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Abstract

Consistent boundary conditions for electrochemical interfaces, which cover
double layer charging, pseudo-capacitive effects and transfer reactions, are of high
demand in electrochemistry and adjacent disciplines. Mathematical modeling and
optimization of electrochemical systems is a strongly emerging approach to reduce
cost and increase efficiency of super-capacitors, batteries, fuel cells, and electro-
catalysis. However, many mathematical models which are used to describe such
systems lack a real predictive value. Origin of this shortcoming is the usage of
oversimplified boundary conditions. In this work we derive the boundary conditions
for some general electrode-electrolyte interface based on non-equilibrium thermo-
dynamics for volumes and surfaces. The resulting equations are widely applicable
and cover also tangential transport. The general framework is then applied to a
specific material model which allows the deduction of a current-voltage relation
and thus a comparison to experimental data. Some simplified 1D examples show
the range of applicability of the new approach.
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metal/electrolyte interface is determined by the work
function at a metal/vacuum interface (Φ) and the change
in the surface potentials of the metal (δ"M) and the solvent
(δ"S) upon their interaction (eq 1):

A detailed comparison of published data for Epzc and
the work function of Ag single-crystal planes has been
made by Trasatti.16 The dependence of Epzc on the work
function is linear with a slope close to 1. This suggests
that, despite some differences in the “interfacial param-
eter” δ"M - δ"S between the Ag planes (see discussion in
ref 16), the shift of Epzc with Ag atomic density is dominated
by the work function. Therefore, the coincidence of the
peak positions on the RPS indicates that the onset of OH-

adsorption on Ag is directly related to the work function
of the surface.

Although the positions of the voltammetric peaks for
low index silver planes on the rational scale are remark-
ably similar, the shapes of these sets of peaks are different
for each surface. The peaks labeled A of the (111) and
(100) surfaces are broader with a longer tail toward
positive potentials than those of the (110) surface. The set

of peaks labeled B of the (111) surface are characterized
by a sharp rise in current, followed by a sharp pair of
peaks. In contrast, the (110) current rises much more
gradually from the onset with a more rounded peak, and
the (100) behavior is somewhere between the two. The
sharp spikes in the CV of Ag(111) at ∼0.78 V (RPS), which
were previously attributed to the phase transition from
a disordered oxygen adlayer to an ordered surface oxide
phase,11a are absent in the CVs of the Ag(110) and (100)
planes. To gain insight into the different shapes of the
CVs, we compare the charge passed during the potential
scan. The total charge density transferred through the
metal/electrolyte interface (σM) was calculated for each
crystal by integrating each CV and correcting for the
respective charge densities at the potential of the onset
of adsorption. The onset potentials were determined by
comparing the CVs with those obtained in 0.1 M NaF (not
shown). The charge density curves in 0.1 M NaF were
determined using literature values of the respective pzc’s
in 0.1 M NaF.4a,b,d,g The charge density curves for the three
electrode surfaces in the hydroxide-containing electrolytes
are displayed in Figure 2a. At potentials negative of the
pzc, the curves of the three surfaces coincide. Although
adsorption of OH- takes place in this potential range, the
values of the charge density are small until the onset of
the first current peaks. At the potential of the anodic peak
labeled A, the total charge density of the (110) surface
increases more gradually with potential than that of the
other two surfaces, reflecting the shape of the CV. At more
positive potentials, the σM values for the (111) and (100)
surfaces also diverge. This can be explained by normalizing
for the atomic density of the three different crystal planes.
Assuming surface atomic densities of 1.38 × 1015, 1.201
× 1015, and 8.5 × 1014 atoms cm-2 for the Ag(111), (100),
and (110) planes, respectively, the curves of fractional
charge per atom were obtained and are displayed in Figure
2b. These curves can be related to the coverage of the
adsorbed hydroxide ions, provided the charge of the diffuse
layer is close to zero and that charge transfer between the
OH- adsorbate and the silver surface does not take place.
In Figure 2b, the three curves, particularly those of the
(111) and (100) planes, are strikingly similar. We thus
infer that the differences in OH- chemisorption on Ag
single-crystal planes are related to the different (i) work
functions and (ii) atomic densities for these surfaces. It
is likely, however, that the surface corrugation potential
is also of importance; this will be discussed below.

We now consider the pair of peaks labeled B in the CVs.
Comparison of the CVs in OH- and halide-containing
electrolytes proves their marked difference in the potential
interval of this pair of peaks. As pointed out in the
Introduction, for halides, the peaks are rather sharp, of
small charge, and typical of disorder-order transitions.
This is different for OH-, where the second pair of peaks
obviously corresponds to a different surface process. In
this potential region, ex situ XPS data suggest formation
of submonolayer Ag2Osurf oxide, which was detected by
the characteristic O1s and Ag3d5/2 peaks at 528.2 ( 0.2
and 367.7 eV, respectively.11a Transformation of the
hydroxide into the surface oxide adlayer presumably
occurs according to the following reaction (eq 2):

Since a reaction between two anions must be hindered
by their repulsive interaction, reaction 2 is likely to proceed
in two steps: (2a) discharge of OHads

- and (2b) interaction(16) Trasatti, S. J. Electroanal. Chem. 1992, 329, 237.

Figure 3. Cyclic voltammetry of (a) Ag(111), (b) Ag(110), and
(c) Ag(100) in contact with 0.09 M NaF + 0.01 M NaOH with
an extended anodic potential limit.

Figure 4. Cyclic voltammetry of UHV-prepared Ag(111)
(dotted line), Ag(110) (solid line), and Ag(100) (dashed line) in
5 mM NaF+ 1 mM NaOH, plotted on a rational potential scale.
For comparison, the CV of Ag(110) in the same solution but
prepared by etching and flame annealing is also plotted (dash-
dotted line).

Epzc )
Φ
e + δ"M - δ"S (1)

2OHads
- + 2Ag f Ag2Osurf + H2O + 2e- (2)
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(a) Cyclic voltammetry of UHV-prepared
Ag(111) (dotted line), Ag(110) (solid line),
and Ag(100) (dashed line) in 5 mM NaF +
1 mM NaOH . (Fig 4. of Ref [9])

HBE of Pt in buffer solutions with pH from 0 to 13. Unlike the
HOR/HER results obtained in unbuffered electrolytes, where the
reaction kinetics is concealed by the surface pH swing, the HOR/
HER activities in buffered electrolytes clearly show a pH-depen-
dent behaviour. To reveal the potential principle that governs the
pH-dependent HOR/HER activities, surface properties of Pt,
especially HBE values, have been examined under the same
electrochemical conditions using cyclic voltammetry. Figure 3a
shows the CVs of Pt in selected buffered electrolytes with solution
pH ranging from 0 to 13 (see Supplementary Fig. 1 insets for the
CVs of Pt in all investigated electrolytes). All of the CVs show
well-defined i–E features of Pt including hydrogen adsorption/
desorption (HUPD) below B0.5 V versus reversible hydrogen
electrode (RHE), OH anion adsorption/desorption above B0.6 V
and a double layer region in between29. The peak at lower
potential in the HUPD region corresponds to the H adsorption/
desorption at the Pt(110) surface region (weakly bonded H), and
the one at higher potential relates to the same process at Pt(100)
(strongly bonded H)29,30. Both peaks shift positively by B0.15 V
when the solution pH changes from 0 to 13. As adsorption/
desorption peak potential (Epeak) directly reflects the HBE of Pt as
in ! FEpeak¼DH (ref. 31) (see ref. 31 and Supplementary Note 2

for derivation), the linear relationship between the HBE values
(Epeak’s taken from CVs collected in various buffer solutions) and
the solution pH suggests that the HBE increases with increasing
pH (Fig. 3b). The slopes are roughly ! 10 meV per pH for
Pt(110) and ! 8 meV per pH for Pt(100), in good agreement with
Koper’s studies performed in all phosphate buffer solutions with
pH from 2 to 12 (refs 30,32). Note that the H desorption peaks on
Pt(100) in strong acids, especially HClO4 are usually very broad,
leading to the difficulty in determining the precise adsorption
energy. The slope is determined to be ! 12 meV per pH without
the data in strong acids. It is noted that the HBE versus pH
relation in our study is slightly more scattering compared with
similar study performed in all phosphate buffer solutions30,32. To
examine the potential anion effects on the HBE, CVs have been
taken in 0.1 M KOH solution with the addition of KClO4 and
K2SO4 salts, because ClO4

! is known as a non-adsorbing anion,
while SO4

2! is a known strongly adsorbing anion, and the
addition of these salts does not change the solution pH.
Supplementary Fig. 3 shows that addition of SO4

2! slightly
changes the HBE of Pt (110) in 0.1 M KOH by less than 10 meV,
while ClO4

! has no influence on the HBE. However, this small
shift is negligible compared with the pH effect that can cause as
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Figure 2 | HER on Pt in a full range of solution pH. (a) Steady state
positive-going sweeps of HER polarization curves of Pt collected in selected
H2-saturated buffered electrolytes. The sweep rate is 10 mVs! 1 and the
rotating speed is 1,600 r.p.m. The polarization curves have been corrected
for solution resistance. (b) Overpotential of the HER of Pt at a current
density of ! 1 mA cm! 2

disk in all pH-buffered electrolytes. Error bars are
s.d. of at least two sets of experimental repeats.
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(b) CVs of Pt(110) electrodes in contact with
various aqueous electrolytes at a sweep rate
of 50 mV/s (Fig. 3.a from Ref. [10])

Figure 1: Representative CVs for which no satisfactory theoretical model is available.

1 Introduction

Consistent boundary conditions for electrochemical interfaces are a key feature for a
model based understanding of cyclic voltammetry, one of the main characterization
methods in electrochemistry [1–5]. Even though many models exits to simulate cyclic
voltammetry [6–8], but they lack some general fundament and have many shortcomings.
In addition, a consistent coupling between the so called capacitive current charging the
electrochemical double layer and the Faradaic current of some charge transfer reactions
is yet outstanding. Up to date there is hence no model framework available which is able
to predict complex CVs such as Fig. 1a and 1b.
This work uses the model framework of non-equilibrium thermodynamics an applies it in a
general way to an electrode/electrolyte interface. The resulting boundary conditions can
be applied to metal-electrolyte, liquid-liquid, intercalation electrode-electrolyte interfaces
and many more.

2 Thermodynamic modeling

2.1 Domain and Species

We consider an electrolytic mixture ΩE with species Aα, α ∈ IE, an electrode ΩM with
species Aα, α ∈ IM, and the electrode surface Σ with species/adsorbates A

s
α, α ∈ IS.

The volume phases ΩE,M are modeled with volumetric species densities nα /mol L−1 ,
where mα denotes the molar mass and e0zα the charge of the constituent Aα. The free
charge density of each phase is denoted by qi = e0

∑
α∈Ii zαnα and the mass density

4



ρi = ∑
α∈Iimαnα, i = E, M. We denote with

IEM = (IE ∪ IM) . (1)

the set of all electrolyte and electrode constituents.
The surface Σ is described in terms of surface densities n

s
α /mol cm−2 with charge num-

ber z
s
α of each adsorbate A

s
α, α ∈ IS, and the surface charge density is q

s
= ∑

α∈IS e0z
s
α.

Note that there can be far more constituent present on the surface than in the volume
phases. We denote thus with

IeS = IS\(IE ∪ IM) (2)

the species which are exclusively present on the surface.
The modeling procedure is based on the general framework of coupled non-equilibrium
thermo-electrodynamics for volume and surface phases [11–14].

2.2 Chemical potentials

The chemical potentials of the constituent Aα, α ∈ IEM and A
s
α, α ∈ IS are derived

based on some explicit free energy functions which describe the specific material. Within
the theory of coupled volume and surface thermodynamics, independent free energy
densities of the volume, i.e. ρψ, and the surface, ψ

s
, arise. The derivation of these free

energy functions is not scope of this work, and the detailed derivation is given in [15].
The chemical potentials of some constituent Aα in the volume and on the surface are
given by

µα = ∂ρψ

∂nα
and µ

s
α =

∂ψ
s

∂n
s
α

. (3)

Since we want to derive first rather general, material independent results in order to
ensure applicability of the model for various electrochemical interfaces, e.g.

� metal/electrolyte,

� liquid/liquid

� metal/solid electrolyte,

� intercalation electrode/electrolyte,

� liquid metal/solid electrolyte,

we do not yet specify the explicit material functions of the phases ΩE, ΩM and Σ. Explicit
examples are given in section 5.
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2.3 Double layer

Adjacent to the surface Σ, two boundary or space charge layers ΩBL
M and ΩBL

E form
[15], which build together with Σ the so called double layer [16]. This can be used to
decompose the overall electrochemical interface in a handsome way.
We discuss briefly some aspects about coordinate transformations in the double layer
regions which are necessary to proceed with the derivation. For x ∈ ΩBL

i and x
s
∈ Σ we

have the representations

x = xex + yey + zez and x
s

= vbv + wbw = x
s
(v, w) (4)

where ei are the cartesian coordinates and bi curvilinear covariant basis vectors of Σ.
Consider now

x = x
s

+ u · bu = x(u, v, w) (5)

with

bu = E
< E,E >

. (6)

This is actually the construction of a curvilinear coordinate system which follows the
electric field lines. We have thus a parametrization of ΩBL

i in terms of (u, v, w) with
covariant basis vectors (bu,bv,bw). Next, consider the curve

γ(u′) = x(u′; v, w) u′ ∈ [0, u] (7)

for fixed values of (v, w). Obviously this curve follows the electric field lines and we have

∂

∂u
γ = E

< E,E >
. (8)

The electrostatic potential ϕ at some point x ∈ ΩBL
i can be traced back to x

s
(v, w) on

the surface along the curve γ, i.e.

ϕ(x)− ϕ
s
(v, w) =

ˆ
γ

E · ds =
uˆ

0

E · E
< E,E >

du′ =
uˆ

0

1 du′ = u . (9)

This shows that the third coordinate u of the curvilinear coordinate system (u, v, w)
is actually the potential distance along γ to the surface potential. Note that electric
field obeys with respect to the covariant basis the representations E = Eu · bu and
E = ∇ϕ = (∂uϕ)bu, whereby ||E|| = |Eu|. The arc-length of γ can be computed from

len(γ) =
ˆ
γ

1 ds =
uˆ

0

1
|Eu|

du′ , (10)
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which shows that this approach only makes sense as long as the electric field does not
vanish. Since within the space charge layer we have per definition qi 6= 0, the Poisson
equation div ε0(1 +χ)E = qi states a non-vanishing electric field whereby this approach
is valid.
Note that for a fixed value u = UBL

i equation (5) defines a hyper-surface ΣBL
i parallel

to Σ, i.e. x(UBL
i ; v, w) =: x

s

BL
i (v, w). Per definition Σ and ΣBL

i never intersect and are in
some sense parallel, however, with respect to the potential distance and not necessary
with respect to the distance along the normal vector of Σ.
If the surface potential is constant with respect to (v, w), ϕ(x

s
) = ϕ

s
is actually a

parametrization of Σ and thus
∇ϕ
||∇ϕ||

∣∣∣
x
s

= n (11)

a normal vector of Σ. In this case ΣBL
i is indeed a family of parallel surfaces. It is to

emphasize that a special type of microscope actually uses this strategy to map a metal
surface without touching it, i.e. the electrochemical force microscope [17].
This allows us to decompose the metal-electrolyte interface domain Ω = ΩM ∪ Σ ∪ ΩE
into

Ω = ΩM ∪ Σ ∪ ΩE = Ω∗M ∪ ΩBL
M ∪ Σ ∪ ΩBL

E︸ ︷︷ ︸
=:ΣDL

∪Ω∗E , (12)

where Ω∗i are electro-neutral domains (i.e. qi = 0). xi denote bulk points in each phase
Ω∗i , i = E, M, i.e. far away from the metal surface. An evaluation of nα at the parallel-
surface ΣBL

i is frequently used and denoted by

nα
∣∣∣BL

i
= nα

∣∣∣
x∈ΣBL

i

= nα
∣∣∣BL

i
(v, w), i = E, M , (13)

where an evaluation at some bulk point xi far away from the the interface ΣDL is denoted
by nα

∣∣∣
xi

= niα, i = E, M.

2.4 Balance equations

Consider a species density nα(x, t), α ∈ Ii, i = E, M which satisfies a balance equation
∂nα
∂t

= −div (nαv + Jα) + rα x ∈ Ωi, (14)

where Jα is the diffusional flux, v the barycentric velocity and rα the volumetric reac-
tion rate of constituent Aα.This balance equation is subject to the boundary boundary
condition (or surface balance)1

∂n
s
α

∂t
= − div

s
(n
s
αw + J

s
α) + 2kMwnn

s
α ±

(
Jα + nα(v−w)

)
· n
∣∣∣
Σ

+ r
s
α , (15)

1Note that we assume here that a constituent Aα is either present in ΩM, or in ΩE, but not in both
phases. Even though, e.g. a ion can be present in both phases, it is present in different states and thus
distinguishable in terms of its species density, whereby we would have two balance equations.
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Figure 2: Sketch of the double layer forming at an interface between two charged domains
ΩM and ΩE.

where n
s
α(x

s
, t) denotes the surface density, J

s
α the tangential surface flux, div

s
the sur-

face divergence, r
s
α the surface reaction rate, kM the mean curvature and wn the normal

velocity of the surface velocity w. By convention, the + sign in (15) holds for ΩE and
the − sign for ΩM.

The barycentric velocity v and the surface velocity w are determined from the respective
momentum balances and we refer to [18] for detailed discussions. However, for the scope
of this work we assume mechanical equilibrium [19]

div (σ) = 0 and [[σ]]n = −2kMγ
s
n−∇

s
γ
s

(16)

and a surface at rest, i.e. w = 0. However, several aspects of the further derivation still
hold for mechanical non-equilibrium by some careful re-derivation. σ denotes the total
stress tensor and γ

s
is the surface tension of the surface Σ. The double bracket denotes

the jump at the interface. The total stress is given by

σ = −(pId + π) + (1 + χ)ε0
(
E⊗ E− 1

2 < E,E > ·Id
)
, (17)

where the contribution of the electric field is called Maxwell stress [20] and π the viscous
stress tensor. Viscous effects or more complex surface stress tensors can of course be
included.
Note, however, that even in mechanical equilibrium v is necessarily zero. But is not
determined anymore from the momentum balance, as we shall see later. It is thus con-
venient for the further derivation to consider the balance equations in terms of the net
flux

jα = nαv + Jα with
∑
α∈Ii

jα = nv i = E, M , (18)

since we obtain the boundary conditions for these fluxes.
The decomposition of Ωi = Ω∗i ∪ΩBL

i allows us to integrate (14) along the curve γ from
x
s
(v, w) to x

s

BL
i (v, w), i.e. to derive a surface balance equation from the thin boundary

8



layer part of the balance equation (14). This strategy was in detailed explained and
derived by Grauel 1988 [21, 22], however, for parallel surfaces. But it applies straight
forward to the constructed family of potential-parallel surfaces ΣBL

i .
Following the derivation of Grauel we obtain

∂nBL
α

∂t
= − div

s
JBL
α + rBL

α (19)

± jα · n
∣∣∣BL

i
∓ jα · n

∣∣∣
Σ

(20)

for a thin boundary layer, with

nBL
α =

ˆ
γ

nα ds , JBL
α =

ˆ
γ

JBL
α ds and rBL

α =
ˆ
γ

rα ds . (21)

Combing (15) and (19) gives the double layer balance equation

∓ jα · n
∣∣∣BL

i
= −∂n

DL
α

∂t
− div

s
JDL
α + rDL

α (22)

with

nDL
α = nBL

α + n
s
α , JDL

α = J
s
α + JBL

α and rDL
α = rBL

α + r
s
α (23)

Note that (22) are actually the (flux) boundary condition at ΣDL for the balance equation
(14) in electro-neutral domains Ω∗i , i = E, M. This is a crucial aspect, since we shifted
the double layer contribution in the balance equations (14) into the new boundary
condition (22). Equation (22) represent the most general type of boundary condition
for an electro-neutral domain and covers all double layer charging effect as well as
charge transfer reactions (i.e. Butler–Volmer-like expressions), as we see in the following
sections.
Even though the definitions of nBL

α and JBL
α seem to be inconvenient, it actually turns

out that one is able to determine analytical expressions of the resulting integrals when
the double layer is in equilibrium along the curve γ.
Note that the exclusive surface species α ∈ IeS are subject to the surface balance equa-
tions

∂n
s
α

∂t
= − div

s
J
s
α + r

s
α (24)

Summarizing, we consider thus volume balance equations in the two electro-neutral
domains Ω∗E and Ω∗M and surface balance equations on the thin interface ΣDL, which
covers the electrolyte and metal boundary layers as well as the actual metal surface.
In order to proceed with the derivation, we have to specify the surface reactions occurring
on the metal surface Σ.

9



2.5 Reactions

Goal of this section is to derive explicit representations of the surface reaction rates r
s
α

in the balance equations (22) and (24). We consider four general types of reactions:

� Dissociation, which occurs only within a single phase, i.e.∑
α∈IE\{β}

να,βAα 
 Aβ β ∈ Idi , i = E, M . (25)

The reactions (25) define implicitly the species set Idi of dissociative reaction
products, e.g. H+ + OH− −−⇀↽−− H2O with H2O ∈ IdE .

� Adsorption, which is considered as the diffusion or jump process from a point
x→ x

s
onto the the metal surface Σ, i.e.

Aα −−⇀↽−− A
s
α , α ∈ IE ∪ IM . (26)

� Surface reactions, which are of general kind∑
α∈IE

ν ′α,βA
s
α +

∑
α∈IM

ν ′α,βA
s
α 
 A

s
β ∀β ∈ IeS (27)

Note that (27) serves actually to define implicitly the index set IeS of the exclusive
surface constituent. Consider, for example, the species H+ in the electrolyte phase
ΩE and e− in the electrode ΩM. If atomic hydrogen H is not present in either
of the bulk phases, but only on the surface as adsorbed H

s
, we have the surface

reaction H+
s

+ e−
s

−−⇀↽−− H
s
with H

s
∈ IeS .

� Transfer reactions, which can be considered as surface reactions where the reac-
tion product is present in either of the adjacent phases Ω∗E or Ω∗M . We can therefore
write ∑

α∈IE\{β}
ν ′α,βA

s
α +

∑
α∈IM

ν ′α,βA
s
α 
 A

s
β ∀β ∈ IrE (28)

∑
α∈IE

ν ′α,βA
s
α +

∑
α∈IM\{β}

ν ′α,βA
s
α 
 A

s
β ∀β ∈ IrM (29)

Note that (28) and (28) actually serve to determine implicitly the subsets IrE and
IrM of the reactive species, with IrEM = IrE ∪IrM . For example, if we consider H2 to
be also a species present in the electrolyte phase as dissolved gas species, we have
2 H+
s

+ 2 e−
s

−−⇀↽−− H2
s

as transfer reaction with H2 ∈ IrE .

3 Equilibrium assumptions and consequences

For the further derivation it is quite useful to simplify the model based on some plausible
thermodynamic equilibrium assumptions.
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3.1 Double layer in equilibrium

Throughout this work we assume that the space charge layers ΩBL
E and ΩBL

M adjacent to
the metal surface Σ are in thermodynamic equilibrium along the arc γ. This assumption is
justified by matched asymptotic methods [23] when the boundary layer is thin compared
to the electro-neutral domains Ω∗E and Ω∗M. The equilibrium conditions read

∂u(µα + e0zαϕ) · bu = 0 α ∈ Ii , i = E, M . (30)

Integration along the family of curves γ gives

µα
∣∣∣BL

i
+ e0zαU

BL
i = µα

∣∣∣
x
s
∈Σ

α ∈ Ii , i = E, M (31)

with

UBL
i = ϕ

s
− ϕ

∣∣∣
x
s

BL
i

(v, w) ∈ S . (32)

Note that this condition holds for every (v, w) ∈ S.
The equilibrium conditions (31) lead also to explicit representations of the boundary
layer variables nBL

α . Reconsider the definition of nBL
α , i.e.

nBL
α =

ˆ
γ

nα ds . (33)

Inserting the parametrization of γ gives

nBL
α =

UBL
iˆ

0

nα
1
|Eu|

du . (34)

It is to emphasize that the units of the integration in (34) is actually V. But due to the
substitution of γ, the term 1

|Eu| arises with units mV−1, which thus gives indeed units
of molm−2 for nBL

α . Hence, in order to perform actually the integration of (34), we seek
expressions

nα = n̂α(u) and Eu = Êu(u) , (35)

where u is the coordinate of the curvilinear base vector bu. This the real importance
of the substitution in (34) and the introduction of the curvilinear coordinate system in
the space charge layer. Surprisingly, it is indeed possible to find such representations
for some explicit material functions of µα. We provide representations of representative
materials (incompressible liquid electrolyte, metal electrode, intercalation electrode) in
section 5.1 and proceed meanwhile with the general representation nBL

α = n̂BL
α (UBL

i ), α ∈
Ii , i = E, M.
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3.2 Reactions

3.2.1 Dissociation

The dissociation reactions (25) are assumed to be in equilibrium throughout this work.
This entails the equilibrium condition∑

α∈IE\{β}
να,βµα = µβ , (36)

for the index set Idi of the dissociation reaction products in Ωi, i = E, M. Note that this
does not necessarily entail complete dissociation but rather computes the concentration
of some constituent, e.g. the H+ and OH− concentration (or pH-value) due to the
auto-protolytic reaction H+ + OH− −−⇀↽−− H2O .

3.2.2 Adsorption

Throughout this work we assume that the adsorption process is always in equilibrium,
which entails the condition

µα
∣∣∣
x
s
∈Σ

= µ
s
α , α ∈ IE ∪ IM . (37)

However, since we assume that the boundary layers are also in equilibrium, we can trace
back the chemical potential µα at Σ along the curve γ to the the point x

s

BL
i and obtain

µα
∣∣∣BL

i
+ e0zαU

BL
i = µ

s
α (v, w) ∈ S . (38)

This describes actually the superposition of adsorption and diffusion through the bound-
ary layer. In order to emphasize this we employ the typeface

Aα

∣∣∣BL

i
−−⇀↽−− A

s
α , α ∈ Ii, i = E, M, (39)

for this process.
Quite similar to the boundary layer it is possible to obtain explicit representations of n

s
α

in terms of UBL
i based on material functions of µ

s
α. Explicit representations are given

in section 5.1 and we proceed the discussion with the general representation n
s
α =

n̂
s
α(UBL

i ), α ∈ Ii, i = E, M.

3.2.3 Surface reactions

Since we assume that the diffusion of the constituents Aα, α ∈ Ii , i = E, M through
the corresponding boundary layers and the subsequent adsorption are in equilibrium, we
can rewrite (27) as∑

α∈IE

να,βAα

∣∣∣BL

E
+
∑
α∈IM

να,βAα

∣∣∣BL

M

 A

s
β ∀β ∈ IeS , (40)
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where the typeface Aα

∣∣∣BL

E
and Aα

∣∣∣BL

M
emphasizes this aspect. The reaction rate of this

net reaction is denoted by R
s

S
β . Possible reactions are, for example, adsorption with

subsequent de-solvation or partial charge transfer [15, 24].
We assume that all net surface reactions which can be written as (40) are in thermody-
namic equilibrium, which provides the condition

∑
α∈IE

να,β(µα
∣∣∣BL

E
+ e0zαU

BL
E ) +

∑
α∈IM

να,β(µα
∣∣∣BL

M
+ e0zαU

BL
M ) = µ

s
β β ∈ IeS . (41)

Note that the charge number of A
s
β is

∑
α∈IE

να,βzα +
∑
α∈IM

να,βzα = z
s
β (42)

in order to ensure the electroneutrality condition of the reaction (27).
For the adsorbates A

s
β we provide explicit material functions µ

s
β in section B which lead

to representation n
s
β = n̂

s
β(UBL

E , UBL
M ), β ∈ IeS .

3.2.4 Transfer reactions

The equilibrium condition of diffusion through the double layer, adsorption and subse-
quent surface reactions allows us to rewrite the general transfer reactions (28) and (29)
as net reactions ∑

α∈IEM\{β}
να,βAα

∣∣∣BL

E

 Aβ

∣∣∣BL

E
β ∈ IrEM , (43)

with reaction rate RT
β and index set IrEMIrE ∪IrM of all reactive species. Possible examples

of transfer reactions are

� 2 H+|E + 2 e−|M −−⇀↽−− H2|E (hydrogen evolution)

� Cu+|M−e−|M −−⇀↽−− Cu+
2 |E (metal deposition/dissolution)

� Na+|E −−⇀↽−− Na+|M (dissolution in Hg)

� Fe+
3 |E + e−|M −−⇀↽−− Fe+

2 |E (Redox shuttle)

� Li+|E + e−|M −−⇀↽−− Li|M (intercalation).

The metal and electrolyte species which are not a reaction product of a transfer reaction
are denoted by

I ′E = IE\IrE and I ′M = IM\IrM , with I ′EM = I ′E ∪ I ′M . (44)

13



For the charge numbers of the involved constituents we have the condition∑
α∈IEM\β

να,βzα = zβ β ∈ IrEM . (45)

Transfer reactions are not assumed to be in equilibrium throughout this work. The
equilibrium condition of (43) (for β ∈ Iri , i = E, M)

∑
α∈IE

να,β(µα
∣∣∣BL

E
+ e0zαU

BL
E ) +

∑
α∈IM

να,β(µα
∣∣∣BL

M
+ e0zαU

BL
M ) != µβ

∣∣∣BL

i
+ e0zαU

BL
i , (46)

would imply constant values of UBL
E and UBL

M . Since we seek to vary the potential UBL
E

(i.e. potentiometry), as we show in the next sections, this is untenable.
However, surface thermodynamics dictates that the reaction rates RT

β of the transfer
reactions (43) are related to (46) [25] via (for β ∈ Iri , i = E, M)

RT
β = LTβ ·

e
αβ
kBT

( ∑
α∈IE

να,β(µα|BL
E +e0zαUBL

E )+
∑
α∈IM

να,β(µα|BL
M +e0zαUBL

M )−µβ |BL
i −e0zαUBL

i

)
(47)

− e
− (1−αβ)

kBT

( ∑
α∈IE

να,β(µα|BL
E +e0zαUBL

E )+
∑
α∈IM

να,β(µα|BL
M +e0zαUBL

M )−µβ |BL
i −e0zαUBL

i

)
with LTβ ≥ 0 for β ∈ IrEM. This is the most general form of a thermodynamically consistent
expression for a transfer reaction rate.

3.3 Boundary conditions

Base on the reaction rates of (40) and (43), the surface production rates r
s
α obey a

specific structure, i.e.

r
s
α =


−∑β∈IeS νβ,αR

S
β −

∑
β∈IrEM

νβ,αR
T
β , if α ∈ I ′EM

−∑β∈IeS νβ,αR
S
β +RT

α −
∑
β∈IrEM\{α} νβ,αR

T
β , if α ∈ IrEM

RS
α, if α ∈ IeS

(48)

Reinsertion of of the production rates in (22) and some calculations lead to the boundary
conditions (α ∈ Ii, i = E, M)

±jα · n
∣∣∣BL

i
= ∂nEff

α

∂t
+ div

s
JEff
α − rEff

α (49)
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with

nEff
α = nDL

α +
∑
β∈IeS

νβ,αn
s
β (50)

JEff
α = JDL

α +
∑
β∈IeS

νβ,αJ
s
β (51)

rEff
α =

rDL
α −

∑
β∈IrEM

νβ,αR
T
β , if α ∈ I ′EM

rDL
α +RT

α −
∑
β∈IrEM\{α} νβ,αR

T
β , if α ∈ IrEM

. (52)

The abbreviation Eff emphasizes that only the effective linear combinations (50)-(52)
arise in the boundary conditions (49).
Note that the (equilibrium) representations of n̂BL

α (UBL
i ), n̂

s
α(UBL

i ), α ∈ IEM and
n̂
s
β(UBL

E , UBL
M ), β ∈ IeS lead to the representations (α ∈ Ii, i, j = E, M, i 6= j)

±jα · n
∣∣∣BL

i
= CEff

α · dU
BL
i

dt
+ CPseu,j

α ·
dUBL

j

dt
+ div

s
JEff
α − rEff

α (53)

with

CEff
α = CBL

α + C
s
α + CPseu,i

α α ∈ Ii , i = E, M (54)

CBL
α = dnBL

α

dUBL
i

, C
s
α =

dn
s
α

dUBL
i

α ∈ Ii , i = E, M (55)

and CPseu,j
α := d

dUBL
j

 ∑
β∈IeS

νβ,αn
s
β

 α ∈ Ii , i, j = E, M . (56)

This are the most general boundary conditions for an electrochemical interface, includ-
ing double layer charging, pseudo-capacity effect, transfer reactions, tangential surface
diffusion, curvature effects.
The equations (131) are then the actual boundary conditions for the balance equations
(14) in the electro-neutral domains Ω∗i (i.e. with qi = 0 in Ωi , i = E, M). These boundary
conditions hold for each charged interface, however, are not solvable yet since the number
of unknowns is not equal to the number actual balance equations. In order to obtain
a closed equation system, we require explicit representations of CEff

α , CPseu
α , and rEff

α ,
which requires specified material functions µα and µ

s
α.

4 Current/Voltage relation

4.1 Measured Current

The electrode Ω∗M with boundary ∂ΩM = Σ∗M ∪ Σinert
M ∪ ΣBL

M is connected via the surface
Σ∗M to an ampere-meter. Hence, the measured current I /A corresponds to the flux of
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charge through Σ∗M, i.e.

I = −
ˆ

Σ∗M

jqM · dA. (57)

We assume that no current flows through the inert part of the electrode boundary, i.e.
jqM = 0 on Σinert

M . The global balance of qM reads

d

dt

ˆ

Ω∗M

qM dV = I +
ˆ

ΣBL
M

jqM · dA . (58)

Since qM = 0 in Ω∗M, we obtain with eq. (49)

I =
ˆ

ΣDL

∂

∂t

(
qDL

M + q
s

Pseu
M

)
− rEff

qM dA, (59)

where

qDL
M = e0

∑
α∈IM

zαn
DL
α , (60)

qPseu
M = e0

∑
α∈IM

zα
∑
β∈IeS

νβ,αn
s
β , (61)

rEff
qM = e0

∑
α∈IM

zαr
Eff
α . (62)

The electroneutrality condition of the whole double layer states

qDL
M + qDL

E + qeS = 0 with qeS = e0
∑
α∈IeS

z
s
αn
s
α (63)

and leads to

I =
ˆ

ΣDL

∂

∂t

(
qDL

E + qeS − q
s

Pseu
M

)
− rEff

qM dA (64)

Note that with eq. (42) we have

qeS − qPseu
M = e0

∑
α∈IeS

z
s
α −

∑
β∈IM

zβνα,β

n
s
α = e0

∑
α∈IeS

∑
β∈IE

zβνα,β

n
s
α = (65)

in order to ensure the electroneutrality of the surface reactions. The quantity∑
β∈IE

zβνα,β = zE
α , for α ∈ IeS , (66)

can be considered as the pseudo-charge of the adsorbates A
s
α, α ∈ IeS , since the con-

stituents incorporated in

qPseu
E = e0

∑
α∈IeS

zE
αns α (67)
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are not necessarily charged. The quantity

qEff
E := qDL

E + qPseu
E (68)

is then the effective electrolytic charge in the double layer and the measurable current
writes as

I =
ˆ

ΣDL

∂

∂t
qEff

E − rEff
qM dA . (69)

Due to the equilibrium representations n̂DL
α (UBL

E ), α ∈ IE and n̂
s
β(UBL

E , UBL
M ), β ∈ IeS (c.f.

section 3), the effective double layer charge qEff
E has a representation

qEff
E (UBL

E , UBL
M ) = qDL

E (UBL
E ) + qPseu

E (UBL
E , UBL

M ) . (70)

Hence we obtain

I =
ˆ

ΣDL

(
CEff

E (UBL
E ; v, w) · dU

BL
E

dt
+ CPseu,M

E (UBL
E , UBL

M ; v, w) · dU
BL
M

dt
− rEff

qM

)
dA . (71)

with

CEff
E = dqEff

E

dUBL
E

and CPseu,M
E = dqPseu

E

dUBL
M

. (72)

CEff
E is then the effective differential capacity of the interface and CPseu

E,M the metal-
lic pseudo-capacity. Note that due to the decomposition qEff

E = qBL
E + q

s
E + qPseu

E the
differential capacity CEff

E decomposes into

CEff
E = CBL

E + C
s

E + CPseu,E
E (73)

with boundary layer capacity CBL
E = dqBL

E
dUBL

E
, surface capacity C

s
E =

dq
s

E

dUBL
E
, and electrolytic

pseudo-capacity CPseu,E
E = dqPseu

E
dUBL

E
.

However, CPseu
E and CPseu

E,M are inherently different since CPseu
E,M vanishes when UBL

M =
const., which is for example the case for an ideal metal.

Next we discuss the reaction rate rEff
qM . Note that the term ∑

α∈IM zαr
DL
α vanishes due to

the electroneutrality condition of the dissociation reactions. Reinsertion of the definition
(52) and using eq. (45) gives, with

zM
β :=

∑
α∈IM

να,βzα , β ∈ IrE and zE
β :=

∑
α∈IE

να,βzα , β ∈ IrM , (74)

after some calculation (see appendix B)

rEff
qM = e0

∑
α∈IrM

zE
αR

T
α − e0

∑
α∈IrE

zM
αR

T
α . (75)
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The transfer reaction rates RT
α are given in eq. (47) with RT

α = R̂T
α(UBL

E , UBL
M ).

Since most experimental setups the current is normalized to the surface area AΣ of the
electrode, we obtain the final expression of the measurable current density

i = 1
AΣ

ˆ

ΣDL

(
CEff

E · dU
BL
E

dt
+ CPseu

E,M ·
dUBL

M

dt
− e0

∑
α∈IrM

zE
αR

T
α + e0

∑
α∈IrE

zM
αR

T
α

)
dA . (76)

Note that this relation is the actual measuring instruction for any comparison of a
continuum model to experimental data. It is the most general expression for a single
surface phase and covers adsorption effects, surface reactions and pseudo-capacitance,
as well as transfer reactions. In general it is the a posteriori relation to compute the
current for given (numerical) solutions of the state variables of the interface.

4.2 Measured potential

Yet we have introduced the boundary layer potential drops UBL
E and UBL

M of a single
electrochemical interface. However, there can arise additional potential drops in the
electro-neutral domains Ω∗E and Ω∗M, namely

ϕ
∣∣∣
Σ∗M
− ϕ

∣∣∣
ΣBL

M
= U∗M and ϕ

∣∣∣
Σ∗E
− ϕ

∣∣∣
ΣBL

E
= U∗E . (77)

The whole potential drop between the bulk metal and the bulk electrolyte is thus

ϕ
∣∣∣
Σ∗M
− ϕ

∣∣∣
Σ∗E

= U∗M + UBL
M + UBL

E + U∗E =: UM,E . (78)

In a three electrode setup, this is related to the measurable voltage E via [15]

E = U∗M + UBL
M + UBL

E + U∗E + UE,R , (79)

where UE,R covers the whole electrolyte-reference potential drop. However, it is a quite
common and valid assumption that UE,R is constant, which can be achieved experimen-
tally very precisely [26].

Experimentally it is only possible to vary E and not each individual potential drop of
eq. (79). However, there experimentally as well as theoretically there are some strategies
to overcome this problem. For example, if the conductivity of the bulk phases Ω∗E and
Ω∗M is very high, the potential drops U∗E and U∗M vanish.

5 Material functions

We restrict the further modeling procedure to an electrode/electrolyte interface with
specified material functions.
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5.1 Chemical potentials

5.1.1 Electrolyte

For the electrolyte phase, we rely on the free energy density ρψE given in [15] which
covers the entropy of mixing, solvation effects as well as the incompressibility of the
liquid mixture. The chemical potentials of the respective constituents are

µα = gRα + kBT ln yα + vRα (p− pE) α = 0, 1, . . . , NE, (80)

where gRα denotes the reference partial molar Gibbs energy, yα = nα
n

the mole fraction,
n = ∑N

α=0 nα the number density of mixing particles2, vRα the partial molar volume,
and p is the pressure. Note that the incompressibility of the liquid mixture implies the
constraint

n = 1∑N
α=0 v

R
α yα

. (81)

For the following derivation we assume that upon the equilibrium assumption of the
dissociation reactions the reaction rates rα (and thus also rDL

α ) vanish.

5.1.2 Electrode

The electrode is considered as a mixture of electrons e−, metal ions M, and additional
constituents IaM which can be dissolved in the metallic lattice (e.g. intercalated, solution
solution, etc.). For the electrons and the metal ions we rely on a Thomas–Fermi electron
gas with free energy density ρψM of [15], leading to representations

µM = ψRM + vRMpM + kBT ln aM and µe = h2

2me

( 3
8π

) 2
3
n

2
3
e , (82)

where vRM denotes the partial molar volume of the metal ions, pM the metal ion partial
pressure, ψRM the reference molar free energy, and aM the activity of the metal ions. The
incompressibility implies vRM = 1/nM .

For the additional species we write simply

µα = ψRα + kBT ln aα α ∈ IaM , (83)

where aα is the activity. If IaM = ∅ we have aM = 1. Various models for the activity and
thus the state of an ion or an intercalated species in a solid exits [13, 27–30] and can
be directly applied. However, for the further derivation we do not want to specify the
material model further.

2Note that due to the solvation effect not all solvent molecules participate in the entropy of mixing.
Since each ion binds κα solvent molecules, n0 actually denotes the free solvent molecules, while nt0 =
n0 +

∑N
α=1 καnα denotes the total number density of solvent in the mixture.
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5.1.3 Surface

For the electrode surface Σ we consider a surface free energy density ψ
s
which covers

surface solvation effects, surface incompressibility, entropy of mixing, and reference con-
tributions [15]. With the explicit representation of ψ

s
given in [15] we obtain the surface

chemical potentials

µ
s
α =


ψ
s

R
α + kBT ln y

s
α − ωαkBT ln y

s
V for α ∈ IS\{e−,M}

ψ
s

R
M + ωMkBT ln y

s
V − aRMγ

s

E for α = M

ψ
s

R
e = const. for α = e−.

(84)

The respective quantities are

� the number of surface vacancies

n
s
V = ωMn

s
M −

NS∑
α=0

ωαn
s
α , (85)

where ωα denotes the number of adsorption sites of A
s
α,

� the number of mixing particles

n
s

= n
s
V +

NS∑
α=0

n
s
α , (86)

� the surface fractions

y
s
α =

n
s
α

n
s

, α = 0, 1, . . . , NS, V , (87)

� the adsorbate surface tension γE,

� the partial molar area of the metal surface aRM ,

� and the constant electron surface chemical potential ψ
s

R
e .

The surface incompressibility implies quite similar to (81) the constraint

n
s
M = 1

aRM
⇔ aRV ns V +

NS∑
α=0

aRαns α = 1 (88)

with the partial molar areas

aRV = 1
ωM

aR
M and aRα = ωα

ωM
aR
M = ωαa

R
V . (89)
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5.2 Equilibrium representations and consequences

5.2.1 Electrolyte boundary layer

The equilibrium conditions (30) of the electrolytic boundary layer ΩBL
E lead to the repre-

sentations

yα = yα
∣∣∣BL

E
· e−

zαe0
kBT

u− vRα
kBT

p̂(u) = ŷα(u) (90)

where p̂(u) is obtained from the implicit equation system

g(u, p) =
∑
α∈IE

yα − 1 = 0 . (91)

Together with (81) we have thus a representation

n̂α(u) =
yα
∣∣∣BL

E
· e−

zαe0
kBT

u− vRα
kBT

p̂(u)

∑N
β=0 v

R
β · yβ

∣∣∣BL

E
· e−

zβe0
kBT

u−
vR
β

kBT
p(u)

, α ∈ IE . (92)

The coupled Poisson-momentum equation system

ε0div (1 + χ)E = qi and ∇p · bu = qiE · bu = qiEu (93)

leads to the representation [15]

Êu(u) = sgn(u)
√

2
ε0(1 + χE) p̂(u) . (94)

Hence we have the necessary representations n̂α(u) and Êu(u) stated in section 2.3 to
compute

nBL
α =

UBL
Eˆ

0

n̂α
1
|Eu|

du = n̂BL
α (UBL

E ) . (95)

However, since actually only derivatives of nBL
α with respect to UBL

E arise in the boundary
conditions (131), we obtain

CBL
α = dnBL

α

dUBL
E

= ŷα(UBL
E )∑

β∈IE v
R
β · ŷβ(UBL

E )

(
2

ε0(1 + χE) p̂(U
BL
E )
)− 1

2

. (96)

The boundary layer capacity (73) has then the representation

CBL
E = − sgn(ϕ− ϕE)

√√√√ε0(1 + χE)
2
(
p̂(UBL

E )
) · qE(UBL

E , p̂(UBL
E )) . (97)
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5.2.2 Electrode potential drop

The equilibrium adsorption condition for the electrons, namely µ
s
e = µe

∣∣∣BL

M
− e0U

BL
M ,

actually entails

UBL
M = const. (98)

since µ
s
e = const. This condition thus describes the metallic behavior of an electrode,

where UBL
M = const. implies that any excess charge on the electrode is excessively stored

on the surface in terms of surface electrons. We refer to [15] for a detail discussion on
this aspect. It is to emphasize, however, that for non-metallic/electrolyte interfaces UBL

M
is not necessarily a constant. The electro-neutrality condition along the arc γ gives then
some implicit equation F (UBL

E , UBL
M ) = 0 with which one could proceed. However, this

requires a careful derivation based on the equations stated above.
For our purpose here we proceed with the condition UBL

M = const.. In the boundary
condition (131) the term dUBL

M
dt

thus vanishes and CPseu,M
α does not contribute.

5.2.3 Adsorbates

The adsorption equilibrium conditions (38) for α ∈ IEM and surface reaction equilibrium
conditions (41) for the constituents A

s
α, α ∈ IeS lead to representations [15]

y
s
α = ŷα(UBL

E , γ
s

E) α ∈ IS (99)

n
s
α =

y
s
α

aRV yV +∑
β∈IS a

R
β y
s
β

α ∈ IS (100)

together with the constraint

g
s
(UBL

E , γ
s

E) = yV +
∑
α∈IS

y
s
α − 1 = 0 (101)

which satisfies
dγ
s

E

dUBL
E

= q
s

S . (102)

This determines (for α ∈ IS)

C
s
α =

dn
s
α

dUE
=
∂n
s
α

∂UE
+ q

s
S
∂n
s
α

∂γ
s

E
(103)

= − e0

kBTaRV

fs 1 · f
s

4 − f
s

3 · f
s

2

(f
s

2)2 +
f
s

1

f
s

2

f
s

4 · f
s

2 − f
s

1 · f
s

5

(f
s

2)2

 = Ĉ
s
α(UBL

E ) (104)
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with the (dimensionless) abbreviations

f
s

1 := y
s
α , f

s
2 := y

s
V +

∑
α∈IS

ωαy
s
α , f

s
3 = zαyα (105)

f
s

4 = e0
∑
α∈IS

zα ωα y
s
α , f

s
5 = y

s
V +

∑
α∈IS

ω2
αy
s
α , (106)

and consequently

CPseu,E
α = d

dUBL
E

 ∑
β∈IeS

νβ,αn
s
β

 = ĈPseu,E
α (UBL

E ) . (107)

Note that this leads to explicit expressions of the surface capacity

C
s

E =
dq
s

E

dUBL
E

= e0
d

dUBL
E

∑
α∈IE

zαnα (108)

and the electrolytic pseudo-capacity

CPseu,E
E = dqPseu

E

dUBL
E

= e0
d

dUBL
E

∑
α∈IeS

zE
αnα . (109)

5.3 Reaction rates of transfer reactions

Based on the chemical potentials specified in the section 5.1 we can now also deduce
explicit representations of the reaction rates RT

β (eq. (47)) for the transfer reactions
(43).
However, some preliminary abbreviations are useful for the further derivation:

πβ
∣∣∣BL

E
:= 1

yβ
∣∣∣BL

E

∏
α∈IE\{α}

(
yα
∣∣∣BL

E

)να,β ∏
α∈IM\e−

(
aα
∣∣∣BL

M

)να,β
, β ∈ IrE (110)

πβ
∣∣∣BL

M
:= 1

aβ
∣∣∣BL

M

∏
α∈IE

(
yα
∣∣∣BL

E

)να,β ∏
α∈IM\{α,e−}

(
aα
∣∣∣BL

M

)να,β
, β ∈ IrM . (111)

Some auxiliary calculations then lead to the representations

RT
β = LTβ ·

(πβ∣∣∣BL

E

)αβ · e−αβ ·( ∆gT
β

kBT
+zM

β
e0
kBT

UBL
E )

−
(
πβ
∣∣∣BL

E

)−(1−αβ)
e(1−αβ)·(

∆gT
β

kBT
+zM

β
e0
kBT

UBL
E )
 = R̂T

β (UBL
E ) β ∈ IrE (112)

RT
β = LTβ ·

(πβ∣∣∣BL

M

)αβ · e−αβ ·( ∆gT
β

kBT
−zE

β
e0
kBT

UBL
E )

−
(
πβ
∣∣∣BL

M

)−(1−αβ)
e(1−αβ)·(

∆gT
β

kBT
−zE

β
e0
kBT

UBL
E )
 = R̂T

β (UBL
E ) β ∈ IrM (113)
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with

∆gTβ =


gRβ −

∑
α∈IEM\{β}

να,βg
R
α − e0z

M
βU

BL
M , for β ∈ IrE

gRβ −
∑

α∈IEM\{β}
να,βg

R
α + e0z

E
βU

BL
M for β ∈ IrM

. (114)

Note, however, that the incorporation of the boundary layer potential drop UBL
M in the

definition of ∆gTβ is only useful when UBL
M = const. For a semiconductor-electrolyte or

an electrolyte-electrolyte interface this is not necessarily the case.

5.4 Balance equations and boundary conditions

At this stage it is quite illustrative to briefly summarize the derivation and the general
results. We shifted the boundary layer contributions of the balance equations (14) into
the new boundary conditions (22) at ΣDL which gives the balance equations

∂nα
∂t

= −div (jα) + rα x ∈ Ω∗i , α ∈ Ii , i = E, M, (115)

in the electro-neutral domains Ω∗i . We have thus qi = 0 in Ω∗i which reduces the charge
balance to

div Jqi = 0 x ∈ Ω∗i . (116)

The boundary conditions at the interface ΣDL are, based on the specific material functions
of this section,

� for the Electrolyte species,

jα · n
∣∣∣BL

E
=

C
Eff
α · dU

BL
E
dt

+∑
β∈IrEM

νβ,αR
T
β + div

s
JEff
α α ∈ I ′E

CEff
α · dU

BL
E
dt
−RT

α +∑
β∈IrEM\{α} νβ,αR

T
β + div

s
JEff
α α ∈ IrE

(117)

� and for the Metal species,

−jα · n
∣∣∣BL

M
=

C
Pseu,E
α · dU

BL
E
dt

+∑
β∈IrEM

νβ,αR
T
β + div

s
JEff
α α ∈ I ′M

CPseu,E
α · dU

BL
E
dt
−RT

α +∑
β∈IrEM\{α} νβ,αR

T
β + div

s
JEff
α α ∈ IrM .

(118)

The incompressibility constraint∑
α∈IE

vRαnα = 1 and vRMnM = 1 (119)

can be used to obtain an equation for the barycentric velocity, namely
∑
α∈IE

vRα
∂nα
∂t

= −div v = 0 and vRM
∂nM
∂t

= −div v = 0 (120)
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Note that the boundary condition for the normal component of the barycentric velocity
is determined from

nv · n
∣∣∣BL

i
=
∑
α∈Ii

jα · n
∣∣∣BL

i
i = E, M . (121)

At the respective bulk surfaces Σ∗E and Σ∗M we fix the concentration of all species, i.e.

nα
∣∣∣
Σ∗i

= niα α ∈ Ii , i = E, M . (122)

5.5 Initial conditions

At the beginning of any experiment we want to prescribe a homogenous concentration
throughout the domains Ω∗i , i = E, M. We have thus the initial conditions

nα(x, 0) = niα x ∈ Ω∗i , α ∈ Ii , i = E, M, (123)

in order to be compatible to the boundary condition (122). Further we consider that no
tangential diffusional fluxes occur.
But what about the initial reaction conditions at the interface ΣDL ?
Let UBL

E (t = 0) = UBL,0
E be the applied potential difference at t = 0. We can evaluation

the π-functions (110) with the bulk concentrations niα, namely

πE
β := 1

yE
β

∏
α∈IE\{α}

(
yE
α

)να,β ∏
α∈IM\e−

(
aM
α

)να,β
β ∈ IrE , (124)

πM
β := 1

aM
β

∏
α∈IE

(
yE
α

)να,β ∏
α∈IM\{α,e−}

(
aM
α

)να,β
β ∈ IrM . (125)

Consider now the transfer reactions at time t = 0, i.e. for β ∈ Iri , i, j = E, M, i 6= j

RT
β

∣∣∣
UBL,0

E
= LTβ ·

(πiβ)αβ · e−αβ ·(
∆gT
β

kBT
+zj

β
e0
kBT

UBL,0
E )

− (πiβ)−(1−αβ)e(1−αβ)·(
∆gT
β

kBT
+zj

β
e0
kBT

UBL,0
E )

 =: RT,0
β . (126)

For given values of the ∆gTβ in eq. (112) these are in general not equal to zero and could
entail a huge flux at time t = 0 through the interface. This is actually the exchange
current density j0,T

α of the constituent Aα due to the transfer reactions, with

j0,T
α =


∑
β∈IrEM

νβ,αR
T,0
β , if α ∈ I ′EM

−RT,0
α +∑

β∈IrEM\{α} νβ,αR
T,0
β , if α ∈ IrEM .

(127)

We may thus re-define the total flux as

iα := jα − j0,T
α n (128)
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which satisfies the balance equation
∂nα
∂t

= −div iα + rα x ∈ Ω∗i , α ∈ Ii , i = E, M, (129)

and is subject to the boundary conditions

� Electrolyte species,

iα · n
∣∣∣BL

E
=


CEff
α · dU

BL
E
dt

+∑
β∈IrEM

νβ,α(RT
β −R

T,0
β ) + div

s
JEff
α α ∈ I ′E

CEff
α · dU

BL
E
dt

+∑
β∈IrEM\{α} νβ,α(RT

β −R
T,0
β )

−(RT
α −RT,0

α ) + div
s

JEff
α α ∈ IrE

(130)

� Metal species,

−iα · n
∣∣∣BL

M
=


CPseu,E
α · dU

BL
E
dt

+∑
β∈IrEM

νβ,α(RT
β −R

T,0
β ) + div

s
JEff
α α ∈ I ′M

CPseu,E
α · dU

BL
E
dt

+∑
β∈IrEM\{α} νβ,α(RT

β −R
T,0
β )

−(RT
α −RT,0

α ) + div
s

JEff
α α ∈ IrM .

(131)

This new total flux satisfies then the initial reaction conditions

iα · n
∣∣∣BL

E
= CEff

α · dU
BL
E

dt
α ∈ IE (132)

and

−iα · n
∣∣∣BL

M
= CPseu,E

α · dU
BL
E

dt
α ∈ IM . (133)

Note that this gives also rise to an transfer current density IT,0 as

iT,0 = e0
∑
α∈IrM

zE
αR

T,0
α − e0

∑
α∈IrE

zM
αR

T,0
α (134)

which can be computed from the above representations.

5.6 Flux relation

The most simple relation between the diffusional flux jα and the chemical potentials µα
in order to ensure a non-negative entropy production is [13, 31]

Jα = Dαnα
1

kBT
∇
(
µα −

mα

mi,0
µi,0 + e0zα −

mα

mi,0
zi,0)ϕ

)
α ∈ Ii\{Ai,0} , i = E, M,

(135)

where Ai,0 is some reference species of the respective phase, e.g. the solvent in a liquid
mixture or the lattice constituents in some solid.
A similar relation can be implied on the surface to relate the tangential surface flux J

s
α

to the surface chemical potentials µ
s
α. However, we in the following the
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6 Flat inert metal/electrolyte interface

In order to validate the general modeling procedure, we employ some meaningful as-
sumptions to simplify the overall equation system. We seek then to compute the current
density/voltage relation (i(t), E(t)) based on the preceding model.

6.1 Electrode

The metal ΩM is considered to consists only of two species, IM = {e−,M}, where the
metal M does not participate in any surface reaction. This corresponds to an inert
electrode without intercalation. Further, we assumed the surface to be flat, which allows
for a 1D approximation. The metal surface is positioned at x

s
and the double layer is

thus ΣDL is (xBL
E , x

BL
M ). The bulk metal is positioned at x∗M and the bulk electrolyte at x∗E.

The conductivity of the metal is assumed to be sufficiently large to ensure U∗M = 0.

6.2 Electrolyte

Reconsider the index set of electrolyte species, IE = I ′E∪IrE . We can, however, introduce
an additional decomposition

IE = ISuppE ∪ IActE (136)

where ISuppE denotes the supporting electrolyte species (in addition to the solvent) and
IActE the electro-active constituents, i.e. reaction educts and products of the transfer
reactions.

A supporting electrolyte (anions, cations, solvent, etc. with index set ISuppE ), in elec-
trochemistry, according to the IUPAC definition, is an electrolyte containing chemical
species that are not electro-active and have an ionic strength iSuppE and conductivity
κSuppE , i.e.

iSuppE = e0
∑

α∈ISuppE

z2
αnα and κSuppE = e0

∑
α∈ISuppE

(e0zα)2Dαnα , (137)

much larger than that of the electro-active species (dissolved gas, anions, cations, etc.
with index set IActE ). Supporting electrolyte is also sometimes referred to as inert elec-
trolyte or inactive electrolyte and do not participate in transfer reactions.
For our general transfer reactions∑

α∈IEM\{β}
να,βAα

∣∣∣BL

E

 Aβ

∣∣∣BL

E
∀β ∈ IrEM (138)

we can conclude (β ∈ IrEM)

να,β = 0 for α ∈ ISuppE , and να,β 6= 0 for α ∈ IActE . (139)
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The supporting electrolyte species are thus not taking part in the boundary conditions
(130), whereby the balance equations decouple. It is thus sufficient to solve the PDE
system

∂nα
∂t

= −∂xjα for α ∈ IActE . (140)

In addition, the decomposition IE = ISuppE ∪ IActE propagates also to the current

Jq = e0
∑
α∈IE

zαjα = JSupp
q + JDiff

q . (141)

Note that in Ω∗E we have qE = 0 and thus

Jq = const. . (142)

The electric current Jq decomposes as

Jq = (κSuppE + κActE )∂xϕ+ κSuppE · F Supp
chem + κActE · FAct

chem (143)

with

κiE = e0
∑
α∈IE

(e0zα)2Dαnα i = Supp,Act (144)

F i
chem = e0

∑
α∈IiE

zα
Dα

κSuppE
nα∇(µα −

mα

m0
µ0) i = Supp,Act (145)

We assume now κSuppE →∞, which implies

∂xϕ→ 0 and thus U∗E → 0 . (146)

Supporting electrolytes are widely used in electrochemical measurements when control
of electrode potentials is required, which is the sake of this study. The huge conductivity
of the solution to practically eliminates the so-called IR drop U∗E in the bulk electrolyte
Ω∗E and thus simplifies the equation system (as well as the experimental access).
The flux of the electro-active species (α ∈ IActE ) reduces further to

jα = −Dαnα
1

kBT
∂x((µα −

mα

m0
µ0)) (147)

Assuming further that the chemical diffusion is just a simple diffusion process, i.e.

jα = Dαnα
1

kBT
∂x((µα −

mα

m0
µ0)) ≈ −Dα∂xnα α ∈ IActE , (148)

leads to the (simple) PDE system (for all α ∈ IActE )
∂nα
∂t

= −∂xiα (149)

iα = −Dα∂xnα . (150)

Hence, the transfer reactions actually determine which balance equations require to be
solved.
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Figure 3: Time dependent Voltage E(t) with scan rate vscan, initial potential E0, potential
maximum Emax and minimum Emin for one cycle with time length tCycle.

6.3 Current/Voltage relation

Based on our assumptions the measured current (69) is

i− iT,0 = CEff
E · dU

BL
E

dt
+ e0

∑
α∈IrE

zM
α

(
RT
α −RT,0

α

)
(151)

which has capacitive contribution and a Faradaic contribution. Note, however, that an
evaluation of this equation actually requires the (numerical) solutions ñα(x, t) of the
equation system (149)–(149) with boundary conditions (130). The representation (112)
shows that Rα is actually a function of UBL

E (t) and πβ
∣∣∣BL

E
, with

πβ
∣∣∣BL

E
= 1
yβ
∣∣∣BL

E

∏
α∈IE\{α}

(
yα
∣∣∣BL

E

)να,β ∏
α∈IM\e−

(
aα
∣∣∣BL

M

)να,β
, β ∈ IrE . (152)

The expressions yβ
∣∣∣BL

E
are actually evaluations of the time dependent solutions ỹα at the

boundary xBL
E . While all species IE of the electrolyte phase contribute to the double layer

capacity CEff
E , only the electro-active species IActE contribute to the Faradaic current∑

α∈IrE z
M
α

(
RT
α −RT,0

α

)
.

For the applied voltage reconsider that we have a relation

E = UBL
E + UR with UR = const.. (153)

We consider a time-dependent triangular function according to Fig. 3 for E.

6.4 Non-dimensionalization of the equation system

In order to solve the equation system numerically, some preliminary non-dimensionalizations
and variable transformations are required.
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Consider first the non-dimensionalization

ξ = x

xL
, τ = t

tCyc
∆g̃Tα = ∆gTα

kBT
(154)

ϕ = e0

kBT
UBL

E uα = nα
nE
α

wα = ln uα , (155)

which does hold true since nE
α 6= 0 ∀α ∈ IActE . Note that this implies also

yα
yE
α

= nα
nE
α

= uα (156)

since n = nE = nR and entails

πβ
∣∣∣BL

E
πE
β

=
yE
β

yβ
∣∣∣BL

E

∏
α∈IE\{α}(yα

∣∣∣BL

E
)να,β ∏α∈IM\e−(aα

∣∣∣BL

M
)να,β∏

α∈IE\{α}(yE
α)να,β ∏α∈IM\e−(aM

α)να,β (157)

= 1
uβ
∣∣∣BL

E

∏
α∈IE\{α}

(uα
∣∣∣BL

E
)να,β

∏
α∈IM\e−

(uα
∣∣∣BL

M
)να,β =: π̃β

∣∣∣BL

E
. (158)

Note, however, that it is numerically problematic to consider uα as variable since these
values might become negative due to the accumulation of numerical errors. However,
using wα as variable solves this problem and we have thus the following transformations:

∂uα
∂t

= uα
∂wα
∂t

= ewα ∂wα
∂t

(159)

∂ξuα = ewα ∂ξwα (160)

π̃β
∣∣∣BL

E
= e

∑
α∈IEM\{α,e−}

να,β ·wα|BL
E −wβ |BL

E . (161)

We obtain finally the following mathematical problem:

� PDE System:

ewα ∂wα
∂τ

= ∂ξ ĩα for α ∈ IActE (162)

ĩα = D̃αewα ∂ξwα (163)

with

D̃α = tCyc

x2
L

Dα , iα = −d̃α ĩα and d̃α = nE
α

xL
tCyc

. (164)

� bulk boundary condition at x∗E:

wα|x∗E = 0 for α ∈ IActE , (165)
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� transfer reaction conditions at the double layer interface xDL
E :

ĩα|BL
E = 1

d̃α

CEff
α · dE

dt
+
∑
β∈IrEM

νβ,αR̃
T
β

 α ∈ I ′E ∩ IActE (166)

ĩα|BL
E = 1

d̃α

CEff
α · dE

dt
− R̃T

α +
∑

β∈IrEM\{α}
νβ,αR̃

T
β

 α ∈ IrE ∩ IActE (167)

with R̃β = (RT
β −R

T,0
β )

� initial conditions

wα(0, x) = 0 α ∈ IE (168)

After solving the PDE system, the solutions for uα are obtained from

uα = ewα . (169)

6.5 Parameters

Before discussing the actual examples, it is illustrative to discuss briefly the parameters
of the overall model framework.

6.5.1 Cyclic Voltammetry

The parameters for the cyclic voltammetry are the initial potential E0, the potential
maximum Emax and the the minimum Emin, with Emax − Emin ∈ [1 − 4] V. The scan
rate vscan is normally in the range of 10 − 100 [V s−1]. Hence, the cycle time tCyc is
normally in the order of 100s, and the number of cycles is denoted by NCyc.

6.5.2 Transport equations

The Diffusion coefficients Dα of the electro-active species IActE dissolved in water are in
the order of 10−5 [cm2 s−1]. For the computational domain (xBL

E , x
∗
E) with xL = x∗E−xBL

E
we employ a scaling with the Nernstian diffusion layer [2], which leads to

xL = NND ·
√

maxDα · tCycle · 104 [µm] (170)

and NND = 5 (conservative).
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6.5.3 Capacity

Several parameter have an impact on the effective capacity CEff
E , and we refer to [15]

for a detailed discussion on the respective values. Briefly summarized, the parameters
are

particle density at the boundary layer nα
∣∣∣BL

E
, (171)

charge numbers zα, dielectric susceptibility χE,

solvation numbers κα and κ
s
α, adsorption energy ∆gAα ,

partial molar volumes vRα , partial molar areas aRα .

In the examples section we provide explicit values without any further discussion.

6.5.4 Transfer reactions

For each transfer reaction (43) with reaction rate RT
β we have essentially two parameters,

Lβ [molcm−2 s] and ∆gTβ [ eV] with ∆gTβ ∈ (−2, 2) / eV .

The exchange current density for each reaction is then

i0β = e0z
M
β L

T
β ·

(πiβ)αβ · e−αβ ·(
∆gT
β

kBT
+zj

β
e0
kBT

UBL,0
E ) − (πiβ)−(1−αβ)e(1−αβ)·(

∆gT
β

kBT
+zj

β
e0
kBT

UBL,0
E )

,
(172)

which is in the order of / µAcm−2 . Note that parametric dependency of the transfer
reaction and the resulting current on Lβ and ∆gTβ is highly non-linear.

6.6 Examples

The scan rate is fixed for all examples as vScan = 100 /mV s−1 . If not mentioned
otherwise, E0 = 0V, Emax = 1.5V and Emin = −1.5V.

6.6.1 ACsolution without transfer reaction

This first example servers to investigate the capacitive current. We consider now an
aqueous solution of AC , which is completely dissociated into C+ and A− ions. We
employ the standard parameters of [15] and χE = 45 for water and vRA− = vRC+ = 45 ·vR0 ,
where vR0 = 0.0180 / Lmol−1 is the partial molar volume of water. The partial molar
area of water is aR0 = 10.33 · 108 / cm2 mol−1 [15, 24]. The metal surface is considered
as Ag(110) .

32



The anion A− may adsorb on the surface and thereby lose a part of the solvation shell
as well as some partial charge, i.e.

A−
∣∣∣BL

E
− (1− λ)e−

∣∣∣BL

M
− (κA− − κ

sAλ)H2O 
 A
s

λ . (173)

This adsorption process entails that the partial molar area aRAλ of is related to λ [24].
We can thus perform a parameter variation of aRAλ for an aqueous AC solution and
study the impact on the capacitive current density

i = CEff
E · dE

dt
. (174)

The adsorption energy for A
s

λ is ∆gAAλ = −0.2 / eV .
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Figure 4: Numerical simulation of the capacitive current with adsorption and partial
charge transfer reaction (175). The partial molar area of aRAλ on the surface is varied in
multiples of aR0 .

Note, however, that adsorption and discharge process could also be a 2-step mechanism,
for example

A−
∣∣∣BL

E
− (1− λ)e−

∣∣∣BL

M
− (κA− − κ

sAλ)H2O 
 A
s

λ , (175)

A−
∣∣∣BL

E
− e−

∣∣∣BL

M
− (κA− − κ

s
A)H2O 
 A

s
, (176)

where the uncharged reaction product A
s
has solvation number κ

s
A = 0 and thus ap-

proximately aRA = aR0 . Figure 5 shows a computation of the corresponding CV with
aRAλ = 5 · aR0 , ∆gAAλ = −0.2eV and a variation of ∆gAA.
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Figure 5: Numerical simulation of the capacitive current with two-step discharge of the
anion A−.

6.6.2 AC solution with transfer reaction

Next we consider an additional transfer reaction

A+
∣∣∣BL

E
− e−

∣∣∣BL

M

 A

∣∣∣BL

E
(177)

for the example preceding example. The bulk concentration of nE
C is set to 10−8 /mol L−1 .

The parameters for the transfer reactions are exemplarily chosen as ∆gTC = 0 / eV and
LβT = 1.0364 · 10−14 /molm−2 . For the adsorption energy of A

s
we use ∆gAA = 0eV.
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Figure 6: Numerical simulation of the cyclic voltamogramm with double layer current
and Faradaic current. Potential profile according to the subfigure.

This example shows that the faradaic current (peak at 1.2V) and the current due to the
adsorption and discharge process A−

∣∣∣BL

E
− e−

∣∣∣BL

M
− (κA− −κ

s
A)H2O 
 A

s
(peak at 0.4 V)

can be in the same order.

6.6.3 2-Step electron transfer

The final example is to consider a two step electron transfer reaction,

RT
1 : C2+

∣∣∣BL

E
+ e−

∣∣∣BL

M

 C+

∣∣∣BL

E
(178)

RT
2 : C+

∣∣∣BL

E
+ e−

∣∣∣BL

M

 C

∣∣∣BL

E
(179)

for which we consider a solution of A2C with concentration 0.01M. Further, we consider
bulk concentrations of for C+ and C of 0.01M. The reaction parameters are

∆gT1 = 0 eV i1 = {0.1, 1} (180)
∆gT2 = −0.2 eV i2 = {0.1, 1} . (181)

We thus vary the exchange current density in this example.
Fig. 7 displays a numerical simulation of this example and the impact of the parameter
variation of i1 and i2.
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Figure 7: CV simulation of a 2-step electron transfer reaction-

6.7 Conclusion

We derived based on the framework of non-equilibrium thermodynamics the boundary
conditions for a general electrochemical interface. The model was then applied to the
metal-electrolyte interface based on some explicit material functions. Numerical simula-
tions show the applicability of the model to double layer charging and transfer reactions.
Extensive parameter studies will be performed in an upcoming publication. This ap-
proach can be considered as a first step towards a model based understanding of cyclic
voltammetry.
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Appendix A Surface capacity

Here we provide a semi-explicit representation of the surface capacity C
s
. First of all note

that the surface charge q
s
has the representation

q
s

= −

∑NE
α=1 zαe0y

s
α +∑NE

α=1
∑|zα|
β=−1 zαe0y

s
α,β

aRV y
s
V +∑NE

α=0 a
R
αy
s
α +∑NE

α=0
∑|zα|
β=−1 a

R
α,βy

s
α,β

. (182)

With the representation y
s
α, y

s
α,β and y

s
V of [15] we obtain an expression of q

s
in terms of

(ϕ
s
−ϕE) and (γ−γR), i.e. q

s
= q̂

s
(ϕ
s
−ϕE, γ−γR). The surface charge is thus a function

of ϕ
s
and the surface tension γ. The surface fractions y

s
α,β obey the constraint

y
s
V (γ− γR) +

NE∑
α=0

y
s
α(ϕ

s
−ϕE, γ− γR) +

NE∑
α=0

|zα|∑
β=−1

y
s
α,β(ϕ

s
−ϕE, γ− γR)− 1 = 0 , (183)

which is an implicit relationship between UE and γ− γR. Hence, we may use the implicit
function theorem to deduce a solution γ = γ̂(UE) from equation (183), which satisfies
dγ̂/d(UE) = q

s
. The surface capacity C

s
is thus

Ĉ
s

=
dq̂
s

dUE
=
( ∂q

s

∂UE
+ q

s
·

∂q
s

∂(γ − γR)

)
. (184)
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With the (dimensionless) abbreviations

f
s

1 :=
NE∑
α=1

zαy
s
α + e0

NE∑
α=1

|zα|∑
β=−1

zαy
s
α,β (185)

f
s

2 := y
s
V + ω0y

s
0 +

NE∑
α=1

ωαy
s
α +

NE∑
α=1

|zα|∑
β=−1

ωα,βy
s
α,β (186)

f
s

3 =
NE∑
α=1

z2
αy
s
α +

NE∑
α=1

|zα|∑
β=−1

z2
αy
s
α,β (187)

f
s

4 = e0

NE∑
α=1

zα ωα y
s
α + e0

NE∑
α=1

|zα|∑
β=−1

zα ωα,β y
s
α,β (188)

f
s

5 = y
s
V + ω0y

s
0 +

NE∑
α=1

ωαy
s
α +

NE∑
α=1

|zα|∑
β=−1

ω2
α,βy

s
α,β (189)

we obtain for the surface capacity the expression

Ĉ
s

= − e2
0

kBTaRV

fs 1 · f
s

4 − f
s

3 · f
s

2

(f
s

2)2 +
f
s

1

f
s

2

f
s

4 · f
s

2 − f
s

1 · f
s

5

(f
s

2)2

 . (190)

Note that the term e20
kBTa

R
V

indeed has units F
m2 and that all functions f

s
k, k = 1, . . . , 5,

are dependent on UE and γ − γR.

Appendix B Calculation of the Faradaic current

Reconsider that

rEff
qM = rEff,′

qM + r
s

Eff,r
qM (191)

with

rEff,′
qM = e0

∑
α∈I′M

zαr
Eff
α = −e0

∑
α∈I′M

zα

∑
β∈IrE

νβ,αR
T
β +

∑
β∈IrM

νβ,αR
T
β

 (192)

rEff,r
qM = e0

∑
α∈IrM

zαr
Eff
α = −e0

∑
α∈IrM

zα

∑
β∈IrE

νβ,αR
T
β +

∑
β∈IrM \{α}

νβ,αR
T
β −RT

α

 (193)

We can thus rewrite

e0
∑
α∈IrM

zαR
T
α − e0

∑
α∈IrM

zα
∑

β∈IrM \{α}
νβ,αR

T
β − e0

∑
α∈I′M

zα
∑
β∈IrM

νβ,αR
T
β (194)

=e0
∑
α∈IrM

zα − ∑
β∈IM\{α}

zβνα,β

RT
α (195)
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Due to the electro-neutrality of each transfer reaction we have

zα −
∑

β∈IM\{α}
zβνα,β =

∑
β∈IE

zβνα,β (196)

and obtain thus

rEff
qM = e0

∑
α∈IrM

zE
αR

T
α − e0

∑
α∈IrE

zM
αR

T
α . (197)
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