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ABSTRACT. In this paper we show the existence of non-negative solutions for a Kirchhoff type problem
driven by a non–local integrodifferential operator, that is

−M(‖u‖2Z)LKu = λf(x, u) + |u|2
∗−2

u in Ω, u = 0 in Rn \ Ω.

where LK is an integrodifferential operator with kernelK , Ω is a bounded subset of Rn,M and f are
continuous functions, ‖·‖Z is a functional norm and 2∗ is a fractional Sobolev exponent.

1. INTRODUCTION

In this paper we deal with the following problem

(1)


−M

(∫
R2n

|u(x)− u(y)|2K(x− y)dx dy

)
LKu

= λf(x, u) + |u|2
∗−2 u in Ω,

u = 0 in Rn \ Ω

where n > 2s with s ∈ (0, 1), 2∗ = 2n/(n − 2s), λ is a positive parameter, Ω ⊂ Rn is an open
bounded set,M and f are two continuous functions whose properties will be introduced later and LK
is a non-local operator defined as follows:

LKu(x) =
1

2

∫
Rn

(u(x+ y) + u(x− y)− 2u(x))K(y)dy,

for all x ∈ Rn, where K : Rn \ {0} → (0,+∞) is a measurable function with the property that

(2)
there exists θ > 0 and s ∈ (0, 1) such that

θ |x|−(n+2s) ≤ K(x) ≤ θ−1 |x|−(n+2s) for any x ∈ Rn \ {0} .

It is immediate to observe that mK ∈ L1(Rn) by setting m(x) = min
{
|x|2 , 1

}
. A typical example

for K is given by K(x) = |x|−(n+2s). In this case problem (1) becomes

(3)


M

(∫
R2n

|u(x)− u(y)|2

|x− y|n+2s dx dy

)
(−∆)su

= λf(x, u) + |u|2
∗−2 u in Ω,

u = 0 in Rn \ Ω,

where −(−∆)s is the fractional Laplace operator which (up to normalization factors) may be defined
as

−(−∆)su(x) =
1

2

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy

for x ∈ Rn (see [9] and references therein for further details on the fractional Laplacian and on the
fractional Sobolev space Hs(Rn)).

Problems (1) and (3) have a variational nature and the natural space where finding solutions for
them is the homogeneous fractional Sobolev space Hs

0(Ω) (see [9]). In order to study (1) and (3) it is
important to encode the ‘boundary condition’ u = 0 in Rn \ Ω (which is different from the classical
case of the Laplacian) in the weak formulation, by considering also that in the norm ‖u‖Hs(Rn) the
interaction between Ω and Rn \ Ω gives positive contribution. The functional space that takes into
account these boundary condition will be denoted by Z and it was introduced in [11] in the following
way.

First, we denote by X the linear space of Lebesgue measurable functions u : Rn → R such that

the map (x, y) 7→ (u(x)− u(y))2K(x− y) is in L1
(
Q, dxdy

)
,



2

where Q := R2n \ (CΩ× CΩ). The space X is endowed with the norm

(4) ‖u‖X =
(
‖u‖L2(Ω) +

∫
Q

|u(x)− u(y)|2K(x− y)dx dy
)1/2

.

It is immediate to observe that bounded and Lipschitz functions belong to X , thus X is not reduced
to {0} (see [18, 19] for further details on space X). Now, the functional space Z denotes the closure
of C∞0 (Ω) in X . By [11, Lemma 4], the space Z is an Hilbert space which can be endowed with the
norm defined as

(5) ‖u‖Z =
(∫

Q

|u(x)− u(y)|2K(x− y)dx dy
)1/2

.

Note that in (4) and (5) the integrals can be extended to all R2n, since u = 0 a.e. in Rn \ Ω.

In view of our problem, we suppose that M : R+ → R+ verifies the following conditions:

(6) M is an increasing and continuous function;

(7) there exists m0 > 0 such that M(t) ≥ m0 = M(0) for any t ∈ R+ .

A typical example for M is given by M(t) = m0 + tb with b ≥ 0.

Also, we assume that f : Ω× R→ R is a continuous function that satisfies:

(8) lim
|t|→0

f(x, t)

t
= 0, uniformly in x ∈ Ω;

(9) there exists q ∈ (2, 2∗) such that lim
|t|→∞

f(x, t)

tq−1
= 0 uniformly in x ∈ Ω;

(10)

there exists σ ∈ (2, 2∗) such that for any x ∈ Ω and t > 0

0 < σF (x, t) = σ

∫ t

0

f(x, s)ds ≤ tf(x, t) .

Moreover, since we intend to find non-negative solution, we assume this further condition for f

(11) f(x, t) = 0 for any x ∈ Ω and t ≤ 0.

An example of a function satisfying the conditions (8)–(11) is given by

f(x, t) =

 0 if t < 0,
a(x)tq−1 if 0 < t < 1,
a(x)tq1−1 if t ≥ 1,

with 2 < q1 < q, a ∈ L∞(Ω) and a(x) > 0 for any x ∈ Ω.

The weak formulation of (1) is given by the following problem

(12)


M(‖u‖2

Z)

∫
R2n

(u(x)− u(y))(ϕ(x)− ϕ(y))K(x− y)dx dy

= λ

∫
Ω

f(x, u(x))ϕ(x) dx+

∫
Ω

|u(x)|2
∗−2 u(x)ϕ(x)dx ∀ϕ ∈ Z

u ∈ Z.
Thanks to our assumptions on Ω, M , f and K , all the integrals in (12) are well defined if u, ϕ ∈ Z .
We also point out that the odd part of function K gives no contribution to the integral of the left-hand
side of (12). Therefore, it would be not restrictive to assume that K is even.

Recently, some studies have been performed for critical problems in a non-local setting; we refer the
interested readers to [3, 6, 17, 18, 19, 20]. Inspired by the above articles, in this paper we would like
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to investigate the existence of a nontrivial solution for problem (12), by extending the result in classical
Laplacian case dealt with in [10].

Theorem 1. Let s ∈ (0, 1), n > 2s and Ω be a bounded open subset of Rn. Assume that the
functionsK ,M and f satisfy conditions (2) and (6)–(10). Then there exists λ∗ > 0 such that problem
(12) has a nontrivial solution uλ for all λ ≥ λ∗. Such solution also verifies

lim
λ→∞
‖uλ‖Z = 0.

The paper is organized as follows. In Section 2 we introduce a truncated problem whose weak solution
will be a weak solution of the original problem (1). In Section 3 we prove some technical lemmas. In
Section 4 we prove the existence of a solution for the truncated problem and our main result. Finally,
in Section 5 we study the sign of the weak solutions of problem (1).

The paper ends with an appendix which presents some detailed motivation for our nonlocal equation,
starting from some classical models for vibrating strings.

2. THE AUXILIARY PROBLEM

In order to prove Theorem 1 we first study an auxiliary truncated problem, by assuming that M is
unbounded (otherwise the truncation onM is not necessary). Given σ as in (10) and a ∈ R such that

m0 < a <
σ

2
m0, by (6) there exists t0 > 0 such that M(t0) = a. Now, by setting

Ma(t) :=

{
M(t) if 0 ≤ t ≤ t0,
a if t ≥ t0,

we can introduce the following auxiliary problem

(13)

{
−Ma(‖u‖2

Z)LKu = λf(x, u) + |u|2
∗−2 u in Ω,

u = 0 in Rn \ Ω

with f and λ defined as in Problem (1). By (6) we note also that

(14) Ma(t) ≤ a for any t ≥ 0.

We obtain the following result.

Theorem 2. Let s ∈ (0, 1), n > 2s and Ω be a bounded open subset of Rn. Assume that conditions
(2) and (6)–(10) hold true. Then there exists λ0 > 0 such that problem (13) has a nontrivial weak

solution, for all λ ≥ λ0 and for all a ∈ (m0,
σ

2
m0).

3. VARIATIONAL FORMULATION AND TECHNICAL LEMMAS

For the proof of Theorem 2, we observe that problem (13) has a variational structure, indeed it is the
Euler-Lagrange equation of the functional Ja, λ : Z → R defined as follows

Ja, λ(u) =
1

2
M̂a(‖u‖2

Z)− λ
∫

Ω

F (x, u(x))dx− 1

2∗

∫
Ω

|u(x)|2
∗
dx .

where

M̂a(t) =

∫ t

0

Ma(s)ds.

Note that the functional Ja, λ is Fréchet differentiable in u ∈ Z and for any ϕ ∈ Z

(15)

J ′a, λ(u)(ϕ) = Ma(‖u‖2
Z)

∫
Q

(
u(x)− u(y)

)(
ϕ(x)− ϕ(y)

)
K(x− y) dx dy

− λ
∫

Ω

f(x, u(x))ϕ(x) dx−
∫

Ω

|u(x)|2
∗−2 u(x)ϕ(x)dx .
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Now we prove that the functional Ja, λ has the geometric features required by the Mountain Pass
Theorem.

Lemma 3. Let K , M and f be three functions satisfying (2) and (6)–(10). Then there exist two
positive constants ρ and α such that

(16) Ja, λ(u) ≥ α > 0,

for any u ∈ Z with ‖u‖Z = ρ.

Proof. By (8) and (9) it follows that, for any ε > 0 there exists δ = δ(ε) > 0 such that

(17) |F (x, t)| ≤ ε |t|2 + δ |t|q .

By (7) and (17) we get

Ja, λ(u) ≥ m0

2
‖u‖2

Z − ελ
∫

Ω

|u(x)|2 dx− δλ
∫

Ω

|u(x)|q dx− 1

2∗

∫
Ω

|u(x)|2
∗
dx.

So, by using a fractional Sobolev inequality (see [9, Theorem 6.5]), there is a positive constant C =
C(Ω) such that

Ja, λ(u) ≥
(m0

2
− ελC

)
‖u‖2

Z − δλC ‖u‖
q
Z − C ‖u‖

2∗

Z .

Therefore, by fixing ε such that k :=
m0

2
− ελC > 0, since 2 < q < 2∗, the result follows by

choosing ρ sufficiently small. �

Lemma 4. LetK ,M and f be three functions satisfying (2) and (6)–(10). Then there exists an e ∈ Z
with Ja, λ(e) < 0 and ‖e‖Z > ρ.

Proof. We fix u0 ∈ Z such that ‖u0‖Z = 1 and u0 ≥ 0 a.e. in Rn. Now, let t > 0. By using (10) and
(14), we get

Ja, λ(tu0) ≤ a
t2

2
− c1t

σλ

∫
Ω

|u0(x)|σ dx+ c2 |Ω| −
t2
∗

2∗

∫
Ω

|u0(x)|2
∗
dx.

Since σ > 2, passing to the limit as t → +∞, we get that Ja, λ(tu0) → −∞, so that the assertion
follows taking e = t∗u0, with t∗ > 0 large enough. �

Now, in order to prove the boundedness of the a Palais–Smale sequence we set

ca, λ := inf
γ∈Γ

max
t∈[0,1]

Ja, λ(γ(t)) > 0

where

Γ := {γ ∈ C([0, 1], Z) : γ(0) = 0, Ja, λ(γ(1)) < 0} .

Lemma 5. LetK ,M and f be three functions satisfying (2) and (6)–(10). Let {uj}j∈N be a sequence
in Z such that

(18) Ja, λ(uj)→ ca, λ,

and

(19) sup
{∣∣J ′a, λ(uj)(φ)

∣∣ : φ ∈ Z, ‖φ‖Z = 1
}
→ 0 ∀φ ∈ Z,

as j → +∞. Then {uj}j∈N is bounded in Z .
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Proof. By (18) and (19) there exists C > 0 such that

(20) |Ja, λ(uj)| ≤ C and

∣∣∣∣J ′a, λ(uj)( uj
‖uj‖Z

)∣∣∣∣ ≤ C,

for any j ∈ N. Moreover, by (7), (10), and (14) it follows that

(21)

Ja, λ(uj)−
1

σ
J ′a, λ(uj)(uj)

≥ 1

2
M̂a(‖uj‖2

Z)− 1

σ
Ma(‖uj‖2

Z) ‖uj‖2
Z ≥

(
1

2
m0 −

1

σ
a

)
‖uj‖2

Z

So, by combining (20) with (21) and by remembering that m0 < a <
σ

2
m0, we can conclude the

proof. �

The following result is needed to study the asymptotic behaviour of the solution of problem (12).

Lemma 6. Let K , M and f be three functions satisfying (2) and (6)–(10). Then

lim
λ→+∞

ca, λ = 0.

Proof. Let e ∈ Z be the function given by Lemma 4 and let {λj}j∈N be a sequence sucht that
λj → +∞. Since Ja, λ satisfies the Mountain Pass geometry, it follows that there exists tλ > 0
verifying Ja, λ(tλe) = max

t≥0
Ja, λ(te). Hence, J ′a, λ(tλe)(e) = 0 and by (15) we get

(22) tλ ‖e‖2
ZMa(t

2
λ ‖e‖

2
Z) = λ

∫
Ω

f(x, tλe(x))e(x) dx+ t2
∗−1
λ

∫
Ω

|e(x)|2
∗
dx .

Now, by construction e ≥ 0 a.e. in Rn. So, by (10), (14) and (22) it follows

a ‖e‖2
Z ≥ t2

∗−2
λ

∫
Ω

|e(x)|2
∗
dx,

which implies that tλ is bounded for any λ > 0. Thus, there exists β ≥ 0 such that tλj → β as
j → +∞. So, by using also (14) and (22) there exists D > 0 such that

(23) λj

∫
Ω

f(x, tλje(x))e(x) dx+ t2
∗−1
λj

∫
Ω

|e(x)|2
∗
dx = tλjMa(t

2
λj
‖e‖2

Z) ≤ D

for any j ∈ N. We claim that β = 0. Indeed, if β > 0 then by (8), (9) for any ε > 0 there exists
δ = δ(ε) > 0 such that

|f(x, t)| ≤ 2ε |t|+ qδ |t|q−1 .

and so, by the Dominated Convergence Theorem,∫
Ω

f(x, tλje(x))e(x) dx→
∫

Ω

f(x, βe(x))e(x) dx as j → +∞.

By remembering that λj → +∞, we get

lim
j→+∞

λj

∫
Ω

f(x, tλje(x))e(x) dx+ t2
∗−1
λj

∫
Ω

|e(x)|2
∗
dx = +∞

which contradicts (23). Thus, we have that β = 0. Now, we consider the following path γ∗(t) = te for
t ∈ [0, 1] which belongs to Γ. By using (10) we get

(24) 0 < ca, λ ≤ max
t∈[0,1]

Ja, λ(γ∗(t)) ≤ Ja, λ(tλe) ≤
1

2
M̂a(t

2
λ ‖e‖

2
Z).

By (6) and by remembering that β = 0 we have

lim
λ→+∞

M̂a(t
2
λ ‖e‖

2
Z) = 0,
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and so by using also (24) we can conclude the proof. �

We conclude this section by proving the following proposition. This technical result will be useful in
applying the concentration-compacteness principle (see [15, Theorem 2]) to prove Theorem 2.

Proposition 7. Let p ∈ Rn, δ ∈ (0, 1), u ∈ L2∗(Rn).

Let either U × V = Bδ(p)× Rn or U × V = Rn ×Bδ(p). Then

(25) lim
δ→0

δ−2

∫
U

∫
V ∩{|x−y|≤δ}

|u(x)|2|x− y|2−n−2s dx dy = 0

and

(26) lim
δ→0

∫
U

∫
V ∩{|x−y|>δ}

|u(x)|2|x− y|−n−2s dx dy = 0.

Proof. We set

ξδ :=

(∫
Bδ(p)

|u(x)|2∗ dx
)2/2∗

and we remark that

(27) lim
δ→0

ξδ = 0.

Also we observe that, using the Hölder inequality with exponents 2∗/2 = n/(n− 2s) and n/2s, we
have

(28)

∫
Bδ(p)

|u(x)|2 dx ≤
(∫

Bδ(p)

|u(x)|2∗ dx
)2/2∗ (∫

Bδ(p)

1 dx

)2s/n

≤ Cξδδ
2s,

for some C > 0 independent of δ (in what follows we will possibly change C from line to line).
Moreover

(29) (U × V ) ∩ {|x− y| ≤ δ} ⊆ B2δ(p)×B2δ(p).

Indeed, if (x, y) ∈ U × V = Bδ(p)× Rn, with |x− y| ≤ δ, we have that

|p− y| ≤ |p− x|+ |x− y| ≤ δ + δ,

and so we get (29). On the other hand, if (x, y) ∈ U ×V = Rn×Bδ(p) with |x− y| ≤ δ, we obtain

|p− x| ≤ |p− y|+ |y − x| ≤ δ + δ,

and this completes the proof of (29).

Now we use (29), we change variable z := x− y and we conclude that∫
x∈U

∫
y∈V ∩{|x−y|≤δ}

|u(x)|2|x− y|2−n−2s dx dy

≤
∫
x∈B2δ(p)

∫
y∈B2δ(p)∩{|x−y|≤δ}

|u(x)|2|x− y|2−n−2s dx dy

≤
∫
x∈B2δ(p)

∫
z∈Bδ
|u(x)|2|z|2−n−2s dx dz

≤ Cδ2−2s

∫
x∈B2δ(p)

|u(x)|2 dx.
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Using this and (28) we obtain

δ−2

∫
U

∫
V ∩{|x−y|≤δ}

|u(x)|2|x− y|2−n−2s dx dy

≤ Cδ−2s

∫
x∈B2δ(p)

|u(x)|2 dx ≤ Cξδ.

This and (27) imply (25).

Now we prove (26). For this, we fix an auxiliary parameter K > 2 (such parameter will be taken
arbitrarily large at the end, after sending δ → 0). We observe that

(30) U × V ⊆
(
BKδ(p)× Rn

)
∪
(
(Rn \BKδ(p))×Bδ(p)

)
.

Indeed, if U × V = Bδ(p) × Rn, then of course U × V ⊆ BKδ(p) × Rn, hence (30) is obviuous.
If instead (x, y) ∈ U × V = Rn × Bδ(p), we distinguish two cases: if x ∈ BKδ(p) then (x, y) ∈
BKδ(p)× Rn; if x ∈ Rn \BKδ(p), then

(x, y) ∈ (Rn \BKδ(p))× V = (Rn \BKδ(p))×Bδ(p).

This completes the proof of (30).

Now we compute

∫
x∈BKδ(p)

∫
y∈Rn∩{|x−y|>δ}

|u(x)|2|x− y|−n−2s dx dy

=

∫
x∈BKδ(p)

∫
z∈Rn\Bδ

|u(x)|2|z|−n−2s dx dz

= Cδ−2s

∫
x∈BKδ(p)

|u(x)|2 dx

≤ CξKδ,

(31)

where (28) has been used again in the last step.

Now we observe that if x ∈ Rn \BKδ(p) and y ∈ Bδ(p) then

|x− y| ≥ |x− p| − |y − p| = |x− p|
2

+
|x− p|

2
− |y − p|

≥ |x− p|
2

+
Kδ

2
− δ ≥ |x− p|

2
.
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As a consequence, using the Hölder inequality with exponents 2∗/2 = n/(n − 2s) and n/2s, we
infer that ∫

x∈Rn\BKδ(p)

∫
y∈Bδ(p)

|u(x)|2|x− y|−n−2s dx dy

≤C
∫
x∈Rn\BKδ(p)

∫
y∈Bδ(p)

|u(x)|2|x− p|−n−2s dx dy

=Cδn
∫
x∈Rn\BKδ(p)

|u(x)|2|x− p|−n−2s dx

≤Cδn
(∫

x∈Rn\BKδ(p)
|u(x)|2∗ dx

)2/2∗ (∫
x∈Rn\BKδ(p)

|x− p|−(n+2s)n/2s dx

)2s/n

≤Cδn‖u‖2
L2∗ (Rn)

(∫ +∞

Kδ

ρ−((n+2s)n/2s)+(n−1)dρ

)2s/n

=Cδn‖u‖2
L2∗ (Rn)

(
(Kδ)−n

2/2s
)2s/n

=CK−n‖u‖2
L2∗ (Rn).

(32)

By collecting the results in (30), (31) and (32), we obtain that∫
U

∫
V ∩{|x−y|>δ}

|u(x)|2|x− y|−n−2s dx dy

≤
∫
x∈BKδ(p)

∫
y∈Rn∩{|x−y|>δ}

|u(x)|2|x− y|−n−2s dx dy

+

∫
x∈Rn\BKδ(p)

∫
y∈Bδ(p)

|u(x)|2|x− y|−n−2s dx dy

≤ CξKδ + CK−n‖u‖2
L2∗ (Rn).

From this, we send first δ → 0 and thenK → +∞ and we readily obtain (26) (recall again (27)). �

4. PROOF OF THEOREMS 1 AND 2

Proof of Theorem 2. By Lemmas 3 and 4 the functional Ja, λ satisfies the geometric structure re-
quired by the Mountain Pass Theorem (see [16, Theorem 2.2]) Now, it remains to check the validity
of the Palais-Smale condition. Let {uj}j∈N be a sequence in Z verifying (18) and (19). Since by
Lemma 5 {uj}j∈N is bounded in Z , by applying also [11, Lemma 4] and [2, Theorem IV.9], up to a
subsequence, there exists u ∈ Z such that uj converges to u weakly in Z , strongly in Lq(Ω) with
q ∈ [1, 2∗) and a.e. in Ω. Also, in particular there exists h ∈ L2(Ω) such that

(33) |uj(x)| ≤ h(x) for any j ∈ N and a.e. x ∈ Ω.

We point out the above inequality and convergences are also verified in all Rn, since uj = 0 = u
a.e. in Rn \ Ω; in particular we shall assume that h(x) = 0 for a.e. x ∈ Rn \ Ω. Moreover, up to a
subsequence, there is α ≥ 0 such that ‖uj‖Z → α, so by using (6) it follows that Ma(‖uj‖2

Z) →
Ma(α

2) as j → +∞.

Now, we claim that

(34) ‖uj‖2
Z → ‖u‖

2
Z as j → +∞,

which clearly implies that uj → u in Z as j → +∞. By [11, Lemma 4] we know that {uj}j∈N is
also bounded in Hs

0(Ω). So, by Phrokorov’s Theorem we may suppose that there exist two positive
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measures µ and ν on Rn such that

(35) |(−∆)suj|2 dx
∗
⇀ µ and |uj|2

∗
⇀ ν

in the sense of measures. Moreover, by [15, Theorem 2] we obtain an at most countable set of distinct
points {xi}i∈J , positive numbers {νi}i∈J , {µi}i∈J and a positive measure µ̃ with Supp µ̃ ⊂ Ω such
that

(36) ν = |u|2
∗
dx+

∑
i∈J

νiδxi ,

and

(37) µ = |(−∆)su|2 dx+ µ̃+
∑
i∈J

µiδxi , νi ≤ Sµ
2∗/2
i ,

with S the best constant of the Sobolev embedding.

Our goal is to show that the set J is empty. We argue by contradiction and suppose J 6= ∅. Then we
fix i ∈ J and for any δ > 0 we set ψδ(x) := ψ((x− xi)/δ) where ψ ∈ C∞0 (Rn, [0, 1]) is such that
ψ ≡ 1 in B(0, 1) and ψ ≡ 0 in Rn \ B(0, 2). Since for a fixed δ > 0 {ψδuj}j∈N is bounded in Z
uniformly in j, by (19) it follows that J ′a, λ(uj)(ψδuj)→ 0 as j → +∞, that is

(38)

Ma(‖uj‖2
Z)

∫
R2n

uj(x)
(
uj(x)− uj(y)

)(
ψδ(x)− ψδ(y)

)
K(x− y) dx dy

= −Ma(‖uj‖2
Z)

∫
R2n

ψδ(y) |uj(x)− uj(y)|2K(x− y) dx dy

+ λ

∫
Ω

f(x, uj(x))ψδ(x)uj(x)dx+

∫
Ω

|uj(x)|2
∗
ψδ(x)dx + oj(1),

as j → +∞.

By the Cauchy-Schwartz inequality we have

(39)

∫
R2n

uj(x)
(
uj(x)− uj(y)

)(
ψδ(x)− ψδ(y)

)
K(x− y) dx dy

≤
(∫

R2n

|uj(x)|2 |ψδ(x)− ψδ(y)|2K(x− y) dx dy

)1/2

(∫
R2n

|uj(x)− uj(y)|2K(x− y) dx dy

)1/2

,

where the last term in the right-hand side is finite uniformly in j.

Now, we claim that

(40) lim
δ→0

[
lim

j→+∞

∫
R2n

|uj(x)|2 |ψδ(x)− ψδ(y)|2K(x− y) dx dy

]
= 0.

For this, we first fix δ > 0 and we observe that uj(x) → u(x) a.e. x ∈ Ω as j → +∞. Since
uj = 0 = u a.e. in Rn \ Ω, uj(x) → u(x) a.e. x ∈ Rn as j → +∞. On the other hand, by (2),
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(33), the boundedness and Lipschitz regularity of ψδ we get, for some L > 0,∫
R2n

|uj(x)|2 |ψδ(x)− ψδ(y)|2K(x− y) dx dy

≤ 1

θ

∫
R2n

|uj(x)|2 |ψδ(x)− ψδ(y)|2 |x− y|−n−2s dx dy

≤ L2δ−2

θ

∫
Rn

∫
Rn∩{|x−y|≤δ}

|uj(x)|2 |x− y|2−n−2s dx dy

+
4

θ

∫
Rn

∫
Rn∩{|x−y|>δ}

|uj(x)|2 |x− y|−n−2s dx dy

≤ C
(L2δ−2 + 4)

θ

∫
Rn
|uj(x)|2 dx dy ≤ C

(L2δ−2 + 4)

θ

∫
Rn
|h(x)|2 dx dy < +∞

with C = C(n, s, δ) > 0. Thus, by the Dominated Convergence Theorem it follows that

(41)

lim
j→+∞

∫
R2n

|uj(x)|2 |ψδ(x)− ψδ(y)|2K(x− y) dx dy

=

∫
R2n

|u(x)|2 |ψδ(x)− ψδ(y)|2K(x− y) dx dy

with δ > 0 fixed.

By arguing as above we have

(42)

∫
U×V
|u(x)|2 |ψδ(x)− ψδ(y)|2K(x− y) dx dy

≤ 1

θ

∫
R2n

|u(x)|2 |ψδ(x)− ψδ(y)|2 |x− y|−n−2s dx dy

≤ L2

θ
δ−2

∫
U

∫
V ∩{|x−y|≤δ}

|u(x)|2 |x− y|2−n−2 dx dy

+
4

θ

∫
U

∫
V ∩{|x−y|>δ}

|u(x)|2 |x− y|−n−2 dx dy

where U and V are two generic subsets of Rn. Now, we will prove that the term on the right-hand
in (41) goes to 0 as δ → 0, by using (42) case by case. First, we observe that when U = V =
Rn \B(xi, δ) all the integrals in (42) are equal to 0. When U × V = B(xi, δ)× Rn and U × V =
Rn ×B(xi, δ), we can use Proposition 7 together with (42) to get

lim
δ→0

∫
U×V
|u(x)|2 |ψδ(x)− ψδ(y)|2K(x− y) dx dy = 0.

Thus, by using these last results we get

lim
δ→0

∫
R2n

|u(x)|2 |ψδ(x)− ψδ(y)|2K(x− y) dx dy = 0,

and by combining this formula with (41) we prove (40); from this, by using also (39) it follows that
(43)

lim
δ→0

[
lim

j→+∞
Ma(‖uj‖2

Z)

∫
R2n

uj(x)
(
uj(x)− uj(y)

)(
ψδ(x)− ψδ(y)

)
K(x− y) dx dy = 0

]
.
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Now, by Hölder inequality and (2) we observe that, for any x ∈ Rn,

(44)

∣∣∣∣∫
Rn

uj(x)− uj(y)

|x− y|n+2s dx

∣∣∣∣2
≤ 2 |uj(y)|2

∣∣∣∣∫
Rn\Ω

1

|x− y|n+2sdx

∣∣∣∣2 + 2

∣∣∣∣∫
Ω

uj(x)− uj(y)

|x− y|n+2s dx

∣∣∣∣2
≤C |uj(y)|2 + 2

|Ω|
θ

∫
Ω

|uj(x)− uj(y)|2K(x− y)dx,

with C = C(Ω) > 0. So, by (35) and (44) we get

(45)

lim inf
j→+∞

∫
Rn
ψδ(y)

∫
Ω

|uj(x)− uj(y)|2K(x− y) dx dy

≥ θ

2 |Ω|
1

c(n, s)
lim inf
j→+∞

∫
Rn
ψδ(y) c(n, s)

∣∣∣∣∣
∫

Rn

|uj(x)− uj(y)|2

|x− y|n+2s dx

∣∣∣∣∣
2

dy

− C lim inf
j→+∞

∫
Rn
ψδ(y) |uj(y)|2 dy

≥ θ

2 |Ω|
1

c(n, s)

∫
Rn
ψδ(y)dµ− C

∫
B(xi,δ)

|u(y)|2 dy.

Moreover, by (8), (9) for any ε > 0 there exists δ = δ(ε) > 0 such that

(46) |f(x, t)| ≤ 2ε |t|+ qδ |t|q−1 .

and so, by the Dominated Convergence Theorem we get

(47)

∫
B(xi,δ)

f(x, uj(x))uj(x)ψδ(x)dx→
∫
B(xi,δ)

f(x, u(x))u(x)ψδ(x)dx

as j → +∞; we also observe that the resulting integral goes to 0 as δ → 0. So, by (35) it follows that∫
Ω

|uj(x)|2
∗
ψδ(x)dx→

∫
Ω

ψδ(x)dν as j → +∞

and by combining this last formula with (38), (43), (45) and (47) we get∫
Ω

ψδ(x)dν +

∫
B(xi,δ)

f(x, u(x))u(x)ψδ(x)dx

≥Ma(α
2)C

(∫
Ω

ψδ(y)dµ−
∫
B(xi,δ)

|u(y)|2 dy
)

+ oδ(1),

recalling thatMa(‖uj‖2
Z)→Ma(α

2) as j → +∞. By sending δ → 0 and by using (7) we conclude
that νi ≥Ma(α

2)µi ≥ m0Cµi and by using also the inequality in (37) we get

(48) νi ≥
(m0C)n/2s

S(n−2s)/2s
,

for any i ∈ J . Now we shall prove that the above expression cannot occur, and so the set J is empty.
By (18) and (19) we get

(49) lim
j→+∞

(
Ja, λ(uj)−

1

σ
J ′a, λ(uj)(uj)

)
= ca, λ.
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Moreover, by (7), (10) and remembering that m0 < a <
σ

2
m0 we have

(50)

Ja, λ(uj)−
1

σ
J ′a, λ(uj)(uj)

≥ 1

2
M̂a(‖uj‖2

Z)− 1

σ
Ma(‖uj‖2

Z) ‖uj‖2
Z +

(
1

σ
− 1

2∗

)∫
Ω

|uj(x)|2
∗
dx

≥
(

1

2
m0 −

1

σ
a

)
‖uj‖2

Z +

(
1

σ
− 1

2∗

)∫
Ω

|uj(x)|2
∗
dx

≥
(

1

σ
− 1

2∗

)∫
Ω

ψδ(x) |uj(x)|2
∗
dx.

By combining (49) and (50) we get

ca, λ ≥
(

1

σ
− 1

2∗

)∫
Ω

ψδ(x)dν,

from which, by sending δ → 0 and by using (48), it follows that

ca, λ ≥
(

1

σ
− 1

2∗

)
(m0C)n/2s

S(n−2s)/2s
,

which leads to an absurd by Lemma 6. Thus, J is empty and by (35) and (36) it follows that uj
converges to u in L2∗(Ω). So, by (19) with φ = uj , (46) and the Dominated Convergence Theorem
we have

(51) lim
j→+∞

Ma(‖uj‖2
Z) ‖uj‖2

Z = λ

∫
Ω

f(x, u(x))u(x)dx+

∫
Ω

|u(x)|2
∗
dx.

Moreover, by remembering that uj ⇀ u in Z , Ma(‖uj‖2
Z) → Ma(α

2) and by using (19), (46) and
the Dominated Convergence Theorem we have

(52) Ma(α
2) 〈u, ϕ〉Z = λ

∫
Ω

f(x, u(x))ϕ(x) dx−
∫

Ω

|u(x)|2
∗−2 u(x)ϕ(x)dx ,

for any ϕ ∈ Z . So, by combining (51) and (52) it follows that

Ma(‖uj‖2
Z) ‖uj‖2

Z →Ma(α
2) ‖u‖2

Z as j → +∞,

from which we conclude the proof of claim (34).

Therefore, we have proved the Palais-Smale condition and by the Mountain Pass Theorem we obtain
a critical point u ∈ Z for the functional Ja, λ at level ca, λ. Since Ja, λ(u) = ca, λ > 0 = Ja, λ(0) we
conclude that u 6≡ 0. �

Proof of Theorem 1. By Theorem 2, for any λ ≥ λ0 let uλ be a solution of problem (13). Now, we
claim that

(53) there exists λ∗ ≥ λ0 such that ‖uλ‖Z ≤ t0 for any λ ≥ λ∗ .

where t0 is given as at the beginning of Section 2. We argue by contradiction and suppose that there
is a sequence {λj}j∈N ⊂ R such that

∥∥uλj∥∥Z ≥ t0. Since uλj is a critical point of the functional
Ja, λj , by using also (7) and (10) it follows that

ca, λj ≥
1

2
M̂a(

∥∥uλj∥∥2

Z
)− 1

σ
Ma(

∥∥uλj∥∥2

Z
)
∥∥uλj∥∥2

Z

≥
(

1

2
m0 −

1

σ
a

)∥∥uλj∥∥2

Z
≥
(

1

2
m0 −

1

σ
a

)
t20,
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which contradicts Lemma 6 since m0 < a <
σ

2
m0. So, by (53) we get Ma(‖uλ‖2

Z) = M(‖uλ‖2
Z)

which inplies that uλ is a solution of problem (1) for any λ ≥ λ0.

Moreover, arguing as above we have

ca, λ ≥
(

1

2
m0 −

1

σ
a

)
‖uλ‖2

Z ,

and so, since m0 < a <
σ

2
m0 and by Lemma 6, it follows that lim

λ→+∞
‖uλ‖Z = 0. �

5. EXISTENCE OF NON-NEGATIVE SOLUTIONS

In this section we study the sign of solutions of problem (12). For this, we first introduce the following
technical lemma.

Lemma 8. Let u ∈ Z . Then the absolute value of u, denoted by |u|, is in Z .

Proof. We fix a > 0. Since u ∈ Z , by costruction there exists w ∈ C∞0 (Ω) such that

(54) ‖u− w‖X <
a

2
.

Now, for any ε > 0 and x ∈ Rn, we set vε(x) := (ε2 + w2(x))
1/2− ε. We observe that vε = 0 = w

in Rn \ Ω and it is a smooth function by construction. Hence, vε ∈ C∞0 (Ω). Also, we have vε(x) →
|w(x)| a.e. x ∈ Rn as ε → 0. Since |vε| ≤ |w| for any ε > 0, by the Dominated Convergence
Theorem, vε → |w| in L2(Rn) as ε→ 0.

On the other hand,

|∇vε| =
|w| |∇w|

(ε2 + w2)1/2
≤ |∇w| ,

uniformly in ε. Therefore, by the boundedness and Lipschitz regularity of w it follows that

|vε(x)− |w(x)| − vε(y) + |w(y)| |2K(x− y)

≤ 2
(
|vε(x)− vε(y)|2 + | |w(x)| − |w(y)| |2

)
K(x− y)

≤ C min
{

1, |x− y|2
}
K(x− y) ∈ L1(Rn × Rn).

which is clearly finite thanks to (2). Thus, by the Dominated Convergence Theorem we get vε → |w|
in X as ε→ 0, in particular

(55) ‖vε − |w|‖X <
a

2

for ε sufficiently small, say ε ≤ ε̄, with ε̄ = ε̄(a) > 0.

By (54) and (55) it is easy to see that

‖|u| − vε̄‖X ≤ ‖|u| − |w|‖X + ‖|w| − vε̄‖X ≤ ‖u− w‖X + ‖|w| − vε̄‖X < a.

This concludes the proof. �

Corollary 9. Let all the assumptions of Theorem 1 be satisfied and assume (11) in addition. Then
problem (12) has a non-negative solution uλ for all λ ≥ λ∗, where λ∗ is the parameter given in
Theorem 1.
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Proof. We fix λ ≥ λ∗. Let uλ ∈ Z be a solution of problem (12), given by Theorem 1. By Lemma 8
we have u−λ ∈ Z . So, by (12) with ϕ = u−λ we get

(56)

M(‖uλ‖2
Z)

∫
R2n

(uλ(x)− uλ(y))(u−λ (x)− u−λ (y))K(x− y)dx dy

= λ

∫
Ω

f(x, uλ(x))u−λ (x) dx+

∫
Ω

∣∣u−λ (x)
∣∣2∗ dx.

Now, we observe that

(uλ(x)− uλ(y))(u−λ (x)− u−λ (y))

= −u+
λ (x)u−λ (y)− u−λ (x)u+

λ (y)− (u−λ (x)− u−λ (y))2 ≤ −
∣∣u−λ (x)− u−λ (y)

∣∣2 ,
for a.e. x, y ∈ Rn. Moreover, by (11) we get f(x, uλ(x))u−λ (x) = 0 for a.e. x ∈ Rn. Thus, by (56)
it follows that

0 ≤ −
∫

R2n

∣∣u−λ (x)− u−λ (y)
∣∣2K(x− y)dx dy −

∫
Ω

∣∣u−λ (x)
∣∣2∗ dx ≤ −∥∥u−λ ∥∥2

Z

which implies u−λ ≡ 0. �

APPENDIX A. SOME MOTIVATION FOR A FRACTIONAL KIRCHHOFF EQUATION

The goal of these last pages is to give some motivation for the problem studied in this paper. For
this, we would like first to recall some basic facts on the classical Kirchhoff equation: our explanations
will be oversimplified, and even crude in some parts, and we will not attempt a rigorous mathematical
justification of all the asymptotics that we are going to discuss heuristically.

We will consider the one-dimensional case for simplicity. For this we take the physical model of an
elastic string constrained at the extrema. For concreteness, the string will be represented by the graph
of a function u : [−1, 1]× [0,+∞)→ R, and the end-point constraint reads u(−1, t) = u(1, t) = 0
for any t ≥ 0. As usual we will write u = u(x, t), where x is the space variable and t is the time.

For further use, we can indeed identify this finite string with an infinite string, that is constrained
outside (−1, 1), i.e. consider the function u : [−1, 1]× [0,+∞)→ R, with u(x, t) = 0 for any x ∈
R \ (−1, 1) and any t ≥ 0.

Then, the acceleration utt of the vertical displacement u of the vibrating string (that from now on will
be assumed suitably small with respect to the length of the string) must be compensated, by Newton’s
law, by the elastic force of the string and by the external force field f : so we obtain the classical
equation for the vibrating string:

utt = Muxx + f.

If we look for stationary solutions, i.e. solutions u(x) that do not depend on time, the equation boils
down to

(57) Muxx + f = 0.

To a first approximation, for homogeneous strings, the elastic tension term M is simply a positive
constant m0. Several corrections to the model were proposed in order to take into account some
discrepancies between the theory and the experimental data, since “it is well known that the classical
linearized analysis of the vibrating string can lead to results which are reasonably accurate only when
the minimum (rest position) tension and the displacements are of such magnitude that the relative
change in tension during the motion is small”, see [7].

A classical modification of the above model is then to suppose that the tension increases if so does
the length of the string. This ansatz is coherent with the common experience that a taut string reacts
more strongly than a slack one. It is conceivable then to make the above ansatz quantitaive and
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suppose, for simplicity, that the tension, for small deformations of the string, takes (at least for small
elongations of the string) the linear form

(58) M(`) = m0 + 2b`,

where b > 0 is constant and ` is the increment in the length of the string with respect to its rest
position (in which the string has length 2), i.e.

(59) ` =

∫ 1

−1

√
1 + u2

x dx− 2.

For small deformations,
√

1 + u2
x = 1 + u2

x

2
up to higher order terms, and so

` =
1

2

∫ 1

−1

u2
x dx.

By plugging this into (58) we obtain

M = m0 + b

∫ 1

−1

u2
x dx = m0 + b

∫
R
u2
x dx,

where we used the notation for which u is defined to vanish outside (−1, 1). By inserting this into (57),
one obtains the classical version of the Kirchhoff equation

(60) M

(∫ +∞

−∞
u2
x dx

)
uxx + f = 0,

with M(t) = m0 + bt. As a historical remark, we mention that the equation was first introduced
in [12, 13] and then, probably independently, proposed in [7, 8]; see also [14] for a comparison between
the theory and the experimental data.

We observe that the first term in (60) can be interpreted in a variational way, as arising from an energy
of the form

(61)
1

2
M̂

(∫ +∞

−∞
u2
x dx

)
,

where M̂ is a primitive of M .

With this respect, the Kirchhoff equation of nonlocal type that we studied originates from the idea that
the energy in (61) does not depend on the H1 norm of the function that parameterizes the graph of
the string, but rather on its Hs norm, namely we replaced (61) with

1

2
M̂

(∫
R2

(u(x)− u(y))2

|x− y|1+2s
dx dy

)
,

or even with more general kinds of fractional norms. In this sense, while the “nonlocal” feature of the
tension in the classical Kirchhoff equation surfaces from the average of a “local” object (namely u2

x),
in the equation we took into account the “nonlocal” aspect of the tension arises from an object which
is “nonlocal” as well. In general, we think it could be interesting to study even more general models in
which the tension of the string is related to “nonlocal” measurments of the modification of the string
from its rest position. Some of these models may be variational in nature (as the one considered here),
some others may be not.

Another way of obtaining the model we study from the classical Kirchhoff equation goes as follows.
Following [4], for σ ∈ (0, 1), we consider the σ-length of the string as follows. Let E := {(x1, x2) ∈
R2 s.t. x2 < u(x1)} be the subgraph of u. We assume that the oscillation of the string does not
exceed a size of order ε, i.e. |u| < ε and so ∂E ⊂ {(x1, x2) ∈ R2 s.t. |x2| < ε}. Then we define
the length of the string in the set Q := [−1, 1]× [−ε, ε] as

`σ(u) := I(E ∩Q,R2 \ E) + I(Q \ E,E \Q),
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where, for any couple of disjoint measurable sets X , Y ⊂ R2 we set

I(X, Y ) :=

∫
X×Y

dx dy

|x− y|2+σ
.

It is known that (up to a suitable rescaling) `σ tends to the classical length of the string as σ → 1
(see [1, 5]). Of course, the fractional length of the string at rest here is simply `σ(0), and so the
difference between the fractional length of the string and its original value is

`σ := `σ(u)− `σ(0).

So it is conceivable to replace in the model the dependence from the classical length with the depen-
dence of this “nonlocal” version of length, i.e. to substitute (58) with

(62) M(`σ) = m0 + 2b`σ.

Moreover, `σ may be computed in terms of u thanks to the following geometric observation. Let

E+ := {(x1, x2) ∈ R2 s.t. 0 < x2 < u(x1)},
E− := {(x1, x2) ∈ R2 s.t. u(x1) < x2 < 0},
W+ := R× (0,+∞),

W− := R× (−∞, 0)

and Q± := Q ∩W±.

Then

`σ(u)

= I((Q− \ E−) ∪ E+, (W+ \ E+) ∪ E−) + I((Q+ \ E+) ∪ E−,W− \Q)

= I(Q− \ E−,W+ \ E+) + I(Q− \ E−, E−)

+I(E+,W+ \ E+) + I(E+, E−)

+I(Q+ \ E+,W− \Q) + I(E−,W− \Q)

and

`σ(0) = I(Q−,W+) + I(Q+,W− \Q).

Moreover

I(Q−,W+)− I(Q− \ E−,W+ \ E+)

= I(Q− \ E−, E+) + I(E−,W+ \ E+) + I(E−, E+)

and

I(Q+,W− \Q)− I(Q+ \ E+,W− \Q) = I(E+,W− \Q).

As a consequence

`σ = I(Q− \ E−, E−) + I(E+,W+ \ E+)

+I(E−,W− \Q)− I(Q− \ E−, E+)

−I(E−,W+ \ E+)− I(E+,W− \Q).

By collecting all the terms involving E+ and E− and using that I(X, Y ) = I(Y,X) we obtain

`σ = I(E+,W+ \ E+)− I(E+,W− \ E−)

+I(E−,W− \ E−)− I(E−,W+ \ E+).(63)

We now write separately the first two terms. For typographical convenience we use the notation of
writing the integrating variables next to their integral sign. Also, we set u+ := max{u, 0} and u− :=
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max{−u, 0}: notice that u± ≥ 0 and u = u+ − u−. In this way, E+ = {(x1, x2) ∈ R2 s.t. 0 <
x2 < u+(x1)}, E− := {(x1, x2) ∈ R2 s.t. − u−(x1) < x2 < 0},

I(E+,W+ \ E+)

=

∫
R
dx1

∫ u+(x1)

0

dx2

∫
R
dy1

∫ +∞

u+(y1)

dy2

(
|x1 − y1|2 + |x2 − y2|2

)−(2+σ)/2

and

I(E+,W− \ E−)

=

∫
R
dx1

∫ u+(x1)

0

dx2

∫
R
dy1

∫ −u−(y1)

−∞
dy2

(
|x1 − y1|2 + |x2 − y2|2

)−(2+σ)/2
.

Thus, we set ψ = ψ(x1, y1, z2) :=
(
|x1 − y1|2 + |z2|2

)−(2+σ)/2
, we make the substitution z2 :=

y2 − x2 and we get

I(E+,W+ \ E+)− I(E+,W− \ E−)

=

∫
R
dx1

∫ u+(x1)

0

dx2

∫
R
dy1

[∫ +∞

u+(y1)−x2

dz2 −
∫ −u−(y1)−x2

−∞
dz2

]
ψ.

(64)

Now we observe that ∫ 0

−∞
dz2 ψ =

∫ +∞

0

dz2 ψ,

since ψ is even in z2. Therefore[∫ +∞

u+(y1)−x2

dz2 −
∫ −u−(y1)−x2

−∞
dz2

]
ψ

=

[∫ 0

u+(y1)−x2

dz2 +

∫ +∞

0

dz2 −
∫ 0

−∞
dz2 −

∫ −u−(y1)−x2

0

dz2

]
ψ

=

[∫ 0

u+(y1)−x2

dz2 −
∫ −u−(y1)−x2

0

dz2

]
ψ,

hence (64) becomes

I(E+,W+ \ E+)− I(E+,W− \ E−)

= −
∫

R
dx1

∫ u+(x1)

0

dx2

∫
R
dy1

[∫ u+(y1)−x2

0

dz2 +

∫ −u−(y1)−x2

0

dz2

]
ψ.

(65)

At this point, we make the crude approximation

(66)

∫ ε′

0

dz2 ψ ' ψ
∣∣∣
z2=0

ε′ = |x1 − y1|−(2+σ)ε′,

when ε′ is of the order of ε. As a matter of fact, such approximation is not fully justified when x1

and y1 are in a neighborhood of size much smaller than ε, due to the singularity of the kernel: since
this appendix is mainly motivational, and should not be interpreted in a strictly rigorous mathematical
language, we neglect this subtle point and just take the ansatz that (66) is reasonable for most of the
points of integration x1 and y1 and see what happens. Similarly, we observe that, for s := σ+1

2
, at
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least formally and in the principal value sense

‖u‖2
Hs(R) =

∫
R
dx1

∫
R
dy1
|u(x1)− u(y1)|2

|x1 − y1|1+2s

=

∫
R
dx1

∫
R
dy1
|u(x1)|2 − u(x1)u(y1) + |u(y1)|2 − u(y1)u(x1)

|x1 − y1|2+σ

= 2

∫
R
dx1

∫
R
dy1
|u(x1)|2 − u(x1)u(y1)

|x1 − y1|2+σ
,

(67)

thanks to the symmetric role played by x1 and y1.

From (66) we obtain the approximation[∫ u+(y1)−x2

0

dz2 +

∫ −u−(y1)−x2

0

dz2

]
ψ

' |x1 − y1|−(2+σ)
(
u+(y1)− u−(y1)− 2x2

)
= |x1 − y1|−(2+σ)

(
u(y1)− 2x2

)
.

Therefore, up to terms that we neglected,∫ u+(x1)

0

dx2

[∫ u+(y1)−x2

0

dz2 +

∫ −u−(y1)−x2

0

dz2

]
ψ

=

∫ u+(x1)

0

dx2|x1 − y1|−(2+σ)
(
u(y1)− 2x2

)
= −|x1 − y1|−(2+σ)

(
|u+(x1)|2 − u+(x1)u(y1)

)
.

Consequently, (65) becomes

I(E+,W+ \ E+)− I(E+,W− \ E−)

=

∫
R
dx1

∫
R
dy1
|u+(x1)|2 − u+(x1)u(y1)

|x1 − y1|2+σ
.

(68)

Notice also that a reflection of the vertical variable transforms the set E+ of the function u into the
set E− for the function −u, and also (−u)+ = u−. Hence the symmetric version of (68) reads

I(E−,W− \ E−)− I(E−,W+ \ E+)

=

∫
R
dx1

∫
R
dy1
|u−(x1)|2 + u−(x1)u(y1)

|x1 − y1|2+σ
.

(69)

Moreover, since, at any point x1 either u+(x1) = 0 or u−(x1) = 0, we see that

|u(x1)|2 = |u+(x1)|2 + |u−(x1)|2.

Accordingly, by plugging (68) and (69) into (63) and we obtain the approximation

`σ =

∫
R
dx1

∫
R
dy1
|u(x1)|2 − u(x1)u(y1)

|x1 − y1|2+σ
=

1

2
‖u‖2

Hs(R),

where in the last step we used (67). By inserting this expression into (62) we obtain the approximated
tension

M = m0 + 2b‖u‖2
Hs(R).
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Hence, a nonlocal model for the vibrating string may be obtained from (57), by considering the above
tension and by replacing the local spatial second derivative with the nonlocal operator −(−∆)s: in
this way we obtain the nonlocal equation

−M
(
‖u‖2

Hs(R)

)
(−∆)su+ f = 0.
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