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ABSTRACT

Deep neural networks have been successfully applied to the
task of visual concept classification. However, they require
a large number of training examples for learning. Although
pre-trained deep neural networks are available for some do-
mains, they usually have to be fine-tuned for an envisaged
target domain. Recently, some approaches have been sug-
gested that are aimed at incrementally (or even endlessly)
learning visual concepts based on Web data. Since tags of
Web images are often noisy, normally some filtering mech-
anisms are employed in order to remove “spam” images that
are not appropriate for training. In this paper, we invest-
igate several aspects of a web-supervised system that has
to be adapted to another target domain: 1.) the effect of
incremental learning, 2.) the effect of spam filtering, and 3.)
the behavior of particular concept classes with respect to 1.)
and 2.). The experimental results provide some insights un-
der which conditions incremental learning and spam filtering
are useful.
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1. INTRODUCTION

Current approaches for semantic image search usually rely
on a lexicon of pre-defined visual concepts which have to be
detected automatically. For example, deep neural networks
[10] are successfully applied to the task of visual concept
classification. However, these methods require a large num-
ber of positive training examples for each concept category
which is a time-consuming and costly task. Common image
datasets such as Pascal Visual Object Classes (VOC) [6]
or ImageNet [14] have been created by hundreds of people
who judged the presence of visual concepts and additionally
labeled object locations. Not so long ago, training data cre-
ation has been a pure manual task. To solve this problem,
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it has been proposed to use web and social media. For ex-
ample, some approaches [1, 15] exploit image search engines
to gather images in order to train a concept classifier. Other
sources of information, such as Flickr, provide more realistic
images with natural background, but this kind of source also
includes more noisy tags [2, 18, 16, 9]. Image tags or sur-
rounding text information on websites such as Flickr can be
incomplete, subjective, ironic, or simply wrong. Recently,
images available in the web are also employed to train a de-
tector for localizing the target concepts in an image [2, 3,
4]. Another kind of approaches uses incremental learning
to iteratively optimize the concept model with additional
images [3, 11] or to find new concepts in the downloaded
data. In general, a further popular alternative is to use pre-
trained models, e.g., pre-trained deep neural networks such
as GoogleNet or Alexnet [5], but normally these models re-
quire fine-tuning based on additional training data for an
envisaged target domain.

In this paper, we investigate some properties of a web-
supervised learning system for visual concept classification.
The envisaged scenario is to build an automatic classification
system, which is only initialized with the concept names to
be learned, for the target domain Flickr. The baseline sys-
tem can be an (initially) untrained network as well as a pre-
trained network based on ImageNet data. After it has been
initialized, the system starts gathering images from Flickr
with appropriate tags, i.e., the concept names, and iterat-
ively refines the network model via incremental learning. A
spam filtering step based on textual and visual information
can precede the model update in each training iteration. The
objective of the paper is to provide an insight into 1.) the ef-
fect of incrementally adding training data to the network, 2.)
the usefulness of spam filtering based on textual and visual
information, and 3.) it is investigated if concept classes be-
have differently with respect to incremental learning and
spam filtering. Experimental results are presented for Pas-
cal VOC 2012 data. The performance of the web-supervised
system is also compared with a supervised version that is
fine-tuned using Pascal VOC 2012 training data.

The remainder of the paper is organized as follows. In
section 2, the web-supervised learning system is presented.
Experimental results are discussed in section 3 and section
4 concludes the paper and outlines areas for future work.

2. WEB-SUPERVISED LEARNING

In this section, we describe the framework for web-super-
vised learning of visual concepts. The system consists of
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Figure 1: Iterative model of the system.

Figure 2: Example images from a non-spam (2 top
rows) and a spam (2 bottom rows) cluster.

three components: crawling, spam detection, and concept
learning using convolutional neural networks (CNN). The
system is initialized only with the names of the target con-
cepts. Then, our target domain Flickr is used to find positive
training examples for all concepts. If an appropriate entry is
found, the image and all related information are downloaded
and stored. Search engines such as Google or Bing are not
exploited since it has been shown that they tend to be biased
towards “clear” iconic images [13, 12], i.e., images showing
only one visual category. Textual and visual information
are exploited to identify “good”, i.e., positive training im-
ages and to filter out “spam” images from the downloaded
content. An image is filtered out if one of the two filters
(textual or visual) considers an image as spam. Spam de-
tection based on textual information is described in previous
work [7]. The crawling of web content and the spam detec-
tion steps are conducted separately for each specified target
concept. The system learns in several iterations and is ba-
sically designed to learn endlessly. The system’s workflow is
illustrated in Figure 1.

2.1 Visual Spam Detection

This filter exploits the visual information of each image
candidate in order to separate spam images from relevant
images which are supposed to be useful for training. To
describe an image, a feature vector is generated using a pre-
trained CNN. The Caffe model BVLC GoogLeNet [17] is
used which is trained on the ImageNet Large Scale Visual
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Recognition Challenge (ILSVRC) 2012 data [14]. The fea-
ture vector is computed using the last pooling layer of the
GoogLeNet model. Then, the feature vectors are clustered
using k-means algorithm. To estimate the best number of
clusters, k is iterated from 2 to 20 clusters. The silhouette
coefficient describing the homogeneity of clustering results
is computed for each k. The clustering with the maximum
silhouette coefficient is used in the next step.

Clusters consisting of a low number of images or having
a silhouette coefficient below a threshold are discarded as
spam. In the next step, the average distance of each cluster
member to its cluster center is computed. These average
distances are sorted in ascending order and the maximum of
two successive pairs are computed. The maximum is used to
split the sorted list into relevant and irrelevant clusters (im-
ages). All clusters below this threshold are used as training
data while the other clusters are discarded as spam. Some
examples of clustered images are shown in Figure 2.

2.2 Incremental Learning Process Using CNN

The clusters that remain after spam detection are used
as positive training examples for the target concept. We
consider two scenarios to train a CNN as classifier. In the
first scenario we use CNN with randomly initialized weights,
while a CNN pre-trained on ILSVRC 2012 training set is
exploited in the second scenario.

The first deep neural network that we are using is the
BVLC AlexNet [10] model from Caffe [8]. The system uses
a stochastic gradient descent (SGD) learning algorithm with
a momentum term of 0.9. In the first scenario, the network
is initially trained with 450000 iterations and a batch size
of 256. We start with a learning rate o of 0.01 and after
100 000 iterations, the learning rate is dropped by a factor
of 10. In the second scenario, only 100000 iterations are
used to train the network. Also an initial learning rate « of
0.001 is used, but it is increased in the last layer by a factor
of 10. After 25000 iterations, the learning rate is reduced
by a factor of 10.

In addition, a pre-trained CNN GoogLeNet [17] model
from Caffe [8] is used as a classifier and fine-tuned for the
new task. This model has shown good performance on the
ILSVRC 2014 [14]. A SGD learning algorithm is used for
fine-tuning and the number of neurons in the last layer is set
to the number of target concepts. Only 100000 iterations
with a batch size of 128 and a momentum term of 0.9 are
used. The initial learning rate « is reduced by the factor 10
to 0.001, but the learning rate in the last layer is increased
by the factor of 10. To increase the number of training
examples, all images are scaled to a size of 256 x 256 and
a region of size 224 x 224 pixels is cropped from the image.
Additionally, the training examples are mirrored randomly.

For each incremental training step, 2500 images per tar-
get concept are used to optimize the CNN. As long as the
system finds further (2500) training examples in the web,
this process is repeated.

3. EXPERIMENTAL RESULTS

All experiments are based on an incremental learning set-
ting. The deep neural networks are configured as described
in the previous section. In each iteration, new training ex-
amples (2500 images per concept) gathered from the web are
passed as additional input to the spam filter and the net-
work. The validation set of Pascal VOC 2012 [6] is used to
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Figure 3: Effect of spam filtering for a CNN with
randomly initialized weights.
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Figure 4: Incremental learning results for two CNNs
pre-trained on ILSVRC 2012.

test and compare the performance of the models. This valid-
ation set is annotated with respect to 20 visual classes. The
first experiment is conducted using 17 classes, since there
were not enough training data available (at least 7500) at
the time of this experiment for the concepts potted plant,
dining table, and TV monitor. This effect was resolved by
searching for synonyms as well, which has been employed in
the subsequent experiments, i.e., results for the more com-
prehensive second experiment are reported for all 20 classes.

3.1 Validation of Spam Detection

In the first experiment, the impact of spam detection
based on textual and visual information is evaluated. For
this purpose, an untrained AlexNet with randomly initial-
ized weights is used. Two AlexNet models are trained: The
first model uses the raw image data captured from the Web,
whereas the second model employs the spam filters.

Results in Figure 3 show that the mean average preci-
sion (MAP) is noticeably better for spam detection for all
training iterations. This finding is confirmed in another ex-
periment (described below) using GoogLeNet and 20 classes.

Based on this result, we have tested pre-trained versions
of AlexNet and GoogLeNet in conjunction with the spam
filtering process. The results displayed in Figure 4 show that
the GoogLeNet outperforms the AlexNet network. Hence, a
pre-trained GooglLeNet is used in the next experiment.

3.2 Incremental Learning Capability

In this experiment, the behavior of a pre-trained Googl.e-
Net is investigated for a larger number of eight iterations
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Figure 5: Results of a supervised (VOC training
data) and two web-supervised versions, each version
building on a CNN pre-trained on ILSVRC 2012.

for two conditions: with and without spam filtering. Again,
in each iteration 2500 images per concept class are passed
to the CNN and the (optional) spam filtering. That is, in
the version without spam filtering 400 000 have been passed
to the system. In addition a purely supervised CNN, i.e.
without using any image data acquired from the web, is
fine-tuned with the Pascal VOC 2012 training data in the
same manner as described in section 2.2.

Figure 5 shows the trend of MAP for the eight iterations
starting from 2500 up to 20000 samples per target. The
performance of the model using the filter system increases
from 69.5% to 72.4%.

Also, it can be observed that spam filtering noticeably
improves the MAP in the first iterations and MAP of both
systems start to converge for 12500 examples per concepts.
Hence, it can be concluded that spam filtering is most help-
ful when using a smaller number of training examples. Al-
though the web-supervised system version are slightly out-
performed by the CNN using “clean” training data (73.7 %),
they achieve (nearly) a similar performance — without any
supervision and manual efforts for annotating training data.

3.3 Effects on Particular Concepts

The effects of incremental learning in conjunction with
(and without) spam filtering can be observed in Table 1 for
10 out of 20 classes. The absolute improvement ranges from
-0.7% for dining table up to 7.6 % TV monitor when using
spam filtering. Interestingly, for the system version without
spam filtering this behavior is reversed. The absolute im-
provement ranges from -0.4 % for TV monitor up to 15.7 %
for dining table. These concepts tend to be very sensitive to
the spam filtering or incremental learning, respectively. An-
other interesting observation is that additional training ex-
amples beyond the size of 10000 do not improve the system
accuracy and the performance converges. From this point
on, the learning process has to be modified, for example, by
means of network parameters or training data selection.

4. CONCLUSIONS

In this paper, we have investigated the effect of spam fil-
tering and incremental learning for a web-supervised deep
learning framework for visual concept classification. A visual
spam filter has been suggested which is used in conjunction
with a textual filter in order to remove noisy images.

Several conclusions can be drawn. For a target domain



Table 1: Image classification results on Pascal VOC 2012 validation set.

Trained CNN with ... MAP | table dog horse mbike person pplant sheep sofa train monitor
VOC training data 73.7 | 61.5 84.7 TT.T 83.2 76.4 40.0 83.7 56.2 914 71.5
Web & filter (2500) 69.5 | 48.3 85.6  81.7 84.1 69.3 37.6 783 45.6 89.5 32.3
Web & filter (5000) 71.3 | 51.5 85.0 87.7 84.1 70.3 42.5 80.1 474 914 38.0
Web & filter (10000) 72.6 | 51.2 86.1 90.9 83.6 72.9 40.2 80.6 47.5 92.0 49.0
Web & filter (20000) 72.4 | 476 86.8 91.2 84.4 73.1 39.4 80.1 50.7 92.1 39.9
Web & no filter (2500) 674 | 416 84.7 853 81.5 63.0 39.8 83.1 415 85.7 32.2
Web & no filter (5000) 69.6 | 459 84.5 883 82.0 62.1 42.1 85.5 48.8 87.6 33.6
Web & no filter (10000) 70.8 | 494 839 90.0 83.8 65.3 41.6 86.3 45.1 90.2 35.2
Web & no filter (20000) 72.2 | 573 84.6 89.5 83.1 66.7 45.5 88.7 48.3 90.7 31.8
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