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Abstract. A recollision-based largely classical statistical model of laser-
induced nonsequential multiple (N-fold) ionization of atoms is further explored.
Upon its return to the ionic core, the first-ionized electron interacts with the
otherN − 1 bound electrons either through a contact or a Coulomb interaction.
The returning electron may leave either immediately after this interaction or
join the other electrons to form a thermalized complex which leaves the ion
after the delay1t , which is the sum of a thermalization time and a possible
additional dwell time. Good agreement with the available triple and quadruple
ionization data in neon and argon is obtained with the contact scenario and delays
of 1t = 0.17T and 0.265T , respectively, withT the laser period.
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1. Introduction

In recent years, the production of ultrashort laser pulses with intensities higher than 1014 W cm−2

has become routine. Atoms exposed to such laser pulses exhibit a number of striking pheno-
mena. Among them, nonsequential multiple ionization (NSMI) is of fundamental interest due
to the highly correlated behaviour of the participating electrons. The first signature of this
phenomenon was found in the early 1980s [1], in the unexpectedly large double and multiple
ionization yield (see for example, [2]). This yield may exceed the prediction of single-active-
electron (SAE) models by many orders of magnitude. More recently, differential measurements
of the electron-momentum distributions have confirmed that NSMI is predominantly caused in
the recollision of a first-ionized electron with its parent ion (see, e.g., [3] and references therein).
This is the same mechanism that is responsible for high-order harmonic generation (HHG) and
high-order above-threshold ionization (HATI): an electron is freed by quasi-static tunnelling
ionization at a timet ′, and is driven back by the laser electric field to its parent ion, where it can
rescatter, recombine or dislodge other electrons at a later timet [4].

Recollision is at the very basis of the emerging field of attosecond science [5]. The
production of attosecond XUV photon pulses obviously is one of the most important con-
sequences of this scenario. In addition, any laser-induced excitation dynamics as a consequence
of this recollision scenario may be explored with attosecond time resolution. The fact that
the recolliding electron is well synchronized with respect to the laser field facilitates this
type of study. Indeed, the recolliding electron burst has been employed as a probe of the
molecular dynamics with subangstrom spatial and subfemtosecond temporal resolution [6].
Another example would be attosecond time-resolved NSMI dynamics within atoms, for which
the attosecond timescale arises naturally at the two stages of the process: Firstly, the tunnelling
of the first electron is most probable during a small fraction of the laser periodT (T ≈ 2.7 fs
for the commonly used titanium-sapphire laser) around the field maximum. Secondly, the
most important electron trajectories, which yield subsequent collision-induced NSMI processes,
further confine the time range of the dynamics.

For NSMI, however, the complex dynamics involved pose a great challenge to any
theoretical treatment. The inclusion of the time-dependent electron–electron interaction in
a fully quantum-mechanical treatment has not yet been entirely accomplished even for the
very simplest case of nonsequential double ionization (NSDI) of helium [7]. Indeed, only
very recently has the time-dependent Schrödinger equation been solved in this case within a
realistic three-dimensional (3D) framework and for the parameter range of interest [8]. In such
studies, however, the motion of the centre-of-mass of the system is still confined to 1D. Hence,
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any quantum-mechanical description of NSMI that includes the electron–electron interactions
between more than one pair of electrons is probably a hopeless task in the foreseeable future.

In order to tackle such a problem and to elucidate the NSMI physics, we have recently
proposed a statistical model based on the recollision scenario [9, 10]. We assumed that the first
electron, freed by tunnelling ionization, driven back by the laser electric field and recolliding
with its parent ion, shares its kinetic energy withN − 1 bound electrons. AllN electrons are
then freed after a time delay1t subsequent to the recollision timet . This time delay gives
an upper limit for a ‘thermalization time’, which is necessary for the kinetic energy to be
redistributed among theN electrons. Similar statistical models have been widely employed
in many areas of physics; including atomic, molecular, nuclear and particle physics [11]–[13].
By comparing the measured momentum distributions of multiply charged neon ions to those
predicted by our thermalization model, we were able to infer a thermalization time of less than
500 attoseconds [9] and thus, to our knowledge, to unveil the thermodynamics within a single
atom for the first time (to the extent one can speak of thermodynamics for the case of 3 or 4
electrons). We have further investigated the influence of the thermalization time on two types of
collisions, i.e. the ‘slow-down’ and ‘speed-up’ collisions [14], in the context of NSMI. We found
that these two types of collisions behave in distinct ways and lead to different distribution widths
and peak momenta [10]. The peaks and widths of the overall ion-momentum distributions, when
both types of collisions are present, result from the interplay between both contributions.

However, the above-mentioned statistical model on the basis of the recollision scenario has
raised questions that are still waiting for an answer. For instance, the form of the electron–ion
interaction, by which the returning electron transfers part of its kinetic energy to the other
N − 1 electrons, has been debated. In our previous papers [9, 10], we assumed a zero-range
contact potential to account for this interaction, and this led to reasonably good agreement
with the experimental data for neon. Such an interaction yields isotropic (s-wave) scattering
only. It appears justified when the energy of the returning electron is sufficiently low so that
its de Broglie wavelength is at least comparable with if not larger than the atomic diameter.
In this case, the electron will not be sensitive to details of the potential so that a zero-range
potential may be good enough. For higher energies, however, a Coulomb interaction between
the returning electron and some ensemble of electrons that are still bound to the ion appears
more natural. This would also allow for glancing collisions, where the returning electron
essentially continues on its path and imparts only some fraction of its energy to the bound
electrons. Only theN − 1 bound electrons would then thermalize and leave at a subsequent
time t +1t . It is thus of interest to explore the consequences of these two different physical
mechanisms in NSMI, and to find clear signatures of the very interaction that is instrumental for
the thermalization and subsequent ejection of the bound electrons.

Another open question concerns the distinctly different behaviour of NSMI for
different atomic targets. Recently, the final-momentum distributions of NSMI ions for
both neon and argon have been measured with cold target recoil ion momentum
spectroscopy (COLTRIMS) and found to be significantly different [15, 16]. The momentum
distribution of multiply charged neon ions exhibits a double-hump structure with a valley
at zero momentum, while the distribution of argon shows a broad peak centred at
zero momentum. This behaviour is similar to what was observed earlier for NSDI of
neon [17] and argon [18]. For NSDI, the difference was attributed to the contribution
of an additional channel in the case of argon—the recollision-induced excitation-
tunnelling mechanism, in which the second electron is excited to an intermediate excited state
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by the recollision and thereafter becomes free via tunnelling [19]. This was confirmed by
the observation that the contribution of this channel becomes quenched for very short laser
pulses [15].

On the other hand, it has been found that the peaks and widths of the momentum
distributions very strongly depend on the thermalization time within the thermalization
model [9]. With sufficiently large thermalization times, the computed ion-momentum
distributions start to concentrate near zero momentum and resemble those obtained with
excitation-tunnelling. Thus, a large thermalization time might provide an alternative way of
looking at momentum distributions localized in this region, at least in the case that more than
two electrons are involved. In this context, one should keep in mind that in the thermalization
model the specific dynamics of the system are stripped from the model, after recollision has
taken place. They are only manifest in the specific value of the thermalization time, but the
same value may originate from different dynamics.

In this contribution, we address the above issues. We investigate the effect of different
thermalization scenarios on the ion-momentum distributions. Specifically, we focus on the
interaction by which the first (recolliding) electron interacts with its parent ion. We will consider
two extreme limits, namely, the infinite-range Coulomb potential and a zero-range contact
potential. For the Coulomb potential, we assume that theN − 1 up to the recollision still
bound electrons thermalize. Physically, this means that the returning electron predominantly
experiences a soft collision upon return, and continues along its path without further interaction
with the ion core. Thus, only theN − 1 bound electrons thermalize. For the contact potential,
we consider both situations, i.e. either allN electrons thermalize and leave at the same later time
t +1t , or the first electron leaves immediately and only theN − 1 bound electrons thermalize
and are released after a time delay. Even though the former scenario would be intuitively
more appropriate for the case of a collision mediated by a short-range potential, the latter
allows for a more direct comparison with the soft-collision mechanism. Recent measurements
of the electron–electron momentum correlation in NSDI(N = 2) of helium exhibited features
that were attributed to either ‘binary’ or ‘recoil’ collisions [20], which, respectively, closely
correspond to our Coulomb or contact-potential-mediated scenarios for the caseN = 2.

The paper is organized as follows. In the subsequent section, we will discuss our
thermalization model, and provide explicit expressions for the ion-momentum distribution
under the different types of electron–ion interaction. We will mainly focus on the Coulomb-
interaction (glancing or soft collision) case, which is the new aspect brought into this paper, but
we will also briefly recall the contact-interaction (hard-collision) model employed in [9, 10].
Subsequently, in section3, we will present ion-momentum distributions computed for both
scenarios and compare them with the data for Ne and Ar. For Ar, we consider only the hard-
collision mechanism. The choice of a thermalization time larger than for neon yields very good
agreement with the data. Finally, in section4, our conclusions are stated. Atomic units are used
throughout unless otherwise stated.

2. Thermalization model

We will consider models where theN-electron momentum distribution is given by

F(p1, p2, . . . , pN) =

∫
dt ′R(t ′)δ

(
E(N)

0 + E(N)

kin − Eret(t)
)

|Vp1k|
2. (1)
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This distribution describes a recollision scenario where the first electron (electron #1) tunnels
out at the timet ′ at the rateR(t ′) for which we take the standard quasistatic tunnelling rate [21].
Thereafter, an entirely classical description is adopted. Depending on the valuet ′ of this
tunnelling time, the electron may be driven back to its parent ion by the laser electric field
at the later timet , which is a functiont (t ′) of the former and can be easily calculated from
the simple-man model [4]. The electron returns to its parent ion with the velocityk + A(t)
and the kinetic energyEret(t) = (1/2)[k + A(t)]2, wherek ≡ ke denotes its drift momentum
ande is a unit vector in the direction of the linearly polarized laser field. In the recollision,
the electron changes its velocity fromk + A(t) to p1 + A(t) (equivalently, its drift momentum
changes fromk to p1, which is the momentum recorded at the detector outside the field). The
details of the distribution (1) now depend on the form factorVp1k, which is the Fourier transform
of the electron–ion interaction potential, and on the relation between the available energy
Eret(t) − E(N)

0 and the kinetic energyE(N)

kin of the N final electrons. Here,E(N)

0 =
∑N

n=2 I (n)
p

denotes the total ionization potential of the (up to the timet still bound) N − 1 electrons with
I (n)
p denoting the ionization potential of thenth electron.

We will investigate two models: in the first, we take

Vp1k = constant, (2)

E(N)

kin =
1

2

N∑
n=1

[p + A(t +1t)]2. (3)

According to this ansatz, the energy that is left after the up to the timet bound electrons
(n = 2, . . . , N) have been promoted into the continuum is distributed over all electrons without
any dynamical bias, just according to the accessible phase space volume. In other words, the
ensemble of electrons (n = 1, 2, . . . , N) is thermalized. It is assumed that this thermalization
process takes the time1t to be completed. This ‘thermalization time’ parametrizes the intricate
dynamics by which the returning electron shares its energy with the bound electrons. It appears
natural to assume that this energy sharing will require some time. In view of the uncertainty
relation, this will take place on a subfemtosecond timescale. This situation will certainly
be realized for comparatively low energy of the returning electron, such that its de Broglie
wavelength (after freeing the bound electrons) is comparable with or larger than the atomic
diameter. However, depending on the actual dynamics, it may also yield a fair description for
higher energies if the dynamics are such thats-wave scattering is dominant. Intuitively, this
model describes a ‘hard’ collision since the first electron backscatters and forwardscatters with
the same probability. In this scenario, the first electron in the recollision loses all memory of
its distinguished role in the dynamics and is henceforth treated on the same footing as the other
electrons. Below, we will refer to this model as the ‘contact scenario’. This model is an extension
to NSMI of the classical model introduced for NSDI [22, 23] for 1t = 0.

We specify the second model by

Vp1k =
1

(p1 − k)2
=

1

p2
1⊥

+ (p1‖ − k)2
, (4)

E(N)

kin =
1

2
[p1 + A(t)]2 +

1

2

N∑
n=2

[pn + A(t +1t)]2. (5)
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Figure 1. Feynman diagrams for the two models discussed in the text.
(a) Thermalization of all participating electrons such that the returning electron
interacts with the bound electrons in the presence of the ion via a contact
interaction. (b) The returning electron gives some fraction of its energy to the
bound electrons in a glancing collision mediated by the Coulomb interaction.
The bound electrons subsequently thermalize in the presence of the ion. The
big blob represents the dynamical process that causes thermalization, which is
assumed to occur within the time interval1t . Double lines represent Volkov
propagators and wave functions.

Here, the returning electron undergoes a Coulomb interaction with the remaining electrons and
the ion, which is reflected in the Coulomb form factor (4). The returning electron immediately
leaves at the recollision timet , in contrast to the remaining electrons, which subsequently share
the energyEret(t) − E(N)

0 − (1/2)[p1 + A(t)]2 and thermalize among themselves to become free
at the later timet +1t . Owing to the long range of the Coulomb interaction, in this model
electrons also contribute to NSMI that return at nonzero impact parameters undergoing glancing
collisions. One might expect this model to be more realistic for high energies of the returning
electron, corresponding to high laser intensities and comparatively low ionization potentials.
We will refer to it below as the ‘Coulomb scenario’.
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The first model characterized by (2) and (3) has been extensively discussed and compared
with the available data in [9, 10]. Figure1 presents the Feynman diagrams that underlie the two
models. Let us discuss which one of the two may be closer to reality. The wave packet of an
electron freed by tunnelling ionization has the transverse momentum spread (1/e width of the
distribution ofp2

⊥
) 1p2

⊥
= ω/γ , whereω = 2π/T denotes the laser frequency,

γ =

√
I (1)
p /(2Up)

the Keldysh parameter,I (1)
p the first ionization potential of the atom, andUp the ponderomotive

energy [24]–[26]. The electron returns to the ion approximately after the time 3T/4. Hence, the
transverse width of the returning wave packet is

1ρ ≡ 1p⊥(3T/4) =
3π

2
√

ωγ
� 1. (6)

For all NSMI experiments in the optical or infrared regime, this is much larger than the ionic
radius (≈1 in atomic units), becauseω � 1 in atomic units while the (dimensionless) Keldysh
parameter is of the order of unity. This seems strongly to underline the significance of glancing
collisions since most of the returning electrons, in terms of their classical impact parameter,
miss the ion and can only interact with it via the long-range Coulomb interaction. On the other
hand, the de Broglie wavelength of the returning electron is approximately

λdB =
2πγ√
3I (1)

p

> 1, (7)

where we used the fact that the kinetic energy of the returning electron is of the order of
3Up. This is smaller than the width1ρ, but still larger than unity except when the Keldysh
parameter has an unusually small value. This indicates that the interaction with the ion of
electrons that return with small impact parameter should be reasonably well described by a
contact interaction, while those that undergo a glancing collision may hardly interact at all. The
two results combined seem to suggest that only those electrons make a significant contribution to
NSMI that return with small impact parameter, and for those a contact interaction should afford a
fair description. However, the long range of Coulomb interaction restricts the significance of the
smallness of the de Broglie wavelength. Hence, one cannot assess the situation with certainty,
and we will proceed to investigate the consequences of both scenarios.

Equation (1) specifies a fully (3N-fold) differential momentum distribution. For com-
parison with experimental data, nonobserved momentum components have to be integrated over.
Here, we will focus on the longitudinal (parallel to the linearly polarized laser field) component
P‖ of the ion momentumP = −

∑N
n=1 pn with the two transverse componentsP⊥ integrated

over. It is distributed according to

F(P‖) =

∫ N∏
i =2

d3pi

∫
d2p1⊥dp1‖δ

(
P‖ +

N∑
i =1

pi ‖

)
F(p1, p2, . . . , pn). (8)

For the contact model, the result is [9]

F(P‖) =
(2π)(3N/2)−1/2

√
N0((3N − 1)/2)

∫
dt ′R(t ′) (1E)(3N/2)−3/2

+ , (9)
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where 1E ≡ Eret(t) − E(N)

0 − 1/(2N)[ P‖ − N A(t +1t)]2 and the functionx+ is defined by
x+ = θ(x)x with θ(x) the unit-step function. For the Coulomb model, the corresponding ion-
momentum distribution is

F(P‖) =
(2π)(3/2)N−1

4
√

N − 10((3/2)N − 1)

∫
dt ′R(t ′)

∫
dp1‖(1E)(3/2)N−2

+

(
1E +

1

2
(p1‖ − k)2

)−2

× 2F1

(
3

2
N − 2, 2;

3

2
N − 1;

1E

1E + (1/2)(p1‖ − k)2

)
, (10)

where

1E = Eret(t) − E(N)

0 −
1

2
[ p1‖ + A(t)]2

−
1

2
(N − 1)

(
A(t +1t) −

1

N − 1
(P‖ + p1‖)

)2

(11)

and2F1(a, b; c; d) denotes the hypergeometric function. In comparison with (9), the integration
over p1‖ cannot be carried out analytically and is left for numerical computation. The derivation
of (10) has been relegated to the appendix.

3. Ion-momentum distributions

Below, we will compare the model ofN-electron thermalization mediated by an effective
many-body contact potential (cf equations (2) and (3)) and the model of(N − 1)-electron
thermalization initiated by the Coulomb interaction (equations (4) and (5)). We expect the
following general features to emerge in this comparison. Since the first electron tunnels out
right after a maximum of the field, it returns with high velocity, but its drift momentumk is
low. The Coulomb potential (4) favours as small a momentum and energy transfer as is possible
in order that the remaining bound electrons can still be ionized. Hence, the returning electron
will continue its path with a velocity that has changed only little and, in consequence, its drift
momentum will still be relatively low. Therefore, the peak of the ion-momentum distribution
is expected around(2N − 1)

√
UP for the Coulomb model in place of 2N

√
UP for the contact

interaction, whereUP denotes the ponderomotive potential of the laser field. The energy transfer
to the bound electrons is lower than in the case of the contact potential and, therefore, the widths
of the two humps of the ion-momentum distribution are narrower. This discussion pertains to
the case of small delay1t . For increasing1t , the available energyEret(t) − E(N)

0 remains the
same, but theN − 1 initially bound electrons become free at a later time, when the vector
potential is smaller. Hence, their drift momentapi ‖ will be smaller and, in consequence, the
ion’s longitudinal momentumP‖ will be smaller, too. Therefore, for both models, the peak
positions of the two humps will move towards zero momentum with increasing1t . Also, the
vector potential at the release timet +1t spreads over a larger range when1t increases, so one
expects the widths of the humps to increase.

Indeed, we find the expected features confirmed in figure2, where we present the calculated
longitudinal ion-momentum distributions for quadruple and triple NSMI of Ne, under the two
different recollision scenarios considered above, which lead, respectively, to the distributions
(9) and (10). The laser intensities are taken as 2 and 1.5 PW cm−2 for quadruple and triple
ionization, respectively, to match the experimental data of Ne in [15, 16]. For both scenarios,
the familiar double-hump structure appears in the ion-momentum distributions. The positions
of the centre and the widths of the humps exhibit a strong dependence on the time delay1t .
With 1t increasing, the centre positions move towards zero momentum and the widths increase
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Figure 2. Distribution of the longitudinal ion momentum for nonsequential
quadruple ionization of Ne at 2.0 PW cm−2 (left column) and for nonsequential
triple ionization of Ne at 1.5 PW cm−2 (right column), calculated from (9) for
the contact scenario (upper panels) and (10) for the Coulomb scenario (lower
panels), respectively. The various delay times1t employed in the calculations
are indicated in the upper panels.

until the two humps begin to merge. We notice that as expected the humps resulting from the
Coulomb scenario are generally somewhat narrower than those from the contact scenario. In
particular, the former produces fewer ions with near zero momentum. We also notice that the
differences between the two scenarios decrease with increasingN.

Formally, the differences can be traced to the presence of the additional integration over
p1‖ in the Coulomb-model ion-momentum distribution (10). Both the hypergeometric function
and its prefactor favour values ofp1‖ close to the drift momentumk. This corresponds to the
case that the returning electron in the recollision transfers minimal momentum and energy to
the bound electrons, continues on its path, and leaves the interaction region with comparatively
low drift momentum, which leads, accordingly, to small peak momenta in the ion-momentum
distribution.

Next, in figures3 and4, we compare the results of the two versions of the thermalization
model with the experimental data for quadruple and triple ionization of Ne [15], respectively.
The curves in the upper panels are calculated from (9) under the contact scenario, while in the
lower panels the curves are calculated from (10) under the Coulomb scenario. The red and the
green curves correspond to the thermalization times1t = 0 and 0.17T , respectively. The black
curves represent the data of figure2 of [15]. The choice of the value1t = 0.17T is motivated by
the fact that this value has been shown to yield, for the contact scenario, the best agreement with
the data [9]. In contrast to the contact scenario, for the Coulomb scenario there is no optimal
value of the thermalization time that yields equally good agreement with the data for both triple
and quadruple ionization. For example, for quadruple ionization (figure3), the choice1t = 0
yields very poor agreement with the data while1t = 0.17T gives acceptable results for the
peak position and the width of the humps, but too low counts near zero momentum. In contrast,
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Figure 3. Comparison of the ion-momentum distributions of the two model
calculations with the experimental data [15] for quadruple ionization of Ne at
2.0 PW cm−2. The curves in the upper panel are calculated from (9) for the
contact scenario, while in the lower panel they are calculated from (10) for
the Coulomb scenario. The red and green curves are for1t = 0 and 0.17T ,
respectively. The black curve is from the data of figure2 of [15].

for triple ionization as shown in figure4, the best fit of the peak position is afforded by1t = 0,
but as for quadruple ionization the width is narrower than the data, and the distribution around
zero momentum vanishes. All in all, if we look for the model that yields the best agreement with
the data for one value of the thermalization time and for both triple and quadruple ionizations,
we will have to opt for the contact scenario.

Concerning the distribution near zero momentum, one can argue that the data may include a
contribution from a partially sequential ionization channel or an excitation-tunnelling channel,
both of which give rise to counts at zero momentum and tend to increase the width of the
ion-momentum distribution. As we will show below in the calculations for Ar, the excitation-
tunnelling mechanism can be well accounted for within the thermalization model. However, the
sequential ionization channel is beyond the scope of the model. Nevertheless, their contributions
should be negligible for NSMI of Ne at the laser intensities of interest.

In the contact scenario, allN electrons thermalize, while in the Coulomb scenario the
returning electron after transferring some energy to the bound electrons continues on its path,
and only the latterN − 1 electrons thermalize. In order to better understand the differences
between these two models, we will consider a third scenario, which is a mix of the first two:
there is one common contact interaction between allN electrons, but the returning electron
remembers its identity and leaves immediately at the recollision timet , not participating in the
thermalization process. Formally, this means taking the energy conservation condition (5) and
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Figure 4. Same as figure3 for triple ionization of Ne at 1.5 PW cm−2.

a constant form factor (2) in equation (1). We will refer to this as the contactN−1 scenario. The
longitudinal-ion-momentum distribution corresponding to (10) and (9) is like (9) but with the
parameter1E from equation (11). Comparing this with the contactN scenario will allow us to
assess the role of the Coulomb potential in NSMI in the context of our model description.

In figure 5, we compare the results of these three models for triple NSMI of neon at
1.5 PW cm−2. The contactN and the contactN−1 models agree with respect to the centre positions
of the double hump, but the latter model causes a significantly narrower width and fewer
counts around zero momentum. Comparing the contactN−1 and the Coulomb scenario reveals
the consequences of the Coulomb form factor, all other things being equal. We observe that the
Coulomb form factor causes an additional shift of the centre of the humps to lower momentum
and an additional decrease of the width. Comparison with the data shown in figure4 favours the
contactN scenario, with the Coulomb scenario faring worst.

Next, we apply our thermalization model to the case of NSMI of argon. As we concluded
above for NSMI of neon, the contact model with allN electrons thermalizing gives the best
description. Thus, we only perform the calculations with this scenario according to (9) and
compare with the Ar data. Figure6 exhibits the calculated results. The laser intensities of 1.2
and 1.5 PW cm−2 are chosen to match the experimental conditions of figure5 of [16]. We find
excellent agreement with the data, if the larger delay time1t = 0.265T is taken. This suggests
that in the case of argon the redistribution of the excess energy between the recolliding electron
and the bound electrons requires more time than for neon. The optimal delay of1t = 0.265T
is very close to a quarter of the field period. At this time, the escape of an excited complex of
electrons, be it by tunnelling or over the barrier, is easiest. Hence, one may also conclude that
thermalization is fast but the electrons do not leave before the field is near its maximum. We note
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Figure 5. Distribution of the longitudinal ion momentum for nonsequential triple
ionization of Ne at 1.5 PW cm−2 calculated from three different thermalization
scenarios, i.e. thermalization with allN electrons (black) andN − 1 electrons
(red) under the contact-type interaction, and thermalization of theN − 1 bound
electrons under the Coulomb-type interaction (green). The same time delay
1t = 0.17T is chosen for all calculations.

that, while the contact model does not explicitly contain any specific dynamics, the physical
origin of the thermalization time1t and its value for a specific situation are rooted in the
dynamics of the problem. Thesamevalue of1t may reflectdifferentdynamical mechanisms,
such as the actual formation and the subsequent decay of an excited complex [27] or, on the other
hand, the time interval during which an excited complex after it has been formed is waiting
for optimal conditions for the escape [28]. For the higher laser intensity of 1.5 PW cm−2, the
calculated momentum distribution for Ar becomes a bit wider than that of the data. This may
arise from the fact that the sequential-ionization channels, whose contribution is not included in
the model, contribute more significantly with increasing laser intensity.

We could further test the model and possibly infer a tighter limit on the thermalization
time. All that is necessary for that purpose is to restrict the time range1trec of the recollision
times. The easiest way is simply to decrease the laser intensity. Therefore, we investigate the
dependence of the peak position and the width of the ion-momentum distribution as a function
of the laser intensity for various time delays1t . For the contact model, the results are shown
in figure 7. We find that the peak position (in units of the square root of the ponderomotive
energy) hardly changes for different laser intensities if the time delay1t is fixed. This can
be well understood from the recollision kinematics. The peak position of the ion-momentum
distribution is, to a large extent, determined by those collisions through which the bound
electrons get free after some time delay and acquire the maximal drift energy from the laser
field. Those collision events scale with the square root of the laser intensity for fixed delay. With
increasing delay, as soon as the electric field at the timetret +1t becomes significantly different
from zero, the drift momentum that the freed electrons acquire from the field decreases and so
does the ion momentum. The humps of the ion-momentum distributions become broader with
increasing intensity and increasing time delay. The first is due to the increasing volume of the
classically allowed phase space, the second is due to the fact that the range of values of the
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Figure 6. Distribution of the longitudinal ion momentum for nonsequential
quadruple ionization of Ar at 1.2 PW cm−2 (upper panel) and 1.5 PW cm−2

(lower panel). The black curves are from the data of figure5 of [16]. The red
and green curves are calculated from the contact scenario (9), for 1t = 0 and
1t = 0.265T , respectively.

vector potentialA(t +1t) (whereEret(t) > E(N)

0 ) increases. In other words, the ion-momentum
distribution becomes narrower for decreasing intensity. This might allow higher precision for
the determination of the thermalization time through a comparison of our theoretical results
with experimental low-intensity data. However, the intensity must remain high enough for our
classical model to remain applicable.

4. Conclusions

We have investigated the momentum distribution of the multiply charged ions generated by
nonsequentialN-fold ionization of atoms within the context of a thermalization model, under
different scenarios for the recollision dynamics and the subsequent thermalization process. We
have compared two possible interaction potentials by which the recolliding electron shares its
energy with the otherN − 1 bound electrons. The first is a contact interaction between allN
electrons, which corresponds to a completely statistical distribution of the available energy,
governed only by phase space. In the second, the recolliding electron Coulomb interacts with
the bound electrons, which thereafter statistically share the imparted energy among each other.
Both interactions should be interpreted aseffectiveinteractions [29]. The contact interaction
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Figure 7. The peak position and the width (FWHM) of the humps of the ion-
momentum distribution as functions of the laser intensity for various time delays
1t as shown in the upper panel. The calculation is for the contact model and
for quadruple ionization of Ne. Note that the results for1t = 0 and 0.1T are
practically identical.

is definitely realized in the low-energy limit when the wavelength of the returning electron
after freeing the bound electrons exceeds the ionic diameter. The Coulomb interaction favours
glancing collisions where the returning electron changes its momentum as little as possible. In
both cases, we assumed that the energy redistribution requires a time1t , the ‘thermalization
time’. The returning electron may leave immediately after the recollision or may participate in
the thermalization process and leave after the delay1t .

The two interaction scenarios yield qualitatively similar ion-momentum distributions. As
long as the delay1t is not too large, the distributions exhibit two pronounced and well separated
humps. With increasing delay, the peak positions of the humps move towards zero momentum
and with the delay approaching a quarter period of the laser field they merge. For the Coulomb
scenario, the ion momenta corresponding to the peak positions and the widths of the humps are
somewhat smaller than for the contact scenario. Also for the Coulomb scenario, there are fewer
ions with momenta near zero. It does not make much difference whether or not the returning
electron participates in the thermalization.

The calculated ion-momentum distributions have been compared with the available data of
triple and quadruple nonsequential ionization of neon. We were able to obtain reasonably good
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fits for both models. However, for the Coulomb model we had to assume different values of the
thermalization time for triple and for quadruple ionization. Only the contact model provided
uniformly good agreement with all available neon data with just one universal value, namely
1t = 0.17T . On these grounds, we favour the contact model and employed it for argon as
well. Indeed, we obtained excellent agreement with the quadruple-ionization data in argon for
1t = 0.265T .

In our statistical thermalization model, all of the dynamics of the physical system between
the time of recollision and the time when the electrons leave the ion are hidden in two items: the
choice of the effective interaction and the value of the delay1t , which is the sum of the
thermalization time and a possible additional ‘dwell time’. The returning electron may form
an excited complex withN − 1 bound electrons [27]. Its subsequent decay may be affected
by the field, as it is trivially the case if one considers the fact that the escape threshold is
lowered by an applied field [28]. Both of these effects are subsumed by the concept of the
delay1t and parametrized by the value of this delay. Hence, the same value of1t may reflect
very different dynamics which, however, within our model will be indistiguishable. For NSDI
of neon and argon, the cross-sections for impact ionization and for excitation-tunnelling have
been estimated [19]. If the latter is dominant, as it is for NSDI of argon, we expect that the
total delay1t will be close toT/4, given that the first electron returns near a zero crossing of
the field. For NSMI these cross-sections are not known. For NS3I and NS4I of argon, we found
1T = 0.265T ≈ T/4. We may conclude from this result that for NS3I and NS4I of argon, like
for NSDI, the excitation-tunnelling cross-section dominates the one for impact ionization. In
contrast, if the prevalent mechanism is electron-impact ionization, as appears to be the case for
neon, one expects the electrons to leave within a shorter time interval. This is compatible with
the estimated upper bound of1t = 0.17T for the thermalization time in neon.

We also investigated the dependence of the peak positions and widths of the ion-momentum
distribution as a function of the laser intensity for various time delays. We found, for the contact
model, that the peak width is very sensitive to both the laser intensity and the time delay,
especially for low intensity and not too small delay. Because of this rapid dependence, this
parameter region will allow for a particularly meaningful comparison between the model and
reality.

More detailed COLTRIMS data, such as electron–electron momentum correlations, will
hopefully become available. Such data may lend further support to one or other version of the
thermalization model and test its limits.
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Appendix. Evaluation of the Coulomb-scenario ion-momentum distribution

The distribution of the ion momentumP‖ parallel to the laser field is obtained by integrating
over all electron momenta subject to the condition thatP‖ = −

∑N
i =1 pi ‖. For the second model
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specified by (4) and (5), this is

F(P‖) =

∫ N∏
i =2

d3pi

∫
d2p1⊥dp1‖

∫
dt ′R(t ′)δ

(
P‖ +

N∑
i =1

pi ‖

)
1

[p2
1⊥

+ (p1‖ − k)2]2

×δ
(

E(N)

0 − Eret(t) + 1
2[p1 + A(t)]2 + 1

2

∑N
i =2[pi + A(t +1t)]2

)
. (A.1)

The multiple integrals in the above equation may be evaluated largely analytically. To this end,
we replace the two delta functions by their Fourier representations and exponentialize the form
factor via

(A− iε)−β
=

eiπβ/2

0(β)

∫
∞

0
dxxβ−1e−ix A, (β 6= 0, −1, −2, . . .). (A.2)

This yields

F(P‖) =

∫ N∏
i =2

d3pi

∫
d2p1⊥dp1‖

∫
dt ′R(t ′)

∫
∞

−∞

dx

2π
e−ix(P‖+

∑
pi ‖)

×

∫
∞

0

(
−

ydy

4

)
e−iy/2(p2

1⊥
+(p1‖−k)2)

∫
∞

−∞

dλ

2π
e−iλη(pi ,t,1t), (A.3)

with

η (pi , t, 1t) = E(N)

0 − Eret(t) + 1
2p2

1⊥
+ 1

2[ p1‖ + A(t)]2 + 1
2

∑N
i =2[p

2
i ⊥ + (pi ‖ + A(t +1t))2].

(A.4)

Next, we do the integrals overpi (i = 2, . . . , N) andp1⊥ by Gaussian quadrature, with the result

F(P‖) =

∫
dp1‖

∫
dt ′R(t ′)

∫
∞

−∞

dxdλ

(2π)2
e−ix(P‖+p1‖)

∫
∞

0

(
−

ydy

4

)(
2π

iλ + ε

)(3/2)(N−1)

×
2π

i(λ + y) + ε
e−i(y/2)(p1‖−k)2

exp
[
−iλζ1

(
E(N)

0 , p1‖, t
)]

exp[iζ2 (x, N, λ, t +1t)] ,

(A.5)

where

ζ1

(
E(N)

0 , p1‖, t
)

= E(N)

0 − Eret(t) + 1
2[ p1‖ + A(t)]2, (A.6)

and

ζ2 (x, N, λ, t +1t) = (N − 1)

[
x2

2λ
+ x A(t +1t)

]
. (A.7)

The integration overx is another Gaussian quadrature and yields

F(P‖) = −

∫
dp1‖

∫
dt ′R(t ′)

∫
∞

−∞

dλ

∫
∞

0

ydy

4
√

N − 1

(
2π

iλ + ε

)(3/2)N−2

×
1

i(λ + y) + ε
e−i(y/2)(p1‖−k)2

eiλ1E, (A.8)

where

1E = Eret(t) − E(N)

0 −
1
2[ p1‖ + A(t)]2

−
1
2(N − 1)

(
A(t +1t) −

1
N−1(P‖ + p1‖)

)2
. (A.9)
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The integral overλ yields a confluent hypergeometric function via the formula∫
∞

−∞

dλ

(iλ + ε)n(i(λ + y) + ε)
eiλA

= 2π
An

+

0(n + 1)
e−i Ay

1F1(n, n + 1; iy A), (A.10)

where xn
+ = xnθ(x) with θ(x) the unit step function. This leads to the ion-momentum

distribution

F(P‖) = (2π)(3/2)N−1

∫
dt ′R(t ′)

∫
dp1‖

∫
ydy

4
√

N − 1
e−i(y/2)(p1‖−k)2 (1E)

( 3
2)N−2

+

0(3
2 N − 1)

× 1F1

(
3
2 N − 2, 3

2 N − 1; iy1E
)
. (A.11)

The remaining integration overy can be carried out with the help of the integral∫
∞

0
dy e−syyb−1

1F1(a, c; ky) = 0(b)s−b
2F1(a, b; c; k/s), (A.12)

and yields expression (10), which is given in the main body of the paper.
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