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Refined a posteriori error estimation for classical and pressure-robust
Stokes finite element methods
Philip Lukas Lederer, Christian Merdon, Joachim Schéberl

Abstract

Recent works showed that pressure-robust modifications of mixed finite element methods for the Stokes
equations outperform their standard versions in many cases. This is achieved by divergence-free reconstruction
operators and results in pressure-independent velocity error estimates which are robust with respect to small
viscosities. In this paper we develop a posteriori error control which reflects this robustness.

The main difficulty lies in the volume contribution of the standard residual-based approach that includes the
L2-norm of the right-hand side. However, the velocity is only steered by the divergence-free part of this source
term. An efficient error estimator must approximate this divergence-free part in a proper manner, otherwise it can
be dominated by the pressure error.

To overcome this difficulty a novel approach is suggested that uses arguments from the stream function and
vorticity formulation of the Navier—Stokes equations. The novel error estimators only take the curl of the right-
hand side into account and so lead to provably reliable, efficient and pressure-independent upper bounds in
case of a pressure-robust method in particular in pressure-dominant situations. This is also confirmed by some
numerical examples with the novel pressure-robust modifications of the Taylor-Hood and mini finite element
methods.

1 Introduction

This paper studies a posteriori error estimators for the velocity of the Stokes equation with a special focus on
pressure-robust finite element methods. Pressure-robustness is closely related to the LQ-orthogonaIity of divergence-
free functions onto gradients of H !-functions. In particular, the exact velocity u of the Stokes equations (with zero
boundary data),

—vAu+Vp=FfinQ and ueVy:={ve H}(Q)?:divv = 0},

is orthogonal onto any ¢ € L?(€2) in the sense that {, gdiv(u) dz = 0. Consequently, u also solves the Stokes
equations with f replaced by f + Vq for ¢ € H'(2). This invariance property is in general not preserved for dis-
cretely divergence-free testfunctions of most classical finite element methods that relax the divergence constraint to
attain inf-sup stability. With an inf-sup-stable pair of a discrete velocity space V';, and some discrete pressure space
@1, and the discretely divergence-free functions Vo.n © V1, the consistency error from the relaxed divergence
constraint can be expressed by the discrete dual norm , for any q € L%(Q),

. . So adivon dz_ fming,cq, ¢ —gnllze i Von & Vo,
IValvsy, == sup o7 < _ (1)
P nevooy [Vor|re 0 it Von S Vo.
Besides some expensive or exotic divergence-free methods like the Scott-Vogelius finite element method [32, 37],
most classical inf-sup stable mixed finite element methods, including the popular Taylor—-Hood [18] and mini finite
element families [5] have Vp 5, & Vo and so the term from (1) appears in their a priori velocity gradient error
estimate [8] scaled with 1/v, i.e.

1

2 : 2 2

V(u-w)e < | inf (V= w)ls+ 5 IVhlR, . @
wp=vp on 0N

This factor 1/1/ causes a locking phenomenon. Indeed, for v — 0 or very complicated pressures, the pressure
contribution may dominate and lead to a very bad solution for the discrete velocity uy, [21, 24, 19, 25].
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P. L. Lederer, Ch. Merdon, J. Schéberl 2

By a trick of [21] one can introduce a reconstruction operator II, that maps discretely divergence-free functions onto
exactly divergence-free ones, into the right-hand side and so transform any classical finite element method into a
pressure-robust one. This replaces the pressure-dependent term in (2) by a small consistency error of optimal order
[21, 9, 22, 25, 20] and independent of 1/v. Although this fixes the locking phenomenon and leads to huge gains in
many numerical examples, efficient a posteriori error control for these methods is an open problem. Efficient error
estimators for the velocity error not only have to cope with the variational crime but also, and more importantly, have
to mimic the pressure-independence.

Standard residual-based a posteriori error estimators 7 usually have the form
IV(u—wup)|rz <1 := M + other terms

with a volume contribution 7, and some other terms, like norms of the normal jumps of u, data oscillations or
consistency errors. In the standard residual-based error estimator for classical finite element methods [17, 36, 34,
33] the volume contribution takes the form (for any ¢ € H*(£2) and piecewise Laplacian A7)

ot = v [Valvg, + v hr(f = Vg + vATug)| 2 ®)

A

(9 = un)lae + 0 (I~ dlee + iy la =l + osculf = Ve, 7))
h h

The inequality above states efficiency, i.e. beeing also a lower bound of the real error, and its dependence on the
choice of g. Note, that for ¢ € Q, the terms |[Vg[v;, < ming,eq, [¢ — qnfz2 = 0 vanish, but [p — ¢/
remains, whereas for ¢ = p the term |p — ¢|| 2 vanishes, but the other two remain. If the velocity error is at best
as good as the error in the pressure (scaled by 1/v), as it is the case for classical pressure-inrobust methods, this
estimate is fine (e.g. for g chosen as an Hl-interpolation of pp). As a result classical a posteriori error estimates,
see e.g. [17, 36, 34, 33], often perform the error analysis in a norm that combines the velocity error and the pressure
error. A pressure-robust method, however, allows for a decoupled error analysis of velocity error and pressure error
and so gives more control over both.

For a pressure-robust finite element method, the term (3) can be replaced by

1/71Hh7‘(f —Vq+ VAT’U,h)HLz (4)
IV (w—wun)|> + v~ (|p— gll2 + oser(f — Vg, T)).

77v0|

A

Here, the choice ¢ = p leads to a pressure-independent efficient estimate. However, this cannot be considered a
posteriori, since p is unknown. Hence, an efficient error estimator of this form for pressure-robust methods hinges
on a good approximation of ¢ ~ p as already investigated in [15, 23].

The main result of this paper concerns a different approach to estimate the velocity error that yields an estimator
with the volume contribution

Nourl 1/*1Hh%—curl7—(f + vAgup)| L2 (5)

IV (w —up)|z2 + v tosex (hreurly (£ + vArug), T).

A

The advantage of 7,y over 7, is that the curl operator automatically cancels any V¢ from the Helmholtz decom-
position of f + vAsu;, and therefore no approximation of p as in (4) is needed. Also note, that 7)., is similar
to the volume contribution of a residual-based error estimator for the Navier—Stokes equations in streamline and
vorticity formulation [3]. However, the error estimator with this volume contribution is valid for any pressure-robust
finite element method like the Scott—Vogelius finite element method [32, 37] or the novel family of pressure-robustly
modified finite element methods of [21, 9, 22, 25, 20] that allow for an interesting interplay between the Fortin
interpolator / and the reconstruction operator II manifestated in the required assumption

Jﬂ(l —MI)v -0 dz < |Vv|pe|h3-curld|.: forall @ € H(curl,Q) and v € V. (6)
We prove this assumption for certain popular finite element methods including the Taylor—Hood and mini finite
element methods, and some elements with discontinuous pressure approximations. However, we only focus on

the two-dimensional case, since the proofs for the three-dimensional case are much more involved and therefore
discussed in a future publication.
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Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods 3

The rest of the paper is structured as follows. Section 2 introduces the Stokes equations and preliminaries as well
as notation used throughout the paper. Section 3 focuses on classical finite element methods and their recently
developed pressure-robust siblings that are based on a suitable reconstruction operator. Section 4 is concerned
with standard residual-based error estimates for classical and pressure-robust finite element methods and the
efficiency of its contributions, in particular (3) and (4), especially in the pressure-dominated regime. Section 5
derives some novel a posteriori error bounds with the volume contribution (5) that are efficient and easy to evaluate
for the pressure-robust finite element methods that satisfy Assumption (6). In Section 6 this assumption is verified
for many popular finite element methods and their pressure-robust siblings. Section 7 studies numerical examples
and employs the local contributions of the a posteriori error estimates as refinement indicators for adaptive mesh
refinement. The numerical examples verify the theory and show that the pressure-robust finite element methods
converge with the optimal order also in non-smooth examples.

2 Model problem and preliminaries

This section states our model problem and the needed notation.

2.1 Stokes equations and Helmholtz projector

The Stokes model problem seeks a vector-valued velocity field w and a scalar-valued pressure field p on a bounded
Lipschitz domain 2 = R? with Dirichlet data w = wp along 0S2 and

—vAu+Vp=jFf and divu=0 inQ.
The weak formulation characterises u € H' ()2 by u = up along 0€) and
v(Vu,Vv) — (p,dive) = (f,v) forallv eV := H}(Q)?
(¢,divu) =0 forallg € Q := L2(Q).
In the set of divergence-free functions V¢ := {v € V' | divv = 0}, u satisfies
v(Vu,Vov) = (f,v) foralve V.
The Helmholtz decomposition decomposes every vector field into
f=Va+p=Va+Pf

withaw € HY(Q)/Rand 8 =: Pf € L2(Q) := {w € H(div,Q) | diviw = 0,w - n = 0 along dD} [16]. Note
in particular, that the continuous Helmholtz projector satisfies P(Vq) = 0 for all ¢ € H'(2) which implies

v(Vu,Vv) = (Pf,v) forallve Vo,

hence w is steered only by the Helmholtz projector Pf of the right-hand side.

2.2 Notation

The set 7 denotes a regular triangulation of {2 into two dimensional simplices with edges £ and nodes . The
three edges of a simplex T" € T are denoted by £(T'). Similarly, N'(T') consists of the three nodes that belong to
T € T, N(E) consists of the two nodes that belong to £ € £ and T (z) for a vertex z € A consists of all cells
T € T with z € N(T). Finally we define £° as the set of all inner.

As usual L2(Q), H'(Q), H(div, Q) and H (curl, ) denote the Sobolev spaces and L2(2)%, H'(Q)? denote
their vector-valued versions. Moreover, several discrete function spaces are used throughout the paper. The set
Py (T') denotes scalar-valued polynomials up to order k that live on the simplex 7" € T and generate the global
piecewise polynomials of order £, i.e.

Pi(T) :={qn € L*(Q) |NT € T : vp|r € Pp(T)}.
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Table 1: List of classical finite element methods that are considered in this paper and their expected velocity gradient
error convergence order k.

FEM name & reference & order abbr. Vi Qn

Bernardi-Raugel FEM [7] (k = 1) BR PRR(T)nV Py(T)

Mini FEM [5] (k = 1) MINI  P(T)?2nV Pi(T) n H'(Q)
Pyy1 X Py_1 FEM (k = 1) P2P0,... Pii1(T)2nV Pr_1(T)

P2-bubble FEM [13] (k = 2) P2B PHT)?2 AV Pi(T)

Taylor—Hood FEM [18] (k = 2) TH, P (T)2nV Py_1(T) n HY(Q)
Scott-Vogelius FEM [32, 37] (k=2) SV Pa(bary(T))2 AV Py(bary(T))

The function 7p, () denotes the L? best approximation into Py (w) for any subdomain w < §2. For approxi-
mation of functions in H (div,{2) we use the set of Brezzi-Douglas-Marini functions of order k& > 1 denoted
by BDM;.(T) := Px(T)? n H(div,Q) and the subset of Raviart-Thomas functions of order k > 0 de-
noted by RT}.(7), see [28]. The functions Irp, and Ippas, denotes the standard interpolator into Ry (7) and
BDMk(T), respectively, see e.g. [8]. We are also using lowest order Nédélec (type |) functions J\/O(T) defined
as the 90 degree rotated lowest order Raviart-Thomas functions with the corresponding interpolator Iy, see [27].

The diameter of a simplex T' € T is denoted by hr and h1 € Py(7) is the local mesh width function, i.e.
hy|r := hy foral T € T. Similarly, h g denotes the diameter of the side E € £. At some point certain bubble
functions are used. The cell bubble function on a cell T € T is defined by by = ]_[ZEN ¢~ where ¢, is the nodal
basis function of the node z € NV, i.e. ¢, (2) = 1 and ¢, (y) = 0 for y € M\{z}. Similarly, the face bubble b for
some side E € £ is defined by by = Hzef,‘ .. The vector n g denotes the unit normal vector of the side £ € £
with arbitrary but fixed orientation, such that the normal jump [v - n] of some function v has a well-defined sign.
The vector T g denotes a unit tangential vector of F.

3 Classical and pressure-robust finite element methods

This section recalls classical (usually not presssure-robust) inf-sup stable finite element methods and a pressure-
robust modification of these methods.

3.1 Classical inf-sup stable finite element methods

Classical inf-sup stable finite element methods choose ansatz spaces Vj, € V = Hol(Q)2 and Qp S Q@ =
L3(€2) with the inf-sup property

di d.
0<c¢y:= inf sup M (7)
qn€Qn\{0} v, eV}, \{0} HVUhHOHQhHL2

This guarantees surjectivity of the discrete divergence operator

divpvy, =g, (divyy,) := argmin [divo, — gnl L2,

qr€QR

but also leads to the set of only discretely divergence-free testfunctions
VO,h = {’Uh € Vh \divhvh = 0},

that in general is not a subset of the really divergence-free functions V. Table 1 lists some classical finite element
methods that are inf-sup stable and are considered in this paper. Besides the Scott-Vogelius finite element method
(on a barycentric refined mesh bary (7) to ensure the inf-sup stability [32, 37]), all of them are not divergence-free.
The space P, (T in case of the P2-bubble [13] or the mini finite element methods [5] indicates that the Py, (7T)
space is enriched with the standard cell bubbles b for all T € 7. For the Bernardi—Raugel finite element method
normal-weighted face bubbles are added [7] defining the space PER(T) := P1(T)? U {bgng : E € £}.
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Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods 5

The relaxation of the divergence constraint leads to the usual best approximation error in the pressure ansatz
space, i.e.

§o pdivey, dz

IVplvg, == sup (8)

oneVo (0} [VURL2

$o(p — qn)divey, dz .
b < min [p — qnllz2,
v €Vo,n\{0} HV'UhHL2 an€Qn

and divergence-free methods are characterised by

Vons Vo = |\VP\\Vth, = Oforallpe L*(Q).

For completeness, we shortly prove the classical a priori error estimate in the following theorem for the discrete
solution uy, € up p + Vi, (Where up j, is some suitable approximation of wp) and p;, € @}, defined by

v(Vuy, Vo) — (pr,divey) = (f,vn) for all vy, € Vj,, (9)

(
(gn, divug) =0 forall gy, € Qp,
or, equivalently,
v(Vuy, Vo) = (f,vy)  forallvy, € V.
Theorem 3.1 (A priori estimate for classical finite element methods). For the discrete velocity wy, of (9), it holds

1
2 : 2 2
IV —wn)lze < inf V(= won)lie + 51VPli;, -

up=vyp on 0§

Proof. The best approximation wy, € V5 with boundary data w; = wy, along 0f2 of w in the H'-seminorm
satisfies in particular the orthogonality (V(u — wyp,), V(up, — wy,)) = 0 and therefore allows for the Pythagoras
theorem
IV(u —up)|Ze = |V(u—wn)|Z: + |V (up —wh)|7
= it V(= o) s+ IV~ w) (10
V€V, h,

Up=DVh ON oQ

The same orthogonality allows to estimate

IV (un —wp)|72 = (V(w—up), V(u, —wp))

v (p, div(up — wp)) < v Vplyg, [V(un — w)| 2

O

The malicious influence of the pressure-dependent error and the factor 1/v in front of it for classical finite element
methods that are not divergence-free was demonstrated and observed in many benchmark examples, see e.g.
[24, 25, 19, 20].

3.2 Pressure-robust finite element methods

A method is called pressure-robust if its discrete velocity is pressure-independent, i.e. if the a priori error estimate
for the velocity error is independent of the pressure.

The key feature behind pressure-robustness for the Stokes problem is that the testfunctions in the right-hand side
are divergence-free. This can be achieved e.g. by fully divergence-free finite element methods (like the Scott-
Vogelius finite element method) or, focused on in this paper, by the application of some reconstruction operator IT
in the right-hand side of the equation (and in further terms in case of the stationary and transient Navier—Stokes
equations [25, 1]).

DOI 10.20347/WIAS.PREPRINT.2462 Berlin 2017
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Hence, the modified pressure-robust finite element method (of any classical pair of inf-sup stable spaces V}, and
Q1) searches uy, € up p + Vi and py, € Qp, with

v(Vup, Vo) — (pp, divey,) = (f,vy,) = (Pf, Hvy,) forall vy, € V},, (11)
(qn,divuy) =0 for all ¢, € Q.
The operator II maps discretely divergence-free functions onto exactly divergence-free ones, i.e.
IT:V), —» H(div,Q) with div(Ilv,) =0 forallvy € V. (12)
This implicitly defines a modified discrete Helmholtz projector
P} f = argmin,, oy, , | — Toa 2

with P;(Vq) = Oforany ¢ € H'(Q) or [Vq|[fyy, ) = 0forallg € L?(%2) and so allows for a pressure-
independent and locking-free a priori velocity error estimate.

Theorem 3.2 (A priori estimate for pressure-robust finite element methods). For the solution uy of (11) with a
reconstruction operator II that satisfies (12), it holds

IV(u—up)f= < inf  [V(u—wvp)|i2 + [Auo (1 -TD)[3
V€V, 0,h
wp=vp on 0N

with the consistency error

Au- (1 -1I d.
[Auo (1 -1}, = sup Jo S (1= Moy do (13)

v1,€Vo,1\{0} IVon| L2

Note, that divergence-free methods (like the Scott-Vogelius finite element method) allow for IT = 1 and so attain
the same estimate as Theorem 3.1.

Proof. Similar to the proof of Theorem 3.1, it remains to estimate the second term on the right-hand side of (10).
Using the orthogonality (V(u — wy), V(up — wy)) = 0we get [V (up — wp)|32 = (V(u —up), V(uy, —
wy,)). The insertion of f = —vAu + Vpand ng Vp - I(up, — wy) = 0 (thanks to (12)) then further shows

(V(u - uh)a V(“’h - uh)) = (Auvuh - wh) + %(.fan(uh - wh))
(

Au,up — wp) + (Au, (u, —wy,))
< [Auo (1 =) |vy, [V(un —wp)| L.

This concludes the proof. O

To gain optimal convergence behavior of (13), the reconstruction operator additionally has to satisfy another impor-
tant property that concerns the consistency error of the modified method. For a finite element method with optimal
H'-velocity convergence order k and pressure L%-convergence order ¢ we require, for all v, € Vo,n,

(9, (1 = Mwp) < |h5 DI gl 12| Von 2 forany g € H''(2)*. (14)
In particular, for Au € H971(Q)?, this property directly implies
|Awo (1=T0)|vg, < [ DI Aul2(q) (15)
and so ensures that the modified method still converges with the optimal order.

To be more precise, we require that the reconstruction operator satisfies some local splitting and orthogonality
property that can be formulated by

(1 — H)’Uh = Z O'K|K with HO'KHL2(K) < hKHVUh||L2(K) and (16)
Kek
f ok -g, dz =0 forallg, € P,_1(K),
K

DOI 10.20347/WIAS.PREPRINT.2462 Berlin 2017



Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods 7

Table 2: Suitable reconstruction operators II for the classical FEMs of Table 1.

FEM name abbr. I1 & reference
Bernardi-Raugel FEM BR Ippn, , see [25]
Mini FEM MINI see [20]

Pk+1 X Pk—l FEM (k} = 1) P2P0, P3P1, ... IBDJVIk

P2-bubble FEM P2B IBDJMQ, see [22, 25]
Taylor—-Hood FEM (k > 1) THy see [20]
Scott-Vogelius FEM SV 1 (identity)

with h := diam(K). Reconstruction operators II with the properties (12)-(14) were already successfully de-
signed for finite element methods with discontinuous pressure spaces, like the nonconforming Crouzeix-Raviart
finite element method [21, 9], or the Bernardi-Raugel [25] and P2-bubble finite element methods [22, 25]. In all
these cases II can be chosen as standard BDM interpolators with elementwise-orthogonality with resepect to
K = T . Recently, also for Taylor—Hood and mini finite element methods (with & = q) of arbitrary order such an op-
erator was found [20]. For these vertex-based constructions Property (16) holds with K = {w, : z € N'}. Table 2
summarizes suitable reconstruction operators, that satisfy the needed properties, for the methods from Table 1.

4 (Limits of) Standard a posteriori residual-based error bounds

This section states and proves a posteriori error bounds for the classical and the pressure-robust finite element
methods by classical means. The resulting bounds reflect the pressure-robustness but are, in case of a pressure-
robust finite element method, rather unhandy as their efficiency relies on a good approximation of Pf. To stress
this observation, the analysis is performed in some detail.

First, we define the residual for the Stokes equations by
r(v) := J f-v dxff vVuy : Vo dz forallv e V.
Q Q
The dual norm of the residual r with respect to V' defined by

r(v)
Irlvg = swp
v, eV \{0} [Vl Lz

enters the generalised error bound as the central object of a posteriori error estimation. The error analysis also
assumes the existence of a Fortin interpolation operator I that maps from Vg to 1 3, and has first-order approxi-
mation properties and is H ! -stable, i.e, for all v € V', it holds

|1 = D)v|r2(ry < he|VV|L2(0y) forall TeT, (17)
[VIv]z2 < Vol e, 18

For many classical finite element methods such an operator can be found in [8]. For its existence and design in the
Taylor—Hood case we refer to [26, 12]. Some more details are given in Section 6 below.

The following theorem establishes a general estimate similar to [17, Theorem 5.1] and can be extended to non-
conforming methods in a similar fashion. However, our focus is on the consistency errors (8) and (13) and the
dependency on v.

Theorem 4.1. The following velocity error estimates hold:

(a) In general, the L? gradient error can be estimated by
[V(u—up)li2 < v72|riy + 1/cg]divan|Z..

(b) For the discrete solution uy, of the modified method (11) (or of the classical method (9) with IT = 1), the
dual norm of the residual  can be bounded by

HTHVG < 77c|ass(0'7 Q) = 77vo|(<77 Q) + Navg (U) + njump(o') + Neons,1 (U) + ncons,2(Q)

DOI 10.20347/WIAS.PREPRINT.2462 Berlin 2017
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for arbitrary g € H'(2) and o € H'(T)2*2. The subterms read

Ml (0, q) := [|hr (f — Vg + vdivy (o)) L2
nan(U) =v|Vuy — o
Mo (0) = [ *[vonpllL2ee)
Teons,1(0) 1= |[vdiva (o) o (1 =) |v;
Neons2(q) = IVl vy 1)+

Note that ¢ acts as a conforming approximation of the pressure p and ¢ acts as an approximation of V (in
particular o = Vuy, is allowed).

Proof. The proof of (a) can be found in [2, 11] and is based on the decomposition vV (u — uy,) = vVz + y into
some z € Vy and some remainder

yey = {ye L2(Q)%x4| jﬂy :Vou dz =0forallv e Vo}.
The orthogonality relations between z and y lead to
12V (w — )72 = |2V 2|2 + v 2y ).
Since
|2V 2|2, = fﬂ vW(u—wup):Vz dr =r(z) < 1/_1/2\\7“\\‘/3Hul/QVzHLz,

—1/2

one arrives at ['/2Vz| 2 < v~ 1/2|r|lys. This is in fact an identity, since

r(v) = f vVz: Vo de < v? |2V z| 2| Vol 2 foranyv e V.
Q
Furthermore, there exists some w € L?(€2) such that (see [2])

[v=2y|2, = J Viu—up):yde = f wdiv(u — up) dz
Q Q
< Jwl g2 |[div(w — wn) |2 < v¥?/eo|lv™ 2y L2 |diva, | 2.

Hence, [|v~"/2y| 12 < v'/?/co||divay, || 2. This concludes the proof of (a) and it remains to prove (b).

Given any v € Vg, subtraction of its Fortin interpolation Jv € V3, and (11) lead to
T(v)zf fv dx—f vVuy : Vo dz
Q Q
:J f-Q-II)v d:c—J vVuy : V(1 = Do dz
Q Q

:JQf-(l—HI)U da:—JQVa:V(l—I)'v dx—JQV(Vuh—a):V(l—I)v dx

= J (f —Vq+vdivyo) - (1 —II)v dx—i—Zf (von)- (1 —1)v ds
Q T Jor

vdivyo - (1 —)Iv dx-i—J Vg-1Iv dz.
Q

—fQV(VUh —0): V(1 -1)v d:c+JQ

In the last step it was used that SVq -v dz = Oforany g € HY(Q), since v € V is divergence-free. The
third integral is estimated by a Cauchy inequality and the Hl-stability of I. The last two integrals are estimated by
discrete dual norms and the H ! -stability of 1. Properties (17)-(18) of I and (16) of II show

|h (1= D)v g2y + [h7H (1 = I Tw| 2

Ih7 (1 = T)v 2y < |
S HVUHL%;T) + HhTV(IU)HH(wT) < ||vv||L2(WT)

DOI 10.20347/WIAS.PREPRINT.2462 Berlin 2017



Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods 9

and hence together with some Cauchy inequalities

J (f —Vg+vAgup)- (1 - dz
Q

< D) I (f = Vg + vAgun)| 2o |h7 (1 =TI 21
TeT

1/2

< (0, q) <Z ”vv”L2(wT)> < Mhl(0,9) [ Vo 2.
TeT

Similar arguments hold for the edge-based integral using a trace inequality and Properties (17)-(18), i.e.

> | wonl - 1oy ds < 3 llvonlselo - Iolse
EegoYE

Eeg&°

1/2
< N P lvon]| e e Vol Lo
FEe&°

1/2
< |hg*[von]| 2o Vol L2 = 1hume (@) [V 2
This concludes the proof of (b). O

Remark 4.2. Some remarks are in order:

B The existence of w in the last part of the proof of (a) needs uw — uj € Hé (9)2 In case of inhomogeneous
Dirichlet boundary data or nonconforming discretisations wu;, ¢ H*(£2)2, one can introduce a function w € H*(£2)
(e.g. the harmonic extension of the boundary data error up — up p [6] plus some H'-conforming boundary-data
preserving interpolation of wy, [2, 17, 11]) with w = wp along 0f) and attains u — w € H& (w) Then, a modified
estimation of the second term yields

[ 2yl2 < w2 /eo|diven]| 2 + v Vi (up —w)] 12
B The term ncons 1(0) = [vA7(dive) o (1 — )|y, only appears for IT # 1 as in the novel pressure-robust
methods and equals the consistency error (13) for 0 = Vuy,.

B Recall that 1cons 2(¢) = 0 if IT satisfies (12) orif ¢ € Qp, and IT = 1.

The following theorem studies the efficiency of the contributions of the standard residual error estimators from
Theorem 4.1 for the explicit choice 0 = Vuy,.

Theorem 4.3 (Efficiency for 0 = Vuy,). For 0 = Vuy all terms of the residual-based error estimator of Theo-
rem 4.1 are efficient possibly up to data oscillations

oscy (e 2 hT” — TP, T)) ® HL2(T)
TeT

and up to pressure contributions (either from the lack of pressure-robustness or from the quality of the approxima-
tion of p by q) in the following sense.

(a) For the divergence term it holds ||divuy |2 < |V(u — up)| 2.

(b) For the volume term 7y4(q, Vuy,), it holds

v b (f = Vg + vAzu) |2 < [ V(w — up)| e
v (llp— g2 + osek(f — Vg, T)).

(c) For the jump term 7jump(Vey,), it holds

v P Vunng]| ey S [V (- un)| g2 + v ose(f — Vi, T).
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(d) If II satisfies (16), the consistency error Neons 1 (Vu) is efficient in the sense

|ATup 0 (1=T0)|vg, < |V(w—up)|L2
+ v (osce(f — Vp, T) + oscq—1(f — Vp, K))

(e) For the consistency error 7gens 2(q), it holds

0 if II satisfies (12),

\Y » <
IValaa, {minqhth lg — gnllrz if IT = 1 without (12).

Proof. The proof of (a) simply uses divu = 0 to estimate

[divuy |2 = |div(e — up)| 2 < [|[V(w —up)|| 2.
The last inequality follows from the identity |[Vo|? = [curlv|? + |divw|? for any v € HJ(2)?, see e.qg. [4,
Remark 2.6].

The proof of (b) and (c) is standard and employs the bubble-technique of Verflrth, see e.g. [34, 35] or into the proof
of Theorem 5.4 below.

To show (d), observe that Property (16) leads to

f vATuy - (1 — vy, do = Z f vATuy - o dx
Q Kek VK

= 2 (f — Vp—i— I/AT’U,h) 0K d{L'—J‘K(]. _Wqul(K))(.f — Vp) -0 dx

Kek VK
< 2 hic (If = Vp + vAzun| L2k
Kek
(1 = 7p, &) (f — V)| r2(x)) ||h;(IUKHL2(K)
1/2
< ( DUk (f = Vp+ VAT“’L)%Z(K)) IVon| 2 + oscy—1(f — Vp,K)|[[Vou| L2
Kek

= (Mhai(p; V) + 0scq1(f — Vp, K)) [Von 2.

A division by |Vvp,| .2 and the result from (b) conclude the proof of (d).

The proof of (e) is straight forward and employs integration by parts and the orthogonality of div(v,) onto all ¢, €
Qp, it IT = 1 does not satisfy (12). Otherwise, if I satisfies (12), the assertion follows from div(IIv;) = 0. O

Remark 4.4. Theorem 4.3.(b) shows the pressure-dependence also in the efficiency estimate. The volume term
voi(q, Vuy,) scales with the term v~ |p — ¢|| 2. Hence, a pressure-robust method is only efficient with a good
approximation ¢ & p. In the hydrostatic (worst) case with uy, = 0 and f = Vp, (g, Vu) is not zero (hence
inefficient with efficiency index infinity) as long as ¢ # p is inserted. To compute the correct pressure is in general
impossible or expensive. Some strategy to find an approximation that at least yields a higher-order term is discussed
in [23].

Note however, that 17\,0|(q7 Vuy,) is efficient for a classical pressure-inrobust method with ¢, = pj (or some
suitable H '-approximation), since then the discrete velocity error and its velocity error also depends on v 1 lp —
pr| 2, see e.g. our numerical examples in Section 7.

5 Refined residual-based error bounds

This section offers an alternative a posteriori error estimator and is related to the stream function and vorticity
formulation of the Navier—Stokes equations. The analysis employs the two-dimensional curl operators for vector
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Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods 11

and scalar fields

curlg 1= (0¢o/0x — 01 /dy) for ¢ = (¢1,02) € H'(Q)?,
curlg := (Bij;éiy> for p € H'(Q).

The outcome of this alternative approach is a different volume term that only takes curl(f) into account and so
automatically cancels the gradient part of the Helmholtz decomposition. Hence, no knowledge or good approxima-
tion of Pf is needed. The resulting terms are related to the terms in [3] where error indicators for discretisations of
the streamline and vorticity formulation were derived. However, our error estimator holds for pressure-robust finite
element methods for the velocity and pressure formulation of the Navier—Stokes equations.

Given a Fortin interpolator I and a reconstruction operator IT with (12) (possibly IT = 1 for divergence-free finite
element methods like the Scott-Vogelius finite element method), the novel approach exploits that I1/v for some
divergence-free function v € Vg is again a divergence-free function in L?,(Q) Our analysis needs the following
assumption on the two operators additional to (12) and (17)-(18).

Assumption 5.1. For every v € V, the Fortin interpolator I and the reconstruction operator 11 satisfy

[Ive L2(Q) and hence J(lfHI)'zrVq dr =0 forallge H'(Q),
Q

and the estimate

J)(l —MI)v -0 dz < |Vv|pe|h3-curld|z forall @ € H(curl, Q).
¢

Theorem 5.2 (Novel error estimator for pressure-robust methods). For wy, of (11) and any o € H'(T)?*? (that
approximates or equals Vuy,), the error estimator

77new(0') = 77curl(0) + njump<(7) + njumpy2(0) + Navg (0> =+ Neons, 1 (U)

with the subterms

= |h3curlr(f + vdivyo)||
= |h*vong]| L2 e

(o)
(o)

Numpa(0) = K [(f + vdivio) - 78] 122
(o)
(o)

VHVuh - O’HLQ
1= |vdivi(o) o (1 = )|vy,

satisfies

_ 1, ..
|7|vs < n(q) andhence [V(u— up)32 < v 2n(g)* + CfQHdlvuhHZLz.
0

Note in particular, that the volume contribution 7,0/(¢, o) from Theorem 4.1 has been replaced by the quantity
Neur (o) that is pressure-independent (or g-independent).

Proof. As in the estimation of HTHVE in the proof of Theorem 4.1.(b), we subtract the Fortin interpolation /v of any
testfunction v by employing (11), i.e.

r(v) = J-Qf (v —1v) dz —VJQ Vuy, : V(v —Iv) dz.

Given any o € H1(7—)2x21 an (element-wise) integration by parts shows

r(v) = JQ(f + vdivpo) - (v — Iv) dz -H/JQ(U —Vuy) : V(v —Iv) dz

+v Z J [on] - (v — Iv) ds—&-uj (divpo) - (v — Iv) de =: A+ B+ C + D.
EegoVE Q
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The terms B, C' and D are estimated as in Theorem 4.1.(b) by

Bi=vY) f (0= Vaun) : V(v — Iv) dz < v]jo — Van| 12| Vol
TeT VT

Ci=v ) f [on] - (v — Iv) ds < v|hg*[on]|2(e) | V] 12
EegoVE

D := Vf (divpo) - (Il — Iv) dr < v||(divpo) o (1 = )|z, [Vl Le.
Q ’

It remains to estimate term A. As v — I1v is exactly divergence free and has a zero normal trace we can apply
Theorem 3.1, chapter 1 in [16] to find a scalar potential 1) € H} () with curly) = v — I v. In the following we
bound the weighted L2 norm of 1. Note that from h*1) € L2(€2) follows h*1) € h2-curl(H (curl, Q2)), due to
the surjectivity of the curl operator (de Rham complex) and so

h=2yph=29 d
Hh?%bHL?(Q) = o I Vhyy do

[h2 0] 2 (@)
§o h7>bh%-curl dx §q, eurlf dz
< sup 5 = S 5 ]
ocH(cur,) | h5curl®|p2(q) ocH (curl,) [hFcurlf] 2 (o)

On the other hand one can bound the supremum by Hh;—2’lszL2(Q) with a simple Cauchy Schwarz estimate. Using
Assumption 5.1 it follows by an integration by parts and 1 € H{ (2) that

) Yeurl@ dz
h2| 2 =  sup SQ— "
|7l 20 ot (cnrl,0) | h2curlf r2(q)
curly - 0 d

= sup Jg curly -

= < ||Vl r2(0)-
oeH (curl,) |h3-curlf| 2 (q) IVolzz@

With 8, := f + vdivyo and ¢ = 0 on 02 a piecewise integration by parts yields
A= f 0y - (v —TIllv) dr = j 0;, - curly dx
¢ Q

2
J curl@,7 dx + Z f [0y, - TE]Y ds
TeT VT 2

Eeé&°

A

N Indcurln | gz [h720 2oy + D) 1K [0h - 781120 |hE” ¢l 12 (m)
TeT FEe&e

(In2-curlr il 2o + 112/2[6n - TEllraer) ) (10720 ey + Ihg ™ Yliaer ) -

A

Using a standard scaling argument we get, for each edge E € £°,
—3/2 _ _
1>l 2y < B2l caery + 2t [Vl o ery.
For the second term in the previous estimate we have
hi [V 2y = byt |eurly)| pory = hyt v = TH|| 227y < VY] 12 (0p)-

Together with (19) and an overlap argument this leads to

h32 < |hi? h 'V <|v

lhr""Plrzee) < lhr"dlrzo) + [hy VY L2) < VY[ 12(0).-
This concludes the estimate for A, i.e.

A < (Nown (0) + Tump2(0)) ”VUHLQ(Q)-
The collection of all separate estimates for A to D shows
r(v) o)Vl

and a division by | V| z2 concludes the proof. O
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The same techniques also a yield a novel error estimate for classical methods.

Proposition 5.3 (Novel error estimator for classical methods). For uj of (9) and any o € Hl(’T)2X2 (that
approximates or equals Vuy,), the error estimator

Nnew () = Nt (@) + Tump(0)  + Naglo) + [(f + vdivpo) o (1 — H)||V0§,L

satisfies

. L.
Irlvi <m(a) andhence [V(u— w7z < v *n(q)® + = dive|Z..
0

Note, that II is used only in the error estimator here, but not in the calculation of uy,. It is not allowed to set II = 1
if the classical method is not divergence-free, i.e. II has to satisfy (12). The difference to the previous theorem lies
in the appearence of f in the consistency error ||(f + vdivyo) o (1 — 1)y, .

Proof. The proof follows the proof of Theorem 5.2 but one has to add the term SQ f (v —TIlv) dz which can be
added to the estimate of term C'. O

The next theorem establishes the efficiency of the novel terms 7y (o) and Mump2(0) for ¢ = Vuy,. For the
efficiency of the other terms see Theorem 4.3.

Theorem 5.4 (Efficiency for o = Vuy,). It holds

(@) v hieurly (f + vAgun)| 2y < |V(w = un)| L2
+v~throseg (curl(f + vA7uy), T),

o) v BN [(F + vATun) - el 2 < [V (@ — i) 2 (0n)

+v L hoscy (curlr (f + vA7uy), T(E))
+v " hgoscr([f - TE], E) + osck (f — Vp, T(E)),

forallT € T and FE € £°.

Proof. The proof employs the standard Verflrth bubble-technique. To shorten the notion in the proof of (a), we
define

Qr = curl(f + vAguy)|p foranyT e T.
Then, it holds (similarly to [35])
|7 Q@r | L2(T)

< sw [ wnaQre Gor) do/lorlia
T

vrEPL (T)2
< sup §7 Qrbzor do + sup QT — WPk(T)QTHL2(T)Hb%vT”LQ(T).
vrEP;(T)2 H'UTHLZ(T) vreP; (T)2 HUTHLZ(T)

Testing the continuous system with the (divergence-free) testfunction curl(b2.v7) € H?(T)? n Hi ()% and an
integration by parts leads to

f QTb%ﬂ'UT dr = f (f + Z/ATuh) . curl(bQT'vT) dx
T T
= J vV (u —uy) : Veurl(bivr) do
T

< v|V(u —un)| 2 () Hchrl(b%vT)HLz(T).
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A discrete inverse inequality shows |Veurl(b3v7)| 2¢ry < hz?|b3vr | r2(7). This and the norm equivalence
Hb%‘UTHLQ(T) 5 HUTHLZ(T) lead to

holmp, ) QrlL2ery < vIV(w —wn)| 21y + W7 |Qr — mp, (1) Q| L2 (1)
This concludes the proof of (a).
In the proof of (b), we use the notation
Qp:=[f +VvAyu,] -7 foranyE€ &

and the face bubble b with support wg for every face E € £. Then,

. b2 v ds
vpeP,(E)?2 el

+|1Qr — 7p(£)RE|L2(E)-

Testing the continuous equation with the divergence-free testfunction curl(b%vg) € HJ(S2) (where v is rea-
sonably extended to wg) and an integration by parts show

L Qr - (Vyve) ds
- L[(f +vATuy) - TE] - (VpvE) ds

= J (f + vATuy) : curl(byvg) do —J curl(f + vAguy) : (bhvg) do
wE

WE

< |F + vATUL| L2 () lewrl (059 E) [ 12 (wp) + 1Q7 ] 2 (wr) VBV E | L2 () -
A discrete inverse inequality |curl(b3,vg) || 12 (wp) < A7 05V E | L2(wy) and a scaling argument (see [35]), that
yields 0205 2 (wr) S hil Ve L2 (), show
Wy |7 by () QL2 () Shrlf + vATUR] L2 + B3 Q7 2(wn)
+ W2 1QE — 7o () QEl 12(m)-
The proof of Theorem 4.3.(c) yields
If + vATun| 12wy S VIV(w—up)|L2 + osck(f — Vg, T(E)).

This and the already proven result from (a) conclude the proof. O

6 Proof of Assumption 5.1 for certain finite element methods

This section proves Assumption 5.1 for certain finite element methods. For the analysis several standard interpola-
tion operators that are related to the de Rahm complex (see e.g. [30]) are employed. These are a (projection based)
nodal interpolation operator I, the lowest order Raviart-Thomas interpolation operator I p7;, and the lowest-order
Nédélec interpolation operator I/,. These operators satisfy in particular the commuting diagram properties in two
dimensions (see [14])

curl(Izv) = Igr, (curlv) and V(Izv) = In, (V) (20)
for arbitrary sufficiently smooth functions v. Furthermore we need a refined Helmholtz decomposition.

Lemma 6.1 ([30]). It exists an operator IT;, : H (curl, ) — Ny(T) with the property: for every 8 € H(curl, Q)
exists a decomposition

0—Tn\,0=Vo+y
with p € H*(Q), y € H'(Q2)?, and

h;IHyHL%T) + HvyHLz(T) < chﬂeHLz(T) forall T e T.
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Proof. In [30] a proof for three dimensions is given. The two dimensional case follows similarly. O

Lemma 6.2 (Regular decomposition). For each @ € H (curl,w) there exists a decomposition with @ € H?(w)
and 3 € H'(w)? such that

60=Va+p,

with

1982wy < llcurlf] sz, and J B dr—0.

Proof. Let ¢ := curl@ and @ be a convex domain such that w < @. We define ¢ as a trivial extension of ¢ by
zero, i.e. G, = g and gz, = 0. In the next step we seek the solution w € H' (@) of the Poisson problem
Aw = curlcurlw = ¢ on @. Using a regularity estimate for the Poisson problem on the convex domain w, it
follows for 3 := curlw and B := G|, — §, B dr /|w| that

VB2 < IVBll2@) < lwllazy < ldllz2@) = llallrzw) = |leurl®]|rz ().
Since curl(6 — B) = 0in w, its exists a vector potential o« € H?(w) such that Voo = @ — 3. This concludes the

proof. O

Theorem 6.3 (Proof of Assumption 5.1 for finite element methods with Py pressure space). If the reconstruction
operator II and the Fortin operator I satisfy (16) and

J(l—[)v-ﬁE ds=f(1—HI)v-ﬁE ds =0 forall E€é, (21)
E E

also Assumption 5.1 is satisfied.

Remark 6.4. Condition (21) is satisfied for the Forint interpolators for the P> x Py, P3 x Py and the Bernardi—

Raugel finite element methods [8, Section 8.4.3]. For these methods the reconstruction operator II is the standard
interpolation into the space BD M7 or R1j [25].

Proof. Since every function g € H'(T') with {,, g - n ds = 0 along all edges E € E(T') of T satisfies a discrete
Friedrichs inequality |g| .21y < hr|Vg| L2(1). see e.g. [10], it follows together with (16)

|(L=I0v| L2y < (X = Dol pzery + [ = )(Iv) | L2(7)
< hT”vv”LQ(T) + hT”v-['UHLQ(T) < hTHVUHL‘Z(T)-
Since (1 — I1I)w is divergence-free, it holds (1 — I11)v = curly for some ¢ € H (Q) n H?(S2), see Corollary
3.2in [16]. Condition (21) implies that the standard interpolator into RTg vanishes, i.e. Irp,curly = 0. Moreover,

by the commuting properties (20) of the de Rham complex, it also holds curl(Iz1) = Igp,curlyy = 0. An
integration by parts and standard interpolation estimates yield

f 6-(1-1Iv dz :J 0 - curl(yp — Ipe) do :J curl - (¢ — Ipep) dx
Q Q

Q
|h2-curl®| 2 |hr? (v — 1) 2
|h2-curlf| 2 [h7 'V (¢ — I23))| 12
= [ AFcurl| 2 | A7 curl(v) | 2
= |3 curlf| 2 |7 (1 — )| 2 < [h3curld)] 2] Vo 12,

<
<

where we used that the curl is just the rotated gradient in two dimensions. This concludes the proof. O

Theorem 6.5 (Proof of Assumption 5.1 for finite element methods with discontinuous P; pressure space). If the
reconstruction operator IT and the Fortin operator I satisfy

J(l—[)v dar:f(l—HI)v dr =0 forallTeT, (22)
T T

also Assumption 5.1 is satisfied.
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Remark 6.6. Condition (22) is satisfied by the P»-bubble finite element method and its Fortin interpolator [8,
Section 8.6.2]. A suitable reconstruction operator II is the standard interpolation into the space BD M or RT}
[22, 25]. Moreover, the result generalises to all P, x Pj_5 finite element methods with & > 2.

Proof. A triangle inequality, interpolation properties of II, a Poincaré inequality, and the H !-stability of I show
11 = v g2y < (1 = I Iv|p2(r) + (1 = Dol L2y < hr|Vo|L2(r).
To estimate the dual norm, Lemma 6.1 yields 8 — 11,0 = V¢ + y with
Ihrylie < [B3curl6)] 2.

Also note that due to ITx,,0 € H (curl, T') we can use the regular decomposition from Lemma 6.2 to find

I, 0|7 = Var + By forallTeT
with some arp € H?*(T) and B € [H'(T)]? such that §. B dz = 0 and

IVBrlrzry < leurllng,0) | L2(r) < [curl®|| 2 (7).

Together with the projection property of Ixs,, the commuting properties (20) of the de Rham complex and the
continuity of the nodal interpolation I for H? functions, the Helmholtz decomposition can be cast into the discrete
version

HN00|T = INU (VaT + IBT) = V(I[jOZT) + INO/BT'
The combination of all decompositions defines some function a7 € P (T) and S € Py(T)? with
|07 ViBrlre < |hFcurld] ..

Since z := (1 — HI)’U is orthogonal onto piecewise constants (by (22)), in particular the piecewise constant
function V(Iza)7 € Po(T)?, and gradients (because z is divergence-free and has zero boundary data), it
follows

JO-(l—HI)U da:=j z-0 d$=f z-(0 —Ilyp,0) d$+f z-lIyp,0 dx
Q Q Q Q
=J z-y da:—&-f z-Brdz
Q Q

- J h}lz -hry dx —l—J h}lz ~hrBr dz
Q Q

< Ih7 2l (Ihrylzz + 185 VaBrl )
< |7 2| 2 [hEcurlf| 2 < [V p2|hEcurlf] .

Note, that we used an elementwise Poincaré inequality for 3+ (which has piecewise integral mean zero). This
concludes the proof. O

Theorem 6.7 (Proof of Assumption 5.1 for the mini finite element method). The mini finite element method family
with the reconstruction operator from [20] and a Fortin operator I with the property (see e.g. [8, Section 8.4.2])

J(l—[)'v ds =0 foral TeT (23)
T
satisfies Assumption 5.1.

Proof. For the mini finite element method, the reconstruction operator is given in [20]. It in particular satisfies (16)
in the sense

1-MIv= ) o, (24)
yeN
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where o, € BDMy(T (wy)) satisfies | [ 12(w,) < hy|VIv|L2(,) on the nodal patch w,, of the node y € N
and (at least) the local orthogonality
f o, dr = 0.
w

y

Furthermore we have o, - n = 0 on the boundary dw,. This time, the operators I and II do not share the same
orthogonality on cell-wise constants as in Theorem 6.5, but one can split up the L2%-norm by a triangle inequality

(1 =T)v|> < [[(1 =) Tv|z2 + [[(1 = Do L.

Due to (23) the norm |(1 — I)v|2(1) can be estimated as in Theorem 6.5 and it remains to estimate ||(1 —
II)Iv| 2. For the first one, it holds

(1= Iv|32y = ), J o, (1—-MIv dv
zeN(T) VT

< D) loelrzn (= TTv|L2r
zeN(T)

< hr VI 2oy (1 = I Ivp | 27
and hence
|1 =IDIv|r2() < hr|VIV| 12000 S hr| VOl L2007

For the estimate of the dual norm, inserting the decomposition from Lemma 6.1 leads to

JG-(l—HI)'u da:=J- z-0 dac=f z-y dx—&-f z -, 0 dx.
Q Q Q Q

The first integral can be estimated as in Theorem 6.5 and it remains to estimate the second integral where we
employ the decomposition (24) for (1 — II)Iv =}, _\r o, and its orthogonality properties, i.e.

f z - IIp, 0 dx:f (1=1v- T, 0 dz+ Z h;lo'y-hyHNOG dx (25)
Q Q yeN YWy

and we bound both integrals separately. The first integral of (25) can be estimated exactly as in Theorem 6.5 due
to (28) by a element-wise Helmholtz decomposition such that

L(l — v -Tix, 0 dz < |V e |h3-curld)| e

For the second integral, first note that due to Iy, 6 € H(curl, wy) we can use the regular decomposition of
Lemma 6.2 on each patch to get

119y

0

0

w, = Va, + 8, forallyeN.
with some oy, € H'(wy) and 8, € [H" (w,)]* such that Swy B, dz =0and
18y 1 (w,) < llcwrl(Tinp, )| L2(w,) < curl®|rz(,)-
Next note, that on each element ' < w,, we have Il p, 0|7 € [H'(T')]? and thus
Vaylr = Mnp,0lr — Bylr € [H'(D)]* = ay|r e H*(T).

Together with the projection property of Ixs, the commuting properties (20) of the de Rham complex and the
continuity of the nodal interpolation I for H? functions, the Helmholtz decomposition can be cast into the discrete
version

HND09|wy = I_/\/O(VOéy + /8’1/) = V(I[;ay) + INO,By
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Finally, a scaling argument and a Poincaré inequality shows

noByllL2w,) S 18y lL2w,) + ol VBylL2w,) S hylVBylL2w,) < hylcurlf|ra,,).

Furthermore, note that the reconstruction operator is orthogonal on gradients of continuous P;-functions like

V(Izay) due to [20, Proposition 16.iil, i.e. § o, - V(Izay) dz = 0. Now, the second integral of (25) is
Y

bounded by

Z f hy_lay “hylln, 0 dz < 2 ”h;10-y||L2(wy)thv/@yHLQ(wy)
Wy

yeN yeN
< ) Vol |hieurl®| o,y S [ Vo] L2 [hFcurld] 2.
yeN
The combination of all previous results concludes the proof. O

Theorem 6.8 (Proof of Assumption 5.1 for the Taylor—Hood finite element method). The Taylor—Hood finite element
method family with the reconstruction operator from [20] and the Fortin operator I from [26, 12] in two dimensions
with the property

J 1-DNv-wds=0 forallwe./vg(T), (26)
Q

where /\N/O(T) is a subset of No(7) as defined in [26, 12], satisfy Assumption 5.1.

Remark 6.9. The proof requires some assumption on the mesh, i.e. we require that each interior face £ € E° has
at most one node on the boundary 0. This assumption was also needed in [26] for the construction of a stable
the Fortin interpolator and was later removed in [12]. Maybe similar arguments can be used in our case.

Proof. A triangle inequality, properties of II, and the H !-stability of I show
11 =)o 2y < [(1 =) Iv|p2(r) + (1 = Dol 2y < hr|VolL2(r).

Again using the decomposition from Lemma 6.1 and the orthogonality between gradients and (1 — HI)v leads to
f (1-Mv-0 dz :J 1-Tv-y d$+f (1 =T v - T, 0 dx
Q Q Q

The first integral can be estimated similarly as in the proof of Theorem 6.7. For the second integral we use (1 —
MIv =3 0y toget

J (1-T)v - Tx, 0 do :f (1-Dv-Tx,0 do+ > J hytay - hyllx, do.
Q Q yeN YWy

Similarly as in the proof of Theorem 6.7 we bound the first term. However the integral (using the orthogonality (26))

L(l D)o Ty, 0 do — La — I (1— I )T, 0 de

needs a different treatment. To estimate this integral we have to design a proper interpolation Iﬁé (TTn, 0) of I1n, 0

into the space A7()(T) To do so, we can write ITx;, 6 as a linear combination

Iy, 0 = Z apNE with coefficients a g ::J In,0 - Tg ds
Ee& E

and Nédélec basis functions N5 with SF NgTr ds = 0gp for E, F € £. Then, we choose Im(HNOB) as

IN’B(HNOH) = 2 OZENE
Eeg&o
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E, 2

Es
Es

1

Figure 1: Enumeration of the vertices and edges in a boundary triangle with boundary edge Es.

where £° are the interior edges and ]\N/'ENare the modified basis functions as in [12], i.e. ]\N/'E = Ng for all
edges F with two interior endpoints and Np = Ng + Ny for interior edges E with one boundary endpoint
and F' is a boundary edge with the same boundary endpoint and in the same triangle of E. The sign depends
on the orientation of the tangent vectors. Assume a boundary triangle 7’z with nodes 1, 2, 3, boundary edge
E5 = conv{l,2} and two adjacent interior edges E; and F as depicted in Figure 1. We further assume, that
the tangential vectors are pointing from the lower to the larger node number. Then, according to [12], the modified
basis functions read ]\NIE2 = Ng, + Ng, and NEI = Ng, — Ng,. Hence, locally on T’, we have

((1 — IA’E)HNOQ) |T = aElNEl + OZEQ.NE2 + aE3NE3 — (aElj\N/'El + aEQJ\Nsz)

= NEs(aEB +ap, — aEz)'
The definition of cvz; and an easy calculation plus the Stokes theorem show
ap, +ap, —ap, = J I\, 0 -7 ds = f curl(Tly, 0) dz
oT T
and hence the estimate

(1 I T, O ) < U curl(I, 8) de| [Nl p2er) < hreurl (T, 8) | 2cr).
T

On interior triangles, it holds ITx;, 6 — I (I1x;, ) = 0 and hence

f (1 - I)v-Tlx,0 dz — J (1= D)o (a8 — I (T, 0)) da
Q Q

S ), Prllewl (g 0)l 2 (r) | Vol p2or) < [h5curld] 2| Vol 2.
TeT (092)

This concludes the proof.

7 Numerical experiments

In the following two numerical examples, the novel error estimator
2 . -2 2 . 2
Hnew =V nnew(vuh) + HdlvuhHL2

from Theorem 5.2 (for pressure-robust methods) or Proposition 5.3 (for classical methods) is compared to the
classical error estimator

N’glass = V72n0|ass(vuh7ph)2 + HdlvuhH%ﬁ

from Theorem 4.1, with respect to the H!-seminorm errp1 (up,) := ||Vu — Vuy,|| 2. Our adaptive mesh refine-
ment algorithm follows the loop

SOLVE — ESTIMATE — MARK — REFINE — SOLVE — ...
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Table 3: The H'! error and the old and new error estimators including the efficiency for the example of section 7.1
for varying v using the classical Taylor Hood element TH2 and its pressure robust modification.

(classical) (p-robust)

v errp(up) Hclass err:i'a(s;h) errpr1 (up) Hnew

Hnew
et ;1 (up)

101 1.27-1073 1.99-10~2 1.58-10! 1.30-10—3 5.19-10~2 3.98.10!
109 1.30-103 1.42.10~2 1.09-10! 1.30-10—3 3.47-102 2.66- 10!
10-1 3.12-103 1.12-107! 3.58-10' 1.30-10~3 3.29-10~2 2.53.10!
1072 2.85-1072 1.11 3.90-10' 1.30-103 3.28-1072 2.51-10!
10—3 2.85-10~! 1.11-10' 3.90-10' 1.30-10~3 3.27-10~2 2.51-10!
10— 2.85 1.11-102 3.90-10' 1.30-10~3 3.27-1072 2.51-10!
10-5 2.85-10! 1.11-10% 3.90-10' 1.30-10~3 3.27-10~2 2.51.-10!
10-% 2.85.102 1.11-10* 3.90-10' 1.30-10—3 3.27-10~2 2.51.10!

and employs the local contributions to the error estimator as element-wise refinement indicators. In the marking

step, an element 7' € T is marked for refinement if 1(7') > 1 max u(K). The refinement step refines all marked
4 KeT

elements plus further elements in a closure step to guarantee a regular triangulation. The implementation and
numerical examples where performed with NGSolve/Netgen [31], [29].

Remark 7.1. For reducing the costs of the estimator, we estimated the consistency error njeons 1 (Vup, ) = |[vdivy (Vug)o
(1- H)”Vo*h according to (16) by

1/2
Tlcons,1 (vuh) v ( Z h%(“(l - 7TPq1(K))Ahuh|%2(1{)> :
KeK

7.1 Smooth example on unit square

This example concerns the Stokes problem for
u(z,y) = curl (2*(z — 1)*y*(y — 1)*) and p(z,y) :==2° +¢° —1/3

on the unit square €2 := (0, 1)? with matching right-hand side f := —vAwu + Vp for variable viscosity .

Table 3 lists the error of the classical and pressure-robust Taylor-Hood finite element methods with their error
estimators figass aNd finew ON a fixed mesh with 1139 degrees of freedom but varying viscosities v € (107, 10).
As expected by the a priori error estimates of Theorems 3.1 and Theorem 3.2, the error of the classical solution
scales with 1/*1, while the error of the pressure-robust method is v-invariant. Another observation is that both error
estimators are efficient for their respective discrete solution.

Figure 2 compares the errors and error estimators of the Taylor—Hood finite element method of order 2 and the
MINI finite element method with and without the pressure robust modification for uniform mesh refinement as in the
case v = 1 and a pressure-dominant case with v = 1073.

In the pressure dominant case v = 1073 the right hand side f tends to have a large irrotational part. The left plot
of Figure 2 confirms once again that the velocity error scales with 1/v and that pressure-robust methods result
in much more accurate solutions. For the classical methods both estimators junew and Liciass are efficient, i.e. have
comparable overestimation factors and the same optimal convergence order as the velocity error. In case of the
MINI finite element method, all quantities even converge quadratically. This is due to the dominance of the pressure
error and the higher approximation order of the pressure. In this sense, we are in a pre-asymptotic range and the
error will convergence linearly as soon as the V’S—weighted pressure error is of same magnitude (as it is the
case for v = 1 from the very beginning). Also for the classical MINI element finew and figiass are efficient with a
comparable overestimation factor.

For the pressure-robust methods we observe that for both elements the novel estimator finey is much smaller than
Ielass- TO be more precise, it scales With finew & 1/V figass in case of the Taylor-Hood method as expected by the
theory. This is again due to the discrete pressure that is used in pgass (Pr replaced by some better approximation
of p would reduce the gap between finew and ficiass)- Hence, finew is efficient and pigass is not efficient for the
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THy with v = 1073 THy with v = 1
103 — — 103 — —

10" - 4 10t .

1071 - 410tk i

1073 1103} ,

1075 1107° .

il Lol Ll Ll 1l Ll Ll Lol -

102 10% 10* 10° 10% 108 10* 10°

ndof ndof
MINI with v = 103 MINI with v = 1
1()33‘”‘ e e T 103?”‘ e e TR
102 4 102f .
10" ¢ — 101% E
100 ¢ — 10‘% E
101k ERURES |
1072 é 1072% Q\s\g\@\@\@ é
1073:‘”‘ L Lol L Lol L L “““‘él()73%““ L Lol L Lol L Lol é
10% 103 10* 10° 10% 103 10* 10°
ndof ndof
C€Irg1 (uh) — Inew elass O(h)

--- O(h?) x probustmethod o classical method

Figure 2: The H!-error, Lelass @nd Lnew for the example of section 7.1 withv = 1 and v = 1073, At the top the
THo element, and at the bottom the MINI element.

pressure-robust Taylor-Hood finite element method. In case of the pressure-robustly modified MINI method, the
velocity error and the novel estimator finey, NOW have the expected optimal linear order of the MINI finite element
method. Otherwise, the conclusions are similar to the ones for the Taylor-Hood method.

In this case v = 1 the irrotational part and the rotational part of the right hand side f have the same magnitude,
thus the pressure error has not such a big impact on the accuracy of the discrete velocity. Accordingly, there is only
little to no improvement by the application of the pressure-robust modification. Thus, in the right plots of Figure 2 we
can see that the velocity error of both methods, the pressure robust and the classical one, is of the same magnitude
and order. Both estimators are efficient with slightly less overestimation by 7qjass-

7.2 L-shape example

This example studies a velocity w and a pressure pg on the L-shaped domain 2 := (—1,1)2\ ((0,1) x (—1,0))
taken from [34] that satisfy —vAu + Vpg = 0. The fields are defined in polar coordinates and read

o f (@t 1)sin(e)(e) + cos(@)¥ (9)
ulr @) i=r <—<a+1>cos @)w(¢)+sin(¢)w’(<ﬁ)) :

(
po 1= y_lr(a_l)((l + )Y (@) + " (9)/(1 — @)

where

Y(p) :=1/(a+ 1) sin((a + 1)p) cos(aw) — cos((a + 1)p)
—1/(a—=1) sin((a — 1)) cos(aw) + cos((a — 1))
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10t £

1071 ¢
1072 E

103

10°

10% £

100}

P2PO0 (p-robust)

P2PO0 (classical)

—— — Ty 10% ¢

L Lol | Lo
10? 103 104 10°

L Lol Lol Lo
102 103 10* 10°

ndof ndof
P2B (p-robust) P2B (classical)
= 4 10%F E
L 4 10'E E
E *; 100 ;
E 41071 E
E 41072 ¢ E
L Lol L Lol L Lol — 10—'{ L Lol L Lol L Lol 1
10% 10° 10* 10° 102 103 10* 10°
ndof ndof
—errg1 (up) O(h) --- 0O(h?)
——  Hnew x adaptive ref. o uniform ref.

Figure 3: Error for L-shape example of section 7.2 using the discontinuous pressure elements P2P0 (top) and the

P2B (bottom) with v/
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MINI (p-robust)

MINI (classical)

10% T

T TTTTY

10°

T TTTTTTH

10°

103 10* 102 103 10*
ndof ndof
TH3 (p-robust) TH;5 (classical)
102 4
10! % El
100
1071 E 4
1072 ¢ E|
1073 | E
107t E
Euul L vl L i o i vl L il i
102 103 10* 10° 102 10° 10* 10°
ndof ndof
3
—errg1 (up) o) --- 03
——  HMnew x adaptive ref. o uniform ref.

Figure 4: Error for L-shape example of section 7.2 using the continuous pressure elements MINI (top) and the TH3

(bottom) with v = 1073
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&> f

(a) (b) (c) (d)
Figure 5: (a): according to pnew adaptively refined mesh with 4584 degrees of freedom for the pressure-robust
Taylor—=Hood method; (b): according to punew adaptively refined mesh with 3971 degrees of freedom for the clas-
sical Taylor—Hood method; (c): according to ficass @daptively refined mesh with 5119 degrees of freedom for the
pressure-robust Taylor-Hood method; (d): according to fic.ss @daptively refined mesh with 5320 degrees of free-
dom for the classical Taylor—Hood method

and @ = 856399/1572864 ~ 0.54, w = 3m/2. To have a nonzero right-hand side we add the pressure
py = sin(zyn), ie. p := po + p+ and f := V(p;). We generate a pressure dominant case by using a
small viscosity v = 1073. In Figure 3 and 4 the velocity error and the novel estimator Tnew are plotted for the
classical and modified version of four different finite element methods and uniform and adaptive mesh refinement.
For this example an adaptive refinement is expected to refine the generic singularity of the velocity in the corner
(0,0).

We first discuss the pressure-robust variants of the finite element methods. Looking at the left plots of Figure 3
and 4 we can see that there is a major difference between adaptive and uniform mesh refinement. The adaptive
algorithm results in optimal orders of the velocity error and the estimator, while uniform refinement only leads to
suboptimal orders as the singularity is not resolved well enough. The only exception is the MINI finite element
method which pre-asymptotically converges with quadratic speed. This is again thanks to the better polynomial
order in the pressure ansatz space and the smooth pressure p*. Asymptotically also the MINI finite element
method shows the suboptimal behaviour in case of uniform mesh refinement and first-order convergence in case
of adaptive mesh refinement. In all cases, the new error estimator e, is efficient and gives reasonable refinement
indicators.

In case of the classical variants of the finite element methods, totally different observations can be made. In the
right pictures of Figure 3 and 4 we first note that the error is much larger compared to the pressure-robust method.
Furthermore similar as before only adaptive mesh refinement leads to optimal orders. However, it is important to
note that the gap between the velocity error of the classical method and the velocity error of the pressure-robust
method stays as large as in the beginning also under adaptive mesh refinement. A possible explanation is given by
Figure 5 which shows that the classical method refines the mesh almost uniformly. This is reasonable in the sense
that the pressure error of the smooth pressure p, dominates the (real and the estimated) discretisation error in
the beginning. The pressure-robust method on the other hand is not polluted by this influence and can concentrate
immediately on the corner singularity. However, it is important that the error estimator is also pressure-robust. If
the refinement indicators are taken from piass, the corner singularity remains unrefined until the dominance of
the pressure error in the error bound is removed. Hence, the main conclusion is that only a pressure-robust finite
element method with a pressure-robust error estimator leads to optimal meshes with the smallest velocity error.
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