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LONGTIME BEHAVIOR FOR A GENERALIZED
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ABSTRACT. In this contribution, we deal with the longtime behavior of the solutions to the
fractional variant of the Cahn-Hilliard system, with possibly singular potentials, that we have
recently investigated in the paper Well-posedness and regularity for a generalized fractional
Cahn-Hilliard system. More precisely, we study the ω-limit of the phase parameter y and
characterize it completely. Our characterization depends on the first eigenvalues λ1 ≥ 0
of one of the operators involved: if λ1 > 0, then the chemical potential µ vanishes at
infinity and every element yω of the ω-limit is a stationary solution to the phase equation; if
instead λ1 = 0, then every element yω of the ω-limit satisfies a problem containing a real
function µ∞ related to the chemical potential µ . Such a function µ∞ is nonunique and time
dependent, in general, as we show by an example. However, we give sufficient conditions
for µ∞ to be uniquely determined and constant.

1. Introduction

The paper of Colli et al. (2019) investigates the abstract evolutionary system

∂ty+A2r
µ = 0, (1.1)

τ∂ty+B2σ y+ f ′(y) = µ +u, (1.2)
y(0) = y0, (1.3)

where A2r and B2σ , with r > 0 and σ > 0, denote fractional powers in the spectral sense
of the unbounded linear operators A and B, respectively, which are supposed to be densely
defined in H := L2(Ω), with Ω ⊂ R3, selfadjoint, and monotone. The above system is a
generalization of the Cahn–Hilliard system (namely, the nonviscous system or the viscous
one, depending on whether τ = 0 or τ > 0), which models a phase separation process taking
place in the container Ω. The unknown functions y and µ stand for the order parameter
and the chemical potential, respectively, while u is a given source term. Moreover, f
denotes a double-well potential, for which typical and physically significant examples are
the so-called classical regular potential, the logarithmic double-well potential, and the
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A4-2 P. COLLI ET AL.

double obstacle potential, which are given, in this order, by

freg(r) :=
1
4
(r2 −1)2 , r ∈ R, (1.4)

flog(r) :=
(︁
(1+ r) ln(1+ r)+(1− r) ln(1− r)

)︁
− c1r2 , r ∈ (−1,1), (1.5)

f2obs(r) :=−c2r2 if |r| ≤ 1 and f2obs(r) :=+∞ if |r|> 1. (1.6)
Here, the constants ci in (1.5) and (1.6) satisfy c1 > 1 and c2 > 0, so that flog and f2obs are
nonconvex. In cases like (1.6), one has to split f into a nondifferentiable convex part ˆ︁β
(the indicator function of [−1,1], in the present example) and a smooth perturbation ˆ︁π .
Accordingly, one has to replace the derivative of the convex part by the subdifferential
and interpret (1.2) as a differential inclusion or, equivalently, as a variational inequality
involving ˆ︁β rather than its subdifferential. Actually, the latter has been done by Colli et al.
(2019), and we do the same in this paper.

Fractional versions of the Cahn–Hilliard system have been considered by several authors
and are the subject of a number of recent papers. As for references regarding well-posedness
and related problems, a rather large list of citations is given by Colli et al. (2019). Here
we recall some literature dealing with the asymptotic behavior of the solutions. Indeed,
one can find a number of results in this direction both for the standard Cahn–Hilliard
equations and for variants of them. The latter are obtained, e.g., by adding viscosity or
memory contributions as well as convective terms; another possibility is coupling with other
equations, like heat type equations or fluid dynamics equations, or introducing non–local–
in–space terms; finally, one can replace the classical Neumann boundary conditions by other
ones, e.g., the dynamic boundary conditions. Without any claim of completeness, by starting
from Zheng (1986), we can quote, e.g., Colli et al. (1999), Wu and Zheng (2004), Chill et al.
(2006), Abels and Wilke (2007), Gilardi and Rocca (2007), Grasselli et al. (2007), Gilardi
et al. (2010), Prüss et al. (2010), Colli et al. (2011), Wang and Wu (2012), Jiang et al.
(2015), Akagi et al. (2016), Colli et al. (2018a), and Gilardi and Sprekels (2019) for the
study of the trajectories and related topics, and Li and Zhong (1998), Miranville (2001a,b),
Efendiev et al. (2002, 2004), Miranville and Zelik (2004, 2005), Gal (2006), Grasselli et al.
(2007), Segatti (2007), Gal (2008), Gal and Grasselli (2010, 2011), Miranville (2013), Zhao
and Liu (2015), and Gal (2017) for the existence of global or exponential attractors and
their properties. However, if nonlocal terms are considered in these papers, they are not
defined as fractional powers in the spectral sense of the operators involved. On the contrary,
our framework is followed in the paper of Colli and Gilardi (2019), where the longtime
behavior of the solutions to a fractional version of the Allen–Cahn equation is studied.

Let us come to the content of this paper. Our aim is studying the ω-limit (in a suitable
topology) of the component y of the solution to a proper weak version of problem (1.1)–
(1.3). The characterization we give (Theorem 2.2) depends on the first eigenvalue λ1 of the
operator A. If λ1 > 0, then µ(t) tends to zero as t approaches infinity, and every element yω

of the ω-limit is a stationary solution, i.e., it solves the equation

B2σ yω + f ′(yω) = u∞, (1.7)
at least in a weak sense, where u∞ is the limit of u(t) as t tends to infinity. If, instead, λ1 = 0,
then the element yω satisfies a weaker property, namely, a weak form of the equation

B2σ yω + f ′(yω) = u∞ +µ∞(t) for a.a. t ∈ (0,+∞), (1.8)
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for at least one function µ∞ ∈ L∞
loc([0,+∞)). We also show that, in the general case,

the characterization (1.8) is the best possible (see Example 2.3): µ∞ is nonconstant and
nonunique, in general, and µ(t) does not converge at infinity. On the other hand, we give
sufficient conditions on f and on the solution that ensure that the function µ∞ is unique and
constant and that (1.8) holds in the strong sense (see Proposition 2.4).

2. Statement of the problem and results

In this section, we state precise assumptions and notations and present our results. Our
framework is the same as in the paper of Colli et al. (2019), and we briefly recall it here,
for the reader’s convenience. First of all, the open set Ω ⊂ R3 is assumed to be bounded,
connected and smooth. We use the notation

H := L2(Ω) (2.1)
and denote by ∥·∥ and ( · , ·) the standard norm and inner product of H. As for the operators
involved in our system, we postulate that

A : D(A)⊂ H → H and B : D(B)⊂ H → H are
unbounded, monotone, selfadjoint linear operators with compact resolvents. (2.2)

We denote by {λ j} and {λ ′
j} the nondecreasing sequences of the eigenvalues and by {e j}

and {e′j} the (complete) systems of the corresponding orthonormal eigenvectors, that is,

Ae j = λ je j, Be′j = λ
′
je
′
j, and (ei,e j) = (e′i,e

′
j) = δi j, for i, j = 1,2, . . . , (2.3)

0 ≤ λ1 ≤ λ2 ≤ . . . and 0 ≤ λ
′
1 ≤ λ

′
2 ≤ . . . , with lim

j→∞
λ j = lim

j→∞
λ
′
j =+∞. (2.4)

The power Ar of A with an arbitrary positive real exponent r is given by

Arv =
∞

∑
j=1

λ
r
j (v,e j)e j for v ∈V r

A, (2.5)

where

V r
A := D(Ar) =

{︂
v ∈ H :

∞

∑
j=1

|λ r
j (v,e j)|2 <+∞

}︂
. (2.6)

In principle, we could endow V r
A with the standard graph norm in order to make V r

A a Hilbert
space. However, we will choose an equivalent Hilbert structure later on. In the same way,
for σ > 0, we define the power Bσ of B. For its domain, we use the notation

V σ
B := D(Bσ ), with the norm ∥·∥B,σ associated to the inner product

(v,w)B,σ := (v,w)+(Bσ v,Bσ w) for v,w ∈V σ
B . (2.7)

Accordingly, we introduce a space with a negative exponent. We set

V−r
A := (V r

A)
∗ for r > 0 (2.8)

and use the symbol ⟨ · , · ⟩A,r for the duality pairing between V−r
A and V r

A . We also identify
H with a subspace of V−r

A in the usual way, i.e., such that

⟨v,w⟩A,r = (v,w) for every v ∈ H and w ∈V r
A. (2.9)

At this point, we can start listing our assumptions. First of all,

r and σ are fixed positive real numbers and τ ∈ [0,1] is fixed as well. (2.10)
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As for the linear operators, we postulate, besides (2.2), that

either λ1 > 0 or 0 = λ1 < λ2 and e1 is a constant; (2.11)
if λ1 = 0, then the constant functions belong to V σ

B . (2.12)
In the paper of Colli et al. (2019) some remarks are given on the above assumptions.
Moreover, it is shown that an equivalent Hilbert structure on V r

A is obtained by taking the
norm defined by

∥v∥2
A,r :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∥Arv∥2 =

∞

∑
j=1

|λ r
j (v,e j)|2 if λ1 > 0,

|(v,e1)|2 +∥Arv∥2 = |(v,e1)|2 +
∞

∑
j=2

|λ r
j (v,e j)|2 if λ1 = 0.

(2.13)

We notice that the term (v,e1) appearing in (2.13) in the case λ1 = 0 is proportional to the
mean value of v

meanv :=
1
|Ω|

∫︂
Ω

v , (2.14)

since e1 is a constant by (2.11). In particular, we have the Poincaré type inequality

∥v∥ ≤CP ∥Arv∥ for every v ∈V r
A with meanv = 0, if λ1 = 0. (2.15)

For the nonlinearity f appearing in our system, we split it as f = ˆ︁β + ˆ︁π and postulate the
following properties (which are fulfilled by all of the important potentials (1.4)–(1.6)):ˆ︁β : R→ [0,+∞] is convex, proper, and l.s.c., with ˆ︁β (0) = 0; (2.16)ˆ︁π : R→ R is of class C1 with a Lipschitz continuous first derivative; (2.17)

it holds liminf
|s|↗+∞

ˆ︁β (s)+ ˆ︁π(s)
s2 > 0. (2.18)

We set, for convenience,

β := ∂ ˆ︁β , π := ˆ︁π ′, Lπ = the Lipschitz constant of π , and L′
π := Lπ +1 . (2.19)

Moreover, we term D(ˆ︁β ) and D(β ) the effective domains of ˆ︁β and β , respectively, and
notice that β is a maximal monotone graph in R×R.

At this point, we can state the problem under investigation, and we do it on the half-line
t ≥ 0, due to the subject of the present paper. The data are required to satisfy

u ∈W 1,1
loc ([0,+∞);H) and ∂tu ∈ L1(0,+∞;H). (2.20)

y0 ∈V σ
B and ˆ︁β (y0) ∈ L1(Ω). (2.21)

If λ1 = 0, then m0 := meany0 belongs to the interior of D(β ). (2.22)
A solution to our system is a pair (y,µ) fulfilling the regularity requirements

y ∈ L∞(0,T ;V σ
B ), ∂ty ∈ L2(0,T ;V−r

A ) and τ∂ty ∈ L2(0,T ;H), (2.23)
µ ∈ L2(0,T ;V r

A), (2.24)ˆ︁β (y) ∈ L1(Ω× (0,T )), (2.25)
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for every T > 0, and satisfying the following weak formulation of the equations (1.1)–(1.3):

⟨∂ty(t),v⟩A,r +(Ar
µ(t),Arv) = 0 for every v ∈V r

A and for a.a. t ∈ (0,+∞), (2.26)(︁
τ∂ty(t),y(t)− v

)︁
+
(︁
Bσ y(t),Bσ (y(t)− v)

)︁
+

∫︂
Ω

ˆ︁β (y(t))+ (︁
π(y(t))−u(t),y(t)− v

)︁
≤
(︁
µ(t),y(t)− v

)︁
+

∫︂
Ω

ˆ︁β (v)
for every v ∈V σ

B and for a.a. t ∈ (0,+∞), (2.27)
y(0) = y0 . (2.28)

We remark that, if λ1 = 0, then Ar(1) = 0 by (2.11), so that (2.26) implies that
d
dt

∫︂
Ω

y(t) = 0 for a.a. t ∈ (0,+∞), i.e.,

meany(t) = m0 for every t ∈ [0,+∞). (2.29)
The well-posedness result stated below was proved by Colli et al. (2019) under a different
assumption on u. Namely, in studying the problem on the finite time interval (0,T ), it was
assumed that u ∈ H1(0,T ;H), while (2.20) only implies that u ∈W 1,1(0,T ;H). However,
we point out that our assumption is sufficient to obtain the same result. We will give some
explanation on this in the next section.

Theorem 2.1. Let the assumptions (2.2), (2.10)–(2.12) and (2.16)–(2.18) on the structure
of the system, and (2.20)–(2.22) on the data, be fulfilled. Then there exists a pair (y,µ)
satisfying (2.23)–(2.25) and solving problem (2.26)–(2.28). Moreover, the component y of
the solution is uniquely determined.

In the paper of Colli et al. (2019, Rem. 4.1), sufficient conditions were given that ensure
uniqueness also for µ . However, the aim of this paper is the study of the longtime behavior
of the component y alone. The rather weak regularity conditions (2.23) imply that

y : [0,+∞)→V σ
B is weakly continuous.

This enables us to the define the following (possibly empty) ω-limit set

ω = ω(y0,u) := {yω ∈V σ
B : y(tn)→ yω weakly in V σ

B for some {tn}↗+∞}. (2.30)
Here is our result, which holds under the additional assumption that u(t) has a limit u∞

as t tends to infinity in the sense of the forthcoming (2.31). The second part of the statement
distinguishes two cases regarding the first eigenvalue λ1 of A. If λ1 is positive, then every
element of the ω-limit is a stationary solution in the sense specified below; if instead λ1 = 0,
then the elements of the ω-limit just satisfy a weaker property.

Theorem 2.2. Let the assumptions (2.2), (2.10)–(2.12) and (2.16)–(2.18) on the structure
of the system, and (2.20)–(2.22) on the data, be fulfilled. In addition, assume that there is
some u∞ ∈ H such that

u−u∞ ∈ L2(0,+∞;H), (2.31)
and let (y,µ) be a solution to (2.26)–(2.28) according to Theorem 2.1. Then the ω-limit
(2.30) is nonempty. Moreover, it is characterized as follows:
i) If λ1 > 0, then every element yω ∈ ω satisfies(︁

Bσ yω ,Bσ (yω − v)
)︁
+

∫︂
Ω

ˆ︁β (yω)+
(︁
π(yω)−u∞,yω − v

)︁
≤

∫︂
Ω

ˆ︁β (v)
for every v ∈V σ

B . (2.32)

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 98, No. S2, A4 (2020) [18 pages]
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ii) If λ1 = 0, then, for every element yω ∈ ω , there exists some µ∞ ∈ L∞
loc([0,+∞)) such that(︁

Bσ yω ,Bσ (yω − v)
)︁
+

∫︂
Ω

ˆ︁β (yω)+
(︁
π(yω)−u∞,yω − v

)︁
≤
(︁
µ∞(t),yω − v

)︁
+

∫︂
Ω

ˆ︁β (v)
for every v ∈V σ

B and for a.a. t ∈ (0,+∞). (2.33)

In (2.31), u∞ obviously denotes the function [0,+∞) ∋ t ↦→ u∞ ∈ H rather than the
element u∞ ∈ H. In the right-hand side of (2.33), µ∞(t) denotes the constant function
Ω ∋ x ↦→ µ∞(t) rather than the real value µ∞(t). Conventions of this type will be used also
in the following.

The part ii) of the above result seems to be rather poor. Nevertheless, this characterization
is the best possible for the general case, that is, one can neither expect uniqueness for µ∞,
nor further properties for it, as the following example shows. Notice that assuming that A
and B are particularly good operators does not help at all.

Example 2.3. Let the operators A and B satisfy the hypotheses of Theorem 2.2, and assume
that λ1 = 0. Moreover, let us choose ˆ︁π = 0 and ˆ︁β given byˆ︁β (r) := r2 + |r| for r ∈ R.
Then (2.16)–(2.18) are satisfied. But β is multivalued, since β (0) = sign(0) = [−1,1].
Thus, if we take y0 = 0, u = 0, and any function µ̄ ∈ L∞(0,+∞) satisfying |µ̄(t)| ≤ 1 for
a.a. t ∈ (0,+∞), then a solution (y,µ) to problem (2.26)–(2.28) is given by the formulas
y(x, t) = 0 and µ(x, t) = µ̄(t). Indeed, (y,µ) trivially solves the first equation (2.26) (since
µ is space independent), as well as (2.28); moreover, the variational inequality (2.27) is
solved in the stronger form

τ∂ty+B2σ y+ξ +π(y) = µ +u with ξ ∈ β (y),

since we can take ξ = µ (we have µ̄(t) ∈ [−1,1] = β (0), indeed). So, the only element
yω of the ω-limit is yω = 0, while we have lots of possible µ∞’s, namely, the set of such
functions coincides with the set of the admissible functions termed µ̄ before.

On the contrary, under further conditions on β and on the solution, the characterization
in the case λ1 = 0 can be improved. Here are the new requirements:

D(β ) is an open interval, and β is a single-valued C1 function. (2.34)

There exists a compact interval [a,b]⊂ D(β ) such that
y(x, t) ∈ [a,b] for a.a. (x, t) ∈ Ω× (0,+∞). (2.35)

V σ
B ∩L∞(Ω) is dense in V σ

B . (2.36)
The above assumptions (with (2.35) only in a given finite time interval (0,T )) have been
introduced in the paper of Colli et al. (2018b). One of the motivations was the derivation of
the strong form of (2.27), i.e.,

τ ∂ty+B2σ y+β (y)+π(y) = µ +u . (2.37)
Precisely, it has been proved that y ∈ L2(0,T ;V 2σ

B ) and that (2.37) is satisfied almost
everywhere (see Rem. 3.5 and the subsequent lines of Colli et al. (2018b), where some
comments on (2.34)–(2.36) were given as well). Here, we point out that the proof of the
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derivation of (2.37) also holds true for the half–line t ≥ 0 if (2.35) is assumed. We use
(2.34)–(2.36) in the result stated below.

Proposition 2.4. In addition to the assumptions of Theorem 2.2, suppose that (2.34)–(2.36)
are satisfied. Then the function µ∞ appearing in (2.33) is uniquely determined and constant.
Moreover, yω ∈V 2σ

B , and the pair (yω ,µ∞) satisfies the equation

B2σ yω +β (yω)+π(yω) = µ∞ +u∞ a.e. in Ω. (2.38)

Theorem 2.2 and Proposition 2.4 will be proved in the last section. In the next one, we
establish some auxiliary global estimates. To this end, we also recall the approximation and
the discretization of problem (2.26)–(2.28) given by Colli et al. (2019).

Notation 2.5. In the remainder of the paper, we will use the same small letter c for
(possibly) different constants that depend only on the structure of our system (but τ) and
on the assumptions on the data. When some final time T is considered, the symbol cT
denotes (possibly different) constants that depend on T in addition. On the contrary, precise
constants we could refer to are treated in a different way (see, e.g., the forthcoming (3.1),
where greek and capital letters are used).

3. Global estimates

The proof of Theorem 2.2 is based on some global–in–time a priori estimates, which we
derive in this section by starting from the approximating and discrete problems introduced
by Colli et al. (2019). Thus, some recalls are needed.

The approximation of problem (2.26)–(2.28) by a more regular one relies on the use
of the Moreau–Yosida regularizations ˆ︁βλ and βλ of ˆ︁β and β at the level λ > 0 (see, e.g.,
Brezis (1973, p. 28 and p. 39)). We notice that, by accounting for (2.18), the inequalitiesˆ︁βλ (s)+ ˆ︁π(s)≥ α s2 −C ≥−C′ (3.1)
hold true for some positive constants α,C,C′, every s∈R, and every sufficiently small λ > 0.
In case the reader aims to check (3.1), we suggest the use of the following representation ofˆ︁βλ , namely ˆ︁βλ (s) := inf

r∈R

{︃
1

2λ
|r− s|2 + ˆ︁β (r)}︃=

1
2λ

⃓⃓
s− Jλ (s)

⃓⃓2
+ ˆ︁β(︁Jλ (s)

)︁
, (3.2)

where Jλ : R→ R denotes the resolvent operator associated to β , that is, Jλ (s) is defined as
the unique solution to the multi-equation

Jλ (s)+λβ (Jλ (s)) ∋ s ≡ Jλ (s)+λβλ (s) for all s ∈ R.
Indeed, by combining (2.16)–(2.18), which implyˆ︁β (s)+ ˆ︁π(s)≥ 2α s2 − c for all s ∈ R
and for some constant α > 0, along with (3.2) and the Taylor formula with integral remainder
to estimate the difference ˆ︁π(s)− ˆ︁π(Jλ (s)), one can arrive at (3.1).
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A4-8 P. COLLI ET AL.

The approximating problem on any finite time integral (0,T ) is obtained by replacing ˆ︁β
in (2.27) by ˆ︁βλ , namely,

⟨∂tyλ (t),v⟩A,r +(Ar
µ

λ (t),Arv) = 0 for every v ∈V r
A and for a.a. t ∈ (0,T ), (3.3)(︁

τ∂tyλ (t),yλ (t)− v
)︁
+
(︁
Bσ yλ (t),Bσ (yλ (t)− v)

)︁
+

∫︂
Ω

ˆ︁βλ (y
λ (t))+

(︁
π(yλ (t))−u(t),yλ (t)− v

)︁
≤
(︁
µ

λ (t),yλ (t)− v
)︁
+

∫︂
Ω

ˆ︁βλ (v) for every v ∈V σ
B and for a.a. t ∈ (0,T ), (3.4)

yλ (0) = y0. (3.5)

In principle, the regularity required for the solution (yλ ,µλ ) is still given by (2.23)–(2.25).
However, due to the Lipschitz continuity of βλ , (2.25) can be improved. Namely, (2.23) im-
plies βλ (yλ ) ∈ L2(0,T ;H). Using this and the fact that ˆ︁βλ is differentiable and βλ is its
derivative, one sees that, in place of (3.4), one can equivalently consider the pointwise
variational equation(︁

τ∂tyλ (t),v
)︁
+
(︁
Bσ yλ (t),Bσ v

)︁
+
(︁
βλ (y

λ (t))+π(yλ (t))−u(t),v
)︁
=
(︁
µ

λ (t),v
)︁

for every v ∈V σ
B and for a.a. t ∈ (0,T ). (3.6)

In the paper of Colli et al. (2019), it was shown that the above problem is well-posed
and that its unique solution (yλ ,µλ ) converges to a solution (y,µ) to problem (2.26)–(2.28)
in the weak topology associated with the regularity requirements, essentially. Moreover, the
solution (yλ ,µλ ) is obtained as the limit of suitable interpolant functions constructed by
starting from the solution to a proper discrete problem. For the reader’s convenience, we
recall both the notation for the interpolants and the discrete problem.

Let N be a positive integer and Z be one of the spaces H, V r
A , V σ

B . We set h := T/N
and In := ((n− 1)h,nh) for n = 1, . . . ,N. Given z = (z0,z1, ...,zN) ∈ ZN+1, the piecewise
constant and piecewise linear interpolants

zh ∈ L∞(0,T ;Z), zh ∈ L∞(0,T ;Z) and ˆ︁zh ∈W 1,∞(0,T ;Z)

are defined by setting

zh(t) = zn and zh(t) = zn−1 for a.a. t ∈ In, n = 1, . . . ,N, (3.7)

ˆ︁zh(0) = z0 and ∂tˆ︁zh(t) =
zn+1 − zn

h
for a.a. t ∈ In, n = 1, . . . ,N. (3.8)

The discrete problem consists in finding two (N +1)-tuples (y0, . . . ,yN) and (µ0, . . . ,µN)
satisfying

y0 = y0 , µ
0 = 0, (y1, . . . ,yN) ∈ (V 2σ

B )N and (µ1, . . . ,µN) ∈ (V 2r
A )N , (3.9)

and solving

yn+1 − yn

h
+µ

n+1 +A2r
µ

n+1 = µ
n, (3.10)

τ
yn+1 − yn

h
+(L′

π I +B2σ +βλ +π)(yn+1) = L′
π yn +µ

n+1 +un+1, (3.11)
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LONGTIME BEHAVIOR FOR A GENERALIZED CAHN-HILLIARD SYSTEM . . . A4-9

for n = 0,1, . . . ,N −1, where I : H → H is the identity, L′
π is given by (2.19), and

un := u(nh) for n = 0,1, . . . ,N. (3.12)
Precisely, it has been proved that such a discrete problem is uniquely solvable. Moreover,
as just said, some of the interpolants defined above by starting from the discete solution
converge to the solution (yλ ,µλ ) to the regularized problem (3.3)–(3.5).

Now, we start estimating. It is understood that the assumptions of Theorem 2.2 are in
force. In particular, every constant c we introduce will depend only on these assumptions.
We closely follow the lines of Colli et al. (2019). However, we modify the argument a little
and obtain estimates that are uniform with respect to T . In doing this modification, we also
avoid using the regularity condition ∂tu ∈ L2(0,T ;H), which was supposed in the paper
of Colli et al. (2019), and just owe to the regularity ∂tu ∈ L1(0,T ;H) (but uniformly with
respect to T in the sense of (2.20) in order to obtain a global–in–time estimate). Since this is
the only point of Colli et al. (2019) where the L2(0,T ;H) regularity for ∂tu is accounted for,
the well-posedness result in Theorem 2.1 holds under our assumption (2.20), as announced
before its statement.

First uniform estimate. We test (3.10) and (3.11) (by taking the scalar product in H) by
hµn+1 and yn+1 − yn, respectively, and add the resulting identities. Noting an obvious
cancellation, we obtain the equation

h(µn+1 −µ
n,µn+1)+h(A2r

µ
n+1,µn+1)+

τ

h
∥yn+1 − yn∥2

+(B2σ yn+1,yn+1 − yn)+
(︁
(L′

π I +βλ +π)(yn+1),yn+1 − yn)︁
= L′

π(y
n,yn+1 − yn)+(un+1,yn+1 − yn).

Now, we observe that the function r ↦→ L′π
2 r2 + ˆ︁βλ (r)+ ˆ︁π(r) is convex on R, since ˆ︁βλ is

convex and |π ′| ≤ Lπ . Thus, we have that(︁
(L′

π I +βλ +π)(yn+1),yn+1 − yn)︁
≥ L′

π

2
∥yn+1∥2 +

∫︂
Ω

(︁ˆ︁βλ (y
n+1)+ ˆ︁π(yn+1)

)︁
− L′

π

2
∥yn∥2 −

∫︂
Ω

(︁ˆ︁βλ (y
n)+ ˆ︁π(yn)

)︁
.

We easily deduce that
h
2
∥µ

n+1∥2 +
h
2
∥µ

n+1 −µ
n∥2 − h

2
∥µ

n∥2 +h∥Ar
µ

n+1∥2

+
τ

h
∥yn+1 − yn∥2 +

1
2
∥Bσ yn+1∥2 +

1
2
∥Bσ (yn+1 − yn)∥2 − 1

2
∥Bσ yn∥2

+
L′

π

2
∥yn+1∥2 +

∫︂
Ω

(︁ˆ︁βλ (y
n+1)+ ˆ︁π(yn+1)

)︁
− L′

π

2
∥yn∥2 −

∫︂
Ω

(︁ˆ︁βλ (y
n)+ ˆ︁π(yn)

)︁
≤−L′

π

2
(︁
∥yn∥2 −∥yn+1∥2 +∥yn+1 − yn∥2)︁+(un+1,yn+1 − yn).
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A4-10 P. COLLI ET AL.

Then, we first rearrange and then sum up for n = 0, . . . ,k − 1 with k ≤ N, employing
summation by parts in the last term. We thus arrive at the inequality

h
2
∥µ

k∥2 +
k−1

∑
n=0

h
2
∥µ

n+1 −µ
n∥2 +

k−1

∑
n=0

h∥Ar
µ

n+1∥2

+ τ

k−1

∑
n=0

h
⃦⃦⃦yn+1 − yn

h

⃦⃦⃦2
+

1
2
∥Bσ yk∥2 − 1

2
∥Bσ y0∥2 +

k−1

∑
n=0

1
2
∥Bσ (yn+1 − yn)∥2

+
∫︂

Ω

(︁ˆ︁βλ (y
k)+ ˆ︁π(yk)

)︁
−

∫︂
Ω

(︁ˆ︁β (y0)+ ˆ︁π(y0)
)︁
+

L′
π

2

k−1

∑
n=0

∥yn+1 − yn∥2

≤ (uk,yk)− (u1,y0)−
k−1

∑
n=1

(un+1 −un,yn). (3.13)

Next, we observe that (3.1) implies that∫︂
Ω

(︁ˆ︁βλ (y
k)+ ˆ︁π(yk)

)︁
≥ 1

2

∫︂
Ω

(︁ˆ︁βλ (y
k)+ ˆ︁π(yk)

)︁
+

α

2
∥yk∥2 − c

for every sufficiently small λ > 0 and that the integrals are bounded from below. Moreover,
we differently deal with the right-hand side of (3.13) with respect to Colli et al. (2019).
Namely, we estimate it as follows:

(uk,yk)− (u1,y0)−
k−1

∑
n=1

(un+1 −un,yn)

≤ α

4
∥yk∥2 +

1
α
∥uk∥2 +∥u1∥∥y0∥+

k−1

∑
n=1

h
⃦⃦⃦un+1 −un

h

⃦⃦⃦
∥yn∥ .

At this point, we combine (3.13) with the inequalities just obtained and apply the discrete
Gronwall-Bellman lemma given by Yeh (1985, Thm. 1) by observing that

∥uk∥ ≤ ∥u(0)∥+∥∂tu∥L1(0,+∞;H), and
k−1

∑
n=1

h
⃦⃦⃦un+1 −un

h

⃦⃦⃦
≤ ∥∂tu∥L1(0,+∞;H),

and that the above norm of ∂tu is finite by (2.20). We obtain the estimate

h∥µ
k∥2 +

k−1

∑
n=0

h∥µ
n+1 −µ

n∥2 +
k−1

∑
n=0

h∥Ar
µ

n+1∥2 + τ

k−1

∑
n=0

h
⃦⃦⃦yn+1 − yn

h

⃦⃦⃦2

+∥yk∥2
B,σ +

k−1

∑
n=0

∥Bσ (yn+1 − yn)∥2 +
∫︂

Ω

(︁ˆ︁βλ (y
k)+ ˆ︁π(yk)

)︁
+

k−1

∑
n=0

∥yn+1 − yn∥2

≤ c for k = 0, . . . ,N. (3.14)
In terms of the interpolants (see also Colli et al. (2019, Prop. 3.9)), by neglecting the first
contribution and recalling that µ0 = 0, we have that

∥µh −µ
h
∥L2(0,T ;H)+∥Ar

µh∥L2(0,T ;H)+∥Ar
µ

h
∥L2(0,T ;H)

+∥yh∥L∞(0,T ;V σ
B )+∥yh∥L∞(0,T ;V σ

B )+∥ˆ︁yh∥L∞(0,T ;V σ
B )

+h−1/2∥Bσ (yh − yh)∥L2(0,T ;H)+ τ
1/2∥∂tˆ︁yh∥L2(0,T ;H)

+∥ˆ︁βλ (yh)+ ˆ︁π(yh)∥L∞(0,T ;L1(Ω))+h−1/2∥yh −ˆ︁yh∥L2(0,T ;H) ≤ c . (3.15)
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Second uniform estimate. By observing that (3.10) implies ∂tˆ︁yh + µh + A2rµh = µ
h
,

whence also∫︂ T

0

(︁
∂tˆ︁yh(t),v(t)

)︁
dt =

∫︂ T

0

(︁
(µ

h
−µh)(t),v(t)

)︁
dt −

∫︂ T

0

(︁
Ar

µh(t),A
rv(t)

)︁
dt

≤ c
(︁
∥µ

h
−µh∥L2(0,T ;H)+∥Ar

µh∥L2(0,T ;H)

)︁
∥v∥L2(0,T ;V r

A)

for every v ∈ L2(0,T ;V r
A), we deduce that

∥∂tˆ︁yh∥L2(0,T ;V−r
A ) ≤ c

(︁
∥µ

h
−µh∥L2(0,T ;H)+∥Ar

µh∥L2(0,T ;H)

)︁
.

Hence, from (3.15) we infer that

∥∂tˆ︁yh∥L2(0,T ;V−r
A ) ≤ c . (3.16)

Basic estimate. We recall that estimates (3.15)–(3.16) hold for every N > 1, every suffi-
ciently small λ > 0, and every T > 0. Now, we owe to the convergence results of Colli et al.
(2019). We deduce that

∥yλ∥L∞(0,T ;V σ
B )+∥∂tyλ∥L2(0,T ;V−r

A )+ τ
1/2∥∂tyλ∥L2(0,T ;H)+∥Ar

µ
λ∥L2(0,T ;H) ≤ c .

Since c is independent of both λ and T , at the limit as λ ↘ 0 we conclude that

y ∈ L∞(0,+∞;V σ
B ), ∂ty ∈ L2(0,+∞;V−r

A ), and Ar
µ ∈ L2(0,+∞;H), (3.17)

∂ty ∈ L2(0,+∞;H) if τ > 0. (3.18)

4. Longtime behavior

This section is devoted to the proofs of our results on the longtime behavior. We start
with the proof of Theorem 2.2.

First part. Since y belongs to L∞(0,+∞;V σ
B ) by the first conclusion of (3.17), we deduce

that the ω-limit ω given by (2.30) is nonempty. Thus, the first sentence of our result is
established. Let us come to the second part.

Second part, first case. We first assume that λ1 > 0. We pick an arbitrary element yω ∈ω

and a sequence {tn} as in (2.30), and we prove that yω is a stationary solution in the sense
of (2.32). To this end, we define the functions yn, µn, and un, on (0,+∞) by setting, for
a.a. t ∈ (0,+∞),

yn(t) := y(t + tn), µn(t) := µ(t + tn), and un(t) := u(t + tn).

We notice that (2.20) and (2.31) imply that

∥un∥L∞(0,+∞;H) ≤ c, and un −u∞ → 0 strongly in L2(0,+∞;H). (4.1)
Moreover, from (3.17) we clearly deduce that

∥yn∥L∞(0,+∞;V σ
B ) ≤ c, (4.2)

∂tyn → 0 strongly in L2(0,+∞;V−r
A ), (4.3)

Ar
µn → 0 strongly in L2(0,+∞;H), (4.4)

whence also
µn → 0 strongly in L2(0,+∞;V r

A), (4.5)
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since λ1 > 0. In addition, we have that

∂tyn → 0 strongly in L2(0,+∞;H) if τ > 0 . (4.6)
By weak-star compactness, we deduce from (4.2) that there exists some element y∞ ∈
L∞(0,+∞;V σ

B ) such that

yn → y∞ weakly star in L∞(0,+∞;V σ
B ), (4.7)

at least for a (not relabeled) subsequence. Now, we fix an arbitrary time T > 0 and look for
the problem solved by y∞ on (0,T ). It is clear that (yn,µn) satisfies the variational inequality(︁

τ∂tyn(t),yn(t)− v
)︁
+
(︁
Bσ yn(t),Bσ (yn(t)− v)

)︁
+

∫︂
Ω

ˆ︁β (yn(t))+
(︁
π(yn(t))−un(t),yn(t)− v

)︁
≤
(︁
µn(t),yn(t)− v

)︁
+

∫︂
Ω

ˆ︁β (v)
for every v ∈V σ

B and for a.a. t ∈ (0,T ), (4.8)
as well as its integrated version∫︂ T

0

(︁
τ∂tyn(t),yn(t)− v(t)

)︁
dt +

∫︂ T

0

(︁
Bσ yn(t),Bσ (yn(t)− v(t))

)︁
dt

+
∫︂

Ω×(0,T )
ˆ︁β (yn)+

∫︂ T

0

(︁
π(yn(t))−un(t),yn(t)− v(t)

)︁
dt

≤
∫︂ T

0

(︁
µn(t),yn(t)− v(t)

)︁
dt +

∫︂
Ω×(0,T )

ˆ︁β (v) for every v ∈ L2(0,T ;V σ
B ). (4.9)

Now, we want to let n tend to infinity in (4.9). First, by (4.8) with v = 0, we have that

∥ˆ︁β (yn(t))∥L1(Ω) ≤ ∥Bσ yn(t)∥2 +
∫︂

Ω

ˆ︁β (yn(t))

≤
(︁
∥τ∂tyn(t)∥+∥π(yn(t))∥+∥un(t)∥+∥µn(t)∥

)︁
∥yn(t)∥ for a.a. t ∈ (0,T ).

So, by accounting for the Lipschitz continuity of π , and owing to (4.1)–(4.5), we obtain that

∥ˆ︁β (yn)∥L2(0,T ;L1(Ω)) ≤ cT . (4.10)
On the other hand, by recalling (4.2), (4.3) and the compact embedding V σ

B ⊂ H that follows
from (2.2), we can apply Simon (1986, Sect. 8, Cor. 4) and deduce that

yn → y∞ strongly in C0([0,T ];H). (4.11)
We infer that π(yn) converges to π(y∞) in the same topology since π is Lipschitz continuous.
In order to deal with the nonlinearity ˆ︁β , we notice that we can assume that yn → y∞ a.e. in
Ω× (0,T ) so that, by lower semicontinuity, we deduce the inequality∫︂

Ω×(0,T )
ˆ︁β (y∞)≤ liminf

n→∞

∫︂
Ω×(0,T )

ˆ︁β (yn)

where the last term is finite by (4.10). As (4.7) also implies that∫︂ T

0
∥Bσ y∞(t)∥2 dt ≤ liminf

n→∞

∫︂ T

0
∥Bσ yn(t)∥2 dt ,
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and since the second statement in (4.1) yields that un → u∞ strongly in L2(0,T ;H), from
(4.9) and (4.7) it follows that y∞ satisfies the variational inequality∫︂ T

0

(︁
Bσ y∞(t),Bσ (y∞(t)− v(t))

)︁
dt +

∫︂
Ω×(0,T )

ˆ︁β (y∞)

+
∫︂ T

0

(︁
π(y∞(t))−u∞,y∞(t)− v(t)

)︁
dt

≤
∫︂

Ω×(0,T )
ˆ︁β (v) for every v ∈ L2(0,T ;V σ

B ). (4.12)

Equivalently, y∞ fulfills(︁
Bσ y∞(t),Bσ (y∞(t)− v)

)︁
+

∫︂
Ω

ˆ︁β (y∞(t))+
(︁
π(y∞(t))−u∞,y∞(t)− v

)︁
≤

∫︂
Ω

ˆ︁β (v)
for every v ∈V σ

B and for a.a. t ∈ (0,T ). (4.13)
At this point, we can easily conclude. In view of (4.3) and (4.7), we have that

∂ty∞ = 0 , whence y∞ takes a constant value ȳ ∈V σ
B on [0,T ].

On the other hand, yn(0) converges to y∞(0) in H by (4.11). Thus, yn(0) converges to ȳ
in H. As yn(0) = y(tn) converges weakly to yω in V σ

B by assumption, we conclude that
ȳ = yω , that is,

y∞(t) = yω for every t ∈ [0,T ]. (4.14)
Therefore, (4.13) becomes (2.32).

Second part, second case. Assume now that λ1 = 0. Coming back to the proof just
concluded, we see that the assumption λ1 > 0 has been used just to obtain (4.5), its
consequence (4.10), and to make µn disappear in the limiting inequality (2.32). Therefore,
the same argument essentially applies in the case λ1 = 0 (with the modifications that are
needed to prove (2.33) instead of (2.32)), provided we can derive a convergence property
for µn (in place of (4.5), which should be false now) and (4.10). To this end, we recall
assumption (2.22) and notice that it implies the existence of some δ > 0 such that m0 ±δ

belong to D(β ). Then, as v in (4.8), we choose the convex combination 1
2 (m0±δ )+ 1

2 yn(t)
(thus, with values in D(ˆ︁β )), which gives yn(t)− v = 1

2 (yn(t)−m0 ∓ δ ). Thanks to the
convexity of ˆ︁β , we obtain for a.a. t ∈ (0,T )

τ

2
(︁
∂tyn(t),yn(t)−m0 ∓δ

)︁
+

1
2
(︁
Bσ yn(t),Bσ (yn(t)−m0 ∓δ )

)︁
+

∫︂
Ω

ˆ︁β (yn(t))+
1
2
(︁
π(yn(t))−un(t),yn(t)−m0 ∓δ

)︁
≤ 1

2
(︁
µn(t),yn(t)−m0 ∓δ

)︁
+

∫︂
Ω

ˆ︁β(︁ 1
2 (m0 ±δ )+ 1

2 yn(t)
)︁

≤ 1
2
(︁
µn(t),yn(t)−m0 ∓δ

)︁
+

1
2

∫︂
Ω

ˆ︁β (yn(t))+
1
2

∫︂
Ω

ˆ︁β (m0 ±δ ).

Atti Accad. Pelorit. Pericol. Cl. Sci. Fis. Mat. Nat., Vol. 98, No. S2, A4 (2020) [18 pages]



A4-14 P. COLLI ET AL.

By multiplying by 2 and rearranging, we deduce that

±δ
(︁
µn(t),1

)︁
+∥Bσ yn(t)∥2 +

∫︂
Ω

ˆ︁β (yn(t))

≤−τ
(︁
∂tyn(t),yn(t)−m0 ∓δ

)︁
+
(︁
Bσ yn(t),Bσ (m0 ±δ )

)︁
−
(︁
π(yn(t))−un(t),yn(t)−m0 ∓δ

)︁
+

∫︂
Ω

ˆ︁β (m0 ±δ )

+
(︁
µn(t),yn(t)−m0

)︁
. (4.15)

Now, we recall the conservation property (2.29) and note that the Poincaré type inequality
(2.15) is valid since λ1 = 0. We thus have that for a.a. t ∈ (0,T ) it holds(︁

µn(t),yn(t)−m0
)︁
=
(︁
µn(t)−mean µn(t),yn(t)−m0

)︁
≤ c∥Ar(µn(t)−mean µn(t))∥∥yn(t)−m0∥= c∥Ar

µn(t)∥∥yn(t)−m0∥,
so that we can use (4.4) in the right-hand side of (4.15). By also accounting for (4.1), (4.2)
and (4.6), we deduce that the function

t ↦→ δ
⃓⃓(︁

µn(t),1
)︁⃓⃓
+

∫︂
Ω

ˆ︁β (yn(t))

is bounded in L2(0,T ), uniformly with respect to n. In particular, (4.10) holds also in this
case. Moreover, the mean value of µn is estimated in L2(0,T ) so that the definition (2.13)
of the norm in V r

A and (4.4) imply that µn is bounded in L2(0,T ;V r
A). Therefore, we have, at

least for a subsequence,

µn → µ∞ weakly in L2(0,T ;V r
A), (4.16)

which is the desired convergence property to be established in place of (4.5). At this
point, we repeat the argument used in the case λ1 > 0 provided that we modify (4.13),
since we have (4.16) instead of (4.5). In place of that variational inequality, we obtain the
following one:(︁

Bσ y∞(t),Bσ (y∞(t)− v)
)︁
+

∫︂
Ω

ˆ︁β (y∞(t))+
(︁
π(y∞(t))−u∞,y∞(t)− v

)︁
≤
(︁
µ∞(t),y∞(t)− v

)︁
+

∫︂
Ω

ˆ︁β (v)
for every v ∈V σ

B and for a.a. t ∈ (0,T ). (4.17)
On the contrary, (4.14) holds true with the same proof also in the present case. Finally,
(4.4) implies that Arµ∞(t) = 0 for a.a. t ∈ (0,T ), i.e., that µ∞ is space independent since
λ1 = 0 (cf. (2.11)). Therefore, (4.17) becomes(︁

Bσ yω ,Bσ (yω − v)
)︁
+

∫︂
Ω

ˆ︁β (yω)+
(︁
π(yω)−u∞,yω − v

)︁
≤
(︁
µ∞(t),yω − v

)︁
+

∫︂
Ω

ˆ︁β (v)
for every v ∈V σ

B and for a.a. t ∈ (0,T ). (4.18)
Hence, as (4.18) holds for arbitrary values of T , this implies the validity of (2.33) with
a proper function µ∞ ∈ L∞

loc([0,+∞)). Indeed, let us denote for m = 0,1, . . . by µm
∞ the

function µ∞ which satisfies (4.18) with T = m, and we construct µ∞ on (0,+∞) by
setting µ∞(t) := µm

∞ (t) for a.a. t ∈ (m,m+ 1), for m = 0,1, . . . . Then, it turns out that
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µ∞ ∈ L∞
loc([0,+∞)), and the inequality (2.33) clearly holds. This completes the proof of

Theorem 2.2. □

Proof of Proposition 2.4. We come back to the proof just concluded, keeping its notation.
More precisely, we consider the part of the proof in the first case i) that also holds for
the second one. For the first part of Proposition 2.4, it is sufficient to show that, for every
T ∈ (0,+∞), the function µ∞ is unique and constant on (0,T ). So, we fix an arbitrary T > 0.
By virtue of the results of Colli et al. (2018b) summarized just before the statement we are
considering, we can replace the variational inequality (2.27) by the equation (2.37), so that
(4.8) can be written in the strong form

τ ∂tyn +B2σ yn +β (yn)+π(yn) = µn +un a.e. in Ω× (0,T ). (4.19)
Now, we observe that our assumption (2.35) obviously implies that yn takes its values
in [a,b]. From (4.11) and the Lipschitz continuity of β +π in [a,b], we thus infer that

(β +π)(yn)→ (β +π)(y∞) strongly in C0([0,T ];H).

On the other hand, by comparison in (4.19), we see that B2σ yn is in fact bounded in
L2(0,T ;H). Therefore, the limiting function y∞ belongs to V 2σ

B and satisfies the equation

B2σ y∞ +β (y∞)+π(y∞) = µ∞ +u∞ a.e. in Ω× (0,T ).

But we already know that y∞ takes the constant value yω . Therefore, yω ∈ V 2σ
B , and we

have that
B2σ yω +β (yω)+π(yω) = µ∞(t)+u∞ for a.a. t ∈ (0,T ).

By comparison, we conclude that µ∞ is unique and time independent, thus constant, and the
above equation becomes (2.38). This completes the proof.
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