2(,0)) (U + Wi ,0) d
— [ @) (Ut (U)2)0.0) = U2(,0)) (U + (Wi)-).0)
< [ B (U + (U )(0.0) = U2(,0)) (U + (U)+) (. 0)
= [ 1) (@ + W) @0) = U (0,0)) da

~ [ H@)U0) U0 w.0) do
<C+ Ok(l),
for a suitable C' > 0, thanks to (5.3.5) (that holds true also for Uy) and
Lemma 5.3.1. Analogously one can prove also the second estimate in (5.4.56),
and this finishes the proof of (5.4.56).
Hence, from (5.4.53), (5.4.54), (5.4.55) and (5.4.56) we get
Js(Uk)
1
> J.(Whig) +3(Way) + §<32(Uk) —IL(Wh ), Us + Wig)

1
+5 e (Uk) = Te(Wa), Ue + Wa)

pj—l - ((Ug + (Ug)4 )P (z,0) — U§+1(m70)) dx

+pi1 e ((Ue + (Wig) )P (2,0) — UL (2,0)) dz

eril e ((U: + (Wap)4 )P (2,0) — UPTH(2,0)) da

—l—% /n ((Ue + (Ug)4)P(x,0) — UE(2,0)) (Us + W1 k) (2,0) dx
_% /n ((Ue + (W1 ) 4)P(2,0) = UP(2,0)) (Us + Wy 1) (z,0) dz
—l—% /n ((Ue + (Ug)4)P(x,0) — UP(2,0)) (Us + Wa ) (z,0) dz

_% /n ((Ue + (W) 4)P(x,0) = UP(x,0)) (Us + Wy ) (z,0) dz

—Ce+ Ok(l)
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Moreover, the estimates in (5.4.29) and (5.4.30) give
Ie(Ux) = T-Wig) +I(Way)
1
“oil e ((Ue + (Ug) )P (2, 0) = UL (2,0)) da
1
p + 1 Rn

—— [ ((Ue + (Wa) 4 )P (2,0) = UP* (2, 0)) do
p Rn

(U= + (Wi ) )P (2,0) = UF (2, 0)) da

—

_|_

(U + (Uk)1+)"(2,0) = UZ(,0)) (Us + Wig)(,0) dz

g— F|-

((Uz + (Wip)4) (2, 0) = UL(,0)) (Us + Wi g)(,0) do

3

_|_

(U + (Uk) 1) (2,0) = UZ(,0)) (Us + Wa)(,0) dz

N = N~ N~ N

H\%\%\

((Uz + (War)1)"(2,0) = UL(2,0)) (Us + Wip)(,0) do

—Ce> + og(1).
Now we use Lemma 5.3.1 once more to see that, for ¢ € {1, 2},
[ (et (W37 0,0) = U2(2,0)) (U + W) (.0)d
- / (U + (Wi)4)" (2,0) de — / U (2, 0) da + op(1).

n

Hence, using this and collecting some terms, we have

(5.4.57)
jE(Uk)
>3 (Wig) +Ie(Wag)
- pil - ((U: + (U)4)P (2,0) — UPT(2,0)) da
+ ;/n (Us + (Ug)4)P(x,0) — UE(x,0)) (Us + Wl,k)(CE,O) dx

+5 [ (e + 0.0 = U20,0) (U + W) 0.0) da

~(5-531) L (@ 100770 - 021(0,0) ds

< p+1> /Rn ((Ue + (War)+ )P (2,0) — UPT(2,0)) dz

_Cen + ox(1).
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Now we claim that

(5.4.58) klim ((Us + (Ug)4)P(x,0) — UE(2,0)) Us(x,0) dz = 0.
— 400 R

Indeed, we first observe that for any a > b > 0

a
aP — bP :p/ P~ dt < paP~'(a - b).
b

Hence, taking a := U + (Ug)+ and b := U, we have that
(U + (Uy)+)P = UZ| < p(Ue + (Ug) 4"~ (Ug)+-
Accordingly,

[ e+ 007(.0) ~ U2(,0)) U, 0) d

SP Rn(Ue + (Ug)+ )P (2, 0)(Un)+ (2, 0)Us (2, 0) da.

23

We now use Holder inequality with exponents T = 35 and - and obtain
| (et 2 @.0) = U2(2,0)) U, 0) da
2s n—2s

<o ([ W 0P @ow)" ([ OG0T eour T o) |

n—2s
n

<o+ @ ([ 00T @ 0UF T (@,0)ds

n

n—2s
<o [ @TFour T o) "

for some positive C' that may change from line to line, thanks to Proposi-
tion 1.2.1 and (5.4.2). Now the desired claim in (5.4.58) simply follows by us-
ing Lemma 5.3.1 with Vj, := Uy, Uy := Ue, ¢ :=1, a := H5- and §:= *5-
(notice that a + 3 = 2¥).

From (5.4.58) we deduce that

[ (- ©27(0,0) = U2(.0) (U + Wi (0, 0) do
[ (U O (0,0) = U2(0,0) (U + Wa),0) d
- /R (U= + (U (2,0) — U2, 0)) (Us + Wa g + W) ,0) iz + o (1)
= [ (W + 0 w.0) = U2(a.0) (U + Vi) a.0)da + o1(1)

= [ (e U (@0) = U2V 0,0) 2, 0) o + 041,
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where Lemma 5.3.1 was used once again in the last line. Plugging this
information into (5.4.57) we obtain

- (i a p%l—l ((Ue + (Wi )4 )P (2,0) — UPTH(2,0)) da
‘@‘piJ/}wk+mmnwwmm—wmeMM—&*+%m-

Now we use (5.3.4) with U, := U, and Vj, := Uy, Vj, := Wy and Vj, := Wa
respectively, and so

2 p+1
(oL /(W V7 (2, 0) da
2 p+1 R™ Lk/+ ’

‘@‘piJ/YWmﬁ%amm—&%+%m-
R

Notice now that for any x € R"
(U (,0) = (Wi )57 (,0) = (Wa )i (,0)
= (U5 (@, 0) = X (2, 0)(U)} (2,0) = (1 = x(x,0))" (U (,0)
= (U (,0) (1= X" (2,0) = (1 = )"+ (,0)) > 0.
This and the fact that p +1 > 2 give

1.(Uy) > Mwmmnm%m+(l ]'>Aﬁwﬁﬂxmm

1
je(Uk) = js(Wl,k) + js(WZ,k) —Ce> + Ok(l)'
Finally, this, together with (5.4.40) and (5.4.52), implies that
1.(Ux) 2 2§™% — Ce?i + o(1),
n
up to renaming constants. Therefore, taking the limit as & — 400 we have

: S an/2s =
ce = lim J.(Ug) = =S — (Ce?,
k—4o00 n

This gives a contradiction with (5.4.1) and finishes the proof of Lemma 5.4.4.
O

We are now in the position to show that the functional J. introduced
in (1.2.15) satisfies a Palais-Smale condition.

PROOF OF PROPOSITION 5.4.1. Thanks to Lemma 5.4.3 we know that
the sequence Uy weakly converges to 0 in H(RM) as k — +ooc.
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For any k € N, we set V}, := U, + Uy, where U, is the local minimum
of F. found Theorem 1.2.2. Since U, is a critical point of F,, from (1.2.11)
we deduce that

/ B y*(VU;, VU) dX :5/ h(z)Ud(z,0)Uk(x,0) dz+ UP(x,0)Ug(x,0) dz.
Ri n R™

Therefore, recalling (1.2.10) and (1.2.15) we have

(5.4.59)
1
Fe(Vi) = 3 / YOIV (U + U2 dX
Ri+1
< 1 1 1
IES! /]Rn W) (Ue + UL (@, 0) d - P IRn(Ue + U7 (2, 0) do
=7(Uk) + F-(Ue) + /Rn+1 Yy (VU., VU) dX
+
13
T /R h(z) ((Ue + (Up) )" (2,0) — (U + Up) 1 (=, 0)) dz
1
oo [ (O + @07 @,0) = U+ U (2,0)) do

~ [ @U2,0)(U) (w00 o~ [ U, 0)(Uh)+(2:0)
:je(Uk> + f}'e(Ue)
) (W O ,0) = U+ U w0
]RTL

q+1
+ (¢ + 1)U (,0)(Uy — (Uk)+)($70)) dz

1
p+1 J
*%p+DUﬂ%ma%—ahpx%m)m;

((UE + (Uk)Jr)erl(xv O) - (UE + Uk:)l-):_l(x’ O)

We now claim that
(5.4.60)
(Ue(Ui)+)" " (,0) = (UeA-Up) T (2, 0)+(r4+1) UL (2, 0) (U = (Ug) 1) (, 0) <
for any © € R™ and r € {p, ¢}. Indeed, the claim is trivially true if Ug(z,0) >
0. Hence we suppose that Ug(z,0) < 0, and so (5.4.60) becomes
(5.4.61)

Ut (@,0) = (Us + Up) (2, 0) + (r + 1)UL (2, 0)(Ug — (Uy)+)(,0) < 0.

Given a > 0, the function f(t) := (a + t)!, for t € R, is convex, and
therefore it satisfies for any b < 0

f(0) = f(0) + f'(0)b,

0,

that is
(a+b)7 > a4 (r 4+ 1)a"Db.
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Thus, taking a := U.(x,0) and b := Ug(x,0) we have
(Ue + Up)' ' (2,0) = UL (2,0) + (r + 1)UL (2, 0) Uy (2, 0),

which shows (5.4.61), and in turn (5.4.60).
Accordingly, using (5.4.60) into (5.4.59) we get

(5.4.62) Fe(Vi) < I(Uk) + F(Us).
This and assumption (i) in Proposition 5.4.1 imply that
(5.4.63) |F(Vi)| < C,

for a suitable C' > 0 independent of k.

Now we recall that U, is a critical point of F,. Hence, from (1.2.11) we
deduce that for any ¥ € H3(R"™) with ¢ := ¥(-,0)
(5.4.64)

/ y*(VU., V) dXZE/ h(z)Ud(z,0)¢(x) da:—i—/ UP(z,0)¢(x) dx.
]Ri—b—l n

n

Moreover, from (1.2.11) and (1.2.18) we have that
(FL(Vi), )
= /R"*l y*(VVi, V) dX — s/n h(z) (Vi) (z,0)¢(z) d —/ (Vi) (z,0)¢(z) da

n

(IL(U), ©) + /R - y*(VU., VI) dX

b [ B (U + (U02)7(2.0) - U2(,0)) (o) do
b [ U+ O (@.0) - U2(.0)) () da

e [ @R 00 do— [ (A (.00 (0) de

n

Using (5.4.64) in the formula above and recalling that Vi, = U, + Uy, we
obtain

(5.4.65)
(Fe(Va), ¥) = (I(Ug), )

/ (U= + (Ux)4)9(2.0) — (Us + Up)'. (2, 0)) (z) d

+ /R ((Ue + (Ur)4)P(2,0) = (Uz + Up) (2, 0)) ¢(2) da.
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We claim that
(5.4.66)

klir_irrl h(z) (Ue + (Ur)+)4(,0) — (Uz + Uy)%(x,0)) ¢(z) dv = 0
—T 00 R’!L

and klir}rl (U: 4+ (U) 4 )P (2,0) — (Us + Up)E (2, 0)) () dz = 0.
— T 00 R"

Notice that if Ug(z,0) > 0 then

(Ue + (Uk)+)*(2,0) —

= (U= + Up)"(,0

and  (Us + (Ug)+)"(2,0) -
= (Ue + Up)P(,0

U. + Uk)i(m,())
— (Ue + U)¥(2,0) =0
U: + Uk)ﬁ_(x,())
— (Ue + Ug)P(2,0) = 0.

Therefore the claim becomes

(5.4.67)

lim h(z) (Ud(z,0) — (U: 4+ Ug)% (2,0)) ¢(x) dz =0
k=400 JRrA{U,(-,0)<0}

and lim (UP(z,0) — (Uz + Up) (2,0)) ¢(z) dz = 0.
k=400 JRrA{U,(-,0)<0}

Now, we recall that Lemma 5.4.3 here and the compact embedding in The-
orem 7.1 in [21] imply that Ug(-,0) — 0 a.e. in R™ as k — +00. Moreover,

we notice that, by the Holder inequality with exponents %, % and 2%,

hz)Ud(z,0)¢(x) dx

*
25—1—gq 9
*

/IR"H{Uk(-,O)<O}
2% 23 . 23
T-1ma dy / U2 (x,0) dzx
R*N{U(-,0)<0}

< / Ih(z)
R*N{U(-,0)<0}
1

2%
: ( / () dx)
RN {U(-,0)<0}

<Al e ST OIS HW], < O,
[25-1—q (Rn)

for some C' > 0, thanks to (1.1.5) and Proposition 1.2.1. Consequently
h (U2(-,0) = (Ue + Up)%.(+,0)) & < [RUZ(-, 0) 9] € LYR™ N {Uk(-,0) < 0}).

Hence, by the Dominated Convergence Theorem we get the first limit in
(5.4.67).
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To prove the second limit in (5.4.67), we use the Holder inequality with

2; _ 2n * __ _2n
exponents —* = ;25 and 2§ = =% to see that

UP(z,0)¢(z) dx

/R"ﬂ{Uk(~,O)<O}

n+2s

2n
< / U (2,0) do / ()% da
R?N{Ug(-,0)<0} R?N{Ug(-,0)<0}

< STPRURSTV29], < O,

)
m*"—'

for a suitable C' > 0, where (1.2.7) was also used. Therefore,
(UZ(:0) = (U + Up)5(-,0)) ¥ S UE(, 0)[¢] € LY(R™ N {Ti(-,0) < 0}).

So the second limit in (5.4.67) follows from the Dominated Convergence
Theorem. This shows (5.4.67) and so the proof of (5.4.66) is finished.

As a consequence of (5.4.65), (5.4.66) and assumption (ii) in Proposi-
tion 5.4.1 we have that

(5.4.68) FL(Vi) — 0as k — +oo

in the sense of Remark 5.4.2. This, together with (5.4.63) and Lemma 3.2.3,
implies that the sequence V} is uniformly bounded in H;(Ri“), namely
there exists a constant M > 0 such that

(5.4.69) [Vikla < M for all k € N.

Hence, V}, is weakly convergent in HZ(R"™) to some function V. Since V; =
U. + Uy, and Uy, weakly converges to 0 in H(R!) as k — +oo (see
Lemma 5.4.3), it turns out that Vo = U.. Also, we recall that U; is posi-
tive, thanks to Proposition 1.2.3. Therefore, we are in the position to apply
Lemma 5.3.3 with W,,, := V;, and W := U,, and we obtain that

(5.4.70) (Vi)+ weakly converges to U, in H(R"M) as k — +oc.
We also show that
(5.4.71) the sequence {Vj} is tight, according to Definition 2.2.1.

For this, we fix > 0. Thanks to Lemma 5.4.4, we have that there ex-
ists p1 > 0 such that

/ VIO ax < 7,
B\ B,

for any k € N. Moreover, since U, € H? (]Rfrl), there exists pa > 0 such

that
/ YO VU.2dx < .
RIN\BS, 4
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We take p := max{pi, p2}, and so the two formulas above give that

/ YV Vi dX

RYT\BF

— / yayVUkdeX+/ Y VU? dX
RENB R \BY

+2 / Y VU, VU.) dX
R1L+1\B;

< / y“[VUk|2dX+/ Y| VU|*dX
RITABS RIFN\BY
+2 / ye| VU2 dX - / ye| VU |2 dX
RYTN\BSF RYTN\BF
< T4049 f\f =1.

4 4 2 2

This shows (5.4.71).
Also, Theorem 1.1.4 in [24] gives the existence of two measures on R"

and Riﬂ v and p respectively, such that (Vk) ( 0) converges to v and y¢|V (V) |2
converges to p as k — 400, according to Definition 1.1.2 in [24] (see also
Definition 2.2.2). This, (5.4.70) and (5.4.71) imply that the hypotheses of
Proposition 2.2.3 are satisfied, and so there exist an at most countable set J

and three families {x;};c; € R", {v;}jes and {u;j}jes, with vj, u; > 0 such

that

(5.4.72) (Vk)i: converges to v = UZ® + > jeVidz; as k — 400,
(5.4.73)

Y|V (Vi) 4 |? converges to u > y*|VU.|* + > jes Hil(z;0) as k — +o0
and
(5.4.74) pi = SV?/2; for all j € J.

We claim now that v; = pu; = 0 for every j € J. To prove this, we
argue by contradiction and we suppose that there exists 7 € J such that
p; = 0. We denote X := (z;,0), we fix 6 > 0 and we take a cut-off function
¢s € C(R[0,1]) such that

1, 1fX€Bé/2(X)

’ d \V4
0. uxemxyy, O IVlS

%\Q

¢s(X) :{

for some C' > 0.
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Now, it is not difficult to show that the sequence ¢5(Vi)+ is uniformly
bounded in H¢(R'™). Therefore, from (5.4.68) and (1.2.11) we have that

(5.4.75)
0= kgrfw@(vk), s(Vi)+)

— kllil{loo (/R1+1 Yy (VVi, V(s (Vi) 1)) dX

—5/n h(z) (Vi) T (2, 0) g5 (2, 0) dx — /Rn(vk)ﬁ“(x,om(x,()) d:v)

=t ([ V0P dX [ TV Tea) (Vi) X
——+00 Ri+1 ]Ri+1

—e [ @O @ 0)6s(e. 0 ds — [ () ,0)05(w,0) do).

R

We recall that p + 1 = 2% and we use (5.4.72) and (5.4.73) to see that

(54.76)  lim (V)2 (2, 0)p5(x,0) dz = $s5(z,0) dv
—>+OO ]Rn Rn
: a 2 _
(5.4.77) and kgrfoo Rle IV(Vi)+|“psdX = e o5 dpt.

Also, the weak convergence in (5.4.70), (1.2.6) and Theorem 7.1 in [21]
imply that (Vi)4(:,0) strongly converges to Uc(-,0) in Lj (R") as k — 400,
for any r € [1,2%). Accordingly,

/ R 2, 0)s(a, 0) dir / h(@) UL (2, 0) 5 (2, 0) da

n

< llen | (V% (2,0) U (2,0)) da| — 0,
Bf (X;)N{y=0}
as k — +oo, since 1 < ¢+ 1 < 2%. This implies that
lim h(:r)(Vk)fl(:c, 0)ps(x,0) dz = h(x)ULT (2, 0)¢5(x,0) d.

k—+oo JRrn Rn
Taking the limit as 6 — 0 we have
lim lim h(z) (Vi) (2, 0) g5 (2, 0) da

0—0 k—+o0 n
(5.4.78) ¥

= lim h(x)UI (2,0)¢5(x,0) dz = 0.
=0/ B (x;)n{y=0}

Finally, we claim that

(5.4.79) lim lim YUV (Vi) s, V) (Vi) 1 dX = 0.

6—0 k—+o0 ]RT—I
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For this, we apply the Holder inequality and we use (5.4.69) to obtain that
(5.4.80)

/R,,,H v (V(Va) 4, Vi) (Vi) dX

/ Yy (V(Vi)+, Vos) (Vi) + dX‘
By (X;)

8

1/2 1/2
< (/ y”lV(Vk)+|2dX> (/ y“(Vk)iVaSgI?dX)
BF (X)) BF (X))

1/2
<M </ ya(Vk)i|V¢5|2dX> :
B (X;)

Again by (5.4.69) and Lemma 2.1.2, we deduce that

/ y* (Vi)2 | Vs|? dX — / yan|V¢5|2dX‘
B (X;) BF (X;)

02

< — / y*(Vi)d dX — yU%dX| — 0,
0% /s (x)) BEx)

as k — +o00. Hence

(5.4.81)  lim Y (Vi)2 |V s |? dX = / Yy UZ|Vs|? dX.
) By (X))

k—+4o00 B;r (X;

Now by the Holder inequality with exponents v and % we have that

/ U2V sl dX
B (X;)

~—1

3 . 5
< ([ wvmax) ([ yvesax
BF(X;) BF (X))

1 =1

C2 ¥ ¥
< = / yeU> dx / y*dX
0% \ /Bt (x)) Bf (X))

(nta+1)(v=1) v
< o5 a2 </ YU dX) :
B (X))

up to renaming constants. Since % — 2 =0, this implies that

/ yaU3|V¢5|2dX<C< / yaUEVdX> ,
By (X;) B (X;)
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for a suitable positive constant C'. Hence,

lim Yy U2| Vo512 dX = 0.
0=0/Bf(X;) g |

This, together with (5.4.80) and (5.4.81), proves (5.4.79).
From (5.4.75), (5.4.76), (5.4.77), (5.4.78) and (5.4.79) we obtain that

T . /
0= %1_r>r(1) kll}liloo(fg(vk), és(Vi)+)

=1 — > s — s
lim (/]R dodn— [ on(w0)dv) > s,

Therefore, this and (5.4.74) give that v; > p; > SV;/Q:. Hence, either

vj = puj =0 or V;iQ/QZ > S. Since we are in the case p; # 0, the first
possibility cannot occur. As a consequence,
(5.4.82) vj > S,

Now, taking the limit as k — +o0 in (5.4.62) and recalling assumption
(i) of Proposition 5.4.1, (5.4.68) and (5.4.69), we have that

(5.4.83)
ce +F(Ue)

> lir+nOO (95(‘/19) - %(fﬂ(vk)a Vk>>

(; - 1) /Rn(vwﬁ“(x,O) dx — ¢ (1 - ;) . () (V)4 (2, 0) dz | -

q+1

We claim that

(5.4.84) lim (V)2 (2, 0) dz > S™/% + / UPt(z,0) dz.
k—+oco Jrn n
For this, we take a sequence {¢m fmen € C5°(R™, [0, 1]) such that liIJrrl om(z) =
m—-+00
1 for any = € R™. By (5.4.72) we have that
lim (Ve)2 ! (2,0)dz > lim (Vi) (2, 0) i () dox = / ©m(2) du.
k—>+00 Rn k’—’-‘rOO Rn n
Moreover, thanks to Fatou’s lemma and (5.4.82),

lim om(z)dv > /

m—+0o0 Rn n n

dp > §™/% —|—/ Urt(z,0) dx.
The last two formulas imply that

. p+1 o . . p+1
G Rn(th (z,0)dz = lim  lim Rn(th (2,0) dx

> lim Oom(z) dv = S/ +/ UPt(z,0) dz,

m—-400 R n
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which gives the desired result in (5.4.84). We now show that
(5.4.85) Jim W) (V)4 (2,0)de = | h(z)UZT(2,0) da.
—+o0 JRn Rn
Indeed, thanks to (5.4.69) we know that [(Vi)+]a < M. Therefore, Proposi-
tion 1.2.1 and Theorem 7.1 in [21] imply that
1(Vi) 45 0) = Uy O)ll 2 ey < 2M
and  (Vi)+(-,0) — Us(-0) in LEFY(R™) as k — +oc.

Thus, we fix R > 0 and we use (1.1.3), (1.1.5) and the Holder inequality to
obtain that

[ ) (V2 (2.0) = Vel 0))"" o

< [ @) )+ (2.0) - U, )" do
Br

[ @) [)+(,0) — U 0 da
R"\Bp

< 1Al iy | (Vi) 0) = U 0) o s

il s (Vi) (-, 0) = U (-, 0) s s
LZ=a=1 (R"\Bp)

< CONVR)+(0) = Uz, )l o (5 dz + RM)THR] o
LZ01 R\ Bp)

Hence, letting first £ — +o00 and then R — 400, we obtain (5.4.85).

Also, we observe that % — p% = >. Using this and plugging (5.4.84)

and (5.4.85) into (5.4.83) we obtain that
ce + F(Ue)

S gn/2s 1 1 / p+1 d
nS +<2 P RnUE (2,0)dzx

1 1
_ - _ = q+1
£ <q+1 2) /]R" h(z)US™(z,0) dzx
= 254 g ().
n

WV

Hence
s
ce > 7571/25,
n

and this is a contradiction with (5.4.1).
As a consequence, necessarily pu; = v; = 0 for any j € J. Hence, by
(5.4.72)

(5.4.86) lm [ (Vi)2 (x,0)p(x) dz = / U (2,0)p(z) dz,
k—+oco Jpn R™
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for any ¢ € Cy(R™). Furthermore, by Lemma 5.4.4 and the fact that
U.(-,0) € L?(R") (thanks to Proposition 1.2.1), we have that for any 7 > 0
there exists p > 0 such that

/ (Vk)i_:(ac,O) dr <.
R"\B,

Thus we are in the position to apply Lemma 3.1.2 with v; := (V)4 (+,0)
and v := U.(-,0), and we obtain that (V4).(-,0) — U(-,0) in L% (R") as
k — 4o00. Then, by Lemma 3.1.1 (again applied with vy := (Vi)4(-,0) and
v := U:(+,0)) we have that

2
lim |(Vi)d (2,0) — Ud(x,0)| dz =0
k—+oco Jpn
and lim [ |(Vo)? (x,0) — UP(z,0)|7+% da = 0.
kH+OO R”

Therefore, we can fix 0 € (0,1) (that we will take arbitrarily small in the
sequel), and say that

25

L0 @.0) = (V) .07 e
(5.4.87) " .
b [ ,0) = (Vo (o, 0)[ 5 do < 8

Rn
for k and m sufficiently large (say bigger that some k. (0)).

We now take ¥ € HZ(R:™) with 1) := ¥(-,0) and such that
(5.4.88) (0], = 1.

From (5.4.68) we have that, for large k (say k = ky«(d), up to renaming
k. (6)), we deduce that

As a consequence of this and (1.2.11),

/ y* (VVi, V) dX
R7H

—s/n h(x) (Vi) (z,0)0(x) da — /Rn(Vk)ﬁ(x,O)w(a:) dz| < 0.

In particular, for k,m > k.(9),
[ O Vi), 9 ax
R+

€ h(x
Rn

(@) ((
JRGeAs

Rn

Vi) (,0) — (Vin) (2,0)) #(x)
0) = (Vin)(2,0)) () da| < 2.
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Now we use the Holder inequality with exponents W”(H_QS), % = q(n2f2.s)
and 2% = HQ_”;S, and with exponents L 2 and 2*, and we obtain that
D n+2s s

/ YV (Vi — Vi), V) dX
R’fl

< €

[ @) (OBL0) = (V) ,0) o)

+ + 20

[ (0R00,0) ~ ()2 2,0) ) o

n+2s—qg(n—=2s)
<e|[ e
]Rn
q(n—2s) 1

L0 - 0t el T ae] | [ e ad

2n
n+2s—q(n—2s) dm

25

n+2s

2n 2
n+2s dm

[ [ dm] Y
Rn

[ 1000 - (@0
Hence, from (1.1.5) and (5.4.87) we have that

n

a(n—2s) +2s
<CS 7 |9l s (gny+CO8 2 | 23 (gmy+26,

/ YV (Vi — Vin), V) dX
Rﬁl

for a suitable positive constant C. Now notice that (1.2.7) and (5.4.88)
imply that ||¢||L2§ (Rm) < 5—1/2[\1;]‘1 = 5_1/27 and so

(5.4.89) < oo,

/ YV (Vi = Vi), V) dX
RTI

for some C,a > 0, as long as k,m > k.(6). Also,
V(Vik = Vi) =VV = VV,, =V(Up + Uz) = V(Up, + Us) = VU, — VU,

Hence, plugging this into (5.4.89), we have

< 0.

/ YV Uy — Up), VI dX
R1+1

Since this inequality is valid for any ¥ satisfying (5.4.88), we deduce that
[Uk - Um]a < 05a7

namely Uy is a Cauchy sequence in HZ(R™). Then, the desired result
plainly follows. ([
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5.5. Bound on the minimax value

The goal of this section is to show that the minimax value (computed
along a suitable path) lies below the critical threshold given by Proposi-
tion 5.4.1. The chosen path will be a suitably cut-off rescaling of the frac-
tional Sobolev minimizers introduced in (1.1.6).

To start with, we set

U
(5.5.1) é@JD;=A G, t)dt

and

1 —-Uq ift>
oty = g (e 200 US L2
0 ift < 0.

We observe that

(5.5.2) G(z,0) = 0.
Also, we see that g(x,t) > 0 for any ¢ € R, and so
(5.5.3) G(x,U) > 0 for any U > 0.

Moreover, recalling (1.1.4), we write the ball B in (1.1.4) as By, (¢) for
some { € R™ and po > 0. We fix a cut-off function ¢ € C§°(B,,(£), [0,1])
with

(5.5.4) ¢(x) =1 for any x € By, 2(£).

The quantities £ € R” and ug > 0, as well as the cut-off ¢, are fixed from
now on. Also, if z is as in (1.1.6), given u > 0, we let

(5.5.5) z%gmzzu—ﬁfz<mu£>.

Let also Z, ¢ be the extension of ¢z, ¢, according to (1.2.3).
From (1.1.6), we know that

2

(B

(5.5.6) S

and (—A)®z = 2P. Thus, by testing this equation against z itself, we obtain
that

2 _ 23
[Z}HS(]R") - ”Z ng(Rn)a

which, together with (5.5.6), gives that

n—2s

121l 23 gy = S %

and so
[’Z]%Is(Rn) = Sg
Moreover, by scaling, we have that
n—=2s
(5~5-7) ||Zu,§ |L2§(Rn) = ||Z||L2§(Rn) =S54




WM6EXISTENCE OF A MOUNTAIN PASS SOLUTION AND PROOF OF THEOREM 1.2.4

and
2 2 n
[Zﬂag]Hs(Rn) - [Z]HS(R'") = 525 .
From the equivalence of norms in (1.2.6) and Proposition 21 in [36], we have
that

(5.5.8) [Z,el = (92l any < 5% +Cp ™%,

for some C > 0.

This setting is fixed from now on, together with the minimum u.(x) =
Ue(z,0) given in Theorem 1.2.2. Now we show that the effect of the cut-
off on the Lebesgue norm of the rescaled Sobolev minimizers is negligible
when p is small. The quantitative statement is the following:

LEMMA 5.5.1. We have that
—ek 2%
/n WQS — 1 an: dz < Cp”,
for some C > 0.

PROOF. We observe that

/ zizg(zz;) dx = ,u_”/ P (x — 5) dx
R™\Bug (§) R™\Bug () K

= / 2% (y)dy < C ly| 72" dy < Cu",
R"\B%Q ]R"\B;QLQ
" n

for some C' > 0 (that may vary from line to line and may also depend on py).
As a consequence, recalling (5.5.4), we have that

[ -daaw= [ @ ougae<ar. O
R~ ’ R™\Bg () ’

The next result states that we can always “concentrate the mass near
the positivity set of A7, in order to detect a positive integral out of it.

LEMMA 5.5.2. We have that
(5.5.9) / h(x) Gz, t3(z) 2pe(2)) da > 0,

for any up >0 and any t > 0.

PROOF. We have that ¢(x) = 0 if z € R"\ B, (). Thus, using (5.5.2),
we have that ) B
G(z,t¢(x) Zue(x)) =0
for any z € R"™ \ B, (§). Therefore

/n h(z) é(:c, td(z) 2u¢(x)) da = / h(x) G’(a:, td(z) zpe(x)) da.

By (§)
Then, the desired result follows from (1.1.4) and (5.5.3). O
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Now we check that the geometry of the mountain pass is satisfied by the
functional J.. Indeed, we first observe that Proposition 5.1.1 gives that 0
is a local minimum for the functional J.. The next result shows that the
path induced by the function Z#,g attains negative values, in a somehow
uniform way (the uniform estimates in g in Lemma 5.5.3 will be needed
in the subsequent Corollary 5.5.8 and, from these facts, we will be able to
deduce the mountain pass geometry, check that the minimax values stays
below the critical threshold and complete the proof of Theorem 1.2.4 in the
forthcoming Section 5.6). To this goal, it is useful to introduce the auxiliary
functional

1
(5.5.10) T = / CIVURAX — [ G*a,U(x,0) da,
2 Rn+1 Rn
+
where
U
G*(z,U) ::/ g*(z,t)dt
0
and

G (@, 1) = (U +t)» = UL, ift >0,
’ 0 ift <O.

By (1.2.15) and (5.5.1), we see that G = G* +ehG. Thus, as a consequence
of Lemma 5.5.2, we have that

(5.5.11)  J.(tZye) = Tx(tZue) — 5/ hz) G(x,tZ,¢(x)) dr < TE(tZ,¢).

n

Then we have:
LEMMA 5.5.3. There exists p1 € (0, pio) such that

lim  sup Ji(tZ,¢) = —oo.
t_)+OOHE(01p“1) :

In particular, there exists Ty > 0 such that

(5.5.12) sup  JX(tZ,¢) <0
peE(O,pu1)

for any t > Ty.
PRrROOF. We observe that, if U > 0,

U + U - urt!
p+1

U
(5.5.13) G*(x,U):/ (U + 1) — Ut = ¢ _urw.
0

Moreover,

UP(x,0) Zye(2,0) <l (x) + 24 ().
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Using this and (5.5.13), we obtain that

G*(z,tZ,¢(x,0))
1 _ _
= g (e 0) 2w 0 = U2 (2,0)) = U2(2,0) Zy(,0)
1 - 1
7 (0@ @) =2 (@) — 2 (@) 12 @),
Thus, integrating over R™ and recalling (1.1.5), (5.5.7) and the fact that 2% =
p+ 1, we get

>

- G*(z,tZ,,¢) dx
(5.5.14) oo
>p—|—1/Rn¢p ()2, ¢ (x)dz — C = Ct,

for some C' > 0 (up to renaming constants).
Now we deduce from Lemma 5.5.1 that there exists p; € (0, 1) such that
if 4 € (0, 1) then

- S
13, P+
- P (@), (x)dr > 5

Now, by inserting this into (5.5.14), we obtain that, if x € (0, 41), then
_ S35 tpt1

G (z,tZ,¢)dx > ——

R ( H,E) 2(p+ 1)

This and (5.5.10) give that

-C-Ct

2[_

t2[7,, ¢ Sas tpt1
——éﬁh+ca+n— :

J2(tZpe) < 1)
Hence, recalling (5.5.8),

S35 tpt1
20+ 1)

up to renaming constants, for any u € (0, u1). Since p+ 1 > 2, the desired
claim easily follows. O

2(tZue) < C(L+t+1%)

Now we introduce a series of purely elementary, but useful, estimates.

LEMMA 5.5.4. For any a, b > 0 and any p > 1, we have that

(5.5.15) (a+b)P = aP + VP
Also, if a, b > 0, we have that
(5.5.16) (a+b)P > aP + VP

PROOF. If either a = 0 or b = 0, then (5.5.15) is obvious. So we can
suppose that a # 0 and b # 0. We let f(b) := (a + b)P — a? — bP. Notice
that f'(b) = p((a+b)P~t —bP~1) > 0, since a > 0. Hence

(a+0)P —a? = b = f(b) > f(0) =0,



5.5. BOUND ON THE MINIMAX VALUE 109
since b > 0, as desired. O

The result in Lemma 5.5.4 can be made more precise when p > 2, as
follows:

LEMMA 5.5.5. Let p > 2. Then, there exists ¢, > 0 such that, for any a
and b > 0,
(a+b)P > d” + b +cpa b

PrOOF. If a = 0, then we are done, so we suppose a # 0 and we
set to := b/a. For any t > 0, we let

£t) = (1 +t)pt— -

From (5.5.16) (used here with a := 1 and b := t), we know that f(¢) > 0 for
any t > 0. Moreover

. L l4ptto(t)—1—tP
= i t -

hence f can be continuously extended over [0,+00) by setting f(0) := p.
Furthermore,

lim f(t)= lim #! 1Jrl p—lfl
t—+00 ot t tp
o gl p 1y _ 1
¢ <1+t+0(t) tp 1)

1 .
o p=2 o(7) 1 _[Jp ifp=2
it (p + I ) t - \+oo ifp>2.

lim f(t) > f(0) =p,

t—-+o0

In any case,

hence

;= inf = i > 0.
@ = oy T = g, S

As a consequence,

(a+Db)P —aP — b — cpaP b

aP (L +to)P —1— 18— cpto)

aPto(f(to) — cp)

0,

as desired. O

WV

It is worth to stress that the result in Lemma 5.5.5 does not hold
when p € (1,2), differently than what is often stated in the literature: as a



1HO0EXISTENCE OF A MOUNTAIN PASS SOLUTION AND PROOF OF THEOREM 1.2.4

counterexample, one can take b = 1 and observe that
(a+b)P —al —bP (a+1)P—aP —1

iug}) aP—1b - ilg}) ap—1
1 a + o(a) —aP — 1
= i P = lim pa® 7 +a' Po(a) —a =0

when p € (1,2). In spite of this additional difficulty, when p € (1,2) one can
obtain a variant of Lemma 5.5.5 under an additional assumption on the size
of b. The precise statement goes as follows:

LEMMA 5.5.6. Let p € (1,2) and k > 0. Then, there exists ¢, > 0 such
that, for any a > 0, b > 0, with % € [0, k], we have

(a+b)P = al + b +cp,al b

PRrROOF. The proof is a variation of the one of Lemma 5.5.5. Full details
are provided for the facility of the reader. We set t, :== 2 € [0,x]. For
any t > 0, we let

1+t)P—1—1¢
o) = LI
From (5.5.16) (used here with a := 1 and b := t), we know that f(t) > 0
for any ¢t > 0. Moreover, f can be continuously extended over [0, +00) by
setting f(0) := p. Therefore

x .= mi > 0.
Cp, r[r&g]lf

As a consequence,

(a+b)P —aP — b —cp.aP b

ap((l +to)! —1—th —cp to)

alt, (f(to) — cp,,.i)

0,

as desired. O

WV

Now we consider the functional introduced in (5.5.10), deal with the
path induced by the function z in (1.1.6) (suitably scaled and cut-off) and
show that the associated mountain pass level for J% lies below the critical
threshold >S5 % (see Proposition 5.4.1). The precise result goes as follows:

LEMMA 5.5.7. There exists p, € (0, o) such that if p € (0, uy) then we
have

(5.5.17) supJX(tZ,.) < ~ S
>0 n

Proor. We will take p, < pg, where pg > 0 was introduced in Lemma 5.5.3.
We also take T3 as in Lemma 5.5.3. Then, by (5.5.12),

(5.5.18) sup sup Ji(tZ,¢) < sup sup JE(tZ,¢) <0< 2§,
t2T1 pe(0,04) t2T1 pe(0,m1) n
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Consequently, we have that the claim in (5.5.17) holds true if we prove that,
for any 4 € (0, 1),

(5.5.19) sup JX(tZ,¢) < — 53,
tE[O,Tl] n

To this goal, we set

2 if n > 4s,
(5.5.20) m:.= {2: -1 ifne (23743]7
and
_ BQ\/ﬁ(f) \ B\/ﬁ(f) if n > 4s,
(5.5.21) b= { R™ if n € (2s,4s].
For further reference, we point out that, if n € (2s,4s], then m—2 = 25—_22 >

0, and so
(5.5.22) m — 2 > 0 for every n > 2s.

We claim that, for any ¢ € [0,71], any u € (0, uy) and any z € €2, we have

(5.5.23)
2% 79+ 2r 2 T
G* (z,to(x)zu¢(w)) > 1507 () 2, (@) " cuz® T (2) "™ (x) 27 (2)

% 9
2% m

for some ¢ > 0.

To prove it, we distinguish two cases, according to whether n > 4sorn €
(2s,4s]. If n > 4s, we take a := uc(z) and b > 0, with b < td(2)z,¢(),
and z € Q = By z(£) \ B /z(§). Notice that, in this case,

(5.5.24) a> ue > inf wue > ag,

inf 5
Ba z(O\B /z(€) Bs(§)

for some ap > 0. Moreover, from (1.1.6),

2s n—2s

n—2s (x—{) B etp= cutpn 2
- n—2s
“D T (wP Atz —-¢P)
"

b<tzye(x)=tu 2 z =
i
(1+

Since z € By /z(€) \ B, z(§), we obtain that [z —§| > /i and so

n—2s *
2

n—2s
Cxtp 2
n—2s

MT

n—2s
Cxtp 2

—2s

(W2 +p) 2

< <caTh.
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From this and (5.5.24) we obtain that b/a < k, for some x > 0, hence we
can apply Lemma 5.5.6 and obtain that

t¢(m)zu, ([K
G*(z,td(2)zue(x)) = / [(uc(x) + b)P — ub(z)] db
t(w)z, g(«’C)
= / [(a+ b)P —aP] db
0

t3(x)2, 5<z) X
/ W + ¢, 0P 1b] db
0

)p+1

WV

This and (5.5.20) complete the proof of (5.5.23) when n > 4s (recall that p+
1=2%).
Now we prove (5.5.23) when n € (2s,4s]. In this case, we observe that

n—+ 2s
n—2s

> 2.

p:

So we choose a > 0, with a < td(2)z,¢(x), and b := u.(x), and we can use
Lemma 5.5.5 to obtain that

tp(x)z, g(:v)
/ [(uc(z) 4+ a)? — ub(z)] da
0

()2, g(w)
— / a+b)P — bp] da
0

tp(x)zp,¢ ()

G* (z, td(z) 2 ¢())

WV

[a? + cpal~ 1b] da
0
_ (B@me@)™ | (@m@)”

p+1 D

This and (5.5.20) imply (5.5.23) when n € (2s,4s]. With this, we have
completed the proof of (5.5.23).
Now we claim that, for any t € [0, 7], any p € (0, ux) and any x € R™,

1% 6% () 2 ()
2% '

S

(5.5.25) G* (2, td(2)2¢(x)) >

We remark that (5.5.23) is a stronger inequality than (5.5.25), but (5.5.23)
only holds in Q, while (5.5.25) holds in the whole of R™ (this is an advan-
tadge in the case n > 4s, according to (5.5.21)). To prove (5.5.25), we use
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Lemma 5.5.4, with a := u.(z) and b > 0, to see that

3 tp(x) 2y ()
G (2, t3(1) 2 (1)) = / 7 (e () + b — ()] db

tp(x)2y, g(z)
= / [(a + b)P —aP] db

0
()2, f(w)
=
0
+1
_ (t )z x))p
p+1 ’

and this establishes (5.5.25).
By combining (5.5.23) and (5.5.25), we obtain that

(5.5.26)
/n G* (ac, tqg(x)zu7§(x)) dx
= / G* (:c, t&(z)zug(:c)) dx + / G* (3:, tgz_ﬁ(x)zug(a:)) dx
R"\Q Q

+25 52 23
. / 9% () 2% (2) "
R7\Q 23

S

+/ 17167 (@) 2 (@ . cus " (@) " (z) (@)
Q

d
2t m v
% 25 ct™ 2¥—m m m
725 Jan &% (2) 2y¢(w) dar + ot (@) o™ (x) 2 (x) d

Now we claim that

(5.5.27) e 6w el do >

for some ¢ > 0, where

g it n > 4s,

(5.5.28) g = i

if n € (2s,4s],

To prove this, when n > 4s we remark that, for small u, we have By ﬁ(g) -
B,y 2(€), and ¢ = 1 in this set, due to (5.5.4). So, we use (5.5.20) and (5.5.21)
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and we have that
[ @ @ e = [ uE2(w) 22 (o) do
Q Ba m(O\B /z(£)

. *__
> inf u?s 2

2 22 o(x) dzx
Ba(©) j;ﬁ@wﬂw‘%

Ba(¢) By /m(O\B /(&) H

= inf u%72 ,ugs/ 22(y) dy.
Ba(€) © By \B 1 )
N

Thus, recalling (1.1.6) and taking u suitably small, we have that

. - 2/E -1
[ @) 6 ) o) do > e [ B
Q

e (L+p?)n2

2/ n—14

s p"dp n

201,“2 / o om—os — C2M?,
/R (2p?)n—2s

for some cj, co > 0. This proves (5.5.27) when n > 4s.

Now we prove (5.5.27) when n € (2s,4s]. For this, we exploit (5.5.20)
and (5.5.21) and we observe that

/ngz_m(x) ™ () 2 () dx:/ us(z) p% ~1(z) zii_l(m) dz

n

2 uin—;?s / UE(-T> Zp <$—£> dx
Ba /z(8) H

> Mf”*f inf w, / 2P (x—{) dz
B1(¢) By (€) K

n—2s
=u 2 inf u / 2P(y) dy
B1(§) : B ( )
n—2s

>dp 2,

for some ¢ > 0, which establishes (5.5.27) when n € (2s,4s]. The proof
of (5.5.27) is thus complete.

Now, by inserting (5.5.27) into (5.5.26), we obtain that
t%
23

s . tm B
[ @ ey o+ I

m

ﬁaw)/;G%%WWM¢@DM>

for some ¢ > 0, up to renaming constants.
By Lemma 5.5.1 and (5.5.29), we conclude that

. _ 125 o
/n G* (2, td(z) 2 ¢ () da > o /Rn z 5 (@) da +

cultm  Cutt®
- .
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This and (5.5.7) give that

. t% 82 cpftm Cpn it
G*(x,t do > — :
o G105 do > 2

for some ¢, C' > 0. As a consequence, recalling (5.5.8), we obtain that

2(Z,6)2 %S cpftm Ouptt*
7~ +

j:(tZu,E) <

2% m 2%
< t? 22s B t282§25 B cuitm L Cu;;2s N C’,u”228 t27
and so, up to renaming constants,
(5.5.30) TE(tZ,¢) < S20(2),
with

t2 tQ: cuﬂ tm + Cun t2: + CMN—QS t2
2 2 m 2% 2 ’

S S

for some C, ¢ > 0.
Now we claim that
(5.5.31) sup U(t) < =,
t>0 n
provided that g > 0 is suitably small. To check this, we notice that ¥(0) = 0
and
lim ¥(t) = —o0,

t—-+o00
since 2% > max{2,m} (recall (5.5.20)). As a consequence, U attains its
maximum at some point 7" € [0, +00). If T'= 0, then ¥(7') = 0 and (5.5.31)
is obvious, so we can assume that 7" € (0,400). Accordingly, we have
that W/(T) = 0. Therefore

_w(T)

T —-1— T2;‘—2 o C/.Lﬂ Tm—2 + C/.Ln T2;‘—2 + O/,Ln_QS.

0

So we set

D,(t) =1 —t%2 —cpPtm 2 L Cpm B2 o
and we have that T'= T'(u) is a solution of ®,(7") = 0. We remark that

(1) =—(25 —2)(1 - Cp™)t%=3 — cpP (m —2)tm3 < 0,

since m—2 > 0 and (2% —2)(1—Cu™) > 0 for small p (recall (5.5.22)). This
says that ®, is strictly decreasing, hence T' = T'(u) is the unique solution
of ®,(T'(11)) = 0. It is now convenient to write 7(yu) := T(,u%) and 7 := p®,
so that our equation becomes

0= 2,(T(n)) = Pulr(1”)) = Pulr(n))

= 1= (L= Cnf) ()2 = en (r(m)" 2 + 05
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Accordingly, if we differentiate in 7, we have that
(5.5.32)
0_2 1—(1—Cn? 2-2 _ m—2 C"—;S
= ( n?)(7(n)) cn(r(n)™ "+ Cn

NGO

= —(2; = 2)(1 = CnP)(r() %27 () + C

g
m— — C(n—2s) n-=2s_
= (@)™ e = 2)n ) ) + S
Now we claim that
-2
(5.5.33) D2 1>
g
Indeed, using (5.5.28), we see that
2(n—2
n-2s . _ %—1 if n > 4s,
s .
2-1 if n € (2s,4s],
—4
n—s if n > 4s,
n

1 if n € (2s,4s],
which proves (5.5.33).
Now we observe that when p = 0, we have that 7" = 1 is a solution

of ®o(t) = 0, i.e. T(0) = 1 and so 7(0) = 1. Hence, we evaluate (5.5.32)
at n = 0 and we conclude that

0=—(2" —2)7(0) - c.

We remark that (5.5.33) was used here. Then, we obtain

"(0) = __°

(0= 5
which gives that

cn
T(n) =1-5— +o)
and so
B cp’ 8 B8 B
T(p)=7")=1— —F +o(u’) =1—cop” +o(u”),

25 -2

S



5.6. PROOF OF THEOREM 1.2.4 117

for some ¢, > 0. Therefore

sup U(t) =9(T (1))

(14 cuws)(T(g))“" o <T<;*>>2: ey (fnm))m

(1 = cop” + o(u”))? (1 = cop” + o(u?))*

= (1 C n—2s —(1=0Cu™

(1+Cu"™) 5 (1-Cu") o

ey (1= cop” + o(u?))™
m
1 — 2cop? 1 — 2fcou® p
= (14 opr )= (- oy ()
2 2% m

1—2cou? 1-— Q:COMB cpP + of ﬁ)

= — — )
2 2 m oW

1 1 cuP 3
=5 3 o)
1

2 %
_5
=

and this proves (5.5.31).
Using (5.5.30) and (5.5.31), we obtain that
sup J5(tZ,¢) < Sz sup U(t) < Sz - E,
te[0,11) >0 n
which proves (5.5.19) and so it completes the proof of Lemma 5.5.7. O

By combining (5.5.11) with Lemmata 5.5.3 and 5.5.7, we obtain:

COROLLARY 5.5.8. There exists i, > 0 such that if p € (0, uy) we have
that

lim J.(tZ,¢) = —o0

t—-+oo
and supJe(tZ,.¢) < 293,
t>0 n
The result in Corollary 5.5.8 says that the path induced by the func-
tion Z, ¢ is a mountain pass path which lies below the critical threshold

given in Proposition 5.4.1 (so, from now on, the value of p € (0, ux) will be
fixed so that Corollary 5.5.8 holds true).

5.6. Proof of Theorem 1.2.4

In this section we establish Theorem 1.2.4. For this, we argue by con-
tradiction and we suppose that U = 0 is the only critical point of J.. As a
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consequence, the functional J. verifies the Palais-Smale condition below the
critical level given in (5.4.1), according to Proposition 5.4.1.

In addition, J. fulfills the mountain pass geometry, and the minimax
level c. stays strictly below the level 25 3s, as shown in Proposition 5.1.1
and Corollary 5.5.8.

Hence, for small e, we have that c. + Cai remains strictly below > .5 25,
thus satisfying (5.4.1).

Then, exploiting Proposition 5.4.1 and the Mountain Pass Theorem
in [7, 27], we obtain the existence of another critical point, in contradiction
with the assumption. This ends the proof of Theorem 1.2.4.
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