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Abstract

Growth factors have a significant impact not only on the growth dynamics but
also on the phenotype of chondrocytes (Barbero et al. , J. Cell. Phys. 204, pp.
830-838, 2005). In particular, as chondrocyte populations approach confluence,
the cells tend to align and form coherent patches. Starting from a mathematical
model for fibroblast populations at equilibrium (Mogilner et al., Physica D 89, pp.
346-367, 1996), a dynamic continuum model with logistic growth is developed.
Both linear stability analysis and numerical solutions of the time-dependent non-
linear integro-partial differential equation are used to identify the key parameters
that lead to pattern formation in the model. The numerical results are compared
quantitatively to experimental data by extracting statistical information on orien-
tation, density and patch size through Gabor filters.

1 Introduction

In recent years, therapies for damaged tissue have experienced great progress through
the possibilities offered by new methods of tissue engineering [24]. Often these meth-
ods offer the only possibility for tissue regeneration, as in the case of cartilage, which
is known to regenerate rather slowly, unlike other wound-healing processes. Most
procedures pursued in tissue engineering start with a biopsy of a few cells, which are
expanded ex vivo making use of cytokines. Those are then injected into a patient to
grow tissue in vivo. Alternatively, scaffolds are used to provide mechanical support
and structure for the tissue to be grown in vitro which is directly implanted. Those
procedures may involve tissue replacement using donor tissue or autologous cells for
in vitro cell-culture expansion, in order to regenerate tissue that matches the patient’s
native tissue.

Much research has already gone into the impact of combinations of growth factors on
the proliferative capacity for a range of cell types, such as pancreatic endorcine cells,
neural progenitor cells, muscle-derived stem cells [6, 7, 11, 30] and chondrocytes
[3–5, 22]. For muscle-derived stem cells and chondrocyte cell cultures, mathematical
models that establish characteristic kinetic parameters, such as the fraction of dividing
cells and mean cell division-time have been developed [4, 11]. In addition, a logistic
delay-differential model for proliferating chondrocyte cells was used to further include
the effect of contact inhibition of proliferating cells upon confluence [4].

Apart from the impact of growth factors on kinetic parameters, an important focus of
research concerns the effect of cytokines on the phenotype of individual cells and the
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resulting organizational structure of the cell culture. Both will influence the mechani-
cal properties of the engineered tissue, which in the case of cartilage, is intended to
sustain tensile stresses and compressive loads, just as native tissue does [29]. There-
fore, it is important to understand the underlying processes leading to the formation
of large-scale patterns of an evolving cell culture. Identifying the relevant parameters
that control these structures is the focus of the present study, combining experimental
and mathematical methods [8].

In [4], human articular chondrocytes (AHAC) were isolated from cartilage biopsies and
then cultured in the presence of a combination of growth factors. The individual cells
assume a phenotype that closely resembles fibroblasts and eventually self-organize
into regions of aligned cells, making up the monolayer of the cell culture at confluence
[5]. This phenomenon has been observed before for various cell types. In principle
there are a number of mechanisms that may control the formation of such patterns,
ranging from chemical, adhesive or other mechanical gradients, see e.g. Trinkaus [32]
for an early but instructive discussion in the context of morphogenesis.

Even in the absence of exterior influences, however, Elsdale [14] discovered that pro-
liferating fetal lung fibroblasts form parallel arrays during in vitro cell expansion. Similar
results were found for BHK fibroblasts in the experimental study by Erickson [15]. In
[14] Elsdale argued that the intrinsic property of fibroblasts is to move unless pre-
vented to do so by the environment and hence that patterns form solely due to direct
cell-cell interactions to enable maximal motility. Under the assumption of contact in-
hibition Erickson[15] concluded from a series of cell-cell contact experiments, that if
the lamellipodium of a cell in ruffling mode contacts another cell at a certain angle,
the direction of motion changes depending on that part of the leading edge of the
lamellipodium which made contact and where ruffling is stopped. This mechanism is
employed by Erickson to explain the existence of a critical angle above which cells
cease to align. This critical angle seems to differ for different cell types, e.g. about
20o for fetal lung fibroblasts and approximately 50o for BHK cells. For fibroblasts the
leading edge of the lamellipodium is much narrower than for the BHK fibroblasts.
Hence, except for rather narrow contact events, motion will halt (else cells may even
criss-cross other cells). Moreover, similar behavior is observed for contact events of
already established arrays of aligned cells. This behavior is eventually reflected in the
resulting patterns at confluence.

Mathematical modeling of the dynamical process of array formation of aligned cells
started with the work by Edelstein-Keshet and Ermentrout [13]. The continuum mod-
els derived for pattern forming cell cultures assume random spatial and orientational
distributions of the cells that are attracted (repulsed) and change their direction of
motion as response to cell-cell interactions. Here define the cell density depends on
time, two-dimensional physical space and the angle of orientation. The range of inter-
action is kept small in order to model the local character cellular interactions. Apart
from terms modeling the random motion in physical and angular space, the model
includes a term that describes the probability of alignment of cells as a response to
cell-cell contact, which vanishes outside the range of angles known to lead to align-
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ment. In subsequent articles the resulting system of integro-differential equations for
free cells and cells already bound to an array are discussed in various limiting cases
and analysed with respect to their stability about the homogeneous state [26]. Similar
models were also used for other pattern forming processes such as swarming or the
dynamics of actin binding fibers [9, 26, 28].

Here we extend these models to include time-dependent logistic growth to account for
the later stages of in vitro chondrocyte cell expansions. In fact, one important aspect
of our study is to enable a direct comparison with our experimental results in section
2.1. The analysis of the experimental results and, in particular, the classification of
the cells within angular space is realized by using two-dimensional Gabor filters [10]
for the experimental images and is described in section 2.3. In section 3, we present
our mathematical model, followed by analysis and the description of our numerical
algorithm to solve the time-dependent nonlinear integro-partial differential equation in
section 4. In section 5 we investigate the stability of the solution via a linear stability
analysis about the homogeneous state and compare those findings to the results of
the full nonlinear model. Finally, quantitative comparisons with experimental data are
performed in section 6.

2 Biological background

2.1 The impact of growth factors

Depending on the cell type and the specific growth factors used, cytokine-induced
proliferation of cells can generally be characterized by one or more parameters, such
as a shorter cell division time, a shorter time until first cell division, or lower percent-
age of remaining quiescent cells [4, 11, 12]. Those key parameters can be obtained,
for instance, by combining a logistic delay-differential model with the results from spe-
cific micro-colony experiments [4]. From that model, Barbero et al. established in the
case of adult human articular chondrocytes(AHAC) expansion in a medium with added
growth factors TFP that the time of first cell division is about 1.4 times shorter and the
percentage of quiescent cells about 1.7 times smaller than in the absence of TFP.

Further characteristics observed in experiments [4] concern the elongated shape the
cells assume when cultured in a medium with TFP. During the sigmoidal growth of
the cell culture, individual cells are initially oriented at random. As the population ap-
proaches confluence, cells tend to locally align and form coherent structures. Those
spatial patterns appear highly irregular while individual patches greatly vary both in
shape and size, without clear boundaries between them – see Fig. 1.
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Figure 1: Original image of AHAC cells cultured with TFP at day 9 near confluence
(left). Sigmoidal evolution of number of cells vs. time (right)

2.2 Cell culture: isolation and expansion

To monitor patch formation and obtain quantitative experimental data on diffusion con-
stants, we track the motion of an ensemble of individual AHAC cells up to confluence.
Here full-thickness human articular cartilage samples were collected from the femoral
lateral condoyle of two individuals (patient A: male, 18 years old, patient B: male, 66
years old), with no history and no radiographic signs of joint disease, after informed
consent and in accordance with the local Ethical Commission. Human adult articular
chondrocytes (AHAC) were isolated using 0.15% type II collagenase for 22 hours and
cultured for one passage in Dulbeccos modified Eagles medium (DMEM) containing
10% foetal bovine serum, 4.5 mg/ml D-Glucose, 0.1 mM nonessential amino acids, 1
mM sodium pyruvate, 100 mM HEPES buffer, 100 U/ml penicillin, 100 ţg/ml strepto-
mycin, and 0.29 mg/ml L-glutamine and supplemented with the 1 ng/ml of Transform-
ing Growth Factor-b1 (TGF-b1), 5 ng/ml of Fibroblast Growth Factor-2 (FGF-2) and 10
ng/ml of Platelet-Derived Growth Factor-BB (PDGF-BB) (growth factor medium, TFP)
in a humidified 37oC/5% CO2 incubator as previously described [4]. When cells were
approximately 80% confluent, first passage (P1) cells were rinsed with phosphate
buffered saline, detached using 0.05% trypsin/0.53mM EDTA and frozen in complete
medium containing 10% dimethylsulfoxid. AHAC after thawing were then used for the
studies described below.

Monitoring of cell expansion until confluence AHAC were re-plated in two wells
of a 6 well plate at a density of 10000 cells/cm2 and cultured in growth factor medium
up to 10 days in a humidified 37oC/5% CO2 incubator with daily culture medium
change. AHAC cultures were monitored by phase contrast microscopy and pictures
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were taken from random areas of the wells each day.

Study of cell movement AHAC were re-plated in a 6 well plate at different densities,
which were 200, 3000, 10000, 15000 and 20000 cells/cm2, and cultured in growth
factor medium for 1 day in a humidified 37oC/5% CO2 incubator. Next, the plate was
transferred to the incubator of the Olympus system. From a time-lapse microscope
we obtained a sequence of frames which we used to monitor cell motion. Snapshots
were taken at 15 minute intervals, which corresponds to an average travel distance of
9µm, to provide sufficient space-time resolution compared to the typical length of a
cell (50µm). With the software analySISD we performed a manual tracking in all five
wells (Fig. 2) to follow about 100 cells for each density, for 12 hours, a duration that
allowed us to neglect cell doubling.

Figure 2: Tracking of individual cells at density 20000/cm2.

Spatial diffusion To estimate the spatial diffusion, we performed experiments at
various densities (i.e. 200, 3000, 10000, 15000, 20000 cells/scm) and for each den-
sity we manually tracked individual cells in three different areas of the well. Assuming
Brownian motion, the diffusion coefficient D is related to the mean square displace-
ment, < X2 >, through the relation < X2 >= 2Dt. A linear least-squares fit of the
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time evolution of the mean square distance then yields D. From those estimates at
varying density, shown in table 1, we obtained the constant average diffusion coeffi-
cient D = 0.29 µm2/s.

cells/scm 200 3000 10000 15000 20000

coeff D1 0.31 0.30 0.37 0.31 0.31
coeff D2 0.18 0.23 0.32 0.30 0.26
coeff D3 0.23 0.40 0.34 0.30
mean ± SD 0.24 ± 0.07 0.26 ± 0.04 0.36 ± 0.04 0.31 ± 0.02 0.30 ± 0.03

Table 1: Estimates of the diffusion constant D at three different locations inside the
well and at varying density, together with the mean values ± SD.

2.3 Image analysis of alignment

Standard image segmentation algorithms proved unable to distinguish between indi-
vidual cells and the background. Thus to identify patches of alignment and estimate
their size quantitatively, both in the numerical simulations and in the experiment, we
proceed in two steps. First, we apply a special class of filters to images such as Fig. 1
that reveal the dominant local axis of orientation. Second, we estimate the average
size of cell clusters with a common orientation with a discrete statistical measure,
which is then used to compare numerical simulations with experiments.

To classify cells according to their orientation, we opt for Gabor filters [17, 19] which
consist of a local Gaussian kernel of width σ, multiplied by a plane wave with distinct
orientation θ and frequency ω:

G(x′, y′) = exp

{

−1

2

(

(

x′

σ

)2

+

(

y′

σ

)2
)}

cos(2πωx′)

x′ = x cos(θ) + y sin(θ), y′ = y cos(θ) − x sin(θ),

where unit length in x (or y) corresponds to a single pixel. The typical width σ = 12
and frequency ω = 0.08 for an array of aligned cells were determined a priori and
remained fixed in all further analysis – see Fig. 3. Hence Gabor filters locally respond
to patterns with spatial frequency ω and orientation θ, within a subregion of size σ.
Their two-dimensional extension is commonly used in image analysis and computer
vision; they were also proposed as a model for the spatial summation properties of
simple cells in the visual cortex [10].

To any image we apply a suite of Gabor filters for varying orientation at 45◦ intervals
and assign to each pixel location (i, j) a distinct color cij that corresponds to the
highest filter response. Hence cij reflects the dominant orientation at location (i, j),
and cells aligned with that particular orientation are thus revealed, as shown in Fig. 4.

Next, we estimate the typical cluster in a filtered image, such as in Fig. 4, either from
epxeriment or numerical simulation. To do so, we assign to each pixel (i, j) the value
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Figure 3: Gabor filters with frequency ω = 0.08, scale σ = 12, and orientations θ =
0, π/4, π.

pij(s) = 1 if it belongs to a cluster of size s, that is if at least 50% of the points within
distance s are of the same color; else, we set pij(s) to zero. Summation over all pixels
yields an estimate r(s) of the number of pixels belonging to a cluster of size s as

r(s) =
∑

ij

pij(s), pij(s) =

{

1
0

. (2.1)

The intersection of r(s) with the s-axis yields a reliable estimate for the typical patch
size, i.e. the largest cluster size, as illustrated with synthetic black and white data in
Fig. 5. Moreover, comparison of the left and right frames in Fig. 5 demonstrates that
the intersection of r(s) with the s-axis is rather insensitive to added random noise.

3 Mathematical Model

3.1 Formulation

Starting form the pioneering works of Edelstein-Keshet et al. [13, 26, 27], we now
build a continuum model to describe the time evolution of a cell population of density
C(θ, ~x, t) in angle θ and two-dimensional space ~x = (x, y) at time t. During initial times
the cells are essentially free to move in space and also turn their axis of orientation
at random, similarly to fibroblasts. As the population density increases, however, cells
come into contact. In [13–15] the underlying mechanism responsible for the directional
motion and the resulting pattern formation is explained solely on the basis of single
cell contact events for the case of related fibroblast cell cultures. This mechanism is a
form of contact inhibition that cells experience when their lamellipodium touch. Indeed
whenever mutual contact occurs within a small angle and hence only a portion of
the lamellipodium touches, the cells alter their orientation accordingly and align, as
observed by Elsdale [14].
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Figure 4: The effect of Gabor filtering applied to Fig. 1. The color indicates the domi-
nant local direction of alignment.

Following [27] we now let W (~x − ~x′, θ, θ′) denote the rate at which a cell at ~x′ and θ′

moves to ~x and rotates to θ due to the impact of any surrounding cells. The angular
velocity associated with this motion is then given by the gradient of W at angle θ and
position ~x, due to the cumulative interaction with all other cells:

∂

∂θ
(W ⋆ C)(~x, θ, t) :=

∂

∂θ

∫

W (~x − ~x′, θ, θ′)C(θ′, ~x′, t) dθ′d~x′. (3.1)

The gradient of the associated flux C ∂θ(W ⋆ C) then induces convective motion to-
wards locations of higher concentration which corresponds to aggregation in space
and alignment in angle; both compete with the inherent tendency of cells for random
motion modelled by diffusive terms.

Following [27] we assume that the probabilities to align or to aggregate are indepen-
dent of each other, hence

W (~x − ~x′, θ, θ′) = W1(θ − θ′)W2(~x − ~x′). (3.2)

Experiments suggest that the probability of alignment W1 decreases as the relative
angle between neighboring cells increases [14], whereas beyond a critical angle α
cells no longer align; hence, W1 is positive and non-increasing for 0 ≤ θ ≤ α but
vanishes for α < θ ≤ π. Since clockwise and anticlockwise turns are equally probable,
W1 must also be even. For simplicity, we assume that W1 is Gaussian with mean zero
and standard deviation σ, and set α = 2σ; other choices are possible and discussed
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Figure 5: Estimate of cluster size from synthetic texture images (top left) and corre-
sponding cluster size function r(s), as in (2.1) (bottom left). The intersection of r(s)
with the s-axis yields a robust estimate of the cluster size, even in the presence of
added random noise (right).

in [13]. After normalization, we thus obtain

W1(θ) =
1

α
√

2π
e−

2θ2

α2 , |θ| < α. (3.3)

Since the strength of cell-to-cell interactions decreases with growing distance [13], we
again choose a Gaussian kernel for W2,

W2(~x) =
1

2σ2π
e−

|~x|2

2σ2 , ~x ∈ [−Lx, Lx] × [−Ly, Ly], (3.4)

where Lx and Ly denotes the size of the domain.

Our previous experiments indicate that the growth rate slows down, as the cell density
increases locally in space, and that it eventually vanishes when the carrying capacity
is reached because of limited space. Therefore we model cell growth by a logistic term
with growth rate ρ, where the growth rate reduction is determined by the population
density at x and t, that is by the marginal probability density

∫ π

−π
C(t, x, y, θ)dθ. This

leads to the full model equations:

∂C

∂t
= ǫ1

∂2C

∂θ2
+ ǫ2

(

∂2C

∂x2
+

∂2C

∂y2

)

−γ
∂

∂θ

(

C

[

∂W

∂θ
∗ C

])

− γ

{

∂

∂x

(

C

[

∂W

∂x
∗ C

])

+
∂

∂y

(

C

[

∂W

∂y
∗ C

])}

+ρ C

(

1 − Lx Ly

K

∫ π

−π

C(t, x, θ)dθ

)

. (3.5)

Here ǫ1 and ǫ2 denote diffusion coefficients, while γ denotes a drift coefficient.

9



−150 −100 −50 0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

W
1

Theta
−3 −2 −1 0 1 2 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

W
2

x

Figure 6: The kernels W1 and W2 from (3.3) and (3.4): W1 (left) and W2 (right).

3.2 Existence of weak solutions

We now show existence of a weak solution of (3.5) until time T > 0 in UT = U×(0, T ],
where U = (−π, π) × D, D = (0, Lx) × (0, Ly). First we nondimensionalize the
governing equations as follows, with

C∗ =
C

K
LxLy, t∗ = ρt, θ∗ = θ

√

ρ

ǫ1
, x∗ = x

√

ρ

ǫ2
, y∗ = y

√

ρ

ǫ2

and

α∗ = α

√

ρ

ǫ1

, σ∗ = σ

√

ρ

ǫ2

.

Dividing by Kρ/(LxLy) and dropping the ‘∗’ for simplicity of notation, we thus obtain
the nondimensional form of (3.5):

{

∂tC = div(∇C) − A div(C∇W ∗ C) + f(C) in UT

C = g on U × {t = 0}, . (3.6)

with initial condition g : U → R, f(C) = C
(

1 −
∫ π

−π
Cdθ

)

, and A = Kγ/(LxLyǫ);

without loss of generality we assume ǫ1 = ǫ2 = ǫ here.

Next, we multiply (3.6) by a test function v ∈ H1
per(U) and integrate by parts to obtain

the weak form

< C ′, v > +(∇C,∇v) = A (C∇W ∗ C,∇v) + (f(C), v) (3.7)

for each v ∈ H1
per(U), 0 < t ≤ T and C(0) = g. Here <, > denotes the standard dual

pairing between H−1(U) and H1
per(U), the Sobolev space of H1 periodic functions,

and C now corresponds to a mapping C : [0, T ] → H1
per(U) – see [16] for further

details. Thus to show existence of a weak solution for (3.6) means that we must show
existence of a function

C ∈ H1(0, T ; H1
per(U)), with C ′ ∈ L2(0, T ; H−1(U)),
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which solves (3.7). The proof is based on a Galerkin projection of C(t) on a finite
dimensional subspace and requires various estimates and technical results summa-
rized in the three lemmas below; their proofs are listed in the appendix.

Lemma 3.1. (Boundedness) Let C be a smooth and bounded solution of equation
(3.6). If C(0) ≥ 0 in U , then C(t) ≥ 0, ∀0 ≤ t ≤ T , and the mass remains bounded,
i.e.

‖C(t)‖L1(U) ≤ K1 := eT‖C(0)‖L1(U). (3.8)

Next we let {wk}∞k=1 denote an orthogonal basis of smooth basis functions of H1
per(U),

which also form an orthonormal basis of L2(U). For the Galerkin projection Cm(t) of
C(t) we then have the following result.

Lemma 3.2. (Galerkin construction) For each integer m = 1, 2, . . . there exists a
unique function Cm : [0, T ] → H1

per(U) of the form

Cm(t) :=
m
∑

l=1

dl
m(t)wl, (3.9)

with
dl

m(0) = (g, wl), l = 1, . . . , m, (3.10)

which solves the problem

(C ′
m, wk) + (∇Cm,∇wk) = A (Cm∇W ∗ Cm,∇wk) +

∫

U

f(Cm) wk (3.11)

for 0 ≤ t ≤ T , k = 1, . . . , m.

For simplicity, we now assume that the functions Cm are nonnegative with bounded
mass.

Lemma 3.3. (Energy estimate) If the functions Cm defined in (3.9) are nonnegative
and have a bounded mass, there exists a constant K that depends only on U, T , such
that

max
0≤t≤T

‖Cm(t)‖L2(U) + ‖Cm‖L2(0,T ;H1
per(U)) + ‖C ′

m‖L2(0,T ;H−1(U)) ≤ K‖g‖L2(U). (3.12)

Passing to the limit m → ∞ in the Galerkin procedure, we thus find a weak solution
of (3.6), as shown below.

Theorem 3.4. If the functions Cm, defined in (3.9), are nonnegative and have bounded
mass, there exists a weak solution of (3.6).

Proof. According to the energy estimates (3.12), we see that the sequence {Cm}∞m=1

is bounded in L2(0, T ; H1
per(U)) and {C ′

m}∞m=1 is bounded in
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L2(0, T ; H−1(U)). Consequently there exists a subsequence {Cml
}∞ml=1 ⊂ {Cm}∞m=1

and a function C ∈ H1(0, T ; H1
per(U)), with C ′ ∈ L2(0, T ; H−1(U)), such that

Cml
⇀ C in ∈ L2(0, T ; H1

per(U))

C ′
ml

⇀ C ′ in ∈ L2(0, T ; H1
per(U)). (3.13)

Next, we fix an integer N and choose a function v ∈ C1([0, T ]; H1
per(U)) of the form

v(t) =
N
∑

k=1

dk(t)wk, (3.14)

where {dk}N
k=1 are given smooth functions. We choose m ≥ N , multiply (3.11) by

dk(t), sum over k = 1, . . . , N and integrate in time to obtain
∫ T

0

[< C ′
m, v > +(∇Cm,∇v)] dt = A

∫ T

0

(∇v, Cm∇W ∗ Cm) dt +

∫

UT

f(Cm) v.

(3.15)
Then we set m = ml and recall (3.13), which yields in the weak limit
∫ T

0

[< C ′, v > +(∇C,∇v)] dt = A

∫ T

0

(∇v, C∇W ∗ C) dt +

∫

UT

f(C) v. (3.16)

By density (3.16) holds for all v ∈ L2(0, T ; H1
per(U)) and therefore we have

< C ′, v > +(∇C,∇v) = A (∇v, C∇W ∗ C) +

∫

U

f(C) v (3.17)

for each v ∈ H1
per(U) a.e. 0 ≤ t ≤ T . Furthermore C ∈ C([0, T ]; L2(U)) and therefore

C(0) = g – see [16] for details.

4 Numerical Methods

We restrict the computations to a small subregion Ω inside the experimental well.
Thus, boundary effects due to the finite size of the well are negligible and we may
impose periodic boundary conditions at the boundary of the computational domain
Ω = [0, Lx]×[0, Ly ]. For the numerical approximation of (3.5) all spatial derivatives are
approximated by second-order centered finite differences on a regular grid. The con-
volution integrals are computed by trapezoidal quadrature, which yields exponential
convergence for periodic analytic functions [23]. Hence the numerical discretization
error is second-order accurate in space and angle.

For parabolic problems standard explicit Runge-Kutta schemes impose rather strin-
gent restrictions on the time-step for numerical stability, typically ∆t ≤ C∆x2, and
hence are notoriously inefficient [21]. In contrast, implicit methods waive those time-
step restrictions but would require here the solution of a nonlinear integro-differential
boundary value problem at every time step, a rather high price to pay.
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To avoid the above mentioned difficulties, we opt for Runge-Kutta-Chebyshev methods
instead, which are fully explicit while allowing larger time-steps. Instead of maximizing
the accuracy, RK-Chebyshev methods maximize the interval [−ℓ, 0] of the negative
real axis contained in the stability region [21, 25]. Because ℓ is proportional to s2, for a
fixed number of stages, s, any reduction of the mesh size ∆x can be counterbalanced
by an equivalent increase of the number of stages while keeping the time-step ∆t
fixed. Therefore RK-Chebyshev methods circumvent the crippling quadratic increase
in the number of time-steps of traditional RK methods that results from any linear
reduction of the mesh size [2, 18, 33].

For instance, the first-order s-stage RK-Chebyshev method for the initial-value prob-
lem

y′(t) = f(y), y(0) = y0, (4.1)

is given by

g0 = y0, (4.2)

g1 = y0 + (1/s2)∆tf(g0), (4.3)

gi = (2/s2)∆tf(gi−1) + 2gi−1 − gi−2, (4.4)

y1 = gs. (4.5)

In Figure 7 we observe that the stability regions of the 3-stage RK-Chebyshev method
is about nine times larger than that of the standard fourth-order RK4. Following [20],
we eliminate the two intersections where the stability region shrinks to zero by adding
small damping of size ǫ > 0. Let ǫ > 0 and Ts(x) denote the Chebyshev polynomial
of degree s [1]. Then the damped RK-Chebyshev method for (4.1) is given by

g0 = y0, (4.6)

g1 = y0 + ∆t(w1/w0)f(g0), (4.7)

gi =
1

Ti(w0)
[2w1∆tTi−1(w0)f(gi−1) + 2w0Ti−1(w0)gi−1 − Ti−2(w0)gi−2] ,(4.8)

y1 = gs. (4.9)

where

Rs(z) =
1

Ts(w0)
Ts(w0 + w1z), w0 = 1 +

ǫ

s2
, w1 =

Ts(w0)

T ′
s(w0)

. (4.10)

As illustrated in Fig. 7 for ǫ = 0.05, the stability domain is now slightly shorter (by a
factor 4ǫs2/3), but its boundary remains at a safe distance form the real axis [20].

When the right-hand side in (4.1) explicitly depends on time, the terms involving f(gi)
in (4.6)–(4.9) are replaced by f(gi, ti). The precise times ti ∈ [0, ∆t] where f needs to
be evaluated are determined by augmenting (4.1) with the trivial differential equation,

z′(t) = 1, z(0) = t0 (4.11)
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Figure 7: Stability regions: fourth-order RK4 (top) and first-order 3-stage Chebyshev
methods without damping (middle) and with damping (bottom). The stability regions of
the RK-Chebyshev method is about nine times larger then that of the standard RK4.

and applying (4.6)–(4.9) to it. Thus for t ∈ [0, ∆t] we have

t0 = 0, (4.12)

t1 = ∆t(w1/w0), (4.13)

ti =
1

Ti(w0)
[2w1∆tTi−1(w0)) + 2w0Ti−1(w0)ti−1 − Ti−2(w0)ti−2] , (4.14)

and so forth during subsequent time steps.

5 Stability

Linear stability analysis Before investigating numerically the emergence of coher-
ent patterns in the full nonlinear model (3.5), it is instructive to investigate the stability
properties of the homogeneous state, i.e. the state, where the density of cells in angu-
lar and spatial space is distributed evenly. Linear stability analysis characterizes the
effect of small perturbations on the early time evolution in angular and spatial space.
We therefore expect good agreement with the early stages of the numerical solution
of the fully nonlinear model (3.5).

If ρ = 0, the homogeneous state C ≡ C̄ is an exact solution of (3.5), since we then
have W ⋆ C = C. In this case, linearization of (3.5) about C ≡ C̄ using the ansatz

C(~x, θ, t) = C + δ C ′
n,q(~x, θ, t), (5.1)

14



where the amplitude of the perturbation δ ≪ 1 is small, results in an eigenvalue prob-
lem for the integro-differential operator previously analyzed in [13, 27]. In particular,
Mogilner et al. [27] showed for an unbounded spatial domain that the functions

uq1
(x) = eiq1x, uq2

(y) = eiq2y, zn(θ) = einθ, q1, q2 ∈ R (5.2)

form a complete set of orthogonal eigenfunctions for the spatial and angular Laplace
operator with eigenvalues q1, q2 for the spatial and n = 0, 1, 2, ... for the angular
diffusion operator, respectively. In addition, they proved that (5.2) are not only the
eigenfunctions of the Laplace operators, but also of the convolution operators W1∗
and W2∗, where the eigenvalues are the Fourier coefficients denoted by Ŵn and Ŵq =

Ŵq1
Ŵq2

, where q =
√

q2
1 + q2

2) and

Ŵn =
1

π

∫ π

−π

W1(θ)e
−inθdθ, Ŵqj

=

∫ Lxj

0

W2(xj)e
−iqjxjdxj , (5.3)

where j = 1, 2 and x1 = x, x2 = y. From the normal modes ansatz

C ′
n,q(~x, θ, t) = eλt uq1

(x) uq2
(y) zn(θ) (5.4)

the stability of the homogeneous state is then found from the solution of the equation

λ = −r + C s , (5.5)

where
r = (ǫ1n

2 + ǫ2q
2) and s = ŴqŴnγ(n2 + q2) (5.6)

for all q1, q2 and n. Hence the condition for instability of the homogeneous solution is
given by λ > 0. Thus, any increase in the diffusion coefficients ǫ1, ǫ2 tends to stabilize
the system, while the cell-to-cell interaction terms Ŵn and Ŵq tend to destabilize the
system, for increasing values of n, q, unless Wn is zero. Moreover, for any particular
values of ǫ1, ǫ2, n, q, the constant state C̄ becomes unstable at sufficiently high cell
density, unless Ŵn or Ŵq vanishes.

For our extended model with logistic growth, where ρ 6= 0, the homogeneous state
about which we linearize is now time-dependent, due to the slow mass increase. Thus
we make the ansatz

C(θ, ~x, t) = C(t) + δ C ′
n,q(θ, ~x, t) (5.7)

with C ′
n,q = Ĉn,q(t)e

i(qx+nθ), since now the standard normal modes ansatz may lead
to non-normal linear systems with non-orthogonal eigenfunctions – see [31], for in-
stance, for a more detailed discussion of such problems in the context of hydrody-
namics. Our slightly more general ansatz for C(θ, ~x, t) then leads to the following
differential equation for Ĉn,q

dĈn,q

dt
=

[

−(ǫ1n
2 + ǫ2q

2) + C(t) ŴqŴnγ(n2 + q2) + ρ

(

1 − C(t)

κ

)]

Ĉn,q(t) , (5.8)

where
C(t) =

κ

1 + C1κe−ρt
(5.9)
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is the solution of the leading order problem and represents the slowly growing mass
until the carring capacity is reached. The constant C1 = 1/C(0)− 1/κ, where C(0) is
chosen to be the same as C̄ in the original problem and we denote κ = K/(2πLxLy).
Hence, the growth rate is given here by

ln(Ĉn,q(t)) = (−r + sκ)t +
s κ − ρ

ρ
ln
(

1 + C1κ e−ρt
)

+ const. (5.10)

We note that now the additional parameter K, the carrying capacity, will have a deci-
sive impact on the stability properties of the solutions.

Comparison of the full model with linear stability To compare the results from
linear stability analysis to those from the numerical simulation of the full problem,
we choose as an example the simple case for which ρ = 0 and γ = 1. We take
the (constant) base state C̄ = 25, let ǫ1 = 0.0025 and ǫ2 = 0.5 so that for n > 0
and q = 0 the base state is unstable according to linear stability analysis. Now, we
determine nmax such that the growth rate is maximal, i.e. σmax = σ(nmax, qmax) (here
q = qmax = 0). Thus, we can find nmax which is at most O(1) with a σmax not too
small, together with the the corresponding eigenfunction C ′

n,q and a corresponding
asymptotic growth rate λ .

Next, we initialize our nonlinear simulation with the initial data

C̄ + δC ′
n,q , such that δ ≤ min

(

0.1, 0.1
σmax

n2
max

)

to ensure that the correction term does not invalidate the original assumptions of linear
stability analysis.

In figure 8 we plot log ||C||,

||C|| :=
maxθ,x,y|C(θ, x, y, t) − C̄|

δ
versus t ,

both for the solution of the fully nonlinear model and for that from linear stability. Note
that the growth rate of the linearized problem for the extended model, i.e. where ρ 6= 0,
now also depends on time. Once initial transients have died out, both models agree,
as expected. As time progresses, however, the dynamics of the full model deviate
from those of the linearized problem. Thus, the evolving patterns may deviate from
those predicted by linear stability theory, in particular, at later times as the cell culture
reaches confluence, depending on parameter values.

In figure 8 we show a comparison of the growth rates for the fully nonlinear and the
linearized models, for the set of paramters given at the beginning of this paragraph.
This example illustrates that generically the following behaviour is established. For the
case of ρ = 0 we observe agreement right from the beginning, since we perturbed with
the exact eigenfunctions as in the linear stability problem. For the extended model,
where we set as an example ρ = 0.2, we chose for the additional parameter value

16



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

time t

 

 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

time t

 

 

 

Figure 8: Comparison of the growth rates for the fully nonlinear and the linearized
models: Left ρ = 0: The dashed line is λ t, where λ is given by the solution of the
linear stability problem, equation (5.5). The curve with the circles denotes ln(||C||).
Right ρ = 0.2: The dashed line shows the long-time behaviour of the solution of
equation (5.10). The curve with circles results from the solution to the full problem
(3.5).

K = 1220. Here, we observe that the long-time behaviour of the solution of equation
(5.10) compares well with the solution to the full problem (3.5). Eventually though, the
nonlinear terms begin to have an effect and the solution of the full model deviates
from the predictions of the linear model.

6 Comparison of simulations and experiments

6.1 Parameter values

To compare the results from the simulation of our model with those from experiment,
it is crucial to have accurate estimates for the parameter values. While the values
of most parameters were determined quite accurately from experiment, uncertainties
about some of them remained. In table 2 we list the standard set of parameter values.

Here ǫ2 was determined from experiment (table 1), which yielded the average spa-
tial diffusion coefficient ǫ2 = 0.29 µm2/s = 0.025 mm2/days. Because cells do not
change their orientation in a continuous way, ǫ1 could not be determined from experi-
ment and we let ǫ1 = ǫ2, for simplicity. The values for ρ and K, determined previously
in [4], were used as initial guess for a nonlinear least-squares parameter fit to the
time evolution of the total mass. The size of the domain Lx, Ly was chosen to match
the area observable under the microscope. In [14], the critical angle α was obtained
for fibroblast cultures by inspection of relative angles between cells at confluence.
Because of the strong similarity between cytokine cultured chondrocytes and fibrob-
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lasts, we used the same value here. Since chondrocytes only attach when they are
very close to each other, we chose the standard deviation σ for the spatial interaction
kernel to be about the length of a single cell. The value of γ essentially sets the con-
vective time scale and was obtained by fitting the cluster size from the simulation to
that obtained from experiment – see Section 2.3.

ǫ1 ǫ2 γ α σ2 ρ K Lx [mm] Ly [mm]

0.025 0.025 0.0005 200 0.01 1.2 40000 3.75 2.75

Table 2: Standard parameter values

6.2 Numerical simulations

Starting from a random initial distribution at t = 0, we solve (3.5) using the numerical
method described in section 4 and the parameter values listed above. In Fig. 9 snap-
shots of the cell density at different times are shown. Here at each point (x, y) ∈ Ω
the marginal spatial cell density of C, that is the integral of C(x, y, θ, t) over θ, is dis-
played. The color used at any point (x, y) corresponds to the angle, where C(x, y, θ, t)
is maximal; hence, the color represents the local dominant orientation of the cells. We
observe that the number of cells increases uniformly throughout the computational
domain Ω, yet past day 6 several patches of cells with a common orientation emerge
and settle in a stationary configuration by day 9; note that the total number of cells
hardly changes beyond day 6 anymore.

In Fig. 10 we compare the simulation with the experimental data using Gabor filters
for post-processing both – see section 2.3. In doing so the spatial resolution of the
microscope image was coarsened to match that of the simulation, while the angular
dependence over [0, π) was divided into four classes, that is sub-intervals of identical
lengths, each one assigned with a different color. The cluster size (intersection of r(s)
with the x-axis, see Section 2.3) was calculated for three samples from the same
donor. By fitting average cluster size from the simulation to that from experiment,
between 15 and 20 pixels or about 0.5mm, we determined the standard value of γ,
as shown in Fig. 10.

Once the model has been validated through comparison to experiment, it is instructive
to change the value of individual parameters to study their effect on the size and shape
of the patterns at confluence. Thus we can also evaluate the parameter sensitivity of
the model and address the uncertainties associated with some of the values obtained
from experiment. For instance, the reduction of the angular diffusion coefficient ǫ1 has
little effect on the size of the patterns, but the interfaces appear more well-defined in
contrast to the standard case: compare Fig. 10 and Fig. 11. An increase in the critical
angle α instead, results in larger and increasinlgy irregular patterns, while the uniform
spatial population density is maintained, as shown in Fig. 12.
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Figure 9: Snapshots of the cell density at different times. At each point (x, y) in the
computational domain, the marginal angular density of C is shown; the color repre-
sents the angle for which C(x, y, θ, t) is maximal.

7 Concluding remarks

We studied proliferating chondrocyte cells cultured with growth factors such as TFP
both experimentally and theoretically. While in a previous work [4] we investigated
the impact of these growth factors on quantities such as carrying capacity of the cell
culture, the proliferation rate of the cells, here we were interested in the patterns that
result at confluence, as their control will be useful in the design of engineered tissue.

To model such a complex growth process of large numbers of interacting cells for long
times we chose to revisit the classic models by Mogilner et al. [27] and then extended
them to expanding cell populations by incorporating slow logistic growth, with the goal
to follow the evolution for long times. This also means that one needs to go beyond
linear stability analysis to establish its range of validity. We then established existence
of weak solutions of our model rigorously.

An important task of our work was to determine realistic parameters for the result-
ing logistic integro-differential drift-diffusion type equation. Here we showed how the
arising patterns may depend on the various parameter values, which in turn were
established from local cell-to-cell interactions and their range, used e.g. to establish
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Figure 10: Comparison of simulation (bottom) with experiment (top). Here color indi-
cates the local dominant orientation of the cells. The cluster size for three samples
form the same donor (top) and for the simulation (bottom) are shown on the right.

critical alignment angles and the scales of the interaction kernels in the model; or the
averaged cell motion used to establish diffusion constants. We obtained these values
using in part results from our experiments using micro-colony tests, that establish the
spatial diffusion coefficient, linear stability analysis to guide us through the range of
sets of unstable parameter values. Also, from our previous work, parameters such as
carrying capacity and growth rate could be established.

Another task was to set up a numerical code that is robust yielding accurate results
for the whole range of parameters as well as the time frame. Here, a variant of the
Runge-Kutta method, the Runge-Kutta–Chebyshev method, turned out to be particu-
larly useful to otain a larger stability region than standard methods.

Finally for the actual comparison with the experimentally observed patterns we imple-
mented Gabor filters to visualize the experimental data on orientation, density, and
patch sizes. These gave us a good quantitative measure to visualize the patterns.

We performed a number of runs that aimed to show the dependencies of the arising
patterns on these parameter values. The parameters which control the formation of
the patterns are the scales of the kernels and the ratio between the diffusion and
drift coefficients. For example, a small σ leads to the absence of aggregation; we can
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Figure 11: The cell density is shown at confluence for the standard parameter values
in table 2, but with smaller angular diffusion coefficient: ǫ1 = 0.0025.

conclude that chondrocytes do not aggregate because they attach only if they are
really close, but do not interact in this sense with distant cells. The critical angle α is
responsible for the formation of many angular patterns. Letting it be larger leads to a
state were only one direction is winning, whereas in our experiments we observed the
presence of more arrays, which can be explained by a small critical angle.

Regarding the diffusion and drift coefficients both may contribute to the destabiliza-
tionof the solutions. If we fix the diffusion coefficients in the regime of the desired
instability, we observe that variations of the drift coefficients lead to different pattern
sizes. We observed that doubling γ1, we double the size of the patterns, meaning that
a stronger tendency to align leads to larger patterns. We can obtain similar results
changing the angular coefficient: a larger angular velocity, leads to smaller patterns.
However, we also observed that the number of winning directions over the whole do-
main is the same as before, as this quantity is regulated by the critical angle that
we took fixed. We can conclude that the total number of winning directions in a cul-
ture is regulated by the critical angle, the angle under which the probability that cells
align is high, but the distribution of the patterns can be different depending either how
high this probability is or how fast the cells change their directions. Guided by these
parameter studies we arrived at reasonable parameter values for comparison to the
experimentally observed cell patterns at confluence.

While we think that the aproach of using continuum models in combination with some
local experimental analysis yields convincing evidence to capture the large scale long-
time structure of a proliferating cell culture, our work also leaves a number of open
tasks and questions. Apart from the study of aggregation patterns of our model, that
has been left open, the determination of the remaining parameters, in particular drift
parameters will be an important future task. Through a new set of experimental runs
one should also be able to establish more accurately the critical angle for cell align-
ment for any particular cell culture, without relying on similar cases in the literature.
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Figure 12: The cell density is shown at confluence for the standard parameter values
in table 2, but with a larger value in the critical angle: α = 400 (left) and α = 60o (right).
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A Appendix

Proofs of lemmas 3.1, 3.2 and 3.3.

Lemma 3.1:

Proof. Let C− = min(C, 0) denote the negative part of C and test equation (3.6) with
it. Because the term at the boundary vanish, we have

(C ′, C−) + (∇C,∇C−) = A(C∇W ∗ C,∇C−) + (f(C), C−). (A.1)

From a theorem of the function analysis we have that if C ∈ H1
per(U) then C− ∈

H1
per(U); moreover C ′ = C ′

− and ∇C− = ∇C if C is negative. Using this fact, we
observe that (C ′, C−) = (C−

′, C−), (∇C,∇C−) = (∇C−,∇C−) and (f(C), C−) =
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(f(C−), C−); indeed for C positive it is trivial because its negative part is zero and for
C negative, C = C− and the derivatives remain the same.

(C−
′, C−) + (∇C−,∇C−) = A(C−∇W ∗ C−,∇C−) + (f(C−), C−) (A.2)

Now, using (see [16])

(C−
′, C−) =

1

2

d

dt

∫

U

|C−|2, (A.3)

our equation can be reduced to

1

2

d

dt

∫

U

|C−|2(t) +

∫

U

|∇C−|2 = A

∫

U

C−∇W ∗ C−∇C− +

∫

U

f(C−)C−. (A.4)

Writing down the expression of f , we obtain

1

2

d

dt

∫

U

|C−|2(t)+
∫

U

|∇C−|2 = A

∫

U

C−∇W ∗C−∇C−+

∫

U

|C−|2−
∫

U

∫ π

−π

C−dθ|C−|2.
(A.5)

The last term is positive (being C− negative). Moreover C is bounded, then exist a
constant B such that

1

2

d

dt

∫

U

|C−|2(t) +

∫

U

|∇C−|2 ≤ A

∫

U

C−∇W ∗C−∇C− +

∫

U

|C−|2 + B

∫

U

∫ π

−π

|C−|2.
(A.6)

Since ∇W ∈ L∞(U) and C is bounded we have ∇W ∗ C ∈ L∞(U), then ‖∇W ∗
C‖L∞(U) ≤ K for a constant K > 0. Then, applying the Cauchy inequality

∫

U

C−∇W ∗ C−∇C− ≤ ‖C−‖L2(U)‖∇W ∗ C−‖L∞(U)‖∇C−‖L2(U) ≤

K‖C−‖L2(U)‖∇C−‖L2(U) ≤ K

(

1

4δ
‖C−‖2

L2(U) + δ‖∇C−‖2
L2(U)

)

. (A.7)

For δ = 1/(AK) the norm of the gradient vanishes and we finally have

d

dt
‖C−‖2

L2(U) ≤
A2K2 + 4 + 4B

2
‖C−‖2

L2(U). (A.8)

From Gronwall’s inequality and calling η(t) = ‖C−(t)‖2
L2(U) we obtain

η(t) ≤ eDη(0), (A.9)

for D = A2K2+4+4B
2

. But η(0) = 0 for the choice of the initial conditions. Then is
η(t) = 0, implying that C− = 0 a.e. in U and for all 0 < t < T , which prove the first
part of the theorem. If we now integrate equation (3.6) over the entire domain and
applying the Gauss theorem, we obtain

∂

∂t

∫

U

C =

∫

∂U

∇C · ~n − A

∫

∂U

C∇W ∗ C · ~n +

∫

U

f(C), (A.10)
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where ~n the unit outward normal defined at points of ∂U , normal. For the periodicity
of the solution the integrals on the boundary vanish. Since we proved that the function
C is positive under our assumptions, we have

∂

∂t

∫

U

C =

∫

U

f(C) =

∫

U

C −
∫

U

C

∫ π

−π

C ≤
∫

U

C. (A.11)

We can now apply the Gronwall theorem to the function γ(t) =
∫

U
C, to obtain

∫

U

C ≤ etγ(0) ≤ eT γ(0) = eT‖C(0)‖L1(U). (A.12)

Lemma 3.2:

Proof. By substituting (3.9) in (3.11), we obtain

(C ′
m, wk) =

((

m
∑

l=1

dl
m(t)wl

)′

, wk

)

=
m
∑

l=1

dl
m

′
(t)(wl, wk) = dk

m

′
(t),

for the first term. The other three terms are

(∇Cm,∇wk) =

m
∑

l=1

(∇wl,∇wk)d
l
m(t),

(Cm∇W ∗ Cm,∇wk) =

(

m
∑

l=1

dl
m(t)wl

m
∑

l=1

dl
m(t)∇W ∗ wl,∇wk

)

,

∫

U

f(Cm) wk =

∫

U

f

(

m
∑

l=1

dl
m(t)wl

)

wk. (A.13)

For fixed k, (3.11) is a first-order system of ordinary differential equations subject to
the initial conditions (3.10). Since the right-hand side is Lipschitz-continuous, there
exists a unique absolutely continuous function (d1

m(t), . . . , dm
m(t)) that satisfies (3.10)

and (3.11) for a.e. 0 ≤ t ≤ T , at least for small T . Hence Cm defined by (3.9) solves
(3.11) for a.e. 0 ≤ t ≤ T .

Lemma 3.3:

Proof. We shall estimate every term on the left side.

1. We multiply (3.11) by dm
k (t) and sum over k to find

(Cm
′, Cm) + (∇Cm,∇Cm) = A (Cm∇W ∗ Cm,∇Cm) +

∫

U

f(Cm) Cm,
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for a.e. 0 ≤ t ≤ T . From Hölder’s inequality we immediately have

d

dt

(

1

2
‖Cm‖2

L2(U)

)

+ ‖∇Cm‖2
L2(U) ≤ A ‖∇Cm‖L2(U)‖Cm‖L2(U) + ‖Cm‖2

L2(U).

In fact

(Cm∇W ∗ Cm,∇Cm) ≤ ‖∇W ∗ Cm‖L∞(U)

∫

U

Cm∇Cm

‖∇W ∗ Cm‖L∞(U) = ess sup
U

|∇W ∗ C| = ess sup
U

∣

∣

∣

∣

∫

U

∇W (x − x′)C(x′)dx′

∣

∣

∣

∣

≤ ess sup
U

∫

U

|∇W (x − x′)||C(x′)| ≤ ‖∇W‖L∞(U)‖Cm‖L1(U) ≤ K1,

for our particular choice of W and lemma 3.1. For the boundness of C we
havethat

∫ π

−π
C is bounded, then, being C positive, Using the Cauchy inequality,

we obtain

d

dt
‖Cm‖2

L2(U)+2‖∇Cm‖2
L2(U) ≤ 2AK1

(

δ‖∇Cm‖2
L2(U) +

1

4δ
‖Cm‖2

L2(U)

)

+2‖Cm‖2.

Choosing δ = 1/(AK1), K2 = (A2K2 + 4)/2, we have

d

dt
‖Cm‖2

L2(U) ≤ K2‖Cm‖2
L2(U).

If we call η(t) = ‖Cm(t)‖2
L2(U), with the Gronwall inequality we obtain

η(t) ≤ eK2tη(0).

Being
η(0) = ‖Cm(0)‖2

L2(U) ≤ ‖g‖2
L2(u),

for K = eK2T , we have the first estimate

max
0≤t≤T

‖Cm(t)‖2
L2(U) ≤ K‖g‖2

L2(U).

2. Integrating the last equation from 0 to T , we get automatically the second esti-
mate

‖Cm(t)‖2
L2(0,T ;H1

per(U)) =

∫ T

0

‖Cm‖2
H1

per(U)dt ≤ KT‖g‖2
L2(U).

3. Fix any v ∈ H1
per(U), with ‖v‖H1

per(U) ≤ 1, and write v = v1 + v2, where v1 ∈
span{wk}m

k=1 and (v2, wk) = 0, (k = 1, . . . , m).. Since the functions {wk}∞k=0 are
orthogonal in H1

per(U), ‖v1‖H1
per(U) ≤ ‖v‖H1

per(U) ≤ 1. Utilizing 3.11, we deduce
for a.e. 0 ≤ t ≤ T that

(C ′
m, v1) + (∇Cm,∇v1) = A (Cm∇W ∗ Cm,∇v1) +

∫

U

f(Cm) v1.
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As (C ′
m, v1) = (C ′

m, v) we have

(C ′
m, v) = −(∇Cm,∇v1) + A (Cm∇W ∗ Cm,∇v1) +

∫

U

f(Cm) v1.

Since ‖v1‖H1
per(U) ≤ 1 we obtain

| < C ′
m, v > | ≤ ‖∇Cm‖L2(U)‖∇v1‖L2(U) + A ‖∇v1‖L2(U)‖Cm‖L2(U)

+ ‖Cm‖L2(U) ≤ K‖Cm‖H1
per(U).

Therefore
‖C ′

m‖H−1(U) = | < C ′
m, v > |2 ≤ K‖Cm‖2

H1
per(U).

Integrating again between 0 and T

∫ T

0

‖C ′
m‖2

H−1(U)dt ≤ K

∫ T

0

‖Cm‖2
H1

per(U)dt ≤ KT‖g‖2
L2(U).
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