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Abstract

Consistent boundary conditions for electrochemical interfaces, which cover
double layer charging, pseudo-capacitive effects and transfer reactions, are of high
demand in electrochemistry and adjacent disciplines. Mathematical modeling and
optimization of electrochemical systems is a strongly emerging approach to reduce
cost and increase efficiency of super-capacitors, batteries, fuel cells, and electro-
catalysis. However, many mathematical models which are used to describe such
systems lack a real predictive value. Origin of this shortcoming is the usage of
oversimplified boundary conditions. In this work we derive the boundary conditions
for some general electrode-electrolyte interface based on non-equilibrium thermo-
dynamics for volumes and surfaces. The resulting equations are widely applicable
and cover also tangential transport. The general framework is then applied to a
specific material model which allows the deduction of a current-voltage relation
and thus a comparison to experimental data. Some simplified 1D examples show
the range of applicability of the new approach.
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Figure 1: Representative CVs for which no satisfactory theoretical model is available.

1 Introduction

Consistent boundary conditions for electrochemical interfaces are a key feature for a
model based understanding of cyclic voltammetry, one of the main characterization
methods in electrochemistry [1-5]. Even though many models exits to simulate cyclic
voltammetry [6-8], but they lack some general fundament and have many shortcomings.
In addition, a consistent coupling between the so called capacitive current charging the
electrochemical double layer and the Faradaic current of some charge transfer reactions
is yet outstanding. Up to date there is hence no model framework available which is able
to predict complex CVs such as Fig. 1a and 1b.

This work uses the model framework of non-equilibrium thermodynamics an appliesitin a
general way to an electrode/electrolyte interface. The resulting boundary conditions can
be applied to metal-electrolyte, liquid-liquid, intercalation electrode-electrolyte interfaces
and many more.

2 Thermodynamic modeling

2.1 Domain and Species

We consider an electrolytic mixture QF with species A, a € Zg, an electrode Q" with
species A, € Zy, and the electrode surface ¥ with species/adsorbates éa,a € Is.

The volume phases Q" are modeled with volumetric species densities n, /mol L™,
where m,, denotes the molar mass and ez, the charge of the constituent A . The free
charge density of each phase is denoted by ¢; = €9 > ,c7, Zaa and the mass density



Pi = Yaet, MaNa, © = E, M. We denote with
ZEM - (IE UIM> . (1)

the set of all electrolyte and electrode constituents.

—2

The surface X is described in terms of surface densities Mo, / molcm™ with charge num-

ber Za of each adsorbate Aa, a € T3, and the surface charge density is q¢= > aeTs €0Za-

Note that there can be far more constituent present on the surface than in the volume
phases. We denote thus with

Is = Is\(Zg U In) (2)

the species which are exclusively present on the surface.

The modeling procedure is based on the general framework of coupled non-equilibrium
thermo-electrodynamics for volume and surface phases [11-14].

2.2 Chemical potentials

The chemical potentials of the constituent A, a € Zgy and A,, a € Zg are derived
S

based on some explicit free energy functions which describe the specific material. Within
the theory of coupled volume and surface thermodynamics, independent free energy
densities of the volume, i.e. pv, and the surface, 1, arise. The derivation of these free

S
energy functions is not scope of this work, and the detailed derivation is given in [15].
The chemical potentials of some constituent A, in the volume and on the surface are
given by

oY
Mo = % and Mo = ansa . (3)

5’na s

Since we want to derive first rather general, material independent results in order to
ensure applicability of the model for various electrochemical interfaces, e.g.

B metal/electrolyte,

B liquid/liquid

B metal/solid electrolyte,

B intercalation electrode/electrolyte,

B liquid metal/solid electrolyte,

we do not yet specify the explicit material functions of the phases (g, {2y and X. Explicit
examples are given in section 5.



2.3 Double layer

Adjacent to the surface ¥, two boundary or space charge layers QFF and QB form
[15], which build together with X the so called double layer [16]. This can be used to
decompose the overall electrochemical interface in a handsome way.

We discuss briefly some aspects about coordinate transformations in the double layer
regions which are necessary to proceed with the derivation. For x € QP* and x € ¥ we

have the representations
X = ve; +ye, +ze; and x =uvb, + wb, =x(v,w) (4)

where e; are the cartesian coordinates and b; curvilinear covariant basis vectors of Y.
Consider now

x =x+u-by, =x(u,v,w) (5)

with
E
by= —— .
“ <EJE> (6)

This is actually the construction of a curvilinear coordinate system which follows the
electric field lines. We have thus a parametrization of Q2 in terms of (u,v,w) with
covariant basis vectors (b, b,, b, ). Next, consider the curve

(W) =x(s0,w)  u'€0,y] (7)
for fixed values of (v, w). Obviously this curve follows the electric field lines and we have

0 E

%7:<E,E>' (8)

The electrostatic potential ¢ at some point x € QP can be traced back to x(v,w) on
S
the surface along the curve , i.e.

u u

_ _ E o o
@(X)—f(v,w)—/E-ds_/E <E7E>dU—/1dU—u. (9)
0 0

~

This shows that the third coordinate u of the curvilinear coordinate system (u, v, w)
is actually the potential distance along ~ to the surface potential. Note that electric
field obeys with respect to the covariant basis the representations E = F, - b, and
E = V¢ = (0,¢)b,, whereby ||E|| = |E,|. The arc-length of v can be computed from

[
Ien('y):/lds:/‘E ’du’, (10)
e 0




which shows that this approach only makes sense as long as the electric field does not
vanish. Since within the space charge layer we have per definition ¢; # 0, the Poisson
equation diveg(1 + x)E = ¢; states a non-vanishing electric field whereby this approach
is valid.

Note that for a fixed value u = UP" equation (5) defines a hyper-surface X5 parallel
to X, i.e. x(UM v, w) =: >§?L(U,w). Per definition ¥ and X" never intersect and are in
some sense parallel, however, with respect to the potential distance and not necessary
with respect to the distance along the normal vector of X.

If the surface potential is constant with respect to (v, w), ap()sc) =  is actually a

S
parametrization of X and thus

Ve
IVl
a normal vector of X. In this case XE" is indeed a family of parallel surfaces. It is to

emphasize that a special type of microscope actually uses this strategy to map a metal
surface without touching it, i.e. the electrochemical force microscope [17].

| =n (11)

S

This allows us to decompose the metal-electrolyte interface domain 2 = € U X U Qg
into
Q=0WUIUQ =0 URruXUQuQs (12)
—_———
=:30L
where Q7 are electro-neutral domains (i.e. ¢; = 0). x; denote bulk points in each phase
(27,1 = E,V, i.e. far away from the metal surface. An evaluation of n, at the parallel-

surface 2P is frequently used and denoted by

BL BL

Na :na’ :na‘ (v, w), 1 =EM, (13)

% XEE?L %
where an evaluation at some bulk point x; far away from the the interface X" is denoted

by na‘x_ =nl, i=EM.

(o2

2.4 Balance equations

Consider a species density n,(x,t), a € Z;,i = E,M which satisfies a balance equation

ong

ot
where J,, is the diffusional flux, v the barycentric velocity and r, the volumetric reac-
tion rate of constituent A .This balance equation is subject to the boundary boundary
condition (or surface balance)*

= —div (nov+Ja) + 74 x € (), (14)

87;La
ot

INote that we assume here that a constituent A, is either present in Qy, or in Qg, but not in both
phases. Even though, e.g. a ion can be present in both phases, it is present in different states and thus
distinguishable in terms of its species density, whereby we would have two balance equations.

= — dsiv (?aw + ‘!a) + Qk:MwngLa + (Ja + ng (v — W)) . n‘z +7a, (15)




*

electrolyte ()7
surface Y

Figure 2: Sketch of the double layer forming at an interface between two charged domains
QM and QE-

where n,(x,t) denotes the surface density, J, the tangential surface flux, div the sur-
S S S
face divergence, r, the surface reaction rate, kj; the mean curvature and w,, the normal
S

velocity of the surface velocity w. By convention, the + sign in (15) holds for Qz and
the — sign for Qy.

The barycentric velocity v and the surface velocity w are determined from the respective
momentum balances and we refer to [18] for detailed discussions. However, for the scope
of this work we assume mechanical equilibrium [19]

div(o) =0 and [o]n = —2kyym — Vy (16)

and a surface at rest, i.e. w = 0. However, several aspects of the further derivation still
hold for mechanical non-equilibrium by some careful re-derivation. o denotes the total
stress tensor and 7 is the surface tension of the surface . The double bracket denotes

the jump at the insterface. The total stress is given by
o=—(pld+m)+(1+ 10 (E@E-} <EE>-Id), (17)

where the contribution of the electric field is called Maxwell stress [20] and 7 the viscous
stress tensor. Viscous effects or more complex surface stress tensors can of course be
included.

Note, however, that even in mechanical equilibrium v is necessarily zero. But is not
determined anymore from the momentum balance, as we shall see later. It is thus con-
venient for the further derivation to consider the balance equations in terms of the net
flux

ja =nav+J, with Zja:nv 1=EM, (18)
a€Z;

since we obtain the boundary conditions for these fluxes.

The decomposition of ; = QF UQPE allows us to integrate (14) along the curve « from
X(v, w) to >S<Z3L(v,w), i.e. to derive a surface balance equation from the thin boundary

8



layer part of the balance equation (14). This strategy was in detailed explained and
derived by Grauel 1988 [21, 22], however, for parallel surfaces. But it applies straight
forward to the constructed family of potential-parallel surfaces 32"

Following the derivation of Grauel we obtain
BL
on,

ot

= —div JBE 4 B (19)
. BL .
iJa'n‘i :F.]Oc'n‘z

for a thin boundary layer, with

nlzf“:/nads ; JﬁL:/JﬁLdS and TiL:/Tads' (21)

vy vy v

Combing (15) and (19) gives the double layer balance equation

a DL
Fion[] = S0 —div g% (22)
i ot s
with
ot =rertna I =Jda I and f=vi . (23)

Note that (22) are actually the (flux) boundary condition at 3P for the balance equation
(14) in electro-neutral domains €2, i = E,M. This is a crucial aspect, since we shifted
the double layer contribution in the balance equations (14) into the new boundary
condition (22). Equation (22) represent the most general type of boundary condition
for an electro-neutral domain and covers all double layer charging effect as well as
charge transfer reactions (i.e. Butler—Volmer-like expressions), as we see in the following
sections.

Even though the definitions of n2" and JB seem to be inconvenient, it actually turns
out that one is able to determine analytical expressions of the resulting integrals when
the double layer is in equilibrium along the curve ~.

Note that the exclusive surface species o € Zg are subject to the surface balance equa-
tions

ong
(‘;t =— dsiv .ga +7a (24)

Summarizing, we consider thus volume balance equations in the two electro-neutral
domains € and ) and surface balance equations on the thin interface 3", which
covers the electrolyte and metal boundary layers as well as the actual metal surface.

In order to proceed with the derivation, we have to specify the surface reactions occurring
on the metal surface X..



2.5 Reactions

Goal of this section is to derive explicit representations of the surface reaction rates r,,
S
in the balance equations (22) and (24). We consider four general types of reactions:

B Dissociation, which occurs only within a single phase, i.e.

Y vapA,=A, BETI! i=EM. (25)
a€Zs\{8}

The reactions (25) define implicitly the species set Z¢ of dissociative reaction
products, e.g. H + OH™ = H,0 with H,O € Z¢.

B Adsorption, which is considered as the diffusion or jump process from a point
X — x onto the the metal surface ¥, i.e.
S

Aa:éay (XGIEUIM. (26)

B Surface reactions, which are of general kind

> y;ﬁéa + > u;ﬁéa = ég VB e 1g (27)
acle a€ly
Note that (27) serves actually to define implicitly the index set ZS of the exclusive
surface constituent. Consider, for example, the species H* in the electrolyte phase
Qr and e™ in the electrode (). If atomic hydrogen H is not present in either
of the bulk phases, but only on the surface as adsorbed H, we have the surface
S
reaction HT + e~ — H with H € Z¢.
s s S S
B Transfer reactions, which can be considered as surface reactions where the reac-
tion product is present in either of the adjacent phases §2; or €2 . We can therefore

write
S VpAat Y VpAa=Ay  VBETL (28)
acZg\{B} a€ly
S vsAat Y vhsAa—=As  VBET (29)
a€lg acn\{B}

Note that (28) and (28) actually serve to determine implicitly the subsets Z; and
1, of the reactive species, with Zf, = Zg UZy. For example, if we consider H, to
be also a species present in the electrolyte phase as dissolved gas species, we have
2HT +2e~ = H, as transfer reaction with H, € Z.

S S S

3 Equilibrium assumptions and consequences

For the further derivation it is quite useful to simplify the model based on some plausible
thermodynamic equilibrium assumptions.

10



3.1 Double layer in equilibrium

Throughout this work we assume that the space charge layers Q2" and QB adjacent to
the metal surface X are in thermodynamic equilibrium along the arc 7. This assumption is
justified by matched asymptotic methods [23] when the boundary layer is thin compared
to the electro-neutral domains €2 and (2. The equilibrium conditions read

Ou(pta + €02a) - by =0 a€l;, 1=EM. (30)

Integration along the family of curves v gives

BL
ua‘i + ez Ut = ““’xez ael;, i=EM (31)

s

with

Ut = Y= P (v,w) €S . (32)

Note that this condition holds for every (v, w) € S.

The equilibrium conditions (31) lead also to explicit representations of the boundary
layer variables n2. Reconsider the definition of n2, i.e.

o !

net = /na ds . (33)

2
Inserting the parametrization of ~ gives

U
1
ntk = /na‘E’ du . (34)
0

It is to emphasize that the units of the integration in (34) is actually V. But due to the
substitution of =y, the term ‘E—1| arises with units mV ™!, which thus gives indeed units
of molm~2 for n®-. Hence, in order to perform actually the integration of (34), we seek

expressions
Ne = fa(u) and E, = E,(u) | (35)

where u is the coordinate of the curvilinear base vector b,. This the real importance
of the substitution in (34) and the introduction of the curvilinear coordinate system in
the space charge layer. Surprisingly, it is indeed possible to find such representations
for some explicit material functions of u,. We provide representations of representative
materials (incompressible liquid electrolyte, metal electrode, intercalation electrode) in
section 5.1 and proceed meanwhile with the general representation n2" = A (UP"), a €
Z,, i=E,M

11



3.2 Reactions
3.2.1 Dissociation

The dissociation reactions (25) are assumed to be in equilibrium throughout this work.
This entails the equilibrium condition

> Vagsta = 5 (36)
aeTo\ (5}

for the index set Z¢ of the dissociation reaction products in €;, i = E, M. Note that this
does not necessarily entail complete dissociation but rather computes the concentration
of some constituent, e.g. the H™ and OH™ concentration (or pH-value) due to the
auto-protolytic reaction H* + OH™ — H,0 .

3.2.2 Adsorption

Throughout this work we assume that the adsorption process is always in equilibrium,
which entails the condition

Lo xe® = éba , a €T UTy . (37)
However, since we assume that the boundary layers are also in equilibrium, we can trace
back the chemical potential 1, at ¥ along the curve ~ to the the point >§L and obtain
)BL

fal + €02aURE = fiq (v,w) € S . (38)

This describes actually the superposition of adsorption and diffusion through the bound-
ary layer. In order to emphasize this we employ the typeface
BL

g

A

rféa, a €T, i=EM, (39)
for this process.

Quite similar to the boundary layer it is possible to obtain explicit representations of Mo,
in terms of UP™ based on material functions of pu,. Explicit representations are given

S
in section 5.1 and we proceed the discussion with the general representation n, =
S
@Q(UEL), a€Z;,i=EM

3.2.3 Surface reactions

Since we assume that the diffusion of the constituents A_,a € Z; , ¢ = E,M through
the corresponding boundary layers and the subsequent adsorption are in equilibrium, we
can rewrite (27) as

Z Va,ﬁAa‘zL + Z VO&,BAa‘zL = éﬁ VB € ISe ) (40)

aclg a€ly

12
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BL
where the typeface A . and Aa’M emphasizes this aspect. The reaction rate of this

net reaction is denoted by Rg. Possible reactions are, for example, adsorption with
S
subsequent de-solvation or partial charge transfer [15, 24].

We assume that all net surface reactions which can be written as (40) are in thermody-
namic equilibrium, which provides the condition

BL BL
> Vaslital, +e02lU8) + Y vaslal,

a€lg o€y

+ e02aUp") = g peZs. (41)
Note that the charge number of Ag is

D VapZat D VagZa = 28 (42)

a€clg a€ly

in order to ensure the electroneutrality condition of the reaction (27).
For the adsorbates Ag we provide explicit material functions 15 in section B which lead
s s

to representation ng = ng(Ug-, Ug™), 5 € Z.
S S

3.2.4 Transfer reactions

The equilibrium condition of diffusion through the double layer, adsorption and subse-
quent surface reactions allows us to rewrite the general transfer reactions (28) and (29)
as net reactions

BL BL
Z;{ﬁ} Vapha. = Agl BeT, (43)
[4SWE]

with reaction rate Rg and index set 7,7y UZy of all reactive species. Possible examples
of transfer reactions are

B 2H"|g+ 2e |y = Hylz (hydrogen evolution)

B Cutly—e |y = Cuj |z (metal deposition/dissolution)
B Na'|g = Na'|y (dissolution in Hg)

B Fej g+ e |y = Fej [z (Redox shuttle)

B Li"|g+e |y = Lily (intercalation).

The metal and electrolyte species which are not a reaction product of a transfer reaction
are denoted by

T, =T\T, and T, =T\I;, with T, =T,UT,. (44)

13



For the charge numbers of the involved constituents we have the condition

> Vapza =25 B e Ly . (45)

o€\ B

Transfer reactions are not assumed to be in equilibrium throughout this work. The
equilibrium condition of (43) (for 5 € Z7,i = E, M)

7

BL

BL BL
Z l/aﬂ(/ia’E + eozaUE") + Z l/aﬁ(lla’ + eozaUp") L Mg‘i + ez U™, (46)

M
a€lg a€ly

would imply constant values of U™ and Ug". Since we seek to vary the potential UE"
(i.e. potentiometry), as we show in the next sections, this is untenable.

However, surface thermodynamics dictates that the reaction rates Rg of the transfer
reactions (43) are related to (46) [25] via (for 5 € Z] , i = E,M)

I:;BT< > VaptalgteozalUg)+ 3o Va,ﬁ(ualﬁLJreo%UﬁL)—lw|?L—EOZanL>
RT — LT e a€lg aETy (47)
B
(1—ag)
- kBTB Z Va,8(paB4e0za UES)+ Z Va,p(palB4e02a URt) —pg Bl —eo 2o URE
—e a€lR a€ly

with Lg > 0for 8 € Zgy. This is the most general form of a thermodynamically consistent
expression for a transfer reaction rate.

3.3 Boundary conditions

Base on the reaction rates of (40) and (43), the surface production rates r, obey a
S
specific structure, i.e.

- Zﬁelg V/i,ocRg - Zﬁel’gn Vﬂ,aRZ;7 if a € Iy,
Ta =9\~ ZBEISC V,B,oaRg + RZ: - Z,Bezgn\{a} V{ByaRg, if a € Iy, (48)
Ry, if 0 € I¢

Reinsertion of of the production rates in (22) and some calculations lead to the boundary
conditions (a € Z;,7 = E, M)

BL 8ngff

i ot

S +div JEE — B (49)

«

14



with

niff = ngL + Z Vﬂ,agﬂ (50)
BETE
Jiff = J]iL + Z Vg,agg (51)
BeTs
TEff _ TgL — ZBEZEM VB@YRg, |f o e I];’.M (52)
o rgL + Rz; — ZﬂEIgM\{a} V@aRg, if v € IEM

The abbreviation **f emphasizes that only the effective linear combinations (50)-(52)

arise in the boundary conditions (49).

Note that the (equilibrium) representations of fg"(U"), 1 (Ui™), a € Zgy and
(Ug-, Ug"), B € Ig lead to the representations (a € Z;,4, j = E,M, i # j)

dUBL - dUBE
s nflt = e S gpes S gy gee (53)
with
Ot = C&F + O + O o€, i=EM (54)
dnBt dna ,
Ce = T Co= T a€T;, i=EM (55)
, d
and C2e% = i ( > 1/5@735) a€l,, ,j=EM. (56)
J BeLS

This are the most general boundary conditions for an electrochemical interface, includ-
ing double layer charging, pseudo-capacity effect, transfer reactions, tangential surface
diffusion, curvature effects.

The equations (131) are then the actual boundary conditions for the balance equations
(14) in the electro-neutral domains €2} (i.e. with ¢; = 01in €, , i = E,M). These boundary
conditions hold for each charged interface, however, are not solvable yet since the number
of unknowns is not equal to the number actual balance equations. In order to obtain
a closed equation system, we require explicit representations of CEHf (CPsen and pELf
which requires specified material functions i, and .

S

4 Current/Voltage relation

4.1 Measured Current

The electrode € with boundary 9Qy = X U Sine U BE is connected via the surface
Y to an ampere-meter. Hence, the measured current I /A corresponds to the flux of

15



charge through X5, i.e.

1:_/}%4A. (57)

Xy

We assume that no current flows through the inert part of the electrode boundary, i.e.
jaw = 0 on Xiret. The global balance of gy reads

d
Q*

BL
M EM

Since gy = 0 in €, we obtain with eq. (49)

a seu
. / o (B =) = Bt aa, (59)
L
where
M =Co Y Zaly (60)
o€y
qﬁseu =eq Z Za Z VﬁvaTSLﬁ s (61)
a€ly BELS
rngf = e Z 2orEE (62)
a€ly

The electroneutrality condition of the whole double layer states

W tae tds=0  with gg=eco > zana (63)
a€T§
and leads to
8 e seu
I= /at(qu—i-qs—gﬁ ) — et dA (64)
oL

Note that with eq. (42) we have

a5 = =0 X |z = D e | Ma =0 D | 2 e | ma = (65)
a€Tg BETy a€Ts \BET:
in order to ensure the electroneutrality of the surface reactions. The quantity
> zglas = 2, for « €I, (66)

BE€IE

can be considered as the pseudo-charge of the adsorbates A,, a € Zg, since the con-
S
stituents incorporated in

qEPseu = e Z Zz’gla (67)

ael$
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are not necessarily charged. The quantity
G = g (68)

is then the effective electrolytic charge in the double layer and the measurable current
writes as

0
[ / A (69)
YpL

«

Due to the equilibrium representations fig-(Us"), o € Tg and fig(Ug™, Uy"), B € I (c.f.

section 3), the effective double layer charge ¢™* has a representation

¢ (Ug Uy") = (Ug") + & (U™, Uy") - (70)
Hence we obtain
dUBE dUB"
I= [ (corusvw) S U U ) S - B A (1)
b
with
quff quseu
Eff E PseuM _ E
Cg = QU and Cg = U (72)
CE™ is then the effective differential capacity of the interface and Cg3™" the metal-
lic pseudo-capacity. Note that due to the decomposition ¢Ef = @B + ¢z + ¢£°** the
differential capacity CE*f decomposes into
Cg'ff _ C]}-:BL + gE + C]l;seu,E (73)
: : BL _ dgg" : e .
with boundary layer capacity Cg~ = P surface capacity QE = and electrolytic

. P E d Pseu
pseudo-capacity Cg**"" = Teg
E

However, Cg®¢® and Cg5™ are inherently different since CE5f™ vanishes when Ugt =
const., which is for example the case for an ideal metal.

Next we discuss the reaction rate ri<*. Note that the term 30, .7, 2470 vanishes due to
the electroneutrality condition of the dissociation reactions. Reinsertion of the definition
(52) and using eq. (45) gives, with

zg = Z Va.B%a s g eIy and zg = Z Va.B%a s pely, (74)

a€ly aclg

after some calculation (see appendix B)

Mo =0 > Za e —eo Y 2 Ry (75)

a€ly a€ly
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The transfer reaction rates RT are given in eq. (47) with RT = RT(UBL UBL).

Since most experimental setups the current is normalized to the surface area Ay, of the
electrode, we obtain the final expression of the measurable current density

. 1
ERAYET

SpL

dUEE
dt

dUEE
dt

+ C«g;eu . —ep Z Zi Rg + eg Z Z(Pi Rg)dA . (76)

a€ly a€ly

Note that this relation is the actual measuring instruction for any comparison of a
continuum model to experimental data. It is the most general expression for a single
surface phase and covers adsorption effects, surface reactions and pseudo-capacitance,
as well as transfer reactions. In general it is the a posteriori relation to compute the
current for given (numerical) solutions of the state variables of the interface.

4.2 Measured potential

Yet we have introduced the boundary layer potential drops Ug" and Ug" of a single
electrochemical interface. However, there can arise additional potential drops in the
electro-neutral domains €2; and €2, namely

The whole potential drop between the bulk metal and the bulk electrolyte is thus

Pl —

oo = Un + U+ Vg + Ug = Ung - (78)

In a three electrode setup, this is related to the measurable voltage E via [15]
E=U;f+ U+ Ug* + Us + Ugy , (79)

where Ugy covers the whole electrolyte-reference potential drop. However, it is a quite
common and valid assumption that Ugy is constant, which can be achieved experimen-
tally very precisely [26].

Experimentally it is only possible to vary E and not each individual potential drop of
eq. (79). However, there experimentally as well as theoretically there are some strategies
to overcome this problem. For example, if the conductivity of the bulk phases €2} and
(2, is very high, the potential drops Ug and Uy vanish.

5 Material functions

We restrict the further modeling procedure to an electrode/electrolyte interface with
specified material functions.
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5.1 Chemical potentials
5.1.1 Electrolyte
For the electrolyte phase, we rely on the free energy density pi)® given in [15] which

covers the entropy of mixing, solvation effects as well as the incompressibility of the
liquid mixture. The chemical potentials of the respective constituents are

ua:gf+kBT lnya—l—vg(p—pE) a=0,1,..., Vg, (80)
where g denotes the reference partial molar Gibbs energy, v, = = the mole fraction,
n = g:(] ne the number density of mixing particles?, vf the partial molar volume,

and p is the pressure. Note that the incompressibility of the liquid mixture implies the
constraint

1

—_—. 81
Zév:l] vgya ( )

n =

For the following derivation we assume that upon the equilibrium assumption of the
dissociation reactions the reaction rates 7, (and thus also 72") vanish.

5.1.2 Electrode

The electrode is considered as a mixture of electrons e~, metal ions M, and additional
constituents Z{ which can be dissolved in the metallic lattice (e.g. intercalated, solution
solution, etc.). For the electrons and the metal ions we rely on a Thomas—Fermi electron
gas with free energy density py" of [15], leading to representations

WE vy + kT 1 d h2(3)3 (82)
= v nay an =— (=) né,

129.% M MPM B M He om. \&r é

where v denotes the partial molar volume of the metal ions, py; the metal ion partial
pressure, 11 the reference molar free energy, and a,; the activity of the metal ions. The
incompressibility implies vl = 1/ny;.

For the additional species we write simply
fo = VE + kT Ina, o€y, (83)

where a,, is the activity. If Z¢ = () we have a); = 1. Various models for the activity and
thus the state of an ion or an intercalated species in a solid exits [13, 27-30] and can
be directly applied. However, for the further derivation we do not want to specify the
material model further.

2Note that due to the solvation effect not all solvent molecules participate in the entropy of mixing.
Since each ion binds k. solvent molecules, ng actually denotes the free solvent molecules, while né =
ng + ZaNzl KaMNe denotes the total number density of solvent in the mixture.
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5.1.3 Surface

For the electrode surface > we consider a surface free energy density 1) which covers

S
surface solvation effects, surface incompressibility, entropy of mixing, and reference con-
tributions [15]. With the explicit representation of ¢ given in [15] we obtain the surface
S

chemical potentials
P+ kpTIny, — WokpT Inyy for a € Zs\{e~, M}
o = Y+ kT Inyy — alyrE fora =M (84)

S
I = const. fora =e™.
S

The respective quantities are

B the number of surface vacancies

Ng
TSLV = wM";LM - Z wa?a ) (85)

a=0

where W, denotes the number of adsorption sites of éa'

B the number of mixing particles

Ns
n=ny -+ N, (86)
a=0
B the surface fractions
Ny
Yo = — ,a=0,1,...,Ng,V , (87)
S n

B the adsorbate surface tension ~%,
B the partial molar area of the metal surface aﬁ,

B and the constant electron surface chemical potential ¥
S

The surface incompressibility implies quite similar to (81) the constraint

1 s
R R

Y anV+Zaa7}a: 1 (88)

aM a=0

with the partial molar areas
1 w
att = —d%, and dff = Z%d%, =w,ai (89)
WM WM
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5.2 Equilibrium representations and consequences
5.2.1 Electrolyte boundary layer

The equilibrium conditions (30) of the electrolytic boundary layer QE" lead to the repre-
sentations

BL __Zacg

ya:ya'E .e kT

R
T = g (w) (%0)
where p(u) is obtained from the implicit equation system

g(u,p) =D Ya—1=0. (91)

a€elg

Together with (81) we have thus a representation

Zae 1}5 ~
ya!BL e Hpt T HpT P
ﬁa(u) = E - R , o € IE . (92)
S uf e B R
- E

The coupled Poisson-momentum equation system
godiv(l+x)E=¢; and Vp-b,=¢E -b,=¢FE, (93)

leads to the representation [15]

Emwﬂ@w¢wf;ﬂmo. (04)

Hence we have the necessary representations 7, (u) and E,(u) stated in section 2.3 to
compute

BL
UE

1
= | o s = V) (95)

However, since actually only derivatives of n2" with respect to Ug" arise in the boundary
conditions (131), we obtain

dnBL g (UBL) ( 2 > - %
OBL — a o E,\ A UBL ) 96
T WE T S o 5508 \ao(L ) E ) (%0)

The boundary layer capacity (73) has then the representation

60(1 + XE>

- ge(UF-, p(UE)) 97
(o0 as(UZ, p(UEY)) (97)

Cgt = —sgn(p — ¢°)
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5.2.2 Electrode potential drop

BL
— e UBL,

The equilibrium adsorption condition for the electrons, namely p. = . .

S

actually entails
Ug" = const. (98)

since 1. = const. This condition thus describes the metallic behavior of an electrode,

S
where Ugt = const. implies that any excess charge on the electrode is excessively stored
on the surface in terms of surface electrons. We refer to [15] for a detail discussion on
this aspect. It is to emphasize, however, that for non-metallic/electrolyte interfaces Ug"
is not necessarily a constant. The electro-neutrality condition along the arc ~ gives then
some implicit equation F'(UE", UPY) = 0 with which one could proceed. However, this
requires a careful derivation based on the equations stated above.

For our purpose here we proceed with the condition UZ“ = const.. In the boundary

N Uzt
condition (131) the term =

thus vanishes and CF***" does not contribute.

5.2.3 Adsorbates

The adsorption equilibrium conditions (38) for av € Zgy and surface reaction equilibrium
conditions (41) for the constituents Aa, a € Ig lead to representations [15]

Ya = g()A(UgLyZE) a € Is (99)

Ya
Mo = = a € I (100)
s affyy + X per, CLEZS{,B

together with the constraint

g(UEBL,ZE) =y + > Yo = 1=0 (101)
a€ls
which satisfies
de
dUSEBL = Zs ) (102)

This determines (for a € Zs)

dn,  Ong Oong,
Ca _ s _ _s s
S dUE 8UE * gS (97E

€o .]:1'.]:4_.]63'.]62 {1{4'{2_{1'{5

S S

~ kgTafl ({2)2 " E ({:2)2

(103)

—CL(UE) (108
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with the (dimensionless) abbreviations

J1:=Ya f? =Yy + Zwayaa J3 = 2a¥a (105)

s $ s a€ls s s

f4_eozzawayaa f5_yv+zwaya7 (106)
acls $ a€ls $

and consequently

CPseuE Z Vg, anB _ C«gseu,E(UEBL) ) (107)
dU fets
Note that this leads to explicit expressions of the surface capacity
dge
Cg=—"- = N 108
- i~ 5 o
and the electrolytic pseudo-capacity
d Pseu
creevE = S DI (109)
dUs Us acTe

5.3 Reaction rates of transfer reactions

Based on the chemical potentials specified in the section 5.1 we can now also deduce

explicit representations of the reaction rates R} (eq. (47)) for the transfer reactions
(43).

However, some preliminary abbreviations are useful for the further derivation:

ml == I )™ 11 ()" Bex (110)
Yp ‘E aeZg\{a} a€ln\e

71'/5’M = 1BL H (yaEL)ua,ﬁ H ) (aa’ZL>Vaﬁ : ﬁ EIIZ,I . (111)
a/g‘M a€lg a€Tu\{o,e}

Some auxiliary calculations then lead to the representations

T

Ag
BL B 2
RT = LZ; ' ((Wﬁ‘ )aB : eia’a'(’“BT +Z1l§ kBOT UBL)
E

—(l—« —a ﬁ oM _e BL A~
—(mfy) Mt + e U >) = RE(UEY)  BeZy (112)

AT
BL —va-. L,E _€0 BL
RT:LZ;' ((Wﬂ‘M )%'e aﬁ(’“BT orprUs)

T

BL\ —(1—ag) (170%).(&;5 SE e0 L UR) AT L
— (ms]) S = RL(UR)  BeT; (113)

23



with

T % - ezz\{ﬁ} Vasda —cozsUs,  for f € I
Ags = e . 114
” 95 — X Vapgd +eozgUy-  for BE Iy (114)
a€Zm\ {6}

Note, however, that the incorporation of the boundary layer potential drop Ug" in the
definition of Ag} is only useful when Ug" = const. For a semiconductor-electrolyte or
an electrolyte-electrolyte interface this is not necessarily the case.

5.4 Balance equations and boundary conditions

At this stage it is quite illustrative to briefly summarize the derivation and the general
results. We shifted the boundary layer contributions of the balance equations (14) into
the new boundary conditions (22) at X" which gives the balance equations

Ong
ot

in the electro-neutral domains €27. We have thus ¢; = 0 in €2} which reduces the charge
balance to

= —div (jo) + Ta xe o€, i=ENMNM, (115)

divJ, =0 xeQ. (116)

The boundary conditions at the interface X" are, based on the specific material functions
of this section,

B for the Electrolyte species,

BL
X ’BL Cgff . dlﬁ + ZBEZEM I/B’QR;‘? + d;V Jgff o € I;: (117)
Ja -1 = dUBL . .
E Ceff - - — Ry + 2 6eTs,\{a} VB,aRg + dgV BT aely
B and for the Metal species,
j n)BL Cgseu,E . % —+ Z,BEIgM Vﬁ,aR%: + dsIV Jgff = Ipi[ (118)
—Jo = seu d E]?L . r
M Cg E . % — Rg: + ZBEI]gM\{a} l/ﬂ@RZ; + déV Jiff = LVI )
The incompressibility constraint
> vlfng=1 and vyny =1 (119)
a€lg
can be used to obtain an equation for the barycentric velocity, namely
Ong, _ 0 .
vf% =—divv=0 and vﬁ% =—divv=0 (120)

a€lg
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Note that the boundary condition for the normal component of the barycentric velocity
is determined from

wven| =3 jaon|  i=EMN (121)
a€Z;

At the respective bulk surfaces X3 and %, we fix the concentration of all species, i.e.

=n a€l,, i=EM. (122)

5.5 Initial conditions

At the beginning of any experiment we want to prescribe a homogenous concentration
throughout the domains €27 | i = E,M. We have thus the initial conditions

n.(x,0) = n, xeQ o€, i=ENM, (123)
in order to be compatible to the boundary condition (122). Further we consider that no
tangential diffusional fluxes occur.
But what about the initial reaction conditions at the interface X" ?

Let USH(t =0) = UE-Y be the applied potential difference at ¢ = 0. We can evaluation
the m-functions (110) with the bulk concentrations n’,, namely

1

gl I I @) sem. ()
Yp acZs\{a} a€ly\e~

e I T () sexp. (125)
43 act; acly\{a,e"}

Consider now the transfer reactions at time ¢t =0, i.e. for $ € Z] .7, =E,M,i # j

AgT .
. B J _€0_pyBL,O
—ag (=425 LU ")
A R N R L
B UBL0 B B
E

' W '% L e BL,0
N (W/zb))—(l—ag)e(l 8) (kBT + Z%kBOT Ug )) ES R;;O . (126)

For given values of the Agg in eq. (112) these are in general not equal to zero and could
entail a huge flux at time ¢ = 0 through the interface. This is actually the exchange
current density j%7 of the constituent A, due to the transfer reactions, with

]O,T — ZBEIEM VﬁyoéRg’O’ If «Q G I]é.M (127)
“ —RZ’O + Z,BEIETM\{Q} Vﬁ,aRgo, if a € IEM .

We may thus re-define the total flux as

ip =ja—72"n (128)
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which satisfies the balance equation

ong
ot

and is subject to the boundary conditions

= —divi, + 74 xeQ ,ael,, i=EMNM, (129)

B Electrolyte species,

dUBL T 7,0 .
CHF - = + Ygerr, V(R — Rg") + dév JEEE a e T}

. BL BL
ol =0 T+ Y perr (o) Voa(BE — RE?) (130)

EM

—(Rg — Ry°) +div I a €l

B Metal species,

dUBt T,0 i
Crsewt . U | > ey, yﬁ,a(Rg —Ry") + d;v JEEE e T,
BL

i — seu dUE" 7,0
—lam| = 0O T+ Yser (o) Va0 Rg — Ry (131)
~(RE — RI) + dy JEE we;.
This new total flux satisfies then the initial reaction conditions
3 BL _ Eff dUEBL
onl =T eck (132)
and
3 BL _ Pseu,E dUE]?L
—1i, - n‘M =, e acTy. (133)

Note that this gives also rise to an transfer current density /7 as

i =e > RO —ey Y ZMRIY (134)

€Ly a€Iy

which can be computed from the above representations.

5.6 Flux relation

The most simple relation between the diffusional flux j, and the chemical potentials i,
in order to ensure a non-negative entropy production is [13, 31]

Mey Mmey .
Ja = Dana V(,ua — — M0 + €02q — miZ@())QO) o€ Iz\{AZ,O} , 1= E,M,
) 1,0

L
]{?BT m;o
(135)

)

where A, is some reference species of the respective phase, e.g. the solvent in a liquid
mixture or the lattice constituents in some solid.

A similar relation can be implied on the surface to relate the tangential surface flux J,
S
to the surface chemical potentials 1. However, we in the following the
S
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6 Flat inert metal/electrolyte interface

In order to validate the general modeling procedure, we employ some meaningful as-
sumptions to simplify the overall equation system. We seek then to compute the current
density/voltage relation (i(t), E(t)) based on the preceding model.

6.1 Electrode

The metal Qy is considered to consists only of two species, Zy = {e¢~, M}, where the
metal M does not participate in any surface reaction. This corresponds to an inert
electrode without intercalation. Further, we assumed the surface to be flat, which allows
for a 1D approximation. The metal surface is positioned at T and the double layer is

thus XP is (25", 28%). The bulk metal is positioned at z; and the bulk electrolyte at ;.
The conductivity of the metal is assumed to be sufficiently large to ensure Uy = 0.

6.2 Electrolyte

Reconsider the index set of electrolyte species, 7y = ZL UZL. We can, however, introduce
an additional decomposition

Te = T PP U ZA (136)

where Z3""" denotes the supporting electrolyte species (in addition to the solvent) and
I@Ct the electro-active constituents, i.e. reaction educts and products of the transfer
reactions.

A supporting electrolyte (anions, cations, solvent, etc. with index set IEs“pp), in elec-

trochemistry, according to the IUPAC definition, is an electrolyte containing chemical
-Supp

species that are not electro-active and have an ionic strength 7z '~ and conductivity
Supp -
kg ', I.e.
igum) = e Z 22ng and /@-EUPP = ep Z (€0%a)?Dang (137)

aeZg"?P Q€T

much larger than that of the electro-active species (dissolved gas, anions, cations, etc.
with index set Z2<%). Supporting electrolyte is also sometimes referred to as inert elec-
trolyte or inactive electrolyte and do not participate in transfer reactions.

For our general transfer reactions

BL BL -
3 VQ,BAQ\E = AB’E V3 e Ik, (138)
a€Zm\{B}

we can conclude (5 € Z7,)

Vap=0 for ac Z3"P and Vo #0 for a2 (139)
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The supporting electrolyte species are thus not taking part in the boundary conditions
(130), whereby the balance equations decouple. It is thus sufficient to solve the PDE
system

Ong,
ot

= —0pja  for  a€IhT. (140)

In addition, the decomposition Zg = Z5"?° U ZA propagates also to the current

Jo=e0 Y Zajo = J3"P + JDT. (141)

a€lg

Note that in €2 we have gz = 0 and thus

J, = const. . (142)
The electric current J, decomposes as
Ty = (k2" + k™) pip + K™ - FouiP 4 k™ - o, (143)
with
ke =eo > (€02a)*Dang i = Supp, Act (144)
a€lg
P Doc me .
Flem=¢0 > Za—gsapp e V (Ha — — o) i = Supp, Act (145)
€T} K Mo

S . )
We assume now sz " — oo, which implies

O, —0 andthus U; —0. (146)

Supporting electrolytes are widely used in electrochemical measurements when control
of electrode potentials is required, which is the sake of this study. The huge conductivity
of the solution to practically eliminates the so-called IR drop Uy in the bulk electrolyte
Qf and thus simplifies the equation system (as well as the experimental access).

The flux of the electro-active species (o € Z2<) reduces further to

. Mmea
Ja = _Dana am((ﬂa - 7:“/0)) (147)
mo

ke T

Assuming further that the chemical diffusion is just a simple diffusion process, i.e.

. ]_ ma C
Ja = Danaﬁa’ﬂ((ua - mioruo)) ~ _Daamna o€ IQ i ) (148)
B
leads to the (simple) PDE system (for all o € Z2Y)
on, ‘
gt = —0yia (149)
i = —Dy0yng - (150)

Hence, the transfer reactions actually determine which balance equations require to be
solved.
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Figure 3: Time dependent Voltage E(t) with scan rate v5", initial potential E°, potential
maximum E™ and minimum E™" for one cycle with time length ¢<Y<'e.

6.3 Current/Voltage relation

Based on our assumptions the measured current (69) is

dUgL +eg Z ZM (RT . RT,O) (151)
dt i el @ @

7 — ,L'T,O — Cfg.ff i

which has capacitive contribution and a Faradaic contribution. Note, however, that an
evaluation of this equation actually requires the (numerical) solutions 7, (x,t) of the
equation system (149)—(149) with boundary conditions (130). The representation (112)

BL
shows that R, is actually a function of UZ*(¢) and WB‘E , with
BL

o= w I @)™ I (@)™ sem. s

- BL
Yg ’E acZe\{a} a€ly\e~

BL
The expressions yg’E are actually evaluations of the time dependent solutions ¥, at the

boundary xB“. While all species Z of the electrolyte phase contribute to the double layer
capacity CEff, only the electro-active species 72" contribute to the Faradaic current

YoeTr %a (RZ - RZ’O)-
For the applied voltage reconsider that we have a relation
E=Ur+U* with U" = const.. (153)

We consider a time-dependent triangular function according to Fig. 3 for E.

6.4 Non-dimensionalization of the equation system

In order to solve the equation system numerically, some preliminary non-dimensionalizations
and variable transformations are required.
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Consider first the non-dimensionalization

_x _ ~T _ Agl
f - Ty ) T = tCyc Aga - kBT (154)
€o N
C= T oL Uy = E we = Inu, , (155)

which does hold true since nE # 0 Va € Z2. Note that this implies also

Ya _ Na

since n = nf = n’ and entails

BL

BL BL
WB‘E B yg HaeIE\{a}(ya’E )Va’ﬁ HaeIM\e* (aa’M )VQ’B (157)
5 yﬁ'BL [aezs (o3 WE)" 2 Taegye- (alh) s
E
1 BL,, BL., _|BL
= —x I (al ) TI (ua|,) = 7| (158)
U’B‘E acTeg\{a} a€Ty\e™

Note, however, that it is numerically problematic to consider u, as variable since these
values might become negative due to the accumulation of numerical errors. However,
using w,, as variable solves this problem and we have thus the following transformations:

0ua awa 8wa
—— = Uy =e' 159
o "ot ~ S ot (159)
8§ua = W ag’wa (160)
77'/3 zL = ezaelsn\{a,e*} Va8 Walg" —wplg" ) (161)
We obtain finally the following mathematical problem:
B PDE System:
Ow, ~
et ;; = D¢l for ac P (162)
lo = Do€"® dew, (163)
with
tCyc ~ ~ Ty,
Dy=-—5Do , ia=—doia and dy=ng c (164)
x7 tye
B bulk boundary condition at z;:
Walsz =0 for o€ IP, (165)
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B transfer reaction conditions at the double layer interface xp":

¥ |BL _
lalg =

1

dE ~
y (ngf ) me;) a € ILNIE  (166)

dt getr,

~ 1 dE -~ _
lalp = = (Cgff i RE+ Y uﬁ,aR§> a € L NIt (167)
da BeTy\{a}
with 5 = (R% — R")
B initial conditions

wa(0,2) =0 a €Iy (168)

After solving the PDE system, the solutions for u,, are obtained from

Ug = €V (169)

6.5 Parameters

Before discussing the actual examples, it is illustrative to discuss briefly the parameters
of the overall model framework.

6.5.1 Cyclic Voltammetry

The parameters for the cyclic voltammetry are the initial potential E°, the potential
maximum E™¥ and the the minimum E™" with ™ — EF™" ¢ [1 — 4] V. The scan
rate v°2" is normally in the range of 10 — 100 [Vs™!]. Hence, the cycle time t<° is
normally in the order of 100s, and the number of cycles is denoted by N

6.5.2 Transport equations

The Diffusion coefficients D,, of the electro-active species Z2* dissolved in water are in
the order of 107° [cm? s™!]. For the computational domain (2, z}) with z; = zf — 25
we employ a scaling with the Nernstian diffusion layer [2], which leads to

xr, = Nnp - \/max D, - t%ee. 10" [um] (170)

and Nyp = 5 (conservative).
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6.5.3 Capacity

Several parameter have an impact on the effective capacity CE*, and we refer to [15]
for a detailed discussion on the respective values. Briefly summarized, the parameters
are

particle density at the boundary layer n, zL , (171)
charge numbers z,, dielectric susceptibility xg,
solvation numbers x, and Ko adsorption energy Agé,

partial molar volumes vf, partial molar areas ag .

In the examples section we provide explicit values without any further discussion.

6.5.4 Transfer reactions

For each transfer reaction (43) with reaction rate Rg we have essentially two parameters,
Lg[molem™?s] and Agf [eV] with Agh € (—2,2) / V.

The exchange current density for each reaction is then

T
Agg 427 S0_pBLO)

) ) Agf? i e BL,0
Z% _ eozg Lfg . ((W?g)aﬁ _e—aﬁ~(kBT BERT E _ (Wg)—(l—aﬁ)e(l—ag)(@—&-zékB—OTUE ))7

(172)

which is in the order of /uAcm~2. Note that parametric dependency of the transfer
reaction and the resulting current on Lg and Agg is highly non-linear.

6.6 Examples

1

The scan rate is fixed for all examples as v°" = 100 /mV s~!. If not mentioned

otherwise, £y = 0V, E™ = 1.5V and E™" = —1.5V.

6.6.1 ACsolution without transfer reaction

This first example servers to investigate the capacitive current. We consider now an
aqueous solution of AC , which is completely dissociated into C* and A~ ions. We
employ the standard parameters of [15] and y = 45 for water and v¥_ = v, = 45-0f,
where vlf = 0.0180/Lmo|_1 is the partial molar volume of water. The partial molar
area of water is aff = 10.33 - 108 / cm? mol ™' [15, 24]. The metal surface is considered
as Ag(yy) -
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The anion A~ may adsorb on the surface and thereby lose a part of the solvation shell
as well as some partial charge, i.e.
BL BL
A= (1= Ve | "= (ma- — ) H,0 =AY (173)
S S
This adsorption process entails that the partial molar area afA of is related to A [24].
We can thus perform a parameter variation of afA for an aqueous AC solution and
study the impact on the capacitive current density

dE
i=Cgt (174)

The adsorption energy for {;\A is Agiy = —0.2/ eV.

—aar =25-af
100 ~ ——aax :20-(1(1)2

CLA)\:15'CL(I)2
80 aAA:10-a§
R
apx =95-ap
60 asx =3-af
T a0l —aAA:2~a0R
S _(IA)\:1~GUR
Y 20t
kS
~ 0 -
T
€ 20
&’7 L
S 40l
S 40
—60L
—_80L
—100 | | | | | ]
—-15 -1 15

—-0.5 0 0.5
Potential £ vs. SCE/V

Figure 4. Numerical simulation of the capacitive current with adsorption and partial
charge transfer reaction (175). The partial molar area of a¥, on the surface is varied in
multiples of alt.

Note, however, that adsorption and discharge process could also be a 2-step mechanism,
for example

AT = (1= Ne|) = (ha — ma)H,0 = A (175)
T e (ka — mA)H0 = A (176)

where the uncharged reaction product A has solvation number k5 = 0 and thus ap-
S S

proximately af = all. Figure 5 shows a computation of the corresponding CV with
afy =5-alf, Agi, = —0.2eV and a variation of Agy.
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Figure 5: Numerical simulation of the capacitive current with two-step discharge of the
anion A~.

6.6.2 AC solution with transfer reaction

Next we consider an additional transfer reaction

= A (177)
for the example preceding example. The bulk concentration of nf, is set to 107% / mol L=t

The parameters for the transfer reactions are exemplarily chosen as Agl, =0/ eV and
LBT =1.0364 - 1071* / molm~2. For the adsorption energy of A we use Agy = 0eV.
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Figure 6: Numerical simulation of the cyclic voltamogramm with double layer current
and Faradaic current. Potential profile according to the subfigure.

This example shows that the faradaic current (peak at 1.2V) and the current due to the
adsorption and discharge process A*EL - e*‘iL — (ka- — /;;A)HQO =A (peak at 0.4 V)

can be in the same order.

6.6.3 2-Step electron transfer

The final example is to consider a two step electron transfer reaction,

RT e[ = o (178)
RT e =cf (179)

for which we consider a solution of A,C with concentration 0.01M. Further, we consider
bulk concentrations of for C* and C of 0.01M. The reaction parameters are

Agl =0ev iy = {0.1,1} (180)
Agl = -02eV ip = {0.1,1} . (181)

We thus vary the exchange current density in this example.

Fig. 7 displays a numerical simulation of this example and the impact of the parameter
variation of 4; and 5.
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Figure 7: CV simulation of a 2-step electron transfer reaction-

6.7 Conclusion

We derived based on the framework of non-equilibrium thermodynamics the boundary
conditions for a general electrochemical interface. The model was then applied to the
metal-electrolyte interface based on some explicit material functions. Numerical simula-
tions show the applicability of the model to double layer charging and transfer reactions.
Extensive parameter studies will be performed in an upcoming publication. This ap-
proach can be considered as a first step towards a model based understanding of cyclic
voltammetry.
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Appendix A Surface capacity

Here we provide a semi-explicit representation of the surface capacity g First of all note
that the surface charge ¢ has the representation
S

N N |zal
Doas1 ZalolYa T 2git 2opm_1 Za€0Ya,p
S S

1= R Ne R NE |2a | R ) (182)
# aV:gV + 2 ato A %Oé + 2 a0 Z,B:—l aa,ﬂ%aﬁ

With the representation y,, ¥, s and yy of [15] we obtain an expression of ¢ in terms of
(o —¢F) and (v —~7), i.e. ¢ = G( — @&, v — ™). The surface charge is thus a function

S S s S
of ¢ and the surface tension 7. The surface fractions y, s obey the constraint
S S

NE NE IZOé|
W=7+ vale =57 =7+ D D vasle—¢" 7= —1=0, (183)
s a=0% ¢ a=08=-1°% s

which is an implicit relationship between Uz and v —~®. Hence, we may use the implicit
function theorem to deduce a solution v = 4(Ug) from equation (183), which satisfies
d43/d(Ug) = q. The surface capacity C'is thus

dg dq dq

Y= = : . 184
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With the (dimensionless) abbreviations

Ng  |zal

fl = Zzaya+eoz Z Zaya,B (185)

a=1p=-1 %

Ne  |zal
f2 —yv+woyo+zwaya+z Z Wa, 6Y o, (186)
a=1 ° a=1p=
Ne  |2al

Z Zaya + Z Z aya B (187)

a=1p=-1 °

Ne  |2al
f4_€022awaya+€oz Zzawaﬁyaﬂ (188)
a=1p=-1
Ne  |zal
fs_yv+woyo+zwaya+z Z Wagyaﬁ (189)
s a=1p=—1

we obtain for the surface capacity the expression

2 (ffamtsfe Sifafo— S fs

é« _ s s s s _I_ s s ) 190

s kpTaf (f2)? f2 (f2)? (190)

Note that the term k;% indeed has units # and that all functions fy,k=1,...,5,
Vv S

are dependent on Uy and v — ~%.

Appendix B Calculation of the Faradaic current

Reconsider that

Eff _ , Eff,/ Eff,
Too = Tqu T Lan ' (191)
with
rg'Mff’ — 60 Z Zargff = —60 Z Za Z Vﬁﬂle‘ + Z Vﬁ,ang (192)
= a€T BETL PELy

T P (Z vsaRE+ D vgaRb — RZ) (193)

€Ty o€y BeLy Bei\{a}

We can thus rewrite

€o Z zaRg —ep Z Zo, Z I/B,QRg —ep Z Zo, Z I/B,QRg (194)

= a€Zy  Bezy\{o} a€I, BET}
=eo ) (Za - > Zﬁ”@cﬁ) R (195)
= BeTn\{a}

39



Due to the electro-neutrality of each transfer reaction we have

Zo — Z 2Vap = Z 28V, (196)

BeTu\{a} BETE
and obtain thus
TR =g Y ZERL—eg > 2N RL. (197)
a€ly a€ly
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