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Abstract: We adapt the resonant state expansion to optical fibers such as capillary and photonic
crystal fibers. As a key requirement of the resonant state expansion and any related perturbative
approach, we derive the correct analytical normalization for all modes of these fiber structures,
including leaky modes that radiate energy perpendicular to the direction of propagation and
have fields that grow with distance from the fiber core. Based on the normalized fiber modes,
an eigenvalue equation is derived that allows for calculating the influence of small and large
perturbations such as structural disorder on the guiding properties. This is demonstrated for two
test systems: a capillary fiber and a photonic crystal fiber.
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1. Introduction

Photonic crystal fibers guide light in a central defect core surrounded by a periodic cladding [1].
The guiding mechanism of the photonic crystal fiber can be a bandgap effect or modified total
internal reflection in cases where the index of the core is larger than the effective cladding index.
These fibers feature a high degree of light confinement, highly tunable dispersion properties [2],
and single mode operation [3]. Photonic crystal fibers are extensively used in gas sensing [4],
nonlinear optics such as supercontinuum generation [5], and many more applications [6–11].
In theoretical investigations, an ideal cladding is usually used to analyze such structures,

                                                                              Vol. 26, No. 17 | 20 Aug 2018 | OPTICS EXPRESS 22537 



while a fabricated photonic crystal fiber cladding is never truly perfect [12, 13]. The fabrication
process itself gives rise to shape and position disorders that influence the guiding properties.
Studying that influence requires investigating many realizations [14], which is rather tedious in
conventional numerical approaches. In contrast, the resonant state expansion has proven rather
efficient for investigating a large set of similar three-dimensional resonator systems [15–18] and
slab waveguides [19,20]. The resonant state expansion is a rigorous perturbative approach, in
which the resonant states (also known as quasi-normal modes [21, 22]) of a reference system
(calculated either analytically or numerically) are used to set up an eigenvalue equation that
provides the resonant states of a perturbed system. Here, we adapt the resonant state expansion to
fiber geometries, in which the core and cladding modes constitute the resonant states, and treat
disorder as a perturbation of the perfect cladding system.
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Fig. 1. (a) Axial component of the time-averaged Poynting vector of the fundamental core
mode of a step index fiber with refractive indices of 1 and 1.44 in the core and cladding
region, respectively, and a core radius of 1 µm (core region indicated by the green solid line)
at a wavelength of 1 µm. (b) Axial component of the time-averaged Poynting vector for a
higher-order core mode of a silica-air photonic crystal fiber with four rings of air holes of
radius 0.25 µm and pitch 2.3 µm around a single-defect core. The refractive index of silica
is taken as 1.44. The considered wavelength is 1 µm. Both modes in (a) and (b) exhibit fields
that grow in the exterior with distance from the core. The bottom panels depict the real (c)
and imaginary (d) parts of the surface term (blue solid line) and line term (red dotted line)
of the normalization Eq. (8) as a function of the radius of normalization. Evidently, the
divergence of the fields is manifested in the surface and line terms, while it is countervailed
in their sum as the normalization constant.

As in any perturbation theory, the key factor in the resonant state expansion is the normalization
of the resonant states. The normalization is not trivial, since the solutions of Maxwell’s equations
include leaky modes [23]. These modes radiate energy perpendicular to the fiber axis and have
fields that grow with distance from the fiber core. This is displayed in Fig. 1 for a capillary fiber
with air core and silica cladding (a) and a photonic crystal fiber with air inclusions and silica
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background (b). A lot of work has been devoted to the normalization of leaky modes [24–27].
The most sophisticated approach is introducing a complex coordinate transformation in the
exterior that suppresses the growth [28], which is equivalent to using perfectly matched layers
and extending the area of normalization to the perfectly matched layers [21]. In contrast, we
derive here an analytical normalization that can be calculated without any perfectly matched
layers and is valid for both guided as well as leaky modes. Our new normalization can be easily
applied when using standard numerical methods for the calculation of modes.
Here, the properties of the resonant state expansion with our analytical mode normalization

is demonstrated for two fiber geometries. In the first example, we use the analytical solutions
for a capillary fiber as basis to model the influence of a homogeneous change of the refractive
index of the fiber core on the propagation constants of the fiber modes. In the second example,
we investigate the influence of diameter disorder on the modal properties of a photonic crystal
fiber [29].

2. Theory

In Gaussian units, the curl Maxwell’s equations can be summarized in real space and frequency
domain with time dependence exp(−iωt) by the compact operator form [30](

k0ε −∇×
−∇× k0µ

)
︸            ︷︷            ︸

≡�0

(
E
iH

)
︸︷︷︸
≡�

=

(
JE
iJH

)
︸︷︷︸
≡�

, (1)

with electric and magnetic fields E and H, respectively, permittivity and permeability tensors
ε and µ, respectively, and k0 = ω/c. The right-hand side contains the electric source term
JE = −4πij/c with current density j, and the magnetic source term JH that has been introduced
for the sake of symmetry.
For optical fibers, the permittivity and permeability tensors are translationally symmetric

along the direction of propagation, which we choose as the z direction of our coordinate system.
Defining the Fourier transform in this direction as

f̂ (r‖ ; β) =
1

2π

∞∫
−∞

dz f (r‖ ; z)e−iβz, (2)

with r | | being the projection of r to the xy plane and the hat denoting Fourier transformed
quantities, the Fourier transform of Eq. (1) yields(

k0ε −∇̂β×
−∇̂β× k0µ

) (
Ê
iĤ

)
=

(
ĴE
iĴH

)
, with ∇̂β ≡

©­«
∂x
∂y
iβ

ª®¬ . (3)

The Green’s dyadic [31] of Eq. (3) satisfies the relation

�̂0(r‖ ; β)�̂(r‖, r′‖ ; β) = 1δ(r‖ − r′‖), (4)

and provides the solutions �̂ of Eq. (3) for a given source �̂ as

�̂(r‖) =
∫

dr′‖ �̂(r‖, r
′
‖ ; β)�̂(r

′
‖). (5)

The Green’s dyadic can be expanded in terms of the resonant states [15–17,30,32–34], which are
solutions of Eq. (3) in the absence of sources for outgoing boundary conditions with eigenvectors
�̂n and eigenvalues βn:

�̂0(r | |; βn)�̂n = 0. (6)
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Using the Mittag-Leffler theorem [35] and the reciprocity principle [36], it follows that

�̂(r‖, r′‖ ; β) = −
∑
n

�̂n(r‖) ⊗ �̂R
n (r′‖)

2Nn(β − βn)
+ ∆�̂cuts, (7)

with ⊗ denoting the outer vector product, and Nn being the normalization constant in order
to assign the appropriate weight to the resonant states, since Eq. (6) provides the resonant
field distribtuions only up to a constant factor. The factor −1/2 has been introduced for later
convenience. The superscript R denotes the reciprocal conjugate resonant state, which is a solution
of Eq. (6) at −βn. Note that Eq. (7) is only valid within the regions of spatial inhomogeneities of
the fiber [36], where the leaky modes do not exhibit any growth. Furthermore, ∆�̂cuts denotes
cut contributions due to branch cuts in the involved analytical functions. In the following, we
will focus on the contribution of the resonant states, keeping in mind that we can treat the cut
contributions in a similar manner in numerical calculations [17, 32].

The derivation of the normalization constant is described in detail in Appendix A. The resulting
normalization can be split into two terms comprising of a surface and a line integral that are
evaluated on a circle with radius R outside the region of inhomogeneities, which yields

Nn = Sn + Ln, (8)

with the surface term

Sn =

R∫
0

ρdρ
2π∫

0

dφ (Ên,ρĤn,φ − Ên,φĤn,ρ), (9)

which is proportional to the integral over the z component of the real-valued Poynting vector, and
the line term

Ln =
εµk2

0 + β
2
n

2<4
n

2π∫
0

dφ
(
Ên,z

∂Ĥn,z

∂φ
− Ĥn,z

∂Ên,z

∂φ

)
R

+
k0βnR2

2<4
n

2π∫
0

dφ
{
µ

[(
∂Ĥn,z

∂ρ

)2
−ρĤn,z

∂

∂ρ

(
1
ρ

∂Ĥn,z

∂ρ

)]
+ε

[(
∂Ên,z

∂ρ

)2
−ρÊn,z

∂

∂ρ

(
1
ρ

∂Ên,z

∂ρ

)] }
R

,

(10)
where the subscript R indicates that the integrand is evaluated at radius R, and

<2
n = εµk2

0 − β
2
n. (11)

For bound modes, the resonant states decay outside the regions of spatial inhomogeneities,
so that the line term vanishes in the limit of R → ∞. This results in the rather well-known
normalization of resonant states by the integral over the z component of the Poynting vector [28].
For leaky modes, both the line and the surface term diverge. However, their sum countervails this
divergence, resulting in a normalization constant independent of the radius of normalization, see
Fig. 1. Hence, it is possible to calculate the normalization constant for a small area surrounding
the regions of spatial inhomogeneities, without the need of including perfectly matched layers [21]
or, equivalently, complex coordinates [28]. Furthermore, it should be noted that this approach also
simplifies the normalization of bound modes in numerical calculations, since it allows restricting
the normalization integrals, and, thus, the computational domain, to a small area that includes
the spatial inhomogeneities.
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Using the normalization to gauge the correct weight of the resonances, it is possible to
determine the resonant states of a perturbed system (denoted by subscript ν) with perturbation ∆ε
and ∆µ that exhibits the same translational symmetry as ε and µ and vanish outside the regions
of spatial ingomogeneities. The Maxwell operator �̂ of the perturbed system can be separated
into the operator �̂0 of the unperturbed system and the deviation ∆�̂ as �̂ = �̂0 + ∆�̂, with

∆�̂(r‖) =
(
k0∆ε(r‖) 0

0 k0∆µ(r‖)

)
. (12)

Thus, we can recast Eq. (6) in the form

�̂0(r‖ ; βν)�̂ν(r‖) = −∆�̂(r‖)�̂ν(r‖), (13)

where �̂ν is the resonant field distribution of a resonant state in the perturbed system with
propagation constant βν . Using Eq. (5), we obtain

�̂ν(r‖) = −
∫

dr′‖ �̂(r‖, r
′
‖ ; βν)∆�̂(r

′
‖)�̂ν(r

′
‖). (14)

Next, we construct the resonant states of the perturbed system as a linear combination of the
normalized resonant states of the unperturbed system:

�̂ν(r‖) =
∑
n

b(ν)n �̂n(r‖), (15)

Using this ansatz in Eq. (14) and equating it for each �̂n independently, we obtain

βνb(ν)n = βnb(ν)n +
1
2

∑
n′

Vnn′b
(ν)
n′ , (16)

where
Vnn′ =

∫
dr‖ �̂R

n (r‖) · ∆�(r‖)�̂n′(r‖). (17)

The above equations describe a linear eigenvalue problem with βν as the eigenvalue. Note that
the sum in Eq. (15) is carried out over all resonant states of the unperturbed system, but in real
calculations, a truncated basis is used to expand �̂ν . The choice of the basis size has to be taken
large enough to accurately account for the perturbations in the system.
It should be noted that the above equations are given in Gaussian units. However, their

transformation to SI units is straight-forward: One simply has to replace the permittivity and
permeability by the relative permittivity and permeability, and substitute H with Z0HSI as well
as � with Z0�

SI, with JSI
E = −ijSI and Z0 as the vacuum impedance, while E has to be replaced by

ESI.

3. Results and discussion

We first consider as our unperturbed system a capillary fiber with core index 1 and cladding
index 1.44 having a core radius of 8 µm. The values of the propagation constant, and hence, the
effective index of the fundamental HE11 mode as well as those of higher-order modes have been
determined analytically by solving their characteristic equation [24,37,38] at a wavelength of
1 µm. The fields of the fiber are proportional to Bessel functions inside the core and outgoing
Hankel functions in the cladding region.

A homogeneous perturbation of ∆n is introduced inside the core of the fiber changing the core
index to ncore+∆n. As our perturbation is azimuthally symmetric, we only require modes of the
same symmetry as the fundamental core mode to set up our eigenvalue problem of Eq. (16). The
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Fig. 2. Effective refractive indices of modes in a capillary fiber with a homogeneous
perturbation in the core region of (a) ∆n = 0.07 and (b) ∆n = 0.17. The results from the
resonant state expansion (red crosses) are compared with the exact analytical solution (blue
circles) for the perturbed system at a wavelength of 1 µm. The unperturbed system has a core
index of 1, cladding index of 1.44, and a radius of 8 µm, with its effective refractive indices
denoted by black squares. The number of modes used is 154. The black arrow indicates the
fundamental core mode.

comparison of the resonant state expansion with the exact analytical solution for the fundamental
and higher order modes of azimuthal order m = 1 is shown in Fig. 2 for (a) ∆n = 0.07 and
(b) ∆n = 0.17. We can see that there is a good agreement not only for the fundamental mode
(indicated by the arrow) but also for the higher order modes of the system. The number of modes
used is 154, with |Re(neff)| between 0.01279 and 0.9989 and pairs of modes symmetrically
distributed on the complex β plane with propagation constants βn and −βn.
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Fig. 3. (a) Spatial distribution of the time-averaged Poynting vector of a higher-order core
mode supported by a capillary fiber with parameters as used in Fig. 2. The fiber core is
indicated by the green solid line. The effective index of the unperturbed mode is 0.03139 +
1.0103i. (b) Relative error of the effective index of the higher-order mode with respect to the
number of modes used in Eq. (16). Two refractive index differences have been considered as
perturbations (dashed blue line: ∆n = 0.07, solid red line: ∆n = 0.17).

The relative error given by |1 − nRSE
eff /n

exact
eff | is displayed in Fig. 3 for a higher-order core

mode (neff = 0.03139 + 1.0103i in the unperturbed fiber) and for two index differences
(∆n = 0.07 and 0.17). It can be seen that the relative error decreasesmonotonouslywith increasing
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number of basis states and reaches values on the order of 10−3 and 10−4 for 20 basis states. Note
that the lowest relative error is achieved for the fundamental core mode, which is on the order of
10−6 for ∆n = 0.07 and 20 basis states.

As a second example, we consider a silica-air photonic crystal fiber of air holes with radius
r0 = 0.25 µm in four cladding rings with pitch 2.3 µm around a single defect core. We numerically
derive the modes of the photonic crystal fiber by the multipole method [39–42]. The solutions
of the unperturbed fiber are then used as basis functions for the perturbed system, in which we
introduce diameter disorder in each and every inclusion in the cladding region. The range of the
diameter disorder is determined by the disorder parameter ∆ as r0 ± ∆. Within that radius range
of width 2∆, a uniform distribution of disorder is used. The probability density for a uniform
distribution is given as,

f (r) =
{

1
2∆ for r0 − ∆ ≤ r ≤ r0 + ∆

0 for r < r0 − ∆ or r > r0 + ∆
(18)
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Fig. 4. Axial component of the time-averaged Poynting vector of the fundamental core mode
of a silica-air photonic crystal fiber with diameter disorder for disorder parameter (a) ∆ = 0
µm and (b) ∆ = 0.1 µm. The disorder parameter provides the range of radii in the disordered
fiber as r0 ± ∆, with r0 being the radius of the air holes in the ordered fiber. The geometrical
parameters of the fiber are the same as in Fig. 1(b). Panels (c) and (d) show the comparison
of the real and imaginary parts of the effective indices from the resonant state expansion
(red crosses) with the exact numerical solution of the perturbed system (black circles) for
20 realizations of disorder at a wavelength of 1.55 µm. The number of modes used for the
resonant state expansion is 190. The blue dotted line indicates the effective index for an
unperturbed cladding.

We set up our eigenvalue problemwith 190 modes (95 pairs of modes symmetrically distributed
on the complex β plane) that have effective indices close to that of the fundamental mode. The
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modes chosen for the eigenvalue problem exhibit all kinds of azimuthal symmetries, because the
azimuthal symmetry is broken by the disorder. The comparison of the real and imaginary part of
the effective index obtained from the resonant state expansion (red crosses) and full numerical
calculations (black circles) can be seen in Fig. 4 (c) and (d), respectively, for 20 realizations
and ∆ = 0.1 µm at a wavelength of 1.55 µm. Evidently, there is a good agreement between the
two methods for the shown realizations. For the given photonic crystal fiber, the computational
time for the simulation of a fiber mode by the multipole method is around 8 minutes on an
i7-4790CPU@3.60 GHz desktop computer, while solving the eigenvalue Eq. (16) of the resonant
state expansion takes 0.17 s.
In Fig. 5 (a) and (b), we display the real and imaginary parts of the effective index averaged

over 200 realizations for disorder parameters ranging from ∆ = 0 to 0.11 µm. More specifically,
we generate 200 sets of random numbers between 0 and 1 for each air hole and multiply them
with different values of ∆ in order to generate the disordered fibers. The standard deviation of
the effective index is plotted as error bars that grow with increasing ∆. Interestingly, the average
Re(neff) has a linear dependence with ∆ while the Im(neff) exhibits a more quadratic behavior.
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Fig. 5. Real (a) and imaginary (b) part of the effective index of the fundamental core mode
as a function of the disorder parameter ∆ averaged over 200 realizations of diameter disorder
at a wavelength of 1.55 µm. The averaged real part grows almost linearly with increasing ∆,
while the imaginary part is growing quadratically. The standard deviation is indicated by the
errorbars. The blue dotted line indicates the effective index of the unperturbed cladding.

4. Conclusion

We have derived an analytical normalization for modes in fiber geometries that is valid not
only for guided but also for leaky modes. We have shown that the normalization constant is
independent of the radius of integration even for leaky modes with fields that grow with distance
from the fiber core. Thus, it is possible to set up an eigenvalue equation that allows us to calculate
the effective refractive indices of modes in a perturbed system. The accuracy of this so-called
resonant state expansion has been demonstrated for capillary-type and photonic crystal fibers.
For the latter, we have studied diameter disorder in the cladding of a silica-air photonic crystal
fiber for different disorder parameters averaged over many realizations. Here, the resonant state
expansion is clearly superior compared to full numerical simulations, since it does not require
to repeatedly solve Maxwell’s equations, while the numerical effort for solving the eigenvalue
equation is rather low. Thus, it is possible to derive the influence of disorder on the guiding
properties such as propagation constant and loss efficiently.
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A. Normalization

Let us consider the Maxwell’s equation with a source term that vanishes at resonance:

�̂0(r‖ ; β)�̂ = (β − βn)σn(r‖). (19)

Here, σn(r‖) is chosen to vanish outside the region of spatial inhomogeneities. Taking the source
term and convoluting with the Green’s dyadic in the limit β→ βn, we get

�̂n(r‖) = lim
β→βn

∑
n′

−1
2Nn′

β − βn
β − βn′

�̂n′(r‖)
∫

dr′‖ �̂
R
n′(r′‖)σn(r′‖). (20)

This can be only fulfilled for ∫
dr′‖ �̂

R
n (r′‖)σn(r′‖) = −2Nn. (21)

To derive the normalization equation, we multiply Eq. (19) with �̂R
n (r‖) and subtract a zero in the

form of

0 = �̂(r‖ ; β) · �̂0(r‖ ;−βn)�̂R
n (r‖), (22)

to obtain,

�̂
R
n (r‖) · �̂0(r‖ ; β)�̂(r‖ ; β) − �̂(r‖ ; β) · �̂0(r‖ ;−βn)�̂R

n (r‖) = (β − βn)�̂R
n (r‖) · σn(r‖). (23)

Dividing by β − βn, integrating over the spatial inhomogeneities in the limit β→ βn, and using
that εT = ε as well as µT = µ for reciprocal systems, we get

−2Nn = lim
β→βn

∫
dr‖

−i
β − βn

∇‖ · [Ê(r‖ ; β) × ĤR
n (r‖) − ÊR

n (r‖) × Ĥ(r‖ ; β)]

+

∫
dr‖ [Ên(r‖) × ĤR

n (r‖) − ÊR
n (r‖) × Ĥn(r‖)]z .

(24)

The subscript z indicates the integration of the z component in the second term which results in
the surface integral of Eq. (9) when using that, due to symmetry, the in-plane components of the
electric field and the z component of the magnetic field of resonant states with eigenvalues βn
and −βn are identical, while we have to multiply all other components with −1 in order to convert
�̂R
n into �̂n. The first term can be converted to a line integral by using the divergence theorem.

The curve of integration is taken as a circle of radius R outside the region of inhomogeneities.
For evaluating the limit β→ βn, we carry out a Taylor expansion around βn as

�̂(r‖ ; β) = �̂n(r‖) + (β − βn)
∂�̂(r‖ ; β)

∂β

����
βn

+
(β − βn)2

2
∂2�̂(r‖ ; β)

∂β2

����
βn

+ ... , (25)

which results in a line integral that contains �̂R
n as well as first-order derivatives of �̂ with respect

to β at βn. Moreover, due to the aforementioned relations between �̂R
n and �̂n, we can rewrite

Eq. (24) as

Nn =
βnR
2i<n

2π∫
0

dφ (
∂Ên,φ

∂< Ĥn,z +
∂Ên,z

∂< Ĥn,φ −
∂Ĥn,φ

∂< Ên,z −
∂Ĥn,z

∂< Ên,φ)

+

∫
dr‖ (Ên,ρĤn,φ − Ên,φĤn,ρ).

(26)
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Note that we have converted the derivative with respect to β to a derivative with respect to <
by using the relation in Eq. (11). The derivative with respect to < can then be converted to spatial
derivatives by using the following relations:

∂Êz

∂< =
ρ

<
∂Êz

∂ρ
,

∂Ĥz

∂< =
ρ

<
∂Ĥz

∂ρ
. (27)

The Êφ and Ĥφ field components can be derived from the Êz and Ĥz field components as

Êφ =
iβ
<2ρ

∂Êz

∂φ
− ik0µ

<2
∂Ĥz

∂ρ
, Ĥφ =

iβ
<2ρ

∂Ĥz

∂φ
+

ik0ε

<2
∂Êz

∂ρ
, (28)

and they can be differentiated with respect to < by using the relations for Êz and Ĥz given in
Eq. (27). Substituting in Eq. (26) Êφ and Ĥφ by Eq. (28) and using that

2π∫
0

dφ
∂ f
∂φ

g = −
2π∫

0

dφ f
∂g

∂φ
, (29)

with f and g being components of Ên and Ĥn, respectively, we arrive after some algebra at
Eq. (10).
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