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Reconciling irrigated food production with
environmental flows for Sustainable Development
Goals implementation
Jonas Jägermeyr1,2, Amandine Pastor3,4,5, Hester Biemans6 & Dieter Gerten1,2

Safeguarding river ecosystems is a precondition for attaining the UN Sustainable

Development Goals (SDGs) related to water and the environment, while rigid implementation

of such policies may hamper achievement of food security. River ecosystems provide life-

supporting functions that depend on maintaining environmental flow requirements (EFRs).

Here we establish gridded process-based estimates of EFRs and their violation through

human water withdrawals. Results indicate that 41% of current global irrigation water use

(997 km3 per year) occurs at the expense of EFRs. If these volumes were to be reallocated to

the ecosystems, half of globally irrigated cropland would face production losses of Z10%,

with losses of B20–30% of total country production especially in Central and South Asia.

However, we explicitly show that improvement of irrigation practices can widely compensate

for such losses on a sustainable basis. Integration with rainwater management can even

achieve a 10% global net gain. Such management interventions are highlighted to act as a

pivotal target in supporting the implementation of the ambitious and seemingly conflicting

SDG agenda.
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G
lobal agricultural intensification through ever-increasing
resource use is a main driver of current transgressions of
‘planetary boundaries’, that is, critical global and regional

levels of anthropogenically influenced Earth system processes
such as land use change, biodiversity loss, freshwater use and
nitrogen and phosphorus loads1. Transgressing these planetary
boundaries increases the risk that the Earth system is transformed
into a post-Holocene state with characteristics that potentially
undermine system resilience and human welfare1. Because
agriculture is central to attaining the renewed sustainable
development goals (SDGs), they acknowledge this risk by
committing all countries to a bold and transformative agenda
in support of the twin challenge: protection of Earth’s life-support
system while reducing hunger and poverty2. With the human
population set to rise to at least nine billion by 2050, the
implementation of this vision aligned with environmental
guardrails requires precautionary policies based on solid
quantitative grounds such as formulated in the planetary
boundaries framework3. For progress monitoring, a global SDG
indicator framework has been developed4, but proposed
actionable specifications for environment-related indicators
remain insufficiently advocated4,5.

Freshwater resources, as a core example, are over-exploited and
aquatic ecosystems are thereby rapidly degrading in many
regions6,7. Restoration of currently compromised river
ecosystems through securing environmental flow requirements
(EFRs)—that is, the daily river flow needed to maintain aquatic
ecosystem services and, thus, the human livelihoods that rely on
them8—would entail a substantial reduction in water availability
for irrigated food production. Accounting for 470% of human
water withdrawals, irrigation is globally the largest user
of freshwater9. To quantitatively underpin water targets in the
SDG framework (6.4 and 6.6 as specified below) that bridge
ecosystem maintenance, sustainable water use and food
production, this study demonstrates how heavily current
irrigation practices rely on EFRs. We show how much of global
food production would be affected if policies to secure EFRs
were implemented worldwide in the vein of propositions in
the Brisbane Declaration8 and other aquatic ecosystem policy
recommendations10–12. Correspondingly, we quantify—towards
the food production target 2.3—the degree to which effective
farm water management can outweigh associated constraints on
irrigated food production. Using EFRs as an indicator is
compatible with the regional planetary boundary for human
freshwater use that accounts for the spatial and temporal pattern
of local tolerance levels of water use and their transgression1,13.

To approach such analyses at global scale we employ an
advanced dynamic biosphere model that represents natural and
agricultural vegetation with associated ecological, hydrological
and biogeochemical processes—including river flows, here newly
implemented EFR regulations, irrigation and crop production—in
a single internally consistent framework at high spatio-temporal
resolution14. Reflecting methodological uncertainty and
varied policies concerning the fraction of river flow which
should remain untouched, we apply three differing hydrological
methods to allocate daily flow volumes to EFRs (VMF method as
in Pastor et al.15 and adapted versions of Tessmann16 and
Smakhtin et al.17). Simulations are performed for the time period
1980–2009, with and without consideration of EFRs. In the
former case, water withdrawal for irrigation and other purposes
(household, industry and livestock, HIL) is disallowed as long as
it would tap EFRs. To put irrigation into perspective of total food
production, we also illustrate a scenario with an absence of
irrigation and highlight exemplary scenarios of moderate
irrigation system upgrades and more integrated farm water
management (overview of simulations in Table 1).

Results
Our results show that today’s human water withdrawals,
2,409 km3 for irrigation and 1,071 km3 for HIL (1980–2009
average), harm many river stretches around the world. Figure 1
lays out regions and the degree to which EFRs are currently
undermined to sustain the human water demand, which is the
case especially in Central and South Asia, the North China plain,
the Middle East, the Mediterranean region and North America
(Fig. 1a). EFR transgressions reach a level beyond the uncertainty
range in these regions and thus indicate severe degradation, given
by the three estimation methods applied (Supplementary Fig. 1).
Figure 1a illustrates the mean annual EFR deficit (EFR minus
discharge, if 40) relative to current mean annual discharge. The
Indus river in Pakistan represents a dramatic case, where this
ratio exceeds 100% at annual level—that is, less than half of
the needed environmental flows are currently available—while
EFRs remain unmet throughout 11 months per year (Fig. 1j). Yet
we also find alarming EFR violations along many other rivers
such as the Amu Darya, Euphrates, Yellow River, Ganges, Murray
and Rio Grande (Fig. 1b–m). Supplementary Fig. 2 details EFR
transgressions in terms of the total annual deficit and the number
of months with transgressions. 31% of global EFR deficits occur
in Pakistan alone, reaching 58.4% together with India (17.7%)
and China (9.7%). Global EFR deficits involve a water overuse of
997 km3 per year for irrigation (equalling 41% of total current
irrigation water use) and a further 236 km3 per year (22%) for
HIL (Table 2 and Supplementary Table 1). If not indicated
otherwise, results refer to the mean of three EFR methods.

Current food production thus heavily relies on water that
would actually be needed to sustain riverine ecosystems (Fig. 2). If
EFRs were to be preserved—also in regions where irrigated food
production currently depends on them, and without compensat-
ing water saving efforts—52% of global irrigated cropland would
face kcal production losses Z10% (Table 2). Among intensely
irrigated regions, like many Mediterranean countries, the Middle
East, North America and particularly parts of Central and South
Asia, as much as 420% of total (that is, rainfed and irrigated)
kcal production relies on EFRs—at the aggregated level of food
production units (Fig. 2b). Figure 3 highlights the interaction of
maintaining EFRs and agricultural production at country level—
Saudi Arabia, Pakistan and Israel appear in first place (430%
total loss). But also India, Bangladesh, Uzbekistan, Afghanistan,
Italy and Greece, among others, would face a production decline
of B15–23% (Fig. 3, Supplementary Table 2). Global irrigated
kcal production would be subjected to a 13.9% loss, correspond-
ing to a 4.6% loss of total production (Table 2). This number is
significant, given that irrigation water sustains only 15% of total
global kcal production (while another 18% are sustained by
precipitation on irrigated land, confirming earlier estimates9). It
illustrates that maintaining EFRs would impinge on about a third
of the current overall contribution to agricultural production
made by irrigation—in the absence of water management
improvements.

Countries where Z10% of production relies on the withdrawal
of EFRs are inhabited by 2.03 billion people; 90% of them live in
countries with a Human Development Index18 o0.7 (Suppleme-
ntary Table 2). Since agriculture is at the center of human
development and poverty reduction, serious societal impacts are
to be expected in default of other adaptation or compensation
measures. Case study observations confirm complex difficulties in
water re-allocation and infrastructure re-organization for
ecosystem conservancy if environmental flows are tapped
already12,19,20. Yet this is still a prerequisite if additional and
sometimes irreversible degradation of aquatic ecosystems is to be
avoided. EFR implementation is indivisibly linked to the
achievement of stable and resilient food production systems,
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needed to ground nested environmental, social and economic
sustainability (Supplementary Fig. 3)3,21,22.

Field-based and modelling studies indicate that management
improvements can advance crop water productivity on a
considerable scale7,23–26. To compensate for EFR constraints,
we here develop an irrigation upgrade scenario as one example of
a spectrum of effective farm water management options14. Our
simulations suggest that a transition from surface to sprinkler
irrigation systems (using half of thus saved consumptive losses for
expansion, Table 1) would suffice—at global level—to outweigh
kcal constraints associated with implementation of EFR policies
(Table 2, Fig. 3). Irrigation requirements could thereby decrease
to about half the current amount, mainly through reductions in
conveyance losses and return flows. While meeting EFRs,
irrigation water consumption (withdrawals minus return flows
and drainage losses) remains at the same level (global average
B35% below current value, Table 2), but with higher shares of
productive crop transpiration, which reflects the increase in
water productivity associated with the improved management27.
Gains are naturally marginal in countries operating highly
efficient systems already (for example, Israel), but major gains
are possible in countries with presently predominately large-scale
surface irrigation systems and unlined conveyance canals such
as Pakistan, Afghanistan, Uzbekistan and Bangladesh (Fig. 3). In
Tajikistan, for instance, EFR constraints on food production
imply a 15% loss, but allied with improved irrigation systems a
net gain of 0.4% could be reached, and in Turkmenistan a loss by
6.6% could be turned into an 8.4% gain (Supplementary Table 2).

Yet even under such improved irrigation water use, on 34% of
irrigated cropland Z10% of kcal production would still have to
rely on EFRs, mostly in Central and South Asia, which is
compensated at global level by production gains in other regions,
notably in East Asia (Fig. 2c). More ambitious interventions are
needed to reconcile irrigation requirements and EFRs in hot-spot
regions such as the Aral Sea basin28. For example, the integration
of rainwater management (water harvesting, mulching,
conservation tillage) and irrigation upgrades are associated with
sizeable potentials in many of these regions14. To explore this
further, we also analyse an exemplary scenario of integrated farm
water management, that is, combining above defined irrigation
upgrades with rainwater management (25% of surface runoff
collected for supplemental irrigation and 25% of soil evaporation
alleviated, Table 1). Results indicate that, while overcompensating
EFR-induced constraints across many countries (Figs 2d and 3),

such comprehensive interventions could increase global total kcal
production by 9.9% compared to the current situation (Table 2).

Discussion
Overall, the water management strategies quantified here illustrate
that opportunities to thrive do exist within planetary environmental
guardrails29. While not exhaustive—only even more ambitious
interventions presented in Jägermeyr et al.14 prove sufficient to halve
the global food gap by 2050—they highlight that farm water
management across scales, linked to preservation of environmental
flows, would greatly assist the intricate task of such implementations
paired with the goals of poverty reduction and agricultural
productivity increase as outlined by the SDGs. Nevertheless, our
spatially explicit simulations demonstrate that farm water
management alone might not suffice to simultaneously achieve
possibly conflicting SDG targets 6.4 (‘sustainable withdrawals’) and
2.3 (‘double agricultural productivity’) by 2030. Additional important
merits, such as incorporating ecological landscape approaches
including soil fertility optimization and advanced crop varieties
will be needed to further maximize synergies and thus crop water
productivity—promising examples have been demonstrated30–32.

Assessment of water saving and crop yield potentials in specific
locations requires more in-depth studies of what methods are best
suited in view of local biophysical conditions and social
appropriateness. For many regions the scenarios imply major
technological and also institutional transformations away from
current less efficient and ecologically detrimental practices, and
here suggested potentials may not be reached where such
transformations will not, or only partially, be realised. Conversely,
higher potentials appear feasible for regions where even more
radical transformations may occur14,27. Water availability is
estimated under the assumption that industrial and domestic
water demand is prioritized over agricultural water demand,
whereas constraints on irrigated production could further
increase in regions where, for example, bioenergy production
will impose new pressure on freshwater resources33, or where
water quality or thermal pollution limits water use34. The
hydrological EFR calculation approach builds on the best
currently available methods and appears adequate as we
incorporate three different, referenced EFR methods.
Nevertheless, such first-order estimates need refinement to
achieve more holistic quantifications of ecosystem water needs.
The validated dynamic modelling capacity (Fig. 4 and Methods

Table 1 | Simulation protocol.

Scenario Description

0. Current situation Water withdrawals constrained by surface water availability only, not by EFRs.

1. No irrigation No human water withdrawal (irrigation and other sectors), but same land use patterns as in ’current situation’, that is, rainfed
conditions on currently irrigated cropland.

2. Respect EFR Total water withdrawal constrained by EFRs (industrial and domestic prioritized over irrigation). Individual model runs for each
EFR method. (Tessmannadapted, VMF, Smakhtinadapted).

3. Respect EFR paired
with irrigation
upgrade

Same as scenario 2, yet combined with an irrigation upgrade scenario: surface irrigation replaced by sprinkler systems (except
paddy rice), half of saved consumptive losses used to expand irrigation into neighbouring rainfed cropland. Individual model
runs for each EFR method.

4. Respect EFR paired
with integrated
water management

Same as scenario 3, yet combined with a modest form of rainwater management: 25% of surface runoff collected for
supplemental irrigation (rainwater harvesting) and 25% of soil evaporation alleviated. Individual model runs for each EFR
method.

The table highlights scenarios investigated in this study to quantify environmental flow requirements (EFRs) and potentials in farm water management. The simulation setup is detailed in the Methods
section ’Model and simulation protocol’.
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section ‘Model validation’) well represents observed water stress
signals in crop growth, while accounting for water trade-offs
along the river network.

Despite substantial untapped farm-level management
opportunities, institutional changes and revisions of current
water concessions appear necessary in view of broader EFR
implementations19,28. A number of local initiatives prove
successful already12, for example, Uzbekistan has set clear
policy targets for water use and savings and was able to reduce

its water footprint35,36. The ‘redline’ water policies in China
illustrate the integration of national legislation with local
institutional frameworks26. With Australia, the United States
and South Africa in the forefront, the validity of setting EFRs has
become internationally accepted and in many countries
provisions are being developed8,10–12,37. But the systematic and
comprehensive quantification of EFRs poses methodological,
institutional and financial challenges and is thus still insufficient.
Together with often ineffective governance, this explains why
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Figure 1 | Discharge and environmental flows of selected river stretches. The map (a) illustrates the mean annual EFR deficit (EFR minus current

discharge, if 40) relative to mean annual discharge. Hydrographs (b–m, locations indicated on the map) highlight seasonal flow alterations (pristine versus

current discharge) together with EFR estimates (mean, Tessmannadapted, VMF, Smakhtinadapted, Methods section) and, if unmet, the mean EFR deficit. All

estimates are in m3 s� 1 and for the time period 1980–2009.
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existing licenses and policies are not yet being implemented12,38,
although it is clear that EFR assessment and regulation should be
a basic requirement of Integrated Water Resource Management,
as, for example, outlined in the EU Water Framework Directive39

and now the SDG 6.5. That said, recognising the environment as
a legitimate user of water still has not led to the institutional
reforms needed to ensure environmentally sustainable basin
management in competition with other water users like
agriculture and industry40.

As yet, there is no evidence base to evaluate quantitatively SDG
target interactions22. The current lack of established tools and
thresholds to quantify the SDG water agenda41 forms a barrier to
translate the agreed principles into concrete action. For example,
the indicator for sustainable freshwater withdrawals (6.4.2)
was proposed to be directly linked to the EFR concept, but
ultimately not stipulated4. Through a transparent and consistent
approach that is suited for global applications and dynamically

couples processes relating EFRs to crop production, this study adds
quantitative evidence that the ambitious targets of SDG 2 (food
security) and 6 (environmental sustainability) could be met to a
large extent through improved water management alone. We point
out that the critical reinforcing interaction of water productivity
increases (6.4) with both sustainable withdrawals (also part of target
6.4) and agricultural productivity (2.3) benefit from simultaneous
implementation pathways (also closely related to targets 2.4 and 6.6,
detailed in Supplementary Fig. 3)21. In view of the multifaceted
SDG target interactions42, integrated strategies of improved farm
water management appear central. However, associated
opportunities, for instance rainwater harvesting, that are coupled
to vital socio-economic and environmental co-benefits especially
for smallholders32,43, have not gained required international
attention among high-level development policies44.

While the here adopted first-order quantifications of EFRs
require local refinements12,40,45, they are key to transboundary

Table 2 | Agricultural impacts through water conservation and management.

Scenario Total kcal
production

Irrigated kcal
production

Total area
affected

(kcal lossZ10%)

Irrigated area
affected

(kcal
lossZ10%)

Irrigation water
withdrawal

Irrigation water
consumption

(% change) (% change) (%) (%) (% change) (% change)

1. No irrigation � 14.7 �44.4 32.5 81.3 � 100.0 � 100.0
2. Respect EFR �4.6 (±0.8) � 13.9 (±2.5) 16.1 (±1.8) 52.2 (±3.9) �41.4 (±5.8) � 35.1 (±5.6)
3. Respect EFR with irrigation

upgrade
�0.1 (±1.0) 5.6 (±2.9) 12.0 (±2.4) 33.6 (±7.4) � 54.4 (±4.3) � 34.8 (±5.2)

4. Respect EFR with integrated
water management

9.9 (±1.0) 6.8 (±2.9) 8.2 (±2.0) 30.5 (±7.5) � 55.7 (±4.3) � 36.8 (±5.2)

Change in global kcal production and the proportion of affected area (kcal loss Z 10%) is shown for the total absence of irrigation (1.), irrigation constrained by environmental flow requirements (EFRs)
(2.), upgraded irrigation constrained by EFRs (3.) and integrated water management constrained by EFRs (4.)—all compared to the current situation (1980–2009). Scenario setups are detailed in Table 1.
Also listed are associated changes in irrigation water withdrawal (IWD) and consumption (IWC). Note that kcal production and area affected refer to cropland area, while IWD and IWC refer to the total
irrigated area (incl. cash crops, cotton and so on). Precipitation still partly sustains production on irrigated land in 1. 2–4. refer to the mean of three EFR methods (with s.d. in parentheses), Supplementary
Table 1 presents respective absolute values.
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>

Figure 2 | Governing environmental flows constrains food production. The maps illustrate the change in total (that is, rainfed and irrigated) kcal

production in the absence of irrigation (a), with irrigation constrained by EFRs (mean of three EFR methods) (b), with upgraded irrigation constrained by

EFRs (c) and with integrated water management constrained by EFRs (d), with respect to the current situation and aggregated to Food Production Units

(1980–2009). Cells without significant cropland fraction (o0.1%) are masked.
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trade-off analyses beyond the conceptual stage and highlight
current pressure on freshwater resources that is to be overcome
by more sustainable farming systems. In conclusion, our study
suggests that achieving the ambitious commitments of the SDG
agenda—while staying within the safe operating space of the
Earth system as delineated by the planetary boundaries—appears
feasible, but remains a grand implementation challenge.

Methods
Environmental flow requirement objectives. We estimate EFRs, irrigation
demand and withdrawals and crop calorie production with a biosphere model that
simulates these processes daily, as an intrinsic part of natural and managed

ecosystem dynamics. We use the concept of EFRs to allocate maximum allowed
monthly water withdrawals, expressed as a percentage of ‘pristine’ undisturbed
mean monthly river flow (determined globally for each 0.5� grid cell from a
simulation without considering human land use, water infrastructure and water
withdrawals; forced with climate data of the simulation period 1980–2009; see
below). We include three hydrological EFR estimation methods to depict an
uncertainty range, which reflects methodological differences and which can be
interpreted as the outcome of different environmental policies. Based on a
simulation considering current agricultural patterns, reservoir management and
multi-sectoral human water withdrawals (see ‘Model and simulation protocol’
below), this uncertainty range is also used to classify river segments according to
the current status of transgression of EFRs, that is, the sub-global freshwater use
boundary1 (Supplementary Fig. 1).
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Figure 4 | Model evaluation for the reference period 1980–2009. Validation against observational data is shown for mean annual discharge (uncertainty
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The EFR calculation methods aim at reaching a ‘fair’ ecological status, which is
a conservative assumption as this status can still be characterized by disturbed
biota, loss or reduction in spatial distribution of sensitive species and occurrence of
alien species17. The Tessmann method16 and the Variable Monthly Flow (VMF)
method15 account for seasonal EFR variation by distinguishing high-,
intermediate- and low-flow regimes based on different proportions of mean
monthly river flow (MF) and mean annual flow (AF) of long-term average ‘pristine’
conditions (Supplementary Table 3). To protect habitat maintenance and essential
flow variability, supporting the ‘natural flow paradigm’46, for each month different
flow volumes are allocated to EFRs based on the flow regime (Supplementary
Table 3). In this study we use an adapted version of Tessmann’s method
(hereinafter labelled Tessmannadapted). We replace the most restrictive parameter
that allocates 100% of river flow during low flow periods by more approved 80%, a
value proposed by Richter et al.47, which has been employed in other studies48.

The Smakhtin et al.17 method comprises two components, a minimum baseflow
(exceeded 90% of the time, Q90) and a percentage of AF depending on mean
seasonal river flow variability. For rivers with stable seasonal flow and thus high
Q90 values relative to AF (Q90430% AF), only the baseflow is allocated. In cases of
higher flow variability (Q90 can go down to zero for intermittent rivers), fractions
of AF are allocated additionally (h in Supplementary Table 3). The Smakhtin et al.
method provides by definition static EFR targets throughout the year, which
contradicts the ‘natural flow paradigm’ and has thus been criticized47,49. To
beneficially employ a quantile method, we use an adapted version of the
Smakhtin et al. approach (hereinafter labelled Smakhtinadapted) and allow for
seasonal variation. As proposed and tested in Pastor et al.15, we combine it with the
Q90/Q50 method and thereby replace the Q90 baseflow by Q50 during high flow
periods (Supplementary Table 3). In addition, we restrict EFR allocations to not
exceed 80% of monthly pristine river flow.

Due to the characteristics of a quantile method, the Smakhtinadapted method is
the least strict method applied in this study at river stretches with highly variable
flow regimes, and compares as the strictest method at stable flow regimes. The
Tessmannadapted method is generally stricter than the VMF method—hydrographs
in Fig. 1 compare all three methods. Overall, such conceptually simple ‘per cent of
flow’ approaches can be seen as first-order proxies for EFR estimates, based on the
hydrologic regime. While more comprehensive approaches including other
ecological indicators are required for developing local river planning targets, such
hydrologic methods are important for tradeoff analysis applicable at large scales
and are shown to provide already a high degree of protection for natural flow
variability when implemented37,47.

Model and simulation protocol. The LPJmL model globally represents
biogeochemical land surface processes, simulating daily water fluxes in direct
coupling with the establishment, growth and productivity of major natural and
agricultural plant types at 0.5� resolution27,50. Crop production is represented by
12 specified crop functional types, irrigated or rainfed. Spatially explicit data on
cropland extent is obtained from the MIRCA2000 land use data set51 and the
extent of areas equipped for irrigation from Siebert et al.52. A recently implemented
mechanistic irrigation module provides the framework for irrigation transitions
and the spatially explicit distribution of irrigation systems27. Land use patterns are
held constant at year 2005.

Carbon assimilated through photosynthesis is allocated to harvestable storage
organs (for example, cereal grain) and three other pools (roots, leafs and stems).
Sowing dates are calculated based on climate and crop type, but fixed during the
simulation period after 1980. In tropical regions that exhibit predominant
precipitation seasonality, sowing dates on irrigated land are forced to occur in the
dry season. All simulations run for the time period 1980–2009, and LPJmL is
forced with the Climate Research Unit’s (CRU) TS 3.1 monthly climatology for
temperature, cloudiness53 and with the Global Precipitation Climatology Centre’s
(GPCC) precipitation data54. Model simulations follow a 900-year (no land use)
and 120-year (land use) spin-up recycling the first 20 years of input climatology.

A simulation omitting human water use is performed based on the same land
use patterns, but under rainfed conditions only (‘1. No irrigation’, Table 1).
Otherwise gross irrigation requirements are mechanistically calculated based on
local crop-specific water demand and irrigation system application requirements27.
Thermoelectric water demand related to cooling water requirements for industrial
processes and electricity production, but also household and livestock production
requirements (HIL), are implicitly considered from an external source55. Total
withdrawal requirements (that is, irrigation and HIL) are constrained by local
availability of renewable freshwater, including a representation of dams and
reservoirs56 with daily EFR release regime (yet channel and habitat maintenance
floods not considered). This setup is referred to as ‘current situation’ (Table 1).

Precipitation and irrigation water is partitioned into plant transpiration, soil
evaporation, interception loss, surface and subsurface runoff and deep percolation, in
direct coupling to daily weather conditions and the surface, soil water and energy
balance27. Surface and subsurface runoff are accumulated along the river network and
subsequently available for downstream reuse. In this study there is no implicit
assumption about fossil groundwater abstraction and water diversions, which are
expected to amount to B20% of global irrigation water requirements57. While our
EFR estimates thus do not account for fossil groundwater contributions, such flows are
not directly relevant for the feedback of surface freshwater EFRs and food production.

On the basis of these validated streamflow estimates (see Fig. 4 and section
‘Model validation’ below), EFRs are calculated as described above. In the ‘2. Respect
EFR’ simulation (Table 1), total water withdrawal is temporally restricted as long as
it would tap EFRs, while industrial and domestic withdrawals are prioritized over
irrigation withdrawals. For each above-defined EFR method we perform an
individual model run, but results presented throughout the text refer to the mean of
the three simulations and the s.d. is assigned in Table 2 (individual results are
shown in Supplementary Table 1).

In view of supporting EFR implementations, we simulate additional scenarios of
improved farm water management. We present a moderate scenario of irrigation
system upgrades (‘3. Respect EFR paired with irrigation upgrade’, Table 1),
combined with EFR constraints from the 2. scenario. Surface irrigation systems are
assumed to be replaced by sprinkler systems—except paddy rice, which remains
with surface systems throughout all irrigation scenarios—and half of saved
consumptive ‘losses’ are assumed to be made available to expand irrigation into
neighbouring rainfed cropland, while the total cropland area remains constant14.
Since observed efficiency improvements do not necessarily result in lower water
withdrawals as farmers often expand irrigation or use higher value crops, instead of
losing water allocations58, we allocate half of saved consumptive water to irrigation
expansion if rainfed cropland is available in the same grid cell. Note that return
flows are not considered savable losses throughout this study as they might be
accessible for downstream users.

Finally, as an outlook towards more comprehensive approaches, we present a
scenario with a modest form of integrated farm water management, that is,
irrigation upgrades from Scenario 3 combined with rainwater management, yet
paired with EFR constraints (‘4. Respect EFR paired with integrated farm water
management’, Table 1). Rainwater management in this simulation comprises
collecting 25% of surface runoff for supplemental irrigation during dry spells and
alleviating 25% of soil evaporation (for example, mulching, conservation tillage).
Jägermeyr et al.14 provides additional modelling details and also a wider spectrum
of more ambitious farm water management interventions.

Model validation. The LPJmL model has been validated extensively in terms
of biogeochemical, ecological and hydrological processes for both natural and
agricultural systems59–63. It has the unique feature to simulate vegetation dynamics
and the carbon and water cycle in a single consistent framework and therefore
bridges categories between a global gridded crop model and a global hydrological
model64. LPJmL explicitly considers human interventions such as irrigation and
reservoir operation, and it solves the irrigation water balance in a mechanistic way,
for all major crop types and with considerable spatial and temporal detail—the
cornerstone for reasonable simulations of irrigation system transitions, water
savings potentials and interaction of irrigation water constraints with food
production27.

A validation of LPJmL-simulated key variables for the time period 1980–2009 is
highlighted in Fig. 4. Uncalibrated LPJmL mean annual discharge simulations are
compared with the latest observations from GRDC (Global Runoff Data Centre)
stations65 (Fig. 4a). We select discharge stations for which more than 100 months
of observations are available during the simulation period, and where the mismatch
between the reported and simulated contributing area is r15% (n¼ 203). In
general, observed discharge is well simulated across most stations (R2¼ 0.99), yet at
some stations we find non-marginal biases. Recent global hydrological model
intercomparison projects confirm that LPJmL is among the state-of-the-art models
and LPJmL’s predictive uncertainty is in line with competing models64,66,67. While
model comparisons reveal significant uncertainties associated with individual
parameterizations, large parts of predictive uncertainty in discharge simulation can
be attributed to the differences in precipitation data61,68. To address this issue here,
we ground the validation of discharge simulations in four different precipitation
data sets (GSWP3 (ref. 69), PGFv2.1 (ref. 70), WATCHþWDFEI71 and GPCC54,
the latter employed throughout this study). Figure 4a shows that gauge
observations mostly fall into the uncertainty range stemming from different inputs.

Hydrological EFR estimations applied globally in this study are validated
against 11 local case study estimates situated across 5 Major Habitat Types
(a classification of freshwater ecoregions based on Abell et al.72) and a wide range
of river flow and climate regimes across North America, South America, Europe,
Africa and Asia. Incorporated case studies provide 10–50 years of daily flow
observations and present a spectrum of different EFR estimation methods. These
include hydrological methods (similar to those employed in this study), hydraulic
methods (defining flow velocity and river cross-section for fish habitat
maintenance), habitat-simulation methods (based on the relationship between
salmon survival monitoring and flow quantity), and comprehensive holistic
methods (based on ecological monitoring and expert judgement)15. The
comparison of LPJmL-simulated EFR estimates with estimates based on local
observations reveals good agreements (Fig. 4b), the coefficient of determination
(R2) ranges between 0.85 and 0.95 for all three methods (VMF, Tessmannadapted,
Smakhtinadapted). Pastor et al.15 acknowledge that the VMF method generally
performs best for large-scale modelling applications. This validation captures a
sufficiently broad range of environmental settings to support the application of all
three methods at the global scale.

Average country-level crop yield simulations, calibrated to emulate the effect of
current management practices50, exhibit high agreement with observations
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obtained from FAOSTAT73 (Fig. 4c). The R2 across top 30 producer countries
varies between 0.85 and 0.97 for the four major staple crops (wheat, rice, maize
and soy). In absolute terms, simulated global kcal production of 7.8� 1015 kcal in
year 2006 is B18% short of reported values (9.5� 1015 kcal)74, mostly because
LPJmL currently does not account for multi-cropping systems. LPJmL simulations
show the capacity to explain a high fraction of observed inter-annual yield
variability among the important producer countries (Supplementary Fig. 4).
LPJmL’s sensitivity to crop water stress, fundamental for reproducing yield
variability, is verified in the following sensitivity analysis. In a simulation assuming
that water demand of irrigated and rainfed crops is to be always met throughout
the growing season—that is, water stress effects on crop growth are circumvented
— explained yield variability decreases strongly for the range of investigated sites
compared to the standard LPJmL simulation and turns statistically insignificant
(PZ0.1). This effect appears especially pronounced for wheat (Supplementary
Fig. 4a–c), somewhat less distinct for maize (Supplementary Fig. 4d–f) and
disappears for rice (Supplementary Fig. 4g–i). These different levels of sensitivity
can be explained by the fact that maize as a C4 crop is generally less sensitive to
drought stress using a more efficient enzyme on the pathway of CO2 fixation75,
while rice (mostly paddy rice) is assumed to be provided with sufficient soil
moisture among the countries presented in Supplementary Fig. 4. Overall,
Supplementary Fig. 4, but also the broader benchmarking evaluation in the context
of Global Gridded Crop Model Intercomparison (GGCMI)63,76 provide evidence
for LPJmL’s capability of representing most relevant mechanisms of climate-
induced signals in observed yields, in particular those linked to water stress. This is
key to explaining inter-annual yield variability and eventually feedbacks from water
management on food production levels.

A number of case studies are in line with our findings. For instance, a recent
study19 focussed on the Guadiana basin in Spain quantifies implications of
maintaining environmental flow requirements to meet ‘good ecological status’ of
rivers as required by the European Water Framework Directive (WFD)39. Results
indicate that irrigation water supplies could be affected by up to 40% (we simulate
41% at global level, Table 2), translating into 20% reduction in farmers’ income. In
the Murray-darling basin, maintaining EFRs might lead to a net irrigation revenue
decrease by 2.4% per year, if no compensating measures were implemented77. On
the basis of the (modified) VMF method, another recent study78 supports our
results in that efficiency improvements in farm water management might not
suffice to meet EFRs in hot spot regions (study is focussed on Lake Urmia, Iran),
and more drastic measures, such as revisions of water concessions, might be needed
in the future. Safeguarding EFRs can, however, also increase downstream water
availability and thus farmers’ income79. At global scale, yet with an overly simple
approach, it has been shown that maintaining EFRs might pose a greater challenge
for global irrigation water availability than climate change-related alterations of the
discharge regime80.

Data availability. The LPJmL code and data supporting the findings of this study
are available from the corresponding author on request.
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