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Refined a posteriori error estimation for classical and pressure-robust
Stokes finite element methods

Philip Lukas Lederer, Christian Merdon, Joachim Schöberl

Abstract

Recent works showed that pressure-robust modifications of mixed finite element methods for the Stokes
equations outperform their standard versions in many cases. This is achieved by divergence-free reconstruction
operators and results in pressure-independent velocity error estimates which are robust with respect to small
viscosities. In this paper we develop a posteriori error control which reflects this robustness.

The main difficulty lies in the volume contribution of the standard residual-based approach that includes the
L2-norm of the right-hand side. However, the velocity is only steered by the divergence-free part of this source
term. An efficient error estimator must approximate this divergence-free part in a proper manner, otherwise it can
be dominated by the pressure error.

To overcome this difficulty a novel approach is suggested that uses arguments from the stream function and
vorticity formulation of the Navier–Stokes equations. The novel error estimators only take the curl of the right-
hand side into account and so lead to provably reliable, efficient and pressure-independent upper bounds in
case of a pressure-robust method in particular in pressure-dominant situations. This is also confirmed by some
numerical examples with the novel pressure-robust modifications of the Taylor–Hood and mini finite element
methods.

1 Introduction

This paper studies a posteriori error estimators for the velocity of the Stokes equation with a special focus on
pressure-robust finite element methods. Pressure-robustness is closely related to theL2-orthogonality of divergence-
free functions onto gradients of H1-functions. In particular, the exact velocity u of the Stokes equations (with zero
boundary data),

´ν∆u`∇p “ f in Ω and u P V 0 :“ tv P H1
0 pΩq

2 : divv “ 0u,

is orthogonal onto any q P L2pΩq in the sense that
ş

Ω
qdivpuq dx “ 0. Consequently, u also solves the Stokes

equations with f replaced by f `∇q for q P H1pΩq. This invariance property is in general not preserved for dis-
cretely divergence-free testfunctions of most classical finite element methods that relax the divergence constraint to
attain inf-sup stability. With an inf-sup-stable pair of a discrete velocity spaceV h and some discrete pressure space
Qh and the discretely divergence-free functions V 0,h Ă V h, the consistency error from the relaxed divergence
constraint can be expressed by the discrete dual norm , for any q P L2pΩq,

}∇q}V ‹
0,h

:“ sup
vhPV0,hzt0u

ş

Ω
qdivvh dx

}∇vh}L2

ď

#

minqhPQh
}q ´ qh}L2 if V 0,h Ę V 0,

0 if V 0,h Ď V 0.
(1)

Besides some expensive or exotic divergence-free methods like the Scott-Vogelius finite element method [32, 37],
most classical inf-sup stable mixed finite element methods, including the popular Taylor–Hood [18] and mini finite
element families [5] have V0,h Ę V 0 and so the term from (1) appears in their a priori velocity gradient error
estimate [8] scaled with 1{ν, i.e.

}∇pu´ uhq}2L2 ď inf
vhPV0,h,

uh“vh on BΩ

}∇pu´ vhq}2L2 `
1

ν2
}∇p}2V ‹

0,h
. (2)

This factor 1{ν causes a locking phenomenon. Indeed, for ν Ñ 0 or very complicated pressures, the pressure
contribution may dominate and lead to a very bad solution for the discrete velocity uh [21, 24, 19, 25].
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By a trick of [21] one can introduce a reconstruction operator Π, that maps discretely divergence-free functions onto
exactly divergence-free ones, into the right-hand side and so transform any classical finite element method into a
pressure-robust one. This replaces the pressure-dependent term in (2) by a small consistency error of optimal order
[21, 9, 22, 25, 20] and independent of 1{ν. Although this fixes the locking phenomenon and leads to huge gains in
many numerical examples, efficient a posteriori error control for these methods is an open problem. Efficient error
estimators for the velocity error not only have to cope with the variational crime but also, and more importantly, have
to mimic the pressure-independence.

Standard residual-based a posteriori error estimators η usually have the form

}∇pu´ uhq}L2 À η :“ ηvol ` other terms

with a volume contribution ηvol and some other terms, like norms of the normal jumps of uh, data oscillations or
consistency errors. In the standard residual-based error estimator for classical finite element methods [17, 36, 34,
33] the volume contribution takes the form (for any q P H1pΩq and piecewise Laplacian ∆T )

ηvol “ ν´1}∇q}V ‹
0,h
` ν´1}hT pf ´∇q ` ν∆T uhq}L2 (3)

À }∇pu´ uhq}L2 ` ν´1

ˆ

}p´ q}L2 ` min
qhPQh

}q ´ qh}L2 ` osckpf ´∇q, T q
˙

.

The inequality above states efficiency, i.e. beeing also a lower bound of the real error, and its dependence on the
choice of q. Note, that for q P Qh the terms }∇q}V ‹

0,h
ď minqhPQh

}q ´ qh}L2 “ 0 vanish, but }p ´ q}L2

remains, whereas for q “ p the term }p ´ q}L2 vanishes, but the other two remain. If the velocity error is at best
as good as the error in the pressure (scaled by 1{ν), as it is the case for classical pressure-inrobust methods, this
estimate is fine (e.g. for q chosen as an H1-interpolation of ph). As a result classical a posteriori error estimates,
see e.g. [17, 36, 34, 33], often perform the error analysis in a norm that combines the velocity error and the pressure
error. A pressure-robust method, however, allows for a decoupled error analysis of velocity error and pressure error
and so gives more control over both.

For a pressure-robust finite element method, the term (3) can be replaced by

ηvol “ ν´1}hT pf ´∇q ` ν∆T uhq}L2 (4)

À }∇pu´ uhq}L2 ` ν´1 p}p´ q}L2 ` osckpf ´∇q, T qq .

Here, the choice q “ p leads to a pressure-independent efficient estimate. However, this cannot be considered a
posteriori, since p is unknown. Hence, an efficient error estimator of this form for pressure-robust methods hinges
on a good approximation of q « p as already investigated in [15, 23].

The main result of this paper concerns a different approach to estimate the velocity error that yields an estimator
with the volume contribution

ηcurl “ ν´1}h2
T curlT pf ` ν∆T uhq}L2 (5)

À }∇pu´ uhq}L2 ` ν´1osckphT curlT pf ` ν∆T uhq, T q.

The advantage of ηcurl over ηvol is that the curl operator automatically cancels any ∇q from the Helmholtz decom-
position of f ` ν∆T uh and therefore no approximation of p as in (4) is needed. Also note, that ηcurl is similar
to the volume contribution of a residual-based error estimator for the Navier–Stokes equations in streamline and
vorticity formulation [3]. However, the error estimator with this volume contribution is valid for any pressure-robust
finite element method like the Scott–Vogelius finite element method [32, 37] or the novel family of pressure-robustly
modified finite element methods of [21, 9, 22, 25, 20] that allow for an interesting interplay between the Fortin
interpolator I and the reconstruction operator Π manifestated in the required assumption

ż

Ω

p1´ΠIqv ¨ θ dx À }∇v}L2}h2
T curlθ}L2 for all θ P Hpcurl,Ωq and v P V 0. (6)

We prove this assumption for certain popular finite element methods including the Taylor–Hood and mini finite
element methods, and some elements with discontinuous pressure approximations. However, we only focus on
the two-dimensional case, since the proofs for the three-dimensional case are much more involved and therefore
discussed in a future publication.
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Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods 3

The rest of the paper is structured as follows. Section 2 introduces the Stokes equations and preliminaries as well
as notation used throughout the paper. Section 3 focuses on classical finite element methods and their recently
developed pressure-robust siblings that are based on a suitable reconstruction operator. Section 4 is concerned
with standard residual-based error estimates for classical and pressure-robust finite element methods and the
efficiency of its contributions, in particular (3) and (4), especially in the pressure-dominated regime. Section 5
derives some novel a posteriori error bounds with the volume contribution (5) that are efficient and easy to evaluate
for the pressure-robust finite element methods that satisfy Assumption (6). In Section 6 this assumption is verified
for many popular finite element methods and their pressure-robust siblings. Section 7 studies numerical examples
and employs the local contributions of the a posteriori error estimates as refinement indicators for adaptive mesh
refinement. The numerical examples verify the theory and show that the pressure-robust finite element methods
converge with the optimal order also in non-smooth examples.

2 Model problem and preliminaries

This section states our model problem and the needed notation.

2.1 Stokes equations and Helmholtz projector

The Stokes model problem seeks a vector-valued velocity fieldu and a scalar-valued pressure field p on a bounded
Lipschitz domain Ω Ă R2 with Dirichlet data u “ uD along BΩ and

´ν∆u`∇p “ f and divu “ 0 in Ω.

The weak formulation characterises u P H1pΩq2 by u “ uD along BΩ and

νp∇u,∇vq ´ pp,divvq “ pf ,vq for all v P V :“ H1
0 pΩq

2,

pq,divuq “ 0 for all q P Q :“ L2
0pΩq.

In the set of divergence-free functions V 0 :“ tv P V |divv “ 0u, u satisfies

νp∇u,∇vq “ pf ,vq for all v P V 0.

The Helmholtz decomposition decomposes every vector field into

f “ ∇α` β “: ∇α` Pf

with α P H1pΩq{R and β “: Pf P L2
σpΩq :“ tw P Hpdiv,Ωq |divw “ 0,w ¨ n “ 0 along BDu [16]. Note

in particular, that the continuous Helmholtz projector satisfies Pp∇qq “ 0 for all q P H1pΩq which implies

νp∇u,∇vq “ pPf ,vq for all v P V 0,

hence u is steered only by the Helmholtz projector Pf of the right-hand side.

2.2 Notation

The set T denotes a regular triangulation of Ω into two dimensional simplices with edges E and nodes N . The
three edges of a simplex T P T are denoted by EpT q. Similarly, N pT q consists of the three nodes that belong to
T P T , N pEq consists of the two nodes that belong to E P E and T pzq for a vertex z P N consists of all cells
T P T with z P N pT q. Finally we define E˝ as the set of all inner.

As usual L2pΩq, H1pΩq, Hpdiv,Ωq and Hpcurl,Ωq denote the Sobolev spaces and L2pΩq2, H1pΩq2 denote
their vector-valued versions. Moreover, several discrete function spaces are used throughout the paper. The set
PkpT q denotes scalar-valued polynomials up to order k that live on the simplex T P T and generate the global
piecewise polynomials of order k, i.e.

PkpT q :“ tqh P L
2pΩq | @T P T : vh|T P PkpT qu.
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Table 1: List of classical finite element methods that are considered in this paper and their expected velocity gradient
error convergence order k.

FEM name & reference & order abbr. Vh Qh
Bernardi–Raugel FEM [7] (k “ 1) BR P BR

1 pT q X V P0pT q
Mini FEM [5] (k “ 1) MINI P`1 pT q2 X V P1pT q XH1pΩq
Pk`1 ˆ Pk´1 FEM (k ě 1) P2P0,... Pk`1pT q2 X V Pk´1pT q
P2-bubble FEM [13] (k “ 2) P2B P`2 pT q2 X V P1pT q
Taylor–Hood FEM [18] (k ě 2) THk PkpT q2 X V Pk´1pT q XH1pΩq
Scott-Vogelius FEM [32, 37] (k=2) SV P2pbarypT qq2 X V P1pbarypT qq

The function πPkpωq denotes the L2 best approximation into Pkpωq for any subdomain ω Ă Ω. For approxi-
mation of functions in Hpdiv,Ωq we use the set of Brezzi-Douglas-Marini functions of order k ě 1 denoted
by BDMkpT q :“ PkpT q2 X Hpdiv,Ωq and the subset of Raviart-Thomas functions of order k ě 0 de-
noted by RTkpT q, see [28]. The functions IRTk

and IBDMk
denotes the standard interpolator into RTkpT q and

BDMkpT q, respectively, see e.g. [8]. We are also using lowest order Nédélec (type I) functions N0pT q defined
as the 90 degree rotated lowest order Raviart-Thomas functions with the corresponding interpolator IN0

, see [27].

The diameter of a simplex T P T is denoted by hT and hT P P0pT q is the local mesh width function, i.e.
hT |T :“ hT for all T P T . Similarly, hE denotes the diameter of the side E P E . At some point certain bubble
functions are used. The cell bubble function on a cell T P T is defined by bT “

ś

zPN ϕz where ϕz is the nodal
basis function of the node z P N , i.e. ϕzpzq “ 1 and ϕzpyq “ 0 for y P N ztzu. Similarly, the face bubble bE for
some side E P E is defined by bE “

ś

zPE ϕz . The vector nE denotes the unit normal vector of the side E P E
with arbitrary but fixed orientation, such that the normal jump rv ¨ ns of some function v has a well-defined sign.
The vector τE denotes a unit tangential vector of E.

3 Classical and pressure-robust finite element methods

This section recalls classical (usually not presssure-robust) inf-sup stable finite element methods and a pressure-
robust modification of these methods.

3.1 Classical inf-sup stable finite element methods

Classical inf-sup stable finite element methods choose ansatz spaces Vh Ď V “ H1
0 pΩq

2 and Qh Ď Q “

L2
0pΩq with the inf-sup property

0 ă c0 :“ inf
qhPQhzt0u

sup
vhPVhzt0u

ş

Ω
qhdivvh dx

}∇vh}0}qh}L2

. (7)

This guarantees surjectivity of the discrete divergence operator

divhvh “ ΠQh
pdivvhq :“ argminqhPQh

}divvh ´ qh}L2 ,

but also leads to the set of only discretely divergence-free testfunctions

V0,h “ tvh P Vh | divhvh “ 0u,

that in general is not a subset of the really divergence-free functions V 0. Table 1 lists some classical finite element
methods that are inf-sup stable and are considered in this paper. Besides the Scott-Vogelius finite element method
(on a barycentric refined mesh barypT q to ensure the inf-sup stability [32, 37]), all of them are not divergence-free.
The space P`k pT q in case of the P2-bubble [13] or the mini finite element methods [5] indicates that the PkpT q
space is enriched with the standard cell bubbles bT for all T P T . For the Bernardi–Raugel finite element method
normal-weighted face bubbles are added [7] defining the space P BR

1 pT q :“ P1pT q2 Y tbEnE : E P Eu.

DOI 10.20347/WIAS.PREPRINT.2462 Berlin 2017



Refined a posteriori error estimation for classical and pressure-robust Stokes finite element methods 5

The relaxation of the divergence constraint leads to the usual best approximation error in the pressure ansatz
space, i.e.

}∇p}V ‹
0,h

:“ sup
vhPV0,hzt0u

ş

Ω
pdivvh dx

}∇vh}L2

(8)

“ sup
vhPV0,hzt0u

ş

Ω
pp´ qhqdivvh dx

}∇vh}L2

ď min
qhPQh

}p´ qh}L2 ,

and divergence-free methods are characterised by

V0,h Ď V 0 ô }∇p}V ‹
0,h
“ 0 for all p P L2pΩq.

For completeness, we shortly prove the classical a priori error estimate in the following theorem for the discrete
solution uh P uD,h ` Vh (where uD,h is some suitable approximation of uD) and ph P Qh defined by

νp∇uh,∇vhq ´ pph,divvhq “ pf ,vhq for all vh P Vh, (9)

pqh,divuhq “ 0 for all qh P Qh,

or, equivalently,

νp∇uh,∇vhq “ pf ,vhq for all vh P V0,h.

Theorem 3.1 (A priori estimate for classical finite element methods). For the discrete velocity uh of (9), it holds

}∇pu´ uhq}2L2 ď inf
vhPV0,h,

uh“vh on BΩ

}∇pu´ vhq}2L2 `
1

ν2
}∇p}2V ‹

0,h
.

Proof. The best approximation wh P V0,h with boundary data wh “ uh along BΩ of u in the H1-seminorm
satisfies in particular the orthogonality p∇pu´whq,∇puh ´whqq “ 0 and therefore allows for the Pythagoras
theorem

}∇pu´ uhq}2L2 “ }∇pu´whq}
2
L2 ` }∇puh ´whq}

2
L2

“ inf
vhPV0,h,

uh“vh on BΩ

}∇pu´ vhq}2L2 ` }∇puh ´whq}
2
L2 . (10)

The same orthogonality allows to estimate

}∇puh ´whq}
2
L2 “ p∇pu´ uhq,∇puh ´whqq

“ ν´1pp, divpuh ´whqq ď ν´1}∇p}V ‹
0,h
}∇puh ´whq}L2 .

The malicious influence of the pressure-dependent error and the factor 1{ν in front of it for classical finite element
methods that are not divergence-free was demonstrated and observed in many benchmark examples, see e.g.
[24, 25, 19, 20].

3.2 Pressure-robust finite element methods

A method is called pressure-robust if its discrete velocity is pressure-independent, i.e. if the a priori error estimate
for the velocity error is independent of the pressure.

The key feature behind pressure-robustness for the Stokes problem is that the testfunctions in the right-hand side
are divergence-free. This can be achieved e.g. by fully divergence-free finite element methods (like the Scott-
Vogelius finite element method) or, focused on in this paper, by the application of some reconstruction operator Π
in the right-hand side of the equation (and in further terms in case of the stationary and transient Navier–Stokes
equations [25, 1]).
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Hence, the modified pressure-robust finite element method (of any classical pair of inf-sup stable spaces Vh and
Qh) searches uh P uD,h ` Vh and ph P Qh with

νp∇uh,∇vhq ´ pph,divvhq “ pf ,Πvhq “ pPf ,Πvhq for all vh P Vh, (11)

pqh,divuhq “ 0 for all qh P Qh.

The operator Π maps discretely divergence-free functions onto exactly divergence-free ones, i.e.

Π : Vh Ñ Hpdiv,Ωq with divpΠvhq “ 0 for all vh P V0,h. (12)

This implicitly defines a modified discrete Helmholtz projector

P‹hf “ argminvhPV0,h
}f ´Πvh}L2

with P‹hp∇qq “ 0 for any q P H1pΩq or }∇q}2
pΠV0,hq

‹ “ 0 for all q P L2pΩq and so allows for a pressure-
independent and locking-free a priori velocity error estimate.

Theorem 3.2 (A priori estimate for pressure-robust finite element methods). For the solution uh of (11) with a
reconstruction operator Π that satisfies (12), it holds

}∇pu´ uhq}2L2 ď inf
vhPV0,h,

uh“vh on BΩ

}∇pu´ vhq}2L2 ` }∆u ˝ p1´Πq}2V ‹
0,h

with the consistency error

}∆u ˝ p1´Πq}2V ‹
0,h

:“ sup
vhPV0,hzt0u

ş

Ω
∆u ¨ p1´Πqvh dx

}∇vh}L2

. (13)

Note, that divergence-free methods (like the Scott-Vogelius finite element method) allow for Π “ 1 and so attain
the same estimate as Theorem 3.1.

Proof. Similar to the proof of Theorem 3.1, it remains to estimate the second term on the right-hand side of (10).
Using the orthogonality p∇pu´whq,∇puh ´whqq “ 0 we get }∇puh ´whq}

2
L2 “ p∇pu´ uhq,∇puh ´

whqq. The insertion of f “ ´ν∆u`∇p and
ş

Ω
∇p ¨Πpuh ´whq “ 0 (thanks to (12)) then further shows

p∇pu´ uhq,∇pwh ´ uhqq “ p∆u,uh ´whq `
1

ν
pf ,Πpuh ´whqq

“ p∆u,uh ´whq ` p∆u,Πpuh ´whqq

ď }∆u ˝ p1´Πq}V ‹
0,h
}∇puh ´whq}L2 .

This concludes the proof.

To gain optimal convergence behavior of (13), the reconstruction operator additionally has to satisfy another impor-
tant property that concerns the consistency error of the modified method. For a finite element method with optimal
H1-velocity convergence order k and pressure L2-convergence order q we require, for all vh P V0,h,

pg, p1´Πqvhq À }h
q`1
T Dq´1g}L2pΩq}∇vh}L2 for any g P Hq´1pΩq2. (14)

In particular, for ∆u P Hq´1pΩq2, this property directly implies

}∆u ˝ p1´Πq}V ‹
0,h
À }hq`1

T Dq´1∆u}L2pΩq (15)

and so ensures that the modified method still converges with the optimal order.

To be more precise, we require that the reconstruction operator satisfies some local splitting and orthogonality
property that can be formulated by

p1´Πqvh “
ÿ

KPK
σK |K with }σK}L2pKq À hK}∇vh}L2pKq and (16)

ż

K

σK ¨ gh dx “ 0 for all gh P Pq´1pKq,

DOI 10.20347/WIAS.PREPRINT.2462 Berlin 2017
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Table 2: Suitable reconstruction operators Π for the classical FEMs of Table 1.

FEM name abbr. Π & reference
Bernardi–Raugel FEM BR IBDM1

, see [25]
Mini FEM MINI see [20]
Pk`1 ˆ Pk´1 FEM (k ě 1) P2P0, P3P1, ... IBDMk

P2-bubble FEM P2B IBDM2
, see [22, 25]

Taylor–Hood FEM (k ě 1) THk see [20]
Scott-Vogelius FEM SV 1 (identity)

with hK :“ diampKq. Reconstruction operators Π with the properties (12)-(14) were already successfully de-
signed for finite element methods with discontinuous pressure spaces, like the nonconforming Crouzeix-Raviart
finite element method [21, 9], or the Bernardi–Raugel [25] and P 2-bubble finite element methods [22, 25]. In all
these cases Π can be chosen as standard BDM interpolators with elementwise-orthogonality with resepect to
K “ T . Recently, also for Taylor–Hood and mini finite element methods (with k “ q) of arbitrary order such an op-
erator was found [20]. For these vertex-based constructions Property (16) holds with K “ tωz : z P N u. Table 2
summarizes suitable reconstruction operators, that satisfy the needed properties, for the methods from Table 1.

4 (Limits of) Standard a posteriori residual-based error bounds

This section states and proves a posteriori error bounds for the classical and the pressure-robust finite element
methods by classical means. The resulting bounds reflect the pressure-robustness but are, in case of a pressure-
robust finite element method, rather unhandy as their efficiency relies on a good approximation of Pf . To stress
this observation, the analysis is performed in some detail.

First, we define the residual for the Stokes equations by

rpvq :“

ż

Ω

f ¨ v dx ´

ż

Ω

ν∇uh : ∇v dx for all v P V 0.

The dual norm of the residual r with respect to V 0 defined by

}r}V ‹
0

:“ sup
vhPV0zt0u

rpvq

}∇v}L2

enters the generalised error bound as the central object of a posteriori error estimation. The error analysis also
assumes the existence of a Fortin interpolation operator I that maps from V 0 to V0,h and has first-order approxi-
mation properties and is H1-stable, i.e, for all v P V 0, it holds

}p1´ Iqv}L2pT q À hT }∇v}L2pωT q for all T P T , (17)

}∇Iv}L2 À }∇v}L2 . (18)

For many classical finite element methods such an operator can be found in [8]. For its existence and design in the
Taylor–Hood case we refer to [26, 12]. Some more details are given in Section 6 below.

The following theorem establishes a general estimate similar to [17, Theorem 5.1] and can be extended to non-
conforming methods in a similar fashion. However, our focus is on the consistency errors (8) and (13) and the
dependency on ν.

Theorem 4.1. The following velocity error estimates hold:

(a) In general, the L2 gradient error can be estimated by

}∇pu´ uhq}2L2 ď ν´2}r}2V ‹
0
` 1{c20}divuh}

2
L2 .

(b) For the discrete solution uh of the modified method (11) (or of the classical method (9) with Π “ 1), the
dual norm of the residual r can be bounded by

}r}V ‹
0
À ηclasspσ, qq :“ ηvolpσ, qq ` ηavgpσq ` ηjumppσq ` ηcons,1pσq ` ηcons,2pqq

DOI 10.20347/WIAS.PREPRINT.2462 Berlin 2017
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for arbitrary q P H1pΩq and σ P H1pT q2ˆ2. The subterms read

ηvolpσ, qq :“ }hT pf ´∇q ` νdivhpσqq}L2

ηavgpσq :“ ν}∇uh ´ σ}L2

ηjumppσq :“ }h
1{2
E rνσnEs}L2p

Ť

E˝q

ηcons,1pσq :“ }νdivhpσq ˝ p1´Πq}V ‹
0,h

ηcons,2pqq :“ }∇q}pΠV0,hq
‹ ,

Note that q acts as a conforming approximation of the pressure p and σ acts as an approximation of ∇u (in
particular σ “ ∇uh is allowed).

Proof. The proof of (a) can be found in [2, 11] and is based on the decomposition ν∇pu´ uhq “ ν∇z ` y into
some z P V 0 and some remainder

y P Y :“

"

y P L2pΩqdˆd |

ż

Ω

y : ∇v dx “ 0 for all v P V 0

*

.

The orthogonality relations between z and y lead to

}ν1{2∇pu´ uhq}2L2 “ }ν1{2∇z}2L2 ` }ν´1{2y}2L2 .

Since

}ν1{2∇z}2L2 “

ż

Ω

ν∇pu´ uhq : ∇z dx “ rpzq ď ν´1{2}r}V ‹
0
}ν1{2∇z}L2 ,

one arrives at }ν1{2∇z}L2 ď ν´1{2}r}V ‹
0
. This is in fact an identity, since

rpvq “

ż

Ω

ν∇z : ∇v dx ď ν1{2}ν1{2∇z}L2}∇v}L2 for any v P V 0.

Furthermore, there exists some w P L2pΩq such that (see [2])

}ν´1{2y}2L2 “

ż

Ω

∇pu´ uhq : y dx “

ż

Ω

wdivpu´ uhq dx

ď }w}L2}divpu´ uhq}L2 ď ν1{2{c0}ν
´1{2y}L2}divuh}L2 .

Hence, }ν´1{2y}L2 ď ν1{2{c0}divuh}L2 . This concludes the proof of (a) and it remains to prove (b).

Given any v P V 0, subtraction of its Fortin interpolation Iv P V0,h and (11) lead to

rpvq “

ż

Ω

f ¨ v dx ´

ż

Ω

ν∇uh : ∇v dx

“

ż

Ω

f ¨ p1´ΠIqv dx ´

ż

Ω

ν∇uh : ∇p1´ Iqv dx

“

ż

Ω

f ¨ p1´ΠIqv dx ´

ż

Ω

νσ : ∇p1´ Iqv dx ´

ż

Ω

νp∇uh ´ σq : ∇p1´ Iqv dx

“

ż

Ω

pf ´∇q ` νdivhσq ¨ p1´ΠIqv dx `
ÿ

T

ż

BT

pνσnq ¨ p1´ Iqv ds

´

ż

Ω

νp∇uh ´ σq : ∇p1´ Iqv dx `

ż

Ω

νdivhσ ¨ p1´ΠqIv dx `

ż

Ω

∇q ¨ΠIv dx .

In the last step it was used that
ş

∇q ¨ v dx “ 0 for any q P H1pΩq, since v P V 0 is divergence-free. The
third integral is estimated by a Cauchy inequality and the H1-stability of I . The last two integrals are estimated by
discrete dual norms and the H1-stability of I . Properties (17)-(18) of I and (16) of Π show

}h´1
T p1´ΠIqv}L2pT q ď }h

´1
T p1´ Iqv}L2pT q ` }h

´1
T p1´ΠqIv}L2pT q

À }∇v}L2pωT q ` }hT ∇pIvq}L2pωT q À }∇v}L2pωT q
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and hence together with some Cauchy inequalities
ż

Ω

pf ´∇q ` ν∆T uhq ¨ p1´ΠIqv dx

ď
ÿ

TPT
}hT pf ´∇q ` ν∆T uhq}L2pT q}h

´1
T p1´ΠIqv}L2pT q

À ηvolpσ, qq

˜

ÿ

TPT
}∇v}2L2pωT q

¸1{2

À ηvolpσ, qq}∇v}L2 .

Similar arguments hold for the edge-based integral using a trace inequality and Properties (17)-(18), i.e.

ÿ

EPE˝

ż

E

rνσns ¨ pv ´ Ivq ds ď
ÿ

EPE˝

}rνσns}L2pEq}v ´ Iv}L2pEq

ď
ÿ

EPE˝

h
1{2
E }rνσns}L2pEq}∇v}L2pωEq

ď }h
1{2
E rνσns}L2pE˝q}∇v}L2 “ ηjumppσq}∇v}L2 .

This concludes the proof of (b).

Remark 4.2. Some remarks are in order:

� The existence of w in the last part of the proof of (a) needs u ´ uh P H1
0 pΩq

2. In case of inhomogeneous
Dirichlet boundary data or nonconforming discretisationsuh R H1pΩq2, one can introduce a functionw P H1pΩq
(e.g. the harmonic extension of the boundary data error uD ´uD,h [6] plus some H1-conforming boundary-data
preserving interpolation of uh [2, 17, 11]) withw “ uD along BΩ and attains u´w P H1

0 pωq. Then, a modified
estimation of the second term yields

}ν´1{2y}L2 ď ν1{2{c0}divw}L2 ` ν1{2}∇hpuh ´wq}L2 .

� The term ηcons,1pσq “ }ν∆T pdivσq ˝ p1 ´ Πq}V ‹
0,h

only appears for Π ‰ 1 as in the novel pressure-robust
methods and equals the consistency error (13) for σ “ ∇uh.

� Recall that ηcons,2pqq “ 0 if Π satisfies (12) or if q P Qh and Π “ 1.

The following theorem studies the efficiency of the contributions of the standard residual error estimators from
Theorem 4.1 for the explicit choice σ “ ∇uh.

Theorem 4.3 (Efficiency for σ “ ∇uh). For σ “ ∇uh all terms of the residual-based error estimator of Theo-
rem 4.1 are efficient possibly up to data oscillations

osckp‚, T q2 :“
ÿ

TPT
h2
T }p1´ πPkpT qq ‚ }

2
L2pT q

and up to pressure contributions (either from the lack of pressure-robustness or from the quality of the approxima-
tion of p by q) in the following sense.

(a) For the divergence term it holds }divuh}L2 ď }∇pu´ uhq}L2 .

(b) For the volume term ηvolpq,∇uhq, it holds

ν´1}hT pf ´∇q ` ν∆T uhq}L2 À }∇pu´ uhq}L2

` ν´1 p}p´ q}L2 ` osckpf ´∇q, T qq .

(c) For the jump term ηjumpp∇uhq, it holds

ν´1}h
1{2
E rν∇uhnEs}L2p

Ť

E˝q À }∇pu´ uhq}L2 ` ν´1osckpf ´∇p, T q.
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(d) If Π satisfies (16), the consistency error ηcons,1p∇uq is efficient in the sense

}∆T uh ˝ p1´Πq}V ‹
0,h
À }∇pu´ uhq}L2

` ν´1 posckpf ´∇p, T q ` oscq´1pf ´∇p,Kqq

(e) For the consistency error ηcons,2pqq, it holds

}∇q}pΠV0,hq
‹ ď

#

0 if Π satisfies (12),

minqhPQh
}q ´ qh}L2 if Π “ 1 without (12).

Proof. The proof of (a) simply uses divu “ 0 to estimate

}divuh}L2 “ }divpu´ uhq}L2 ď }∇pu´ uhq}L2 .

The last inequality follows from the identity }∇v}2 “ }curlv}2 ` }divv}2 for any v P H1
0 pΩq

2, see e.g. [4,
Remark 2.6].

The proof of (b) and (c) is standard and employs the bubble-technique of Verfürth, see e.g. [34, 35] or into the proof
of Theorem 5.4 below.

To show (d), observe that Property (16) leads to

ż

Ω

ν∆T uh ¨ p1´Πqvh dx “
ÿ

KPK

ż

K

ν∆T uh ¨ σK dx

“
ÿ

KPK

ż

K

pf ´∇p` ν∆T uhq ¨ σK dx ´

ż

K

p1´ πPq´1pKqqpf ´∇pq ¨ σK dx

À
ÿ

KPK
hK

`

}f ´∇p` ν∆T uh}L2pKq

`}p1´ πPq´1pKqqpf ´∇pq}L2pKq

˘

}h´1
K σK}L2pKq

À

˜

ÿ

KPK
}hKpf ´∇p` ν∆T uhq}

2
L2pKq

¸1{2

}∇vh}L2 ` oscq´1pf ´∇p,Kq}∇vh}L2

“ pηvolpp,∇uq ` oscq´1pf ´∇p,Kqq }∇vh}L2 .

A division by }∇vh}L2 and the result from (b) conclude the proof of (d).

The proof of (e) is straight forward and employs integration by parts and the orthogonality of divpvhq onto all qh P
Qh if Π “ 1 does not satisfy (12). Otherwise, if Π satisfies (12), the assertion follows from divpΠvhq “ 0.

Remark 4.4. Theorem 4.3.(b) shows the pressure-dependence also in the efficiency estimate. The volume term
ηvolpq,∇uhq scales with the term ν´1}p ´ q}L2 . Hence, a pressure-robust method is only efficient with a good
approximation q « p. In the hydrostatic (worst) case with uh “ 0 and f “ ∇p, ηvolpq,∇uq is not zero (hence
inefficient with efficiency index infinity) as long as q ‰ p is inserted. To compute the correct pressure is in general
impossible or expensive. Some strategy to find an approximation that at least yields a higher-order term is discussed
in [23].

Note however, that ηvolpq,∇uhq is efficient for a classical pressure-inrobust method with qh “ ph (or some
suitable H1-approximation), since then the discrete velocity error and its velocity error also depends on ν´1}p ´
ph}L2 , see e.g. our numerical examples in Section 7.

5 Refined residual-based error bounds

This section offers an alternative a posteriori error estimator and is related to the stream function and vorticity
formulation of the Navier–Stokes equations. The analysis employs the two-dimensional curl operators for vector
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and scalar fields

curlφ :“ pBφ2{Bx´ Bφ1{Byq for φ “ pφ1, φ2q P H
1pΩq2,

curlφ :“

ˆ

´Bφ{By
Bφ{Bx

˙

for φ P H1pΩq.

The outcome of this alternative approach is a different volume term that only takes curlpfq into account and so
automatically cancels the gradient part of the Helmholtz decomposition. Hence, no knowledge or good approxima-
tion of Pf is needed. The resulting terms are related to the terms in [3] where error indicators for discretisations of
the streamline and vorticity formulation were derived. However, our error estimator holds for pressure-robust finite
element methods for the velocity and pressure formulation of the Navier–Stokes equations.

Given a Fortin interpolator I and a reconstruction operator Π with (12) (possibly Π “ 1 for divergence-free finite
element methods like the Scott-Vogelius finite element method), the novel approach exploits that ΠIv for some
divergence-free function v P V 0 is again a divergence-free function in L2

σpΩq. Our analysis needs the following
assumption on the two operators additional to (12) and (17)-(18).

Assumption 5.1. For every v P V 0, the Fortin interpolator I and the reconstruction operator Π satisfy

ΠIv P L2
σpΩq and hence

ż

Ω

p1´ΠIqv ¨∇q dx “ 0 for all q P H1pΩq,

and the estimate
ż

Ω

p1´ΠIqv ¨ θ dx À }∇v}L2}h2
T curlθ}L2 for all θ P Hpcurl,Ωq.

Theorem 5.2 (Novel error estimator for pressure-robust methods). For uh of (11) and any σ P H1pT q2ˆ2 (that
approximates or equals ∇uh), the error estimator

ηnewpσq :“ ηcurlpσq ` ηjumppσq ` ηjump,2pσq ` ηavgpσq ` ηcons,1pσq

with the subterms

ηcurlpσq :“ }h2
T curlT pf ` νdivhσq}L2

ηjumppσq :“ }h
1{2
E rνσnEs}L2pE˝q

ηjump,2pσq :“ }h
3{2
E rpf ` νdivhσq ¨ τEs}L2pE˝q

ηavgpσq :“ ν}∇uh ´ σ}L2

ηcons,1pσq :“ }νdivhpσq ˝ p1´Πq}V ‹
0,h

satisfies

}r}V ‹
0
À ηpqq and hence }∇pu´ uhq}2L2 À ν´2ηpqq2 `

1

c20
}divuh}

2
L2 .

Note in particular, that the volume contribution ηvolpq, σq from Theorem 4.1 has been replaced by the quantity
ηcurlpσq that is pressure-independent (or q-independent).

Proof. As in the estimation of }r}V ‹
0

in the proof of Theorem 4.1.(b), we subtract the Fortin interpolation Iv of any
testfunction v by employing (11), i.e.

rpvq “

ż

Ω

f ¨ pv ´ΠIvq dx ´ν

ż

Ω

∇uh : ∇pv ´ Ivq dx .

Given any σ P H1pT q2ˆ2, an (element-wise) integration by parts shows

rpvq “

ż

Ω

pf ` νdivhσq ¨ pv ´ΠIvq dx `ν

ż

Ω

pσ ´∇uhq : ∇pv ´ Ivq dx

` ν
ÿ

EPE˝

ż

E

rσns ¨ pv ´ Ivq ds `ν

ż

Ω

pdivhσq ¨ pΠIv ´ Ivq dx “: A`B ` C `D.
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The terms B,C and D are estimated as in Theorem 4.1.(b) by

B :“ ν
ÿ

TPT

ż

T

pσ ´∇uhq : ∇pv ´ Ivq dx ď ν}σ ´∇uh}L2}∇v}L2

C :“ ν
ÿ

EPE˝

ż

E

rσns ¨ pv ´ Ivq ds ď ν}h
1{2
E rσns}L2pE˝q}∇v}L2

D :“ ν

ż

Ω

pdivhσq ¨ pΠIv ´ Ivq dx ď ν}pdivhσq ˝ p1´Πq}V ‹
0,h
}∇v}L2 .

It remains to estimate term A. As v ´ ΠIv is exactly divergence free and has a zero normal trace we can apply
Theorem 3.1, chapter 1 in [16] to find a scalar potential ψ P H1

0 pΩq with curlψ “ v ´ ΠIv. In the following we
bound the weighted L2 norm of ψ. Note that from h´4

T ψ P L2pΩq follows h´2
T ψ P h2

T curlpHpcurl,Ωqq, due to
the surjectivity of the curl operator (de Rham complex) and so

}h´2
T ψ}L2pΩq “

ş

Ω
h´2
T ψh´2

T ψ dx

}h´2
T ψ}L2pΩq

ď sup
θPHpcurl,Ωq

ş

Ω
h´2
T ψh2

T curlθ dx

}h2
T curlθ}L2pΩq

“ sup
θPHpcurl,Ωq

ş

Ω
ψcurlθ dx

}h2
T curlθ}L2pΩq

.

On the other hand one can bound the supremum by }h´2
T ψ}L2pΩq with a simple Cauchy Schwarz estimate. Using

Assumption 5.1 it follows by an integration by parts and ψ P H1
0 pΩq that

}h´2
T ψ}L2pΩq “ sup

θPHpcurl,Ωq

ş

Ω
ψcurlθ dx

}h2
T curlθ}L2pΩq

(19)

“ sup
θPHpcurl,Ωq

ş

Ω
curlψ ¨ θ dx

}h2
T curlθ}L2pΩq

À }∇v}L2pΩq.

With θh :“ f ` νdivhσ and ψ “ 0 on BΩ a piecewise integration by parts yields

A :“

ż

Ω

θh ¨ pv ´ΠIvq dx “

ż

Ω

θh ¨ curlψ dx

“
ÿ

TPT

ż

T

curlθhψ dx `
ÿ

EPE˝

ż

E

rθh ¨ τEsψ ds

À
ÿ

TPT
}h2
T curlθh}L2pT q}h

´2
T ψ}L2pT q `

ÿ

EPE˝

}h
3{2
E rθh ¨ τEs}L2pEq}h

´3{2
E ψ}L2pEq

À

´

}h2
T curlT θh}L2pΩq ` }h

3{2rθh ¨ τEs}L2pE˝q

¯´

}h´2
T ψ}L2pΩq ` }h

´3{2
E ψ}L2pE˝q

¯

.

Using a standard scaling argument we get, for each edge E P E˝,

}h
´3{2
E ψ}L2pEq À h´2

T }ψ}L2pT q ` h
´1
T }∇ψ}L2pT q.

For the second term in the previous estimate we have

h´1
T }∇ψ}L2pT q “ h´1

T }curlψ}L2pT q “ h´1
T }v ´ΠIv}L2pT q À }∇v}L2pωT q.

Together with (19) and an overlap argument this leads to

}h
´3{2
T ψ}L2pE˝q À }h

´2
T ψ}L2pΩq ` }h

´1
T ∇ψ}L2pΩq À }∇v}L2pΩq.

This concludes the estimate for A, i.e.

A À pηcurlpσq ` ηjump,2pσqq }∇v}L2pΩq.

The collection of all separate estimates for A to D shows

rpvq À ηpσq}∇v}L2

and a division by }∇v}L2 concludes the proof.
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The same techniques also a yield a novel error estimate for classical methods.

Proposition 5.3 (Novel error estimator for classical methods). For uh of (9) and any σ P H1pT q2ˆ2 (that
approximates or equals ∇uh), the error estimator

ηnewpσq :“ ηcurlpσq ` ηjumppσq ` ηavgpσq ` }pf ` νdivhσq ˝ p1 ´ Πq}V ‹
0,h

satisfies

}r}V ‹
0
À ηpqq and hence }∇pu´ uhq}2L2 À ν´2ηpqq2 `

1

c20
}divuh}

2
L2 .

Note, that Π is used only in the error estimator here, but not in the calculation of uh. It is not allowed to set Π “ 1
if the classical method is not divergence-free, i.e. Π has to satisfy (12). The difference to the previous theorem lies
in the appearence of f in the consistency error }pf ` νdivhσq ˝ p1´Πq}V ‹

0,h
.

Proof. The proof follows the proof of Theorem 5.2 but one has to add the term
ş

Ω
f ¨ pv ´Πvq dx which can be

added to the estimate of term C .

The next theorem establishes the efficiency of the novel terms ηcurlpσq and ηjump,2pσq for σ “ ∇uh. For the
efficiency of the other terms see Theorem 4.3.

Theorem 5.4 (Efficiency for σ “ ∇uh). It holds

(a) ν´1h2
T }curlT pf ` ν∆T uhq}L2pT q À }∇pu´ uhq}L2pT q

`ν´1hT osckpcurlpf ` ν∆T uhq, T q,

(b) ν´1h
3{2
E }rpf ` ν∆T uhq ¨ τEs}L2pEq À }∇pu´ uhq}L2pωEq

`ν´1hEosckpcurlT pf ` ν∆T uhq, T pEqq
`ν´1hEosckprf ¨ τEs, Eq ` osckpf ´∇p, T pEqq,

for all T P T and E P E˝.

Proof. The proof employs the standard Verfürth bubble-technique. To shorten the notion in the proof of (a), we
define

QT :“ curlpf ` ν∆T uhq|T for any T P T .

Then, it holds (similarly to [35])

}πPkpT qQT }L2pT q

À sup
vT PPkpT q2

ż

T

πPkpT qQT ¨ pb
2
TvT q dx {}vT }L2pT q

ď sup
vT PPkpT q2

ş

T
QT b

2
TvT dx

}vT }L2pT q
` sup
vT PPkpT q2

}QT ´ πPkpT qQT }L2pT q}b
2
TvT }L2pT q

}vT }L2pT q
.

Testing the continuous system with the (divergence-free) testfunction curlpb2TvT q P H
2pT q2 XH1

0 pΩq
2 and an

integration by parts leads to

ż

T

QT b
2
TvT dx “

ż

T

pf ` ν∆T uhq ¨ curlpb2TvT q dx

“

ż

T

ν∇pu´ uhq : ∇curlpb2TvT q dx

ď ν}∇pu´ uhq}L2pT q}∇curlpb2TvT q}L2pT q.
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A discrete inverse inequality shows }∇curlpb2TvT q}L2pT q À h´2
T }b

2
TvT }L2pT q. This and the norm equivalence

}b2TvT }L2pT q « }vT }L2pT q lead to

h2
T }πPkpT qQT }L2pT q À ν}∇pu´ uhq}L2pT q ` h

2
T }QT ´ πPkpT qQT }L2pT q.

This concludes the proof of (a).

In the proof of (b), we use the notation

QE :“ rf ` ν∆T uhs ¨ τE for any E P E

and the face bubble bE with support ωE for every face E P E . Then,

}πPkpEqQE}L2pEq À sup
vEPPkpEq2

ş

E
QE ¨ pb

2
EvEq ds

}vE}L2pEq
` }QE ´ πPkpEqQE}L2pEq.

Testing the continuous equation with the divergence-free testfunction curlpb2EvEq P H
1
0 pΩq (where vE is rea-

sonably extended to ωE ) and an integration by parts show
ż

E

QE ¨ pb
2
EvEq ds

“

ż

E

rpf ` ν∆T uhq ¨ τEs ¨ pb
2
EvEq ds

“

ż

ωE

pf ` ν∆T uhq : curlpb2EvEq dx ´

ż

ωE

curlpf ` ν∆T uhq : pb2EvEq dx

ď }f ` ν∆T uh}L2pωEq}curlpb2EvEq}L2pωEq ` }QT }L2pωEq}b
2
EvE}L2pωEq.

A discrete inverse inequality }curlpb2EvEq}L2pωEq À h´1
T }b

2
EvE}L2pωEq and a scaling argument (see [35]), that

yields }b2EvE}L2pωEq À h
1{2
T }vE}L2pEq, show

h
3{2
E }πPkpEqQE}L2pEq ÀhT }f ` ν∆T uh}L2pωEq ` h

2
T }QT }L2pωEq

` h
3{2
E }QE ´ πPkpEqQE}L2pEq.

The proof of Theorem 4.3.(c) yields

}f ` ν∆T uh}L2pωEq À ν}∇pu´ uhq}L2 ` osckpf ´∇q, T pEqq.

This and the already proven result from (a) conclude the proof.

6 Proof of Assumption 5.1 for certain finite element methods

This section proves Assumption 5.1 for certain finite element methods. For the analysis several standard interpola-
tion operators that are related to the de Rahm complex (see e.g. [30]) are employed. These are a (projection based)
nodal interpolation operator IL, the lowest order Raviart-Thomas interpolation operator IRT0

and the lowest-order
Nédélec interpolation operator IN0 . These operators satisfy in particular the commuting diagram properties in two
dimensions (see [14])

curlpILvq “ IRT0
pcurlvq and ∇pILvq “ IN0

p∇vq (20)

for arbitrary sufficiently smooth functions v. Furthermore we need a refined Helmholtz decomposition.

Lemma 6.1 ([30]). It exists an operator ΠN0 : Hpcurl,Ωq Ñ N0pT q with the property: for every θ P Hpcurl,Ωq
exists a decomposition

θ ´ΠN0
θ “ ∇φ` y

with φ P H1pΩq, y P H1pΩq2, and

h´1
T }y}L2pT q ` }∇y}L2pT q À }curlθ}L2pT q for all T P T .
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Proof. In [30] a proof for three dimensions is given. The two dimensional case follows similarly.

Lemma 6.2 (Regular decomposition). For each θ P Hpcurl, ωq there exists a decomposition with α P H2pωq
and β P H1pωq2 such that

θ “ ∇α` β,

with

||∇β||L2pωq À ||curlθ||L2pωq and
ż

ω

β dx “ 0.

Proof. Let q :“ curlθ and ω̃ be a convex domain such that ω Ă ω̃. We define q̃ as a trivial extension of q by
zero, i.e. q̃|ω “ q and q̃|ω̃zω “ 0. In the next step we seek the solution w P H1pω̃q of the Poisson problem
∆w “ curlcurlw “ q̃ on ω̃. Using a regularity estimate for the Poisson problem on the convex domain ω̃, it
follows for β̃ :“ curlw and β :“ β̃|ω ´

ş

ω
β̃ dx {|ω| that

||∇β||L2pωq À ||∇β̃||L2pω̃q À ||w||H2pω̃q À ||q̃||L2pω̃q “ ||q||L2pωq “ ||curlθ||L2pωq.

Since curlpθ ´ βq “ 0 in ω, its exists a vector potential α P H2pωq such that ∇α “ θ ´ β. This concludes the
proof.

Theorem 6.3 (Proof of Assumption 5.1 for finite element methods with P0 pressure space). If the reconstruction
operator Π and the Fortin operator I satisfy (16) and

ż

E

p1´ Iqv ¨ ~nE ds “

ż

E

p1´ΠIqv ¨ ~nE ds “ 0 for all E P E , (21)

also Assumption 5.1 is satisfied.

Remark 6.4. Condition (21) is satisfied for the Forint interpolators for the P2 ˆ P0, P3 ˆ P0 and the Bernardi–
Raugel finite element methods [8, Section 8.4.3]. For these methods the reconstruction operator Π is the standard
interpolation into the space BDM1 or RT0 [25].

Proof. Since every function g P H1pT q with
ş

E
g ¨n ds “ 0 along all edges E P EpT q of T satisfies a discrete

Friedrichs inequality }g}L2pT q À hT }∇g}L2pT q, see e.g. [10], it follows together with (16)

}p1´ΠIqv}L2pT q ď }p1´ Iqv}L2pT q ` }p1´ΠqpIvq}L2pT q

À hT }∇v}L2pT q ` hT }∇Iv}L2pT q À hT }∇v}L2pT q.

Since p1´ΠIqv is divergence-free, it holds p1´ΠIqv “ curlψ for some ψ P H1
0 pΩq XH

2pΩq, see Corollary
3.2 in [16]. Condition (21) implies that the standard interpolator into RT0 vanishes, i.e. IRT0

curlψ “ 0. Moreover,
by the commuting properties (20) of the de Rham complex, it also holds curlpILψq “ IRT0

curlψ “ 0. An
integration by parts and standard interpolation estimates yield

ż

Ω

θ ¨ p1´ΠIqv dx “

ż

Ω

θ ¨ curlpψ ´ ILψq dx “

ż

Ω

curlθ ¨ pψ ´ ILψq dx

ď }h2
T curlθ}L2}h´2

T pψ ´ ILψq}L2

ď }h2
T curlθ}L2}h´1

T ∇pψ ´ ILψq}L2

“ }h2
T curlθ}L2}h´1

T curlpψq}L2

“ }h2
T curlθ}L2}h´1

T p1´ΠIqv}L2 ď }h2
T curlθ}L2}∇v}L2 ,

where we used that the curl is just the rotated gradient in two dimensions. This concludes the proof.

Theorem 6.5 (Proof of Assumption 5.1 for finite element methods with discontinuous P1 pressure space). If the
reconstruction operator Π and the Fortin operator I satisfy

ż

T

p1´ Iqv dx “

ż

T

p1´ΠIqv dx “ 0 for all T P T , (22)

also Assumption 5.1 is satisfied.
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Remark 6.6. Condition (22) is satisfied by the P2-bubble finite element method and its Fortin interpolator [8,
Section 8.6.2]. A suitable reconstruction operator Π is the standard interpolation into the space BDM2 or RT1

[22, 25]. Moreover, the result generalises to all Pk ˆ Pk´2 finite element methods with k ą 2.

Proof. A triangle inequality, interpolation properties of Π, a Poincaré inequality, and the H1-stability of I show

}p1´ΠIqv}L2pT q ď }p1´ΠqIv}L2pT q ` }p1´ Iqv}L2pT q À hT }∇v}L2pT q.

To estimate the dual norm, Lemma 6.1 yields θ ´ΠN0θ “ ∇φ` y with

}hT y}L2 À }h2
T curlθ}L2 .

Also note that due to ΠN0θ P Hpcurl, T q we can use the regular decomposition from Lemma 6.2 to find

ΠN0
θ|T “ ∇αT ` βT for all T P T

with some αT P H2pT q and βT P rH
1pT qs2 such that

ş

T
βT dx “ 0 and

}∇βT }L2pT q À }curlpΠN0
θq}L2pT q À }curlθ}L2pT q.

Together with the projection property of IN0 , the commuting properties (20) of the de Rham complex and the
continuity of the nodal interpolation IL forH2 functions, the Helmholtz decomposition can be cast into the discrete
version

ΠN0θ|T “ IN0p∇αT ` βT q “ ∇pILαT q ` IN0βT .

The combination of all decompositions defines some function αT P P1pT q and βT P P1pT q2 with

}h2
T ∇hβT }L2 À }h2

T curlθ}L2 .

Since z :“ p1 ´ ΠIqv is orthogonal onto piecewise constants (by (22)), in particular the piecewise constant
function ∇pILαqT P P0pT q2, and gradients (because z is divergence-free and has zero boundary data), it
follows

ż

Ω

θ ¨ p1´ΠIqv dx “

ż

Ω

z ¨ θ dx “

ż

Ω

z ¨ pθ ´ΠND0
θq dx `

ż

Ω

z ¨ΠND0
θ dx

“

ż

Ω

z ¨ y dx `

ż

Ω

z ¨ βT dx

“

ż

Ω

h´1
T z ¨ hT y dx `

ż

Ω

h´1
T z ¨ hT βT dx

À }h´1
T z}L2p}hT y}L2 ` }h2

T ∇hβT }L2q

À }h´1
T z}L2}h2

T curlθ}L2 À }∇v}L2}h2
T curlθ}L2 .

Note, that we used an elementwise Poincaré inequality for βT (which has piecewise integral mean zero). This
concludes the proof.

Theorem 6.7 (Proof of Assumption 5.1 for the mini finite element method). The mini finite element method family
with the reconstruction operator from [20] and a Fortin operator I with the property (see e.g. [8, Section 8.4.2])

ż

T

p1´ Iqv ds “ 0 for all T P T (23)

satisfies Assumption 5.1.

Proof. For the mini finite element method, the reconstruction operator is given in [20]. It in particular satisfies (16)
in the sense

p1´ΠqIv “
ÿ

yPN
σy (24)
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whereσy P BDM2pT pωyqq satisfies }σy}L2pωyq À hy}∇Iv}L2pωyq on the nodal patch ωy of the node y P N
and (at least) the local orthogonality

ż

ωy

σy dx “ 0.

Furthermore we have σy ¨ n “ 0 on the boundary Bωy . This time, the operators I and Π do not share the same
orthogonality on cell-wise constants as in Theorem 6.5, but one can split up the L2-norm by a triangle inequality

}p1´ΠIqv}L2 ď }p1´ΠqIv}L2 ` }p1´ Iqv}L2 .

Due to (23) the norm }p1 ´ Iqv}L2pT q can be estimated as in Theorem 6.5 and it remains to estimate }p1 ´
ΠqIv}L2 . For the first one, it holds

}p1´ΠqIv}2L2pT q “
ÿ

zPN pT q

ż

T

σz ¨ p1´ΠqIv dx

ď
ÿ

zPN pT q

}σz}L2pωzq}p1´ΠqIv}L2pT q

ď hT }∇Iv}L2pωT q}p1´ΠqIvh}L2pT q

and hence

}p1´ΠqIv}L2pT q À hT }∇Iv}L2pωT q À hT }∇v}L2pωT q.

For the estimate of the dual norm, inserting the decomposition from Lemma 6.1 leads to
ż

Ω

θ ¨ p1´ΠIqv dx “

ż

Ω

z ¨ θ dx “

ż

Ω

z ¨ y dx `

ż

Ω

z ¨ΠN0
θ dx .

The first integral can be estimated as in Theorem 6.5 and it remains to estimate the second integral where we
employ the decomposition (24) for p1´ΠqIv “

ř

yPN σy and its orthogonality properties, i.e.

ż

Ω

z ¨ΠN0
θ dx “

ż

Ω

p1´ Iqv ¨ΠN0
θ dx `

ÿ

yPN

ż

ωy

h´1
y σy ¨ hyΠN0

θ dx (25)

and we bound both integrals separately. The first integral of (25) can be estimated exactly as in Theorem 6.5 due
to (23) by a element-wise Helmholtz decomposition such that

ż

Ω

p1´ Iqv ¨ΠN0θ dx À }∇v}L2}h2
T curlθ}L2 .

For the second integral, first note that due to ΠN0
θ P Hpcurl, ωyq we can use the regular decomposition of

Lemma 6.2 on each patch to get

ΠN0
θ|ωy

“ ∇αy ` βy for all y P N .

with some αy P H1pωyq and βy P rH
1pωyqs

2 such that
ş

ωy
βy dx “ 0 and

}βy}H1pωyq À }curlpΠND0
θq}L2pωyq À }curlθ}L2pωyq.

Next note, that on each element T Ă ωy we have ΠND0θ|T P rH
1pT qs2 and thus

∇αy|T “ ΠND0θ|T ´ βy|T P rH
1pT qs2 ñ αy|T P H

2pT q.

Together with the projection property of IN0
, the commuting properties (20) of the de Rham complex and the

continuity of the nodal interpolation IN forH2 functions, the Helmholtz decomposition can be cast into the discrete
version

ΠND0θ|ωy “ IN0p∇αy ` βyq “ ∇pILαyq ` IN0βy.
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Finally, a scaling argument and a Poincaré inequality shows

}IN0
βy}L2pωyq À }βy}L2pωyq ` hy}∇βy}L2pωyq À hy}∇βy}L2pωyq À hy}curlθ}L2pωyq.

Furthermore, note that the reconstruction operator is orthogonal on gradients of continuous P1-functions like
∇pILαyq due to [20, Proposition 16.ii], i.e.

ş

ωy
σy ¨ ∇pILαyq dx “ 0. Now, the second integral of (25) is

bounded by

ÿ

yPN

ż

ωy

h´1
y σy ¨ hyΠN0θ dx À

ÿ

yPN
}h´1
y σy}L2pωyq}h

2
y∇βy}L2pωyq

À
ÿ

yPN
}∇v}L2}h2

ycurlθ}L2pωyq À }∇v}L2}h2
T curlθ}L2 .

The combination of all previous results concludes the proof.

Theorem 6.8 (Proof of Assumption 5.1 for the Taylor–Hood finite element method). The Taylor–Hood finite element
method family with the reconstruction operator from [20] and the Fortin operator I from [26, 12] in two dimensions
with the property

ż

Ω

p1´ Iqv ¨w ds “ 0 for allw P ĂN0pT q, (26)

where ĂN0pT q is a subset of N0pT q as defined in [26, 12], satisfy Assumption 5.1.

Remark 6.9. The proof requires some assumption on the mesh, i.e. we require that each interior faceE P E˝ has
at most one node on the boundary BΩ. This assumption was also needed in [26] for the construction of a stable
the Fortin interpolator and was later removed in [12]. Maybe similar arguments can be used in our case.

Proof. A triangle inequality, properties of Π, and the H1-stability of I show

}p1´ΠIqv}L2pT q ď }p1´ΠqIv}L2pT q ` }p1´ Iqv}L2pT q À hT }∇v}L2pT q.

Again using the decomposition from Lemma 6.1 and the orthogonality between gradients and p1´ΠIqv leads to

ż

Ω

p1´ΠIqv ¨ θ dx “

ż

Ω

p1´ΠIqv ¨ y dx `

ż

Ω

p1´ΠIqv ¨ΠN0θ dx

The first integral can be estimated similarly as in the proof of Theorem 6.7. For the second integral we use p1 ´
ΠqIv “

ř

yPN σy to get

ż

Ω

p1´ΠIqv ¨ΠN0
θ dx “

ż

Ω

p1´ Iqv ¨ΠN0
θ dx `

ÿ

yPN

ż

ωy

h´1
y σy ¨ hyΠN0

θ dx .

Similarly as in the proof of Theorem 6.7 we bound the first term. However the integral (using the orthogonality (26))
ż

Ω

p1´ Iqv ¨ΠN0
θ dx “

ż

Ω

p1´ Iqv ¨ p1´ I
ĄN0
qΠN0

θ dx

needs a different treatment. To estimate this integral we have to design a proper interpolation I
ĄN0
pΠN0

θq of ΠN0
θ

into the space ĂN0pT q. To do so, we can write ΠN0
θ as a linear combination

ΠN0
θ “

ÿ

EPE
αENE with coefficients αE :“

ż

E

ΠN0
θ ¨ τE ds

and Nédélec basis functions NE with
ş

F
NEτF ds “ δEF for E,F P E . Then, we choose I

ĄN0
pΠN0θq as

I
ĄN0
pΠN0θq :“

ÿ

EPE0

αE rNE
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1
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Figure 1: Enumeration of the vertices and edges in a boundary triangle with boundary edge E3.

where E0 are the interior edges and rNE are the modified basis functions as in [12], i.e. rNE “ NE for all
edges E with two interior endpoints and rNE “ NE ˘ NF for interior edges E with one boundary endpoint
and F is a boundary edge with the same boundary endpoint and in the same triangle of E. The sign depends
on the orientation of the tangent vectors. Assume a boundary triangle TE with nodes 1, 2, 3, boundary edge
E3 “ convt1, 2u and two adjacent interior edges E1 and E2 as depicted in Figure 1. We further assume, that
the tangential vectors are pointing from the lower to the larger node number. Then, according to [12], the modified
basis functions read rNE2

“ NE2
`NE3

and rNE1
“ NE1

´NE3
. Hence, locally on T , we have

´

p1´ I
ĄN0
qΠN0θ

¯

|T “ αE1NE1 ` αE2NE2 ` αE3NE3 ´ pαE1
rNE1 ` αE2

rNE2q

“ NE3
pαE3

` αE1
´ αE2

q.

The definition of αEj
and an easy calculation plus the Stokes theorem show

αE3
` αE1

´ αE2
“

ż

BT

ΠN0
θ ¨ τ ds “

ż

T

curlpΠN0
θq dx

and hence the estimate

}p1´ I
ĄN0
qΠN0θ}L2pT q ď

∣∣∣∣ż
T

curlpΠN0θq dx

∣∣∣∣ }NE}L2pT q À hT }curlpΠN0θq}L2pT q.

On interior triangles, it holds ΠN0
θ ´ I

ĄN0
pΠN0

θq “ 0 and hence
ż

Ω

p1´ Iqv¨ΠN0
θ dx “

ż

Ω

p1´ Iqv ¨ pΠN0
θ ´ I

ĄN0
pΠN0

θqq dx

À
ÿ

TPT pBΩq

h2
T }curlpΠN0

θq}L2pT q}∇v}L2pωT q À }h
2
T curlθ}L2}∇v}L2 .

This concludes the proof.

7 Numerical experiments

In the following two numerical examples, the novel error estimator

µ2
new :“ ν´2ηnewp∇uhq2 ` }divuh}

2
L2

from Theorem 5.2 (for pressure-robust methods) or Proposition 5.3 (for classical methods) is compared to the
classical error estimator

µ2
class :“ ν´2ηclassp∇uh, phq2 ` }divuh}

2
L2

from Theorem 4.1, with respect to the H1-seminorm errH1puhq :“ ||∇u´∇uh||L2 . Our adaptive mesh refine-
ment algorithm follows the loop

SOLVE Ñ ESTIMATE Ñ MARK Ñ REFINE Ñ SOLVE Ñ . . .
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Table 3: The H1 error and the old and new error estimators including the efficiency for the example of section 7.1
for varying ν using the classical Taylor Hood element TH2 and its pressure robust modification.

(classical) (p-robust)
ν errH1 puhq µclass

µclass
err

H1 puhq
errH1 puhq µnew

µnew
err

H1 puhq

101 1.27¨ 10´3 1.99¨ 10´2 1.58¨ 101 1.30¨ 10´3 5.19¨ 10´2 3.98¨ 101

100 1.30¨ 10´3 1.42¨ 10´2 1.09¨ 101 1.30¨ 10´3 3.47¨ 10´2 2.66¨ 101

10´1 3.12¨ 10´3 1.12¨ 10´1 3.58¨ 101 1.30¨ 10´3 3.29¨ 10´2 2.53¨ 101

10´2 2.85¨ 10´2 1.11 3.90¨ 101 1.30¨ 10´3 3.28¨ 10´2 2.51¨ 101

10´3 2.85¨ 10´1 1.11¨ 101 3.90¨ 101 1.30¨ 10´3 3.27¨ 10´2 2.51¨ 101

10´4 2.85 1.11¨ 102 3.90¨ 101 1.30¨ 10´3 3.27¨ 10´2 2.51¨ 101

10´5 2.85¨ 101 1.11¨ 103 3.90¨ 101 1.30¨ 10´3 3.27¨ 10´2 2.51¨ 101

10´6 2.85¨ 102 1.11¨ 104 3.90¨ 101 1.30¨ 10´3 3.27¨ 10´2 2.51¨ 101

and employs the local contributions to the error estimator as element-wise refinement indicators. In the marking
step, an element T P T is marked for refinement if µpT q ě 1

4 max
KPT

µpKq. The refinement step refines all marked

elements plus further elements in a closure step to guarantee a regular triangulation. The implementation and
numerical examples where performed with NGSolve/Netgen [31], [29].

Remark 7.1. For reducing the costs of the estimator, we estimated the consistency error ηcons,1p∇uhq “ }νdivhp∇uhq˝
p1´Πq}V ‹

0,h
according to (16) by

ηcons,1p∇uhq À ν

˜

ÿ

KPK
h2
K}p1´ πPq´1pKqq∆huh}

2
L2pKq

¸1{2

.

7.1 Smooth example on unit square

This example concerns the Stokes problem for

upx, yq :“ curl
`

x2px´ 1q2y2py ´ 1q2
˘

and ppx, yq :“ x5 ` y5 ´ 1{3

on the unit square Ω :“ p0, 1q2 with matching right-hand side f :“ ´ν∆u`∇p for variable viscosity ν.

Table 3 lists the error of the classical and pressure-robust Taylor-Hood finite element methods with their error
estimators µclass and µnew on a fixed mesh with 1139 degrees of freedom but varying viscosities ν P p10´6, 10q.
As expected by the a priori error estimates of Theorems 3.1 and Theorem 3.2, the error of the classical solution
scales with ν´1, while the error of the pressure-robust method is ν-invariant. Another observation is that both error
estimators are efficient for their respective discrete solution.

Figure 2 compares the errors and error estimators of the Taylor–Hood finite element method of order 2 and the
MINI finite element method with and without the pressure robust modification for uniform mesh refinement as in the
case ν “ 1 and a pressure-dominant case with ν “ 10´3.

In the pressure dominant case ν “ 10´3 the right hand side f tends to have a large irrotational part. The left plot
of Figure 2 confirms once again that the velocity error scales with 1{ν and that pressure-robust methods result
in much more accurate solutions. For the classical methods both estimators µnew and µclass are efficient, i.e. have
comparable overestimation factors and the same optimal convergence order as the velocity error. In case of the
MINI finite element method, all quantities even converge quadratically. This is due to the dominance of the pressure
error and the higher approximation order of the pressure. In this sense, we are in a pre-asymptotic range and the
error will convergence linearly as soon as the ν´3-weighted pressure error is of same magnitude (as it is the
case for ν “ 1 from the very beginning). Also for the classical MINI element µnew and µclass are efficient with a
comparable overestimation factor.

For the pressure-robust methods we observe that for both elements the novel estimator µnew is much smaller than
µclass. To be more precise, it scales with µnew « 1{ν µclass in case of the Taylor-Hood method as expected by the
theory. This is again due to the discrete pressure that is used in µclass (ph replaced by some better approximation
of p would reduce the gap between µnew and µclass). Hence, µnew is efficient and µclass is not efficient for the
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Oph2
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Figure 2: The H1-error, µclass and µnew for the example of section 7.1 with ν “ 1 and ν “ 10´3. At the top the
TH2 element, and at the bottom the MINI element.

pressure-robust Taylor–Hood finite element method. In case of the pressure-robustly modified MINI method, the
velocity error and the novel estimator µnew now have the expected optimal linear order of the MINI finite element
method. Otherwise, the conclusions are similar to the ones for the Taylor–Hood method.

In this case ν “ 1 the irrotational part and the rotational part of the right hand side f have the same magnitude,
thus the pressure error has not such a big impact on the accuracy of the discrete velocity. Accordingly, there is only
little to no improvement by the application of the pressure-robust modification. Thus, in the right plots of Figure 2 we
can see that the velocity error of both methods, the pressure robust and the classical one, is of the same magnitude
and order. Both estimators are efficient with slightly less overestimation by ηclass.

7.2 L-shape example

This example studies a velocity u and a pressure p0 on the L-shaped domain Ω :“ p´1, 1q2z pp0, 1q ˆ p´1, 0qq
taken from [34] that satisfy ´ν∆u`∇p0 “ 0. The fields are defined in polar coordinates and read

upr, ϕq :“ rα
ˆ

pα` 1q sinpϕqψpϕq ` cospϕqψ1pϕq
´pα` 1q cospϕqψpϕq ` sinpϕqψ1pϕq

˙T

,

p0 :“ ν´1rpα´1qpp1` αq2ψ1pϕq ` ψ3pϕqq{p1´ αq

where

ψpϕq :“ 1{pα` 1q sinppα` 1qϕq cospαωq ´ cosppα` 1qϕq

´ 1{pα´ 1q sinppα´ 1qϕq cospαωq ` cosppα´ 1qϕq
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Figure 3: Error for L-shape example of section 7.2 using the discontinuous pressure elements P2P0 (top) and the
P2B (bottom) with ν “ 10´3
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Figure 4: Error for L-shape example of section 7.2 using the continuous pressure elements MINI (top) and the TH3

(bottom) with ν “ 10´3
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(a) (b) (c) (d)

Figure 5: (a): according to µnew adaptively refined mesh with 4584 degrees of freedom for the pressure-robust
Taylor–Hood method; (b): according to µnew adaptively refined mesh with 3971 degrees of freedom for the clas-
sical Taylor–Hood method; (c): according to µclass adaptively refined mesh with 5119 degrees of freedom for the
pressure-robust Taylor–Hood method; (d): according to µclass adaptively refined mesh with 5320 degrees of free-
dom for the classical Taylor–Hood method

and α “ 856399{1572864 « 0.54, ω “ 3π{2. To have a nonzero right-hand side we add the pressure
p` :“ sinpxyπq, i.e. p :“ p0 ` p` and f :“ ∇pp`q. We generate a pressure dominant case by using a
small viscosity ν “ 10´3. In Figure 3 and 4 the velocity error and the novel estimator ηnew are plotted for the
classical and modified version of four different finite element methods and uniform and adaptive mesh refinement.
For this example an adaptive refinement is expected to refine the generic singularity of the velocity in the corner
p0, 0q.

We first discuss the pressure-robust variants of the finite element methods. Looking at the left plots of Figure 3
and 4 we can see that there is a major difference between adaptive and uniform mesh refinement. The adaptive
algorithm results in optimal orders of the velocity error and the estimator, while uniform refinement only leads to
suboptimal orders as the singularity is not resolved well enough. The only exception is the MINI finite element
method which pre-asymptotically converges with quadratic speed. This is again thanks to the better polynomial
order in the pressure ansatz space and the smooth pressure p`. Asymptotically also the MINI finite element
method shows the suboptimal behaviour in case of uniform mesh refinement and first-order convergence in case
of adaptive mesh refinement. In all cases, the new error estimator µnew is efficient and gives reasonable refinement
indicators.

In case of the classical variants of the finite element methods, totally different observations can be made. In the
right pictures of Figure 3 and 4 we first note that the error is much larger compared to the pressure-robust method.
Furthermore similar as before only adaptive mesh refinement leads to optimal orders. However, it is important to
note that the gap between the velocity error of the classical method and the velocity error of the pressure-robust
method stays as large as in the beginning also under adaptive mesh refinement. A possible explanation is given by
Figure 5 which shows that the classical method refines the mesh almost uniformly. This is reasonable in the sense
that the pressure error of the smooth pressure p` dominates the (real and the estimated) discretisation error in
the beginning. The pressure-robust method on the other hand is not polluted by this influence and can concentrate
immediately on the corner singularity. However, it is important that the error estimator is also pressure-robust. If
the refinement indicators are taken from µclass, the corner singularity remains unrefined until the dominance of
the pressure error in the error bound is removed. Hence, the main conclusion is that only a pressure-robust finite
element method with a pressure-robust error estimator leads to optimal meshes with the smallest velocity error.
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