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Zeroth-order algorithms for smooth saddle-point problems

Abdurakhmon Sadiev, Aleksandr Beznosikov, Pavel Dvurechensky, Alexander Gasnikov

Abstract

Saddle-point problems have recently gained an increased attention from the machine learning
community, mainly due to applications in training Generative Adversarial Networks using stochastic
gradients. At the same time, in some applications only a zeroth-order oracle is available. In this
paper, we propose several algorithms to solve stochastic smooth (strongly) convex-concave saddle-
point problems using zeroth-order oracles, and estimate their convergence rate and its dependence
on the dimension 7 of the variable. In particular, our analysis shows that in the case when the
feasible set is a direct product of two simplices, our convergence rate for the stochastic term is
only by a logn factor worse than for the first-order methods. We also consider a mixed setup
and develop 1/2th-order methods which use zeroth-order oracle for the minimization part and
first-order oracle for the maximization part. Finally, we demonstrate the practical performance of
our zeroth-order and 1/2th-order methods on practical problems.

1 Introduction

Zeroth-order or derivative-free methods [39, [16, 6] 143 [11] are well known in optimization in application
to problems with unavailable or computationally expensive gradients. In particular, the framework of
derivative-free methods turned out to be very fruitful in application to different learning problems such as
online learning in the bandit setup [7] and reinforcement learning [40, 10, (18], which can be considered
as a particular case of simulation optimization [19} 142]. We study stochastic derivative-free methods in
a two-point feedback situation, meaning that two observations of the objective per iteration are available.
This setting was considered for optimization problems by [1,[14} [41] in the learning community and by
37,145, 121} 22| [20} [15] in the optimization community.

In this paper we go beyond the setting of optimization problems and consider convex-concave saddle-
point problems for which partial derivatives of the objective are not available, which forces to use
derivative-free methods. Saddle-point problems are tightly connected with equilibrium [17] and game
problems [2]] in many applications, e.g., economics [33], with tractable reformulations of non-smooth
optimization problems [36], and with variational inequalities [27]. Gradient methods for saddle-point
problems are an area of intensive study in the machine learning community in application to training
of Generative Adversarial Networks [24], and other adversarial models [32], as well as to robust
reinforcement learning [38]. In the latter two applications, gradients are often unavailable, which
motivates the application of zeroth-order methods to the respective saddle-point problems. Moreover,
this also motivates 1/2th-order methods, when the training of the network is made via stochastic
gradient method with backpropagation, and adversarial examples, which are generated to force the
network to give incorrect prediction, are generated by zeroth-order methods. Another application area
for zeroth-order methods are Adversarial Attacks [25, 46], in particular the Black-Box Adversarial
Attacks [34]. The goal is not only to train the network, but to find also a perturbation of the data in such a
way that the network outputs wrong prediction. Then the training is repeated to make the network robust
to such adversarial examples. Since the attacking model does not have access to the architecture of the
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main network, but only to the input and output of the network, the only available oracle for the attacker
is the zeroth-order oracle for the loss function. As it is shown in [12, 48] [13], this approach allows to
obtain the same quality of robust training as the more laborious methods of Adversarial Attacks, but
faster in up to a factor of three in terms of the training time [9].

Gradient methods for saddle-point problems are a well studied area with the classical algorithm being
the extra-gradient method [30]. It was later generalized to the non-Euclidean geometry in the form
of Mirror Descent [|3] and Mirror-Prox [36]. These methods are designed for a more general problem
of solving variational inequalities. There are also direct methods for saddle-point problems such as
gradient descent ascent [35] or primal-dual hybrid gradient method [8] for saddle-point problems with
bilinear structure. On the contrary, the theory of zeroth-order methods for saddle-point problems seems
to be underdeveloped in the literature. We give a more detailed overview of such methods and explain
our contribution in comparison with the literature below.

1.1 Our contribution and related works

In the first part of the work, we present zeroth-order variants of Mirror-Descent [3] and Mirror-Prox [29]
methods for stochastic saddle-point problems in convex-concave and strongly convex-concave cases.
We consider various concepts of zeroth-order oracles and various concepts of noise. Also we introduce
a new class of smooth saddle-point problems — firmly smooth.

In the particular case of deterministic problems, our methods have a linear rate in the smooth strongly-
convex-strongly-concave case, and sublinear rate O(1/N) in the convex-concave case, where N
is the number of iterations. One can note that in some estimates, there is a factor of the problem’s
dimension n, but somewhere n%/%. This factor q depends on geometric setup of our problem and
gives a benefit when we work in the Hélder, but non-Euclidean case (use non-Euclidean prox), i.e.
I-1l=1"-l,and p € [1;2], then || - ||. = || - ||l;, where 1/» + 1/q = 1. Then q takes values from 2 to
00, in particular, in the Euclidean case ¢ = 2, but when the optimization set is a simplex, ¢ = co. (see
Table [T]for a comparison of the oracle complexity with zeroth-order methods for saddle-point problems
in the literature and provided by our methods).

Our theoretical analysis shows that the zeroth-order methods has the same sublinear convergence rate
in the stochastic part as the first-order method: O(l/\/ﬁ) in convex-concave case and O(1/N) in
strongly-convex-strongly-concave case. (see Table [2|for a comparison of the oracle complexity in the
stochastic part for first-order methods and available zeroth-order methods for stochastic saddle-point
problems).

The second part of the work is devoted to the use of a mixed order oracle, i.e. a zeroth-order oracle
in one variable and a first-order oracle for the other. First, we analyze a special case when such an
approach is appropriate - the Lagrange multiplier method. Then we also present a general approach
for this setup. The idea of using such an oracle is found in the in literature [4], but for the composite
optimization problem.

As mentioned above, all theoretical results are tested in practice on a classical bilinear problem.
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Zeroth-order algorithms for smooth saddle-point problems 3

Method Assumptions Complexity in deterministic setup
70-GDMSA [47]  NC-SC, UCst-Cst, S 1%, <n8_f;2)
z0-Min-Max [31] NC-SC, Cst-Cst, S O (%)
zOSPA [5] C-C, Cst-Cst, BG O <n2/u>
[Alg 1 and 3] SC-SC, Cst-Cst, S O (min [n¥x%,nx] - log (1))
[Alg 2] C-C, Cst-Cst, S 10, (TL&)
[Alg 1] C-C, Cst-Cst, FS 1%, <n/w>

Table 1: Comparison of oracle complexity in deterministic setup of different zeroth-order meth-
ods with different assumptions on target function f(z,y): C-C — convex-concave, SC-SC —
strongly-convex-strongly-concave, NC-SC — nonconvex-strongly-concave; Cst — optimizaation set
is constrained, UCst — unconstrained; S - smooth, FS - firmly smooth (see (9)), BG - bounded
gradients. Here € means the accuracy of the solution, DD — the diameter of the optimization set, u
— strong convexity constant (see (7)), L — smoothness constant (see (8)), K = £/u, M — bound
of the gradient (|V.f(z,y)|l < M, |V, f(z,y)l[l2 < M), n — the sum of the dimensions
of the variables = and y, ¢ = 2 for the Euclidean case and ¢ = oo for setup of || - ||;-norm.
*convergence  on Zgzl E[|F(xr,yr) — F(z*,y*)|3], where  F(z,y) =
(vmf(x7 y)? —Vyf(l’, y))

Method Order Assumptions Complexity for stochastic part
EGMP [29] ist  C-C,CstCst, S @ (”25]32)
PEG [28] st  SC-SC, Cst-Cst, S O (%)
Z0-SGDMSA[@7] Oth  NC-SC, UCst-Cst, S O (“2;”2>
[Alg 1] Oth  SC-SC, Cst-Cst, S O ("J")
[Alg 2] Oth  C-C,Cst-Cst, S O (”052172)
[Alg 1] Oth  C-C,CstCst, FS O ("”1#)

Table 2: Comparison of oracle complexity for stochastic part of different first- and zeroth-order methods
with different assumptions on f(z, y): see notation in Table Here o2 — the bound of variance (see

(3))-
2 Problem setup and assumptions
We consider a saddle-point problem:

i 1
min max f(x,y), (1)
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where X C R™ and Y C R™ are convex compact sets. For simplicity, we introduce the set
Z =X x Y,z = (z,y) and the operator F".

Py = Py = [ ) @

_vyf(mv y)

We focus on the case when we do not have access to the values of V, f(z,y) and V,, f(z,y), but
we have access to the inexact zeroth-order oracle, i.e. inexact values of the objective f(x,y). The
inexactness in the zeroth-order oracle includes stochastic noise and unknown bounded noise, which
can be of an adversarial nature. More precisely, we have access to the values f(z, €) such that

f(Z,f) = f(Z,f) + 5(Z) and
Elf(z 8] = f(2), E[F(z8)] = F(2),
E[[|F(z€) = F(2)[l3] < 0% [6(2)] < A. (3)

We consider two types of approximations for F'(z) based on the available observations of f(z, £).

Random direction oracle. In this strategy, the vectors ¢, ¢, are generated uniformly on the unit
Euclidean sphere, i.e. e, € RS> (1) and e, € RSiy(l). And

g (Z e, T f) = 2 (f(x‘i‘Tex?y’g)—f(x’y,f)) €z
T ’ (f(x,y,ﬁ)—f(x,y+Tey,5))ey ’

where 7 > ( is called smoothed parameter and n = n, + n, + 1.

Full coordinates oracle. Here we consider a standard orthonormal basis {hl, cee hnﬁny} and
construct an approximation for the operator F' in the following form:

gf(zahaTaf) = %ZT (f(Z + Thiag) - f~(27£)> hz
=1

1 Ng+ny

= > (F0 = e+ 7hi ) b ©

i=ny+1

In this concept, we need to call f oracle n, + n, + 1 times, whereas in the previous case only 3 times.

3 Notation and Definitions

We use (z,y) Y > i, z;y; to define inner product of =,y € R" where z; is the i-th component
of x in the standard basis in R™. Hence we get the definition of 5-norm in R™ in the following way

z]l2 £ /{x, x). We define (,-norms as ||z ||, « O \xi\p)l/” for p € (1, 00) and for p = oo we
use ||2|oe = max;<i<, |z;]. The dual norm || - ||, for the norm || - ||,, is defined in the following way:

lyll, E max {(z,y) | |z||, < 1}. Operator E[-] is full mathematical expectation and operator E¢|-]
express conditional mathematical expectation.

As stated above, during the course of the paper we will work in an arbitrary norm || - || = || - ||,,, where
p € [1;2]. And its conjugate || - ||« = || - ||; with ¢ € [2;4+00) and 1/p + /g = 1. Some assumptions
will be made later in the Euclidean norm - we will write this explicitly || - ||2.
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Zeroth-order algorithms for smooth saddle-point problems 5

Definition 1. Function d(z) : Z — Riis called prox-function if d(z) is 1-strongly convex w.r.t. || -||-norm
and differentiable on Z function.

Definition 2. Let d(z) : Z — R is prox-function. For any two points z, w € Z we define Bregman
divergence V. (w) associated with d(z) as follows:

V.(w) =d(z) — d(w) — (Vd(w), z — w).

Definition 3. Let V, (w) Bregman divergence. For all x € Z define prox-operator of &:

prox, (€) = argmin (Va(y) + (€.9)).

Next we present the assumptions that we will use in the convergence analysis.

Assumption 1. The set Z is bounded w.r.t || - || by constant D,, i.e.

Vo, (22) S D2, V2,20 € 2. (6)

Assumption 2. f(z,y) is convex-concave. It means that f(-,y) is convex for all y and f(z, ) is
concave for all z.

Assumption 2(s). f(z, y) is strongly-convex-strongly-concave. It means that f (-, y) is strongly-convex
forall y and f(z, -) is strongly-concave for all z w.r.t. V.(-), i.e. forall z1, 2o € X andforall y;,y> € YV
we have

f(1,92) > f(22,92) + (Ve f(22,92), 11 — 22)
7

+§ (‘/(9627112)(‘7"17 y2) + ‘/(xl,yz)(x27 y2)) 9

—f(zo, 1) = —f(xa,y2) + (=Vyf(22,92), 41 — y2)
I

+5 (Vies ) (2, 1) + Vi) (22, 92)) - )

Assumption 3. f(z,y, ) is L(§)-Lipschitz continuous w.rt || - ||2, i.e. for all 1,29 € X, y1,y2 € Y
and &

vﬂcf(xl’yhg) . sz(xg, y2’§) < L(f) X1 _ Zo (8)

—Vyf(iﬁ,yl,f) —Vyf(ﬁz,ymf) n Y2

2 2

Assumption 3(f). f(x,y) s L-firmly Lipschitz continuous w.r.t || - ||, i.e. forall 1, 25 € X, y1,y2 € Y

2
Vof(e,y1,6) ) Vaf(r2,92,6)
yf xlayhf) _vyf(x%y%’f) 5
S L(g) < vxf(xlaylag) o V:rf(w%y?ag) : T B X2 > . (9)
=V f(z1,11,¢) =V f(x2,52,¢) Y1 Y2

For (8) and (9) we assume that exists L, such that E[L?(£)] < L3. For deterministic case L- is equal
to deterministic constant L (without &).

By Cauchy-Schwarz, (8) follows from (9). It is easy to see that the assumptions 4 and 4(f) above can
be easily rewritten in a more compact form using F'(z). For assumption 3(s) it is more complicated:
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A. Sadiev, A. Beznosikov et al. 6

Lemma 3.1. If f(x,y) is u-strongly convex on x and ji-strongly concave ony w.r.t V.(-), then for F'(z)
we have

(F(21) — F(22),21 — 22) > g (Vo (22) + Vo, (21)), V21,20 € Z.

Hereinafter, we do not present the proofs of lemmas and theorems in the main part of the paper — see
the corresponding parts of the appendix. And we can present some properties of oracles (@), (5):

Lemma3.2. Lete € RS 2(1), i.e. uniformly distributed on the unit Euclidean sphere. Randomness
comes from independent variables e, £ and a point z. Norm || - ||, = || - ||, satisfies ¢ € [2;4+00). We
introduce the constant p,, :

prn = min{q — 1,16log(n) — 8}.

Then under Assumption 3 or 3(f) the following statements hold:

B for Random direction oracle

E [llga(z, e, 7, ON7] < 48n*p,E[||F(2) — F(2*)II3] + 48n*p, || F(2*)13
+48n2/1p, 02 + 8n* 1 p, 1272

2/q+1, A2
16" A
-
A
IElga(z e,7.8] = F()ll, < 20V Ly + dn o2 /=
M for Full coordinates oracle
6nA2

E[llgr(z,7m,6) = F(2)|l;] < 30° +3nLir* + o

[El(-m8)] - FG)l, < vaLr+ 202,

4 Zeroth-Order Methods

In this part, we present methods for solving problem (1), which use only the zeroth-order oracle. First of
all, we want to consider the classic version of the Mirror-Descent algorithm. For theoretical and practical
analysis of this

Algorithm 1 zoVIA algorithm in the non-smooth case, but with a boundgd
Input: 2o, N, 7, 7. gradient, see.[3](first orde.r), [5](lzelro (l)rlder). The main
Choose grad to be either g, or g;. problem of this apprqach is that it is difficult to .analy.ze
for k — Oto N do in the case when f is convex-concave and Lipschitz

continuous (Assumptions 2 and 3). But in practice, this
algorithm does not differ much from its counterparts,
which will be given below. Let us analyze this algo-
rithm in convex-concave and strongly-convex-strongly-
concave cases with Random direction oracle:

Sample indep. ey, k.
dy = grad(zg, ex, T, &k)-
Zg1 = prox, (77 - di).
end for
Output: 21 Or Zn 1.

Theorem 4.1. By Algorithm 1 with Random direction oracle

DOI 10.20347/WIAS.PREPRINT.2827 Berlin 2021



Zeroth-order algorithms for smooth saddle-point problems 7

B under Assumptions 1, 2, 3(f) and with v < , we get

48n 2/0

1 l *\ 112 2LD2 2/q *\ (|2 2
F L E[IFG) — P < S5t + dsam®p, L (1P + o)
k=1

A2
+8yn? 1t p, L (L§T2 + 2—2>

20
+8n!/1t2 /5 LD, (LT + —)

B under Assumptions 1, 2(s), 3 and with v < m

T\
E Vv, (2] < Va2 exp (_W) i

24n2/1p,,
+— o (IFE)5+0%)

4n2/q+1:0n 2,2 AQ
+IU2—N (LQT + 2;)

4 1/q+1/2 /—nD 2A
+ n Py (LT+—).

YN T

Remark. In the first statement of the Theorem, we used an unusual convergence criterion, it can be
interpreted as follows: let as the output Z of the algorithm we choose a random point from 2 to zy.
Then

AIAESTHE NTHZE (1P

In this theorem and below, we draw attention to the fact that in the main part of the convergence there
is a deterministic constant L, and in the parts that are responsible for noise — L5 (see (8),(9)).

Corollary 4.2. For Algorithm 1

. . . D,
B under Assumptions 1, 2, 3(f) and with v = min { 48n2/qpn R W \F}

_ ' < £ ¢ _ 2
T_@<mln{n1/q+1/2\/p_nL2Dp’maX[ nL%’\/ﬁLJ})’ A—O(L27>,

the oracle complexity (coincides with the number of iterations) to find e-solution (in terms of the
convergence criterion from Theorem 1) is

2/q 122 2/q 22
n’ip, n’ip,0
N:o<max{ PI2D; o })
9 S

B under Assumptions 1, 2(s), 3 and with v =

I T
96n%4p, L2’

7 = O ( min { max @L max A oK
- Ly Vils) " (W LD, w0, | f )
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A=0 (LQTQ), the oracle complexity (coincides with the number of iterations) to find €-solution
(in terms of the convergence criterion from Theorem 1) can be bounded by

~ Ya, I2 1 2/q 2
N=0 (m{ng () L})
0 3 uee

Remark. We analyze only Random direction oracle. The estimate of the oracle complexity with Full
coordinate oracle has the same form with ¢ = 2.

Next, we consider a standard algorithm for working with smooth saddle-point problem. It builds on
the extra-gradient method [30Q]. The idea of using this approach for saddle-point problems is not new
[29]. It has both heuristic advantages (we forestall the properties of the gradient) as well as purely
mathematical ones (a more clear theoretical analysis). We use two versions of this approach: classic
and single call version from [28].

Algorithm 2 zoESVIA Algorithm 3 zoscESVIA

Input: zo, N, v, 7. Input: z5, N, v, 7.

Choose oracle grad from gq4, g;. Choose oracle grad from gg4, g5.

fork =0to N do fork =0to N do
Sample indep. ey, €r41/2, ks Sht1/2- Sample independent ey, &.
dy = grad(zg, ek, T, &k)- Take dj_; from previous step.
Zht1/2 = Prox, (7 - di). Zit1/2 = Prox,, (7 - d—1).
dit172 = 9rad( 2112, €xt1/2: Ts Erg1/2)- di, = grad(zp41/2; €x+1/2, 7> &)
Zi1 = Prox,, (7 - diy1/2)- Zp1 = prox,, (v - di).

end for end for

Output: 21 OF ZN 1. Output: 21 OF 2N 1.

_ 1 N
Here AN+1 = N+l Zi:O Zi+1/2-
Next, we will deal with the theoretical analysis of convergence:

Theorem 4.3. B By Algorithm 2 with Full coordinates oracle under Assumptions 1, 2, 3 and with
v < 1/21, we have

2D? nA2
K [5sad<2N+1)] < ’7_]\§) + 11’7 (nL§T2 + 0'2 + 27)
2y/nA
T Y

+2D, (\/ELT +

where
6sad(ZN—s—l) - maxf(jN—i-la y/) — min f(ZL‘/, gN+1)7
y'ey z'eX
TN+1, YN+1 are defined the same way as Zn 1.
B By Algorithm 3 with Full coordinates oracle under Assumptions 1, 2(s), 3 and with p = 2

Va(y) = Yellz —yl[3), v < Yer:

E _ 2] < N 2 _ 2

[lleni — 23] < exp 2L (llz0 = 2*[I5 + llgs (20, 7, &0) — 97 (20, 7, &0)I3)

2nA?
12 (02 +nL5m* + - >

+ =

wAN

1 4D 2y/nA
- —2(\/5m+ a )
WN vy T
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Zeroth-order algorithms for smooth saddle-point problems 9

Corollary 4.4. Let € — accuracy of the solution (in terms of the convergence criterion from Theorem 2).

B For Algorithm 2 with Full coordinates oracle under Assumptions 1, 2, 3 with~y = min {/2L, P»/(ov/N) }
and additionally

- . € | eL o B 9
T—O(mlﬂ{m,ma}([ @,m]}), A—O(LQT),

we have the number of iterations to find -solution
LD} o°D;
N=0 (max{ 2 —2p .
€ €

B For Algorithm 3 with Full coordinates oracle under Assumptions 1, 2(s), 3, withp = 2 (V,.(y) =
Va||lz — y||3), v = Y/6L and additionally

0 [ N epnl o N JLE o?
T = min < max |/ —5, ——— | ,max
L3 \/nLsy|’ VnLDy' \/nL?Dy ’
A = O (Ly7?), the number of iterations to find e-solution:
~ L 1 2
N=0O (max{—log (—) ,UT}) .
i e) u2e

Remark. The oracle complexity for the Full coordinate oracle is n times greater than the number of
iterations.

The analysis is carried out only for the Full coordinate oracle. The main problem of using Random
Direction is that their variance is tied to the norm of the gradient; therefore, using an extra step does not
give any advantages over Algorithm 1] A possible way out of this situation is to use the same direction
e within one iteration of Algorithm[2]— this idea is implemented in Appendix[F|and in Practice part. It is
interesting how it work in practice, because in the non-smooth case [5] the gain by the factor n?/% can
be obtained.

5 1/2-Order Methods

In this section, we have access to a first-order oracle in one of the variables, and in the other — only a
zeroth-order oracle. For such a case, we suggest using an oracle of the form:

[grad(z,y)].
_vyf(‘ra y)

where [grad(z,y)]. — one of the zeroth-order approximations on variable x: (4) or (5). Before proving
the general case, we consider one illustrative example:

9(z,7) =

DOI 10.20347/WIAS.PREPRINT.2827 Berlin 2021



A. Sadiev, A. Beznosikov et al. 10

5.1 Lagrange multiplier method

Let X C R™ be a convex, compact set and functions f(x), g1(x), . . ., gm(x) be convex, smooth. We
solve the following optimization problem:

min f(z),

st.gi(x) <0Viel,...m.
A dual problem to the original one:

max min L(z, \) = f(x) + (A, g(z)),

el zeX

where 1, = {y € R™ | y; > 0} —a positive orthant, L(x, \) — a Lagrange function, A — a Lagrange
multiplier, g(z) = (g1(), ..., gm(z))). We got a saddle-point problem that we want to solve using
the zeroth-order method, i.e. only function values are available. But it turns out that we have access to
ViL(xz, \) = g(x) completely free: when we build the "gradient" on z using finite differences, we call
the value for g(x) and immediately get the gradient .

For such a problem, the oracle of the zero and first orders can be called the same number of times. In
general, it is unprofitable to calculate the gradient as many times as the zeroth-order oracles and a
slightly different result is obtained:

5.2 Universal approach with Full gradient method

Define Mixed oracle:
97 (z,9)]2

95(z,7) =
Y —Vyf(x,y)

then

Theorem 5.1. By Algorithm@ under assumption 1, 2, 3 with Mixed oracle gy and v < /2L, we get

2 (TIWAN
-

D 2
Elwlz)] < —F+2D, (\/n_xL27'+ Vi )
2n$A2)

+9y <02 +n, L3m? + —=
~

Corollary 5.2. To get accuracy < (in terms of the convergence criterion from Theorem 2) in Algorithm
2 with Mixed oracle, under Assumptions 1, 2, 3, withy = min {1/2r, Pr/(cvN)},

- . € | €L o B 9
T—O(mlﬂ{m7maX[ @,m]}), A—O(LQT),

we need to call Full coordinates oracle for x

LD? o2D?
N = O | max L— times.

€ g2

DOI 10.20347/WIAS.PREPRINT.2827 Berlin 2021



Zeroth-order algorithms for smooth saddle-point problems 11

6 Practice part

The main goal of our experiments is to compare the Algorithms 1,2,3 and 4 (see Appendix[F) described
in this paper with Full coordinate and Random direction oracles. We consider the classical bilinear
saddle-point problem on a probability simplex:

: T
min max |y° Cz|, 10
TEA, YEA |:y j| ( )

This problem is often referred to as a matrix game (see Part 5 in [3])). Two players X and Y are playing.
The goal of player Y is to win as much as possible by correctly choosing an action from 1 to k, the
goal of player X is to minimize the gain of player X using his actions from 1 to n. Each element of the
matrix c;; are interpreted as a winning, provided that player X has chosen the i-th strategy and player
Y has chosen the j-th strategy.

Let consider the step of algorithm. The prox-function is d(z) = > | x;log z; (entropy) and V,(y) =
Z?:l x; log ff/y (KL divergence). The result of the proximal operator is

u = prox,, (ykgrad(2x, ex, 7, &) = 2k exp(—yrgrad(zy, ex, 7, §k)),

by this entry we mean:
Ui = [Zk]l eXp(_’yk [grad(zk, €k, T, gk)}z)
Using the Bregman projection onto the simplex in following way P(x) = ¢/||«|:, we have

[z1)i exp(—klgrad, (2x, ex, 7, &)

[karl]i = )

[24]; exp(—7xlgrad, (2k, ex, T, &)]5)

n
J=1

[ye]i exp(klgrad, (2, ex, T, §k)i)

[Yrt1]i =

)

2 i, exp(yelorad, (zi, e 7, €)];)

where under g, g, we mean parts of g which are responsible for x and for y.

In the first part of the experiment, we take matrix 200 x 200. All elements of the matrix are generated
from the uniform distribution from 0 to 1. Next, we select one row of the matrix and generate its elements
from the uniform from 5 to 10. Finally, we take one element from this row and generate it uniformly from
1 to 5. The results of the experiment is on Figure[1]

From the experiment results, one can easily see the best approach in terms of oracle complexity.

7 Conclusion

In this paper, we presented various algorithms for optimizing smooth stochastic saddle point problems
using zero-order oracles. For some oracles, we provide a theoretical analysis. We also compare the
approaches covered in the work on a practical matrix game.

As a continuation of the work, we can distinguish the following areas: convergence estimates for
Algorithm 4 (see the appendix), the study of gradient-free methods for saddle point problems already
with a one-point approximation (in this work, we used a two-point one). We also highlight the acceleration
of these methods.
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A. Sadiev, A. Beznosikov et al. 12

Matrix Game, 200x200

100 -@- zoVIA-full coordinates
-@- zoVIA-random direction
—— 2ZOESVIA-full coordinates
-‘- zoESVIA-random direction

\ -9¢- zo0ESVIA-random direction (same e)
\

—f— z0scESVIA-full coordinates
-0~ zoscESVIA-random direction

fiXn, y ™) —fx*, yn)
fixo,y™) = f(x",yo)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Oracle calls number, N

le6

Figure 1: Different algorithms with Full coordinate and Random direction oracles applied to solve
saddle-problem (T0).
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Zeroth-order algorithms for smooth saddle-point problems 13

A General facts and technical lemmas

Lemma A.1. For arbitrary integer n > 1 and arbitrary set of positive numbers a1, . . . , a,, we have

m 2 m
=1 =1

Lemma A.2. Forq > 2 and for arbitrary vectors a € R™, b € R™ we have
< llallg + lIolI5- (12)

Lemma A.3 (Fact 5.3.2 from [3]). Given norm H || on space Z and prox-function d(z), let z € Z,
w € R™ and z;. = prox,(w). Then forallu € Z

(w, 24— u) < Vi) = Vi, (u) - Vilz4). (13)

Lemma A.4 (see Lemma 1 from [26]). Lete € RS?(1), i.e. a random vector uniformly distributed on
the surface of the unit Euclidean sphere in R™, q € [2;4+00). Then, forn > 8,

E[llelZ] < n*p,, (14)
E [(s,e>2|\e|]ﬂ < 6n2/q_2ansH§, Vs € R", (15)
where p,, = min{q — 1, 16 logn — 8}.
Lemma A.5 (see Lemma 2 from [44]). Let consider non-negative sequence ry,:

rep1 < (1= ay)rg + 2,

log(max(2,a%roT/c) ) Then

— mi 1
where a,c > 0, vy = min (Ev o

alN c
TN+l < T - exp (—%> + m. (16)

B Proof of Lemma[3.1]

Lemma. If f(x,y) is p-strongly convex on x and p-strongly concave on y w.r.t V.(-), then for F'(z)
we have

<F(21) — F(Zz), Z1 — 22> 5 (‘/Zl (22) + ‘/;2(21)) y VZI, 2o € Z. (17)

Proof. By definition of y-strong convexity w.r.t V.(-):

=

f(xla y?) Z f(fEnyQ) + <V;vf($2792)7 €Ty — {E2> + 5 (‘/(:cz,yz)(xlny) + ‘/(I1,y2)(x27 y?)) )

f(za, 1) 2 flo,91) + (Vaf (21,51), 12 — 71) + g

_f(x17y2) 2 _f(xlayl) + <_vyf($1a 91)792 - yl) + g (‘/(:El,y1)($1a y?) + ‘/(Ihyz)(xl;yl)) )

(V(ml,yl)(x% yl) + W$2,y1)<x1a 3/1)) )
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A. Sadiev, A. Beznosikov et al. 14

—f(x2,91) = —f(w2,92) + (= Vy f (22, 52), 41 — v2) + g (Viwaae) (T2, 1) + Viay g (22, 12)) -
Let introduce a new definition for sum of Bregman divergences:
V = V($27y2)(xl7 y2> + V(I17y2)(x27 y2) + V(ﬂCl,yl)(x?v yl) + V(I27y1)<x17 yl)
V1) (01, Y2) + Vier ) (@1, Y1) + Viegyo (72, Y1) + Vi, ) (22, 42).
Using definition of Bregman divergence and 1-stronge convexity of prox-function d, we get:
V = (Vud(v2,y2) — Vaed(21,12), 72 — 21)
+(Ved(22, 1) — Ved(z1,91), 2 — 1)
H(Vyd(22,92) — Vyd(za, 1), y2 — Y1)
+H(Vyd(@1,y2) = Vyd(z1,91), y2 — y1)
= (Vd(z) — Vd(21), 22 — z1) + (Vd(3) — Vd(3), 52 — 1)
V. (22) + Vo, (21),
where Zo = (2, v1), 21 = (21, y2) Thus, we have V >V, (22) + V., (z1). Summming up:

(Vof(w2,92) = Vo f(x1,91), 11 — T2)
y

—(Vyf(z2,2) = Vyf(xi,01), 1 —y2) + % < 0.

v

Using V > V., (22) + V., (21), we have
(Vo f(@2,52) = Vaf(z1,m), 21 — 22) — (Vy f(22,52) = Vy f(z1,51), 91 — 42)
RV () + Vo)) <0,
and
(F(21) = F(22),21 — 22) = (Vaf(22,92) — Vo f(21,01), 22 — 21)
—(Vyf(@2,92) = Vyf(@1,91), 52 — 1)

5 (Vaa(22) + Vaa(22)

Y]

C Proof of Lemma[3.2

Lemma. Lete € RSz(l), i.e. uniformly distributed on the unit Euclidean sphere. Randomness comes
from independent variables e, £ and a point z. Norm || - ||. = || - ||, satisfies ¢ € [2;400). We
introduce the constant p,,:

pn = min{q — 1,16 log(n) — 8}.

Then under Assumption 3 or 3(f) the following statements hold:

M for Random direction oracle
E [llga(z,e,7.6)M2] < 48n*9p,E [||F(2) — F(z")|13] + 48n*/p, || F(2*) |3
+48n2/qpn02 + 8n2/‘1+1an272

2/q+1 AQ
+16%’ (18)
A
IElga(z,e,7,€)] = F(2)l, < 2072 /py L + 4n/TH2 /= (19)
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Zeroth-order algorithms for smooth saddle-point problems 15

M for Full coordinates oracle

2
E [los(z.7.&) ~ F)IZ] < 0% +3nL3r® + i 20
2y/nA
Elos(m €]~ PG, < viLr+ 202 @)

Proof of (18).

IAG]

E [Hgd('z7 €T, 5)”3}

NE

T2

Vof@aee \|
(—Vyf(x,y),6y> ey q

<vxf(x7 Y, 5) - vmf<x7 y)a €m> €z
<_vyf(xa Y, g) + vyf(w7 y)v €y> €y

[ (7,6 = F,9,6) = (Vo f (2,9,€). 7e))
(f(m>ya€) - f(mvy + Teyaf) + <vyf(l’,y7§>,7'€y>) €y

2

[ (0(x + Teg,y) —0(x,y)) €
(0(x,y) —6(w,y +7ey)) ey

q

4B [V (2, 9), ) eal;] + 4B [[{=9, (2 0). ) ol

+4n’E [u<vxf(x, Yy, ) = Vaf(x,y), ea) exHi]

+4n’E

|

=V (,9,€) + Vo @), e ¢, 7]

}Kﬂx+7%w£%—ﬂ%y£%—ﬁhﬂ%yéhmﬁ>%

)
)

H <f(x,y7§) — flz,y+7e,, &) + (Vyf(x,y,g),mw) ey

10 + 7z, ) = 8(ar.y) el

(6. 9) — (w5 + 7e,)) e, 2]

2

q

From @ we get ||V, f (21,4, §) = Va f (2,4, )2 < Ll|z1—a2]l2and ||V, f (2, 51, §) =V (2,42, )[|2 <
L||yq — yal|2 forall x, x1, 20 € X, y, 41, y2 € V. It follows that functions f(-,y,&) and f(z, -, &) are
L(&)-Lipschitz continuous. Then

DOI 10.20347/WIAS.PREPRINT.2827 Berlin 2021
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Efllga(z e, 7,82 < 40°E |[(Vaf (2,9), Tec) eall2] + 40K [I{=Vyf (2, 9), e} eI

+4n°E |V (2,9,€) = Vol (3, 9), 7ex) e 2]
+4n’E W—vy F(a,9,) + V, f(z,y),7e,) eylli]
+4n° L3 ||le. || + 4n*LErE [ ley 2]

E lley2].

2

n2A 2 A2

E ez 2] +8%

8

In the last inequality, we additionally use () + and independence of e and £. With and (15),
one can get the following result:

E [Hgd(27677—>£)”2} <

NG IA@

Proof of .

||]E[gd(2,6,7—,§)]—F(Z)Hq < ; E [(

24010, [|[V. (@, )I8] + 24029, E [| = ¥, (. 9)]1]

+24n% 7, [V, f (2,9, €) — Vo f (2, 9)]17]
+24n% 1, [|| =V, f (2, 9,€) + Vy f(2,9)]13]
n2/atlp A2

+8n2/ T L2712 + 16 5
-

24n*/1p,E [||F(2)|13] + 48n*p,0® + 8n* 1" p, L3572 + 16

180210, [| F(2) — (")) + 450790, | F(=))
nz/Q+1pnA2

+48n%9p, 0% + 8n* 1 p L2712 + 16 5
pn

(Vaf(2,9,8) = Vaf(2,9), €x) €0
(=Vyf(z,9,6) + Vyf(z,9),¢,) €,

DOI 10.20347/WIAS.PREPRINT.2827

(f(l' + Texayag) - f(:U,y,f) - <vxf($a
(f(‘rvy?g) - f($;y + Tey7§) + <Vyf(l’,

n2/atly A2

72

q

ol [ Vef@yhede | [ Vefoy)
| <—Vyf(x,y),ey) €y _Vyf(x7y> q

g | Pt Teny) — o)) e |
T (0(z,y) — 6(z,y + Tey)) ey .
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Zeroth-order algorithms for smooth saddle-point problems 17

Taking into account the independence of e and &, as well as using their unbiasedness, we get

n T+ Te,, z,y) — (Vo flx,y), Tes)) e
[Elgalzrem. 8 F(), < » (f(z + Tes,y) — f(2,y) — (Vo f(2,9), Tes))
T (f(x flz,y+71ey) +(Vyf(z,y),7ey)) ey .
5x+7'ex,y) 3z, y)) es
(6(x Sz, y+T7ey)) ey, ,
%D _ ||E f(l’ +T€xay) (:v,y) - <Va:f(x7y)a7_ex>) ex]Hq

FE B[S @) — Fay +7e,) + (Vo (@,9),7e) e
+ 2 |E[(5(@ + reary) — 0, y)) e,

P IE L6, 9) — 8y + 7e,) el

Further, Jensen inequality gives

IElga(z,e.m, €] = F()l, < ZE[1f(@+7eny) = f@,5) = (Vuf(@,y), 76 el
FE [|7(9) — @y + 7e0) + Y, ,0), me) e
+2E |6 + mea, ) = 0w, 9) el
+2E [J6(,y) — o,y + e lel, |

It remains to use L-Lipschitz continuous of f(-,y) and f(z, -):

|Elga(z,e,7,8)] = F(2)l[, < nL7E |:’|€$||q] +nLTE [Hequ]
F2E [(15( + res, )] + 1562, ) el
2E (18, )] + 13(ay + e)) ey,

o2 oLy g aptlati/2 5D
-

=
A=
=]
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A. Sadiev, A. Beznosikov et al. 18

Proof of (20).

%Eiuw+¢m£%—ﬂ%®””
Ng+ny

4— > (24 7hi, €)) hi — F(2,€)

1=ny+1

+3E [||F(2,) — F(2)])?]

E[llgr(z7.6) — F(2)[2] "< 3E

Ng+n 2
Y (8(z 4+ Thy) — 8(2)) ]
+3E h;
e [ (fz+Thi €)= f(2,8)  9f(8)]
< 3E Z:; . T on
+30% + 6n—A22.
.

By the mean value theorem we have that for some |g;| < |7|:

>

=1

Of (4 ahis )  9f(2.)
2

+30? + 6%
T

3K

IA

E [llgs(z,7,6) = F(2)II]

|

2

A
< 3ZL2ql +302+6”T—2
2

A
< 3nLir? 4+ 30% + 6n—2.
T

Proof of (21). Using unbiasedness of &:

Ny

IE [gs(z,m )] = F(2)Ill, < ||= D (f(z+7hi) = f(2)) s

T =1
nz+ny
+ Z f(z+7Thi,)) h; — F(2)
1=ngz+1 2
"SR (8(2 + Th) — 6(2))
+ Z . hi
=1 T 2
c] & 2+/nA
< L2g2 + —¥X——
< 2; G+ =
A
< VnLt+ 2vn .
T
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D Proof of Theorem 1
Lemma D.1. Letz, g € R™ and Z C R". Then for z; = prox,(g) and for allu € Z we have
1
(9,2 —u) < Vi(w) = Vi (u) + 5lgll (22)

Proof. By (13), we have forallu € Z
(9,21 —u) = (g, 21 — 2+ 2 —u) < Va(u) = Vo, (u) = Va(zn).
Making simple transformations:
(9,2 —u) < (9,2 —21) + Valu) = Vo, (u) = Va(z1)

1
< {92 —2) + Va(w) = Vay(w) = 5121 — 2[5

In last inequality we use the property of the Bregman divergence: V,,(y) > %||x — yHg. With Hélder’s
inequality and the fact: ab — ¥*/2 < a”/2, we get

1
(9,2 =u) < Mgllallz = =21 llp + Va(w) = Var(w) = S0 = 2l

1
< Velw) = V() + 5 gl

Theorem. By Algorithm 1 with Random direction oracle

1

B under Assumptions 1, 2, 3(f) and with v < pr Ty we get
1 - 12 2LD; 2/q 2 L 2
N1 L ENFG) ~FEIE < S5 + 489, L (IFE) +07)

k=0

A2
+8yn?/ Ty L (L§T2 + 2?)

2A
+8n1/Q+1/2 /anDp (LT + T) ; (23)

. . 1] .
B under Assumptions 1, 2(s), 3 and with v < Syt

E [V, (=%)] < VZO(z*)exp( MZ—N> .

 400n%7p, L2
L (B + o) e
+—4”Z§]+V1”” (Lg# + 2f—j> (25)
+4”1/q;Z§ﬁDP (LT + %) . (26)
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Proof of (23). We begin with descent lemma (22):

2
i
Y(Ga(2k, er, Ty k)5 2k — ) < Vo (u) = Vo, (u) + ?Hgd(zk, e, T, )2

Taking © = z* and using convexity - concavity of f(x,y) in form (F'(z*), z;, — 2*) > 0, we get
V() = F(2) e — w) SV, (27) = Ve, (27)
+ YF(2k) = gal2k, €k, 75 §k)s 21 — 27) + %QHQd(Zk, ex, T En)|I2-
With (9), this gives
LIF(z) = FEE < Vi) = Vi (29)

2
+Y(F (21) — ga(zhs ex, 75 &k), 26 — u) + %”gd(zka er, 7, &) |2

Taking full expectation and using Holder’s inequality, (18), (T9), we have
E[|F(ar) = F5] < EV ()] = E [V, (u)]

A
2 m 1/q+1/2 L 4 1/q+1/2 D
+27 P LT +4n v Prn— - p

+

(4801 puE [[[F () = F(2")3] + 480 1pa | F(2")]3)

()

7
2
el

2/q+1 A2
5 (48n2/‘1pn02 + 8n¥atlp L2372 + 16M> .

72

2 .
v < 1/48nap, L gives

IA
&
o

k(Z*)] —E [VZkH (Z*)}

A
+2v | 2n 1/q+1/2 0n LT + 4n1/q+1/2,/pn—> D,
Vv T

LR F(2) - F(=")3]

5 (4809 p, || ()13 + 48n%1p,0%)

2 2/g+1, A2

2/q+1 2.2 n Pn
‘I—? (87’L q an2T + 16—7_2 ) .
It remains to sum up fromk = 0to k = NN:

1 & o 2LD? 2 .
—NHkZ:OE[HF(zk)—F(z)HQ] < TN s L (IFEIE + o)

A2
+8yn?/ Ty L (L§T2 + 2;)

2A
+8n!/at1 2 /5 LD, (LT + —) :
T
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Proof of (24). Similarly to the previous proof, we begin with descent lemma (22):
-2
/7<g(zk7 €k, T, §k>7 Rk — U) < ‘/Zk(u) o VZk+1 (U) + ?Hgd(zkv €k, T, fk)Hz

Taking u = z* and using (F'(z*), zx — 2*) > 0, we get:

V(' (z) = F(2%), 20— 27) S Vo, (27) = Vi, (27)
2
+ Y (zk) — galzr, er, 7, &), 26 — u) + %Hg(zku er, 7, &) |2

With (17), it gives

TH X * *
2
+Y(F (2r) — galzr, ex, T, &), 21 — u) + %Hgd(zkn er, 7, &) |2

Taking full expectation and using (18), (19), we have

A

E |:‘/'Zk+1 (Z*)] S (1 _ %) ]E [‘/Zk(z*)] + 27 (in/q+1/2\/p_n[/7— + 4n1/Q+1/2m?) Dp

2
gl . *
+ (48n*UpaE [||F(2) — F(2")II3] + 4804 p, | F(2)]3)

2
nz/qﬂpnAQ)

2
g
72

+ (48n2/qpno—2 + 8n¥ 1y, L3r? + 16

Using (8) and assuming v < #/(96n%4p, L2):

. o . opl/at1/2 /pnLT Apl/a+1/2 oA
E V... (2] < (1 - T) E[V,,(2")] +27° ( + v D,
v T
+97 (240*9p || F (") I3 + 240/, 0°)
n2/atl, A2
+72 <4n2/q+1an§7-2 +8 7_2;0 ) .

It remains to use (T6) and get

uEN
* < * -
E[Viy,,(2)] < Vi(2%)exp ( 400ng/qan2) +

24n*/1p,, )
AN (IF (=5 + o)

An2/at1 N A2
e CaEy
Ant/at1/2 /5D, ( QA)

L -
YuEN T

+
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E Proof of Theorem 2

Lemma E.1. Letz,g, 912 € R" and Z C R". Then for 21/, = prox,(g) and z; = prox,(g1/2) and
for all uw € Z we have

1
(9172, 2172 — u) < Va(u) = Va, (w) + Sllg = g1p2ll7 = Valzry2). (27)
2

Proof. Using (T3) with 2 = 2, 2z, = 2z, w = g1/2, u = wandwith z = 2, 2z, = 219, w = g, u = 21:

(72,21 —u) < Vi(u) =V, (u) = Vi(21),
<97 Z1/2 — 2’1> < Vz(zl) - VZI/Q(Zl) - Vz(21/2)-

By summing these two inequalities, we get

(9172, 212 —u) < Vi(u) = Vo, (u) + (9 — 912, 21 — 21/2)
—Vzl/g(zl) - Vz(21/2)-

2 we have

Applying Cauchy-Schwartz inequality and property: 1/;1/2(21) > /2|21 — 21

1
(G2, 212 —u) < Vi(u) = Vo, (u) + 5”9 — g12ll7 = V(z1)2).-

Theorem.

B By Algorithm 2 with Full coordinates oracle under Assumptions 1, 2, 3 and with v < 1/2L, we

have
2D? nA2
= P 2 9 2
E [esaa(Zn)] < m + 11y (TLLQT +o° + 27)
2v/nA
+2D, (\/ﬁLT + Vi ) , (28)
-
where

— — / . -
€ ZNy) = max f(x — min f(x, ,
sad(ZN) y’eyf( Ny Y') z’EXf( yn)
TN, Yy are defined the same way as zy.
B By Algorithm 3 with Full coordinates oracle under Assumptions 1, 2(s), 3 and with p = 2

(Va(y) = Yellz — yl3), v < Vsr:

: pN N
Bllovit— 8] < exp (~457) (oo = 1+ loso.7: 60 - G S0l
2nA?
2 2 2
M2N12 (a +nLim + = >

1 4D 2/nA
+— 2 (\/nLr+ Vnay (29)
>N T

+
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Proof of (28). We begin with andtaking z = zx, ¢ = Y97 (2k, €x, T, k), G172 = Y9 (Zhv1/2, €ht1/2> T Ekr1)2)
then 21/ = Zk41/2, 21 = k41 and have

’Y<9f(zk+1/2> €k+1/2, T, §k+1/2 )7 Rk4+1/2 — u)
< ‘/Zk (U) - V;«’k+1 (U) - ‘/Zk (Zk+1/2)

2
Y
+?||gf<2k+1/2, €kr1/2, T Ekvrj2) — 97 (2 s 7, &)1

(K]
< szk (u) - ‘/;k+l (U) - ‘/Zk<zk+1/2)
37?2 )
o 1E (zra2) = Fz) [
37?2 )
+7||gf(2k+1/27 €k+1/2, T, §k+1/2) - F(Zk-‘rl/Q)Hq
37?2
+7||9f(2k7 en, 7, &) — F(z) |
®
< Vzk (u) - ‘/Zk+l(u) - ‘/Zk<zk+1/2)

3y L*

2
2

3y
+7||9f(2k:+1/2, €k+1/2, T, §kz+1/2) - F(Zk+1/2)”§

l2ks1/2 — 2|3

372 2
+7||9f(2k, er, 75 &) — F'(z) ;-

Applying the property: V., (z541/2) > V2|l zk11/2 — 2l1* > V2| zht1/2 — 23, with v < /2L, we get

Y(Gr(2rt1/2, €he1yz Ty Ekt1/2)s Zhij2 — W)
S V;«’k (u) - ‘/Zk+1 (’LL)
372 )
+7H9f(2k+1/2> €k+1/2, T, §k+1/2) - F(Zk+1/2)\|q
372
+7Hgf(zk7 €k, T, gk) - F(Zk)H?p

and

V(F(ZkH/Q), fk+1/2 — U> < Vi (U) - VzkH(U)
YV (F (2hg1/2) — 9 (Zht1/2s €ht1/2: T Epgr/2)s Zha1jz — W)
372
"‘THQf(ZkH/z, Cht1/2, T Epr1y2) — F(Zkﬂ/z)Hg
372
+7H9f(zk>€k,7, &) — Fz) 3.
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Summing over all £ from 0 to /V, one can have

N
Vio(u) = Vo (u
Z<F(zk+1/2),zk+1/2 —u> < 0 ) K+1( )
k=0 Y
N
Z (Zrt1/2) = 97 (Zhs1/2) €rt1/2, Tr Err1y2)s Zhrijz — W)
k=

N
37
7 Z 197 (21725 €172, T, Gt /2) — F(2k+1/2)||§

37
+7 Hgf(zk>ek77—a fk) _F(zk)”g
k=0
p?2 X
< TP + ) (F(zra1/2) = 95 (Zhry2s €hs1/2: T Ssr/2), 2he1j2 — 1)
k=0
3y al
"‘7 Z ||9f(zk+1/2a Ck+1/2, T, §k+1/z) - F(Zk+1/2)||g
k=0
3 N
+ 5D lgs G e, 6) = P, (30)

B
Il

0

N

Next we need to connect ) (F'(2k11/2), Zk+1/2 — U) and €544(Zn+1). By the definition of Z and
k=0

yn, Jensen’s inequality and convexity-concavity of f:

N N
) 1 , 1
€sad(Znt1) < gjr}gggf (N—H (; xk+1/2> ,y> _inelglcf ( N1 (Z yk+1/2)>

1 /
< Iz/r/lgﬁ}i(N——i—lkZ_of(ka/2’y) mel;IéN+1Zf ', Yt1/2)-

Given the fact of linear independence of 2’ and y/':

N
1
Eoad(Zy) < max —— x ) — fa, :
i(Zy) < (x’,y’)EZN—i—lkZ_O (f(xrga/o,y) = (@' yrras2))
Using convexity and concavity of the function f:
1 N
s > < - AN /
€sad(Zn) < (zl/g,aséz N+ 1 "~ (f(xkﬂ/z,y) f(z ayk+1/2))
N
= Jnax, N Z: (Ths1/2:Y) = F(@rg1/2: Unr1y2) + F(@hs1/2, Ynr12) — (@, Ysay2))
1 N
< \% F— Vs , R —
S X N1 kg (VS (@rr1/2, Ynrry2) ¥ — Y) + (Vo (Thiay2, Ykr/2), T — 7))

max

weZ N +14 <F<Z’“+1/2)=Z'f+1/2 —u).

IN
—
OMZ
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together with gives

D? N
i) = ’Y(Nj—l) " N+ 1 ues Z: (zk+1/2) = 95 (Zht1/2, €172, T €k /2) Zhrr/2 — W)
3y N
PYECEEEEY 2
+2(N+ 1 kZOHQf Zk+1/25 €k+1/25 T, §k+1/2) F(zkH/Q)HQ

3y )
+2(N +1) k=0 gz e 7 &) (ze) I3

Taking the full expectation and using with (6):

D2 1 N
Elewa(Zn)] < - E F —~ , T, , -
[Esad(ZN)] < (N +1) + N1 Teag kZ_()( (Zh41/2) = 95 (Zhs1/2 €ht1/25 T> Ekt1/2) s 2kt /2 U>”
AQ
+9v (nL272 + 0%+ 2—) (32)

To finish the proof it remains to estimate

N
E {meag; {Z (F(2k41/2) = 95 (Zht1/2 k1725 T5 Ehg1/2) s Zhg1/2 — u)” . Let define sequence v: vy =
u€Z | k=0

21/2> Vk41 < proka(—'y(Sk) with
Ok = 9 (Zkt1/2s €y1/2, Ty Ekg12) — F(Zhy12):

N N N
D (=0ks k12 — u) = D (=0, 2hsrz — vk) + Y (=0, v — 1) (33)
k=0 k=0 k=0

By the definition of v and an optimal condition for the prox-operator, we have for all u € Z
<—’)/5k - Vd(ka) + Vd(vk+1), u — Uk+1> Z 0.
Rewriting this inequality, we get

(=70, vk —u) < (=Y0k, vk — Viy1) + (Vd(vrs1) — Vd(vr), u — vpy1)
< <_75k7 Uk — vk+1> + V;)k (u) - ‘/Uk+1 (U) - Vuk(vkdrl).

Bearing in mind the Bregman divergence property 2V, (y) > ||z — y||2:

1
(=70k, v — u) < (=Y0k, Vg — Vpg1) + Vo (1) = Vo, (1) — §||Uk+1 — |2,

Using the definition of the conjugate norm:

1
(=70 vk =) < [Y0kllg - llow = vkally + Ve (w) = Viyyu (w) = Sllonss = vell5

2
v
< T+ Vi (@) = Vi, ().
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Summing over k from O to IV:

N 5 N
7
72<_5k>vk - u) < V;Jo(u) - ‘/;)N+1 ? Z ||5k||2
k=0 k=0
L S
2
< D+ 3ol 34

Substituting into (33):

N N D2 ~y N
Z<—5k, Zpy1/2 —U) = Z<5k> Vg — Zkt1/2) T TP 5 Z H(SkHQ
k=0 k=0 k=0
The right side is independent of u, then
N N D2 72 N
D, 2
max k0<_5k; Zh12 —u) < ZO Ok, Uk — Zkt1/2) + 7 5 ; l|6k[5-

Taking the full expectation with independence vy, — 2j41/2, k+1/2, €x+1/2 and using (20), (21), we get

N N
E Teag;<_5k,zk+l/2 —U>] < E §<5k»vk — Zit1/2)

,y N
52 [116x112]
k=0

N 2 N
gl
< E Z<]Eek+l/27fk+l/2 (0], vk _Zk+1/2 _p _Z |5k?||
L k=0 72D
2y/nA\ D;
< 2(N+1)D,,<\/ELT+ vn )+7”
T
3y(N +1 2nA?
(D >(02+nL§T2+ n2 ) (35)
2 T
Connecting and (35), we have
2 ) AQ
E [e5ad(Z < —+11 L 2—
[€sad(ZN)] (N—|—1)+ 7<n ST+ o’ + )
2y/nA
+2D, (\/ﬁLT+ Vi )
T

Proof of (29). Similarly to the previous proof, let begin with and take full expectation:
Elllzre — 2°015] < Elllze — 23] = 29E[(g5(Zhrvjor T Erigo)s Zhgrys — 27)]

+72E [||gf(zk+1/27 T, §k+1/2) - gf(zk—1/27 T, fk—l/Z) ||§j|
—E |:HZk+1/2 - Zng] . (36)

DOI 10.20347/WIAS.PREPRINT.2827 Berlin 2021



Zeroth-order algorithms for smooth saddle-point problems 27

Next we work with & |:||gf(2k+1/2, T Epv1s2) — 9f(Zh—1s2, T, Ek—1/2) ||§] :

E[lgs(zetipos s Eurrpa) — G5 (Zherpp, T &kmrpa)]|3)

< 3E [|lgr(zhrrye, T Erya) — F(Zk+1/z)||2]
+3E (1197 (2r—1/2, T, £k+1/z) F(zi1p)|[3]
+3E [||F(Zk+1/2) Zk 1/2 || ]

29,8 2nA?
< 3L E |:sz+l/2 — Zk— 1/2H <U L2 2 - )
@ 2 2
S 6L°“E [||Zk+1/2 - Zk” ] + 6L°E [sz — Zk— 1/2” }

2nA?
+6 <02 +nL3T* + n2 >
T
S 6L2E [HZ]HJ/Q — Zng]

+672L7E [|| g5 (212, T, Ekmrya) — G (Zhsas T, Emspa)||3)
2nA?
+6 <02+nL§T2 + n2 ) .
T

In last inequality we use non-expansiveness of Euclidean prox operator. By simple transformation:

E [”gf<zk+1/27 T, €k+1/2) - gf(zk—l/Zv 7, ék—1/2) H%]
< 12L°E [||Zk+l/2 - Zk”%]

+129°L%E [[| g (zk—1/2, 7> Ek1p2) — G5 (2k—s/2, T Ekmspa) |3
_E[Hgf(zk—&—l/za T, Epy1s2) — 9r(Zh—1/2, T, Ek—1/2) HS]

2nA?
+12(0 +nL3T* + - >

,7_

Ity < sz, then 1272L* < 1 — 1y, and we can rewrite previous inequality:

Ellgs(zhsizr 7, Ehrije) = 95 (zkssa, T Eeisa) 3]
< 12L°E U|Zk+1/2 - Zk“%]

+(1 = uE (|95 (Zhorjar T Eer2) — 95 (Zhspa, T, Eoma) ||3]
—~Egs(Zhsve T Eerre) — 9 (oo, T, Eamra) [|3]

2nA?
+12 (02+nL§T + n ) (37)
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Next we consider —2~E |:<gf(2k+1/2, Ty Ept1/2)s Zhgrfo — z*)]

—27E[<gf(zk+1/2, T, Eeyia), Zk+1/2 - Z*>]
R [Py, 2 — 2]
+29E [(F (Zht1/2) = 95 (Zhrras Ty Skayn), Zhpre — 2 ”
< —-27E [<F(Zk+1/2)7 Rk+l/2 — 2 >]
+47||E [F(Zk+1/2) 95 (Zht1f, T 5k+1/2)] 2Dz
): 2

—27E [<F(zk+1/2 Rk+1/2 — % >}
+4ry (\/_LT - \/_A> D,

< 2R [[|zhtye — 2713]

+4y (\/HLT - ) D,

—vuE [[|2, — 2 HQ] + 29uE [[|2h4172 — 21 13]

+4ry (\/ﬁLr + ZVEA) D,. (38)

\/_

IN

Combining (36), (37), and (38), we have

E[“2k+1 - Z*Hg} + ]E[Hgf(zk—«—l/m 7, &kr12) = 95 (2k-1y2, T, fk—W)H%]
S (1 - 'y,u) (E[sz - Z*Hg] + E |:||gf(zk*1/27 T, gkfl/Q) - gf(zk*3/2ﬂ T, €k73/2)||g})
+(2yp +129° L = DE [[|2k412 — 23]

2nA? 4D 2y/nA
+77 [12 (0’ +nL5m? + n2 ) + 72 (\/ELT"_ v )1 :
T T

With v < 1/6z we have 12y*L? < 1 — 2uy and

Elllzier — 2*)3] + E[llgr(zisver T eip) — 95 (Zamr, T, Exmrpo) [13]
< (L =p) (Ellzr — 2*113] + E [lgs(2rerjes 7> Ermrj2) = g5 (Zhmsjr 7> Ex—spe)|3])

2nA2\ | 4D 2y/nA
2 {12 (a2+nL§T2+ - >+ 72(\/ELT+ v )1
T T

It remains to apply and then :

" pN ]
Ellovis = 18] < exp (~227) (oo = 1+ oy ) - gyean . S
2nA? 4D 2¢/nA
+— {12 (a2+nL§T2+ = >+ 2(\/ﬁLT+ v )1
w>N T 7y T

O

F Other approach for ¢ in Algorithm [2

This algorithm is an easy modification of Algorithm [2| The only difference is that we use the same
direction e and random variable £ within one iteration
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Algorithm 4 zoESVIA (same direction)
Input: 2y, NV, 7, 7.
Choose oracle grad from G, g4, g5
fork =0to N do
Sample indep. e, &k.
dk = grad(zk, €k, T, fk)
Zk+1/2 = Prox,, (v - d).
d1/2 = grad( 21172, €k, 75 &)
Zk++1 = Prox,, (y- dk+1/2)-
end for
Output: 241 O Zn41.
In this section we consider euclidean setup: V,,(y) = 1/2||z — y||3. Used approach is based on [23].

Theorem.

By Algorithm 4 with Random direction oracle under Assumptions 1, 2, 3 and v < 1/2nL2, we get

_ D?
Elewa(Zn)] < 7—}3+2107n2L§D§

N2 A
+24~ <n2L272 + n_2> + 12 <nLT + n_) D,
T T
no?
+200~ (n]E [IF(z)]3] + 7) : (39)
where
= _ = / _ . !/ —
55ad<zN) _I;}g§f(xN7y) glel/r%f(xayN)

Proof of We begin with applying Lemma [E.]

2kt —ull3 < 2w — ull3 — 2(vga(Zhtiys, €8, T €k Zhrys — )

+72Hgd(2k+1/z, €k, T, fk) - gd(zka €k, T, fk)”g - sz+1/2 - Zk”%
Next, using triangle inequality, we have

lzier —ull; < llze — ull3 = 2(v9a(2hr/2s €8, T Ek) s Zhgrys — W)
72 9a(Zh 11725 €y Ty Ek) = 1(F (2s1y2, € en)exll
721 9a (2 €5 T, k) — NAF (21, &k, en)exl3
F2 N (F (21, € en)er — n(F (2, k), ex)enlls — lzurye — 2ell3

Using [8] we get

Iz —ully < llze = ull3 — 20vga(2hr1/ar €rs T, Ek), Zhp1e — 1)
9211 9a(zk41/2, €k, T Ek) — NF (2, Ek), endexll3
+2(1ga (2 €k, 7, E) — nAF (21, Ek), ex)exf3
H(V*n2 L2 (&) — Dllzirye — 2ll3
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By simple transformation we rewrite previous inequality
(Flzkpsp), v —0) < o — ulld = lzasn — ulf}
—29(9a(Zk1 /25 €ks T §k) — F(2h11/2, §k )5 2Rty — 1)
2 9a(zhs12, €x5 T, Ek) — n{F (2i112, &); en)erl3
+7219a(zk, e, 7, &) — n(F (21, &), ex)enll
+(*n?LE = 1|21y — 2l

We estimate some terms from the right side of the inequality.

19a(zh41/2, €5, Ty ) — N{F (2141, &), ex)els <

TL_Z (f(xk-i-l/Q + T€kz, Yk+1/2, fk) - f($k+l/2, Yk+1/2, fk) - <v$f($k+1/2a Yk+1/2, gk)a T
2
T (f (@ks1/os Yor1yos &) — (Thtrso, Yrrrso + Ty, &) + (Vo f (Thgrjos Y1y, &), T
2
+n_2 (5($k+1/2 + Tekq, yk+1/2) - 5(9€k+1/2, Z/k+1/2)) Cha
2
T (8(@ht1os Yrtrya) — O(Thsrso, Yr1o + Teky)) Eky )

Using L-smoothness of function f(+) and[12] we note that
2
n
19a(Zk41/2 €5 T Ek) — N{F (g, &) endenlls < = (L?||ITerall3 + L?|ITeryll3)

n2A?

A (llesllz + lleryl3)

2A2
< 4<n2L27'2+n A)

T2

Similarly, we estimate the following value. Using L-smoothness of function f(-), we have
2 2A2

Ckx > ) Ckx

Chy) ) Chy )

n n A
19a(2k, €k, T, &) — n(F (21, &), en)erls < p) (L?||Tena|3 + Ll Teryl3) + 47 (llers 13 + lleyll3)

2A2
< 4(n2L27'2—|-nA)

72
Substituting the previous inequality we have

<F(2kz+1/2)7 Rlet1/2 — u) <z — u||§ — 241 — “H%
—2’7<9d(2k+1/27 €k, T, §k) - F(zk+1/2), Rl+1/2 — U>

2A2
+8’72 (n2L272 4 n >

7—2
+(v*nL3 — Dl zrsye — 2ll3

Consider G = (ga(2k+1/2, €ks 75 &k) — F(2k41/2), U — Zkt1/2), by simple transformations we get

g = <gd(2kz+1/27 €k, T, fk) - gd(zka €k, T, &:)»U - Zk+1/2> + <F(Zk) - F<Zk+1/2>»u - Zk+1/z>

+(ga(2ks €r, 7, &) — F(21), u — 21) + (9a(2ks €, 75 &) — F(21), 26 — Zrg1s2)
2nLo|| 2k — Zrgpell2llu — zrgapelle + (| 9a(2k, €, 75 &) — F(21)l2]l2e — 24172

F19a(Zrgr/es € Ty &) — N(E (Zhgryz) s ) ekll2]|te — Zhgya|2

IN

+19a(zk, ex, ) — n(F(21), ex)erll2llu — zesysll2 + (ga(2ks ex, T, &) — F(21), v — 21).
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Using 2[|a[|b]] < Cllall3 + 0113

1
299 < Sllok = zesapalls + 8y 0 Lillu = 2kpnnlls + 4971 galzk ek, 7, €6) — F(20)I3
4 l2 — 2epvall
nA
+4~ [ nLT + — | = 2rgyall2 + 27(9a(2k, €k, 7, &) — F(21), u — 24).
Summing up we get
Y (zhgip)s 2kpre — ) < 2k = ull3 = l2ken — ull +27(ga(ze, ex, 7 &) — F2x),u — 2)
n2A? nA
+8fy2 (n2L27-2 4 T) + 4y ( nLT + T) ||u — Zk+1/2||2
1
HOP2 18 = Pl — 2l
+8y* 2 La||u — ziy1pl5 + 492 (| galz, ex, 7, &) — F(z)ll3
Assuming v < 1/2nL,, convexity-concavity of function f() and summing from k = 1to &k = IV, we get

7 o D2 2y
N—Hk:()(F(ZHl/z),ZHI/z—U) S vty

N
> (galzis en, 7. &) — Fz), u— z)
k=1

2A2 A
+8+? (n2L272 + ) + 4y <nLT + nT) Dy
42 &
+8v*n*L3D; + TZ 19a(zk, en, 7, &) — F (21|13
k=1

Taking full expectation and using[18] (¢ = 2),[31]and[8] we have

D2
VElesaa(Zy)] < W?Jrzmy?n, 2L5D;3

2A? A
—|—24f}/2 (n2L27-2 + nT2 ) =+ 12’)/ (nLT + nT> D2

" no?
+20072 (ma: [IF(=*)3] + T)

G Proof of Theorem 3

Theorem G.1. By Algorithm@ under assumption 1, 2, 3 with Mixed oracle g¢ andy < !/2, we get
2

D 2 oA
E[esaa(Zn)] < W+2D <\/n_xL27+ V1 )
2nxA2>

7_

+97y (02 +n, L3T* + (40)
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Proof of (40): We begin with andtaking z = 2, 9 = Y7 (2k, €k, T, &k)s 9172 = VG5 (Zkt1/25 Cht1/25 Ts Er1/2)
then 2120 = Zg11/2, 21 = Zk41 and we get

7<§f(zk+1/2> Cht1/2, T Srriy2 ), Zk+1/2 — w)
< ‘/Zk (U’) - V;«’k+1 (U) - ‘/Zk (Zk+l/2)

2
T~ ~
+5||gf(2k+1/27 €kr1/2, T Ekvrj2) — G (2 e, 7, &)1

(i)
< ‘/;k (u) - ‘/;k+l (U) - ‘/Zk<zk+1/2)
37?2 )
+7||F(Zk+1/2) — F(z)ll;
RO )
+7||9f(2k+1/27 €k+1/2, T, §k+1/2) - F(Zkﬂ/z)Hq

37% - 2
"’THQf(Zka er, 75 &k) — F(zn)ll;
With (8) it gives

7<§f(2k+1/2,6k+1/2,7, k172 )7Zk+1/2_u>

< ‘/Zk <u> - Vzk+1 (u) - Vzk (Zk+1/2)
3722
+ 72 26172 — 2&ll5
372

+7”§f(zk+l/27 €k+1/2, T, fk+1/2) - F(Zk+1/2)||3
3y
+7||gf(zk7 €k, T, gk) - F(Zk)HZ

Applying the property: V., (zi+1/2) > /2| zk41/2 — 2l|* > V2| 21412 — 2|3, with v < 1/2L, we get

7<§f(zk+1/27 €k+1/2, T, £k+1/2)7 Zk+1/2 — u) <V, (u) — Vz;m(u)

3
2

32

+T||9f(2k, ex, 7, &) — F(2)|[2-

1197 (21172, €hs1/2: T 1 y2) — F(zrsrs2)|I2

Taking the full expectation and using (20), (21) with (6):
E [7<F(zk+1/2)7 Rk+1/2 — U” < E [‘/Zk (u)] —-E I:‘/ZkJrl (u)}
2N, A
+2 (\/nngT + :_L ) D,
anAQ)

T2

+342 (302 + 3n, Lo +

It remains to sum up from k& = 0 to kK = N and use[31]and finish the proof of this theorem.
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