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Discovery of ZrCoBi based half Heuslers with high
thermoelectric conversion efficiency
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Thermoelectric materials are capable of converting waste heat into electricity. The dimen-

sionless figure-of-merit (ZT), as the critical measure for the material’s thermoelectric per-

formance, plays a decisive role in the energy conversion efficiency. Half-Heusler materials, as

one of the most promising candidates for thermoelectric power generation, have relatively

low ZTs compared to other material systems. Here we report the discovery of p-type ZrCoBi-

based half-Heuslers with a record-high ZT of ∼1.42 at 973 K and a high thermoelectric

conversion efficiency of ∼9% at the temperature difference of ∼500 K. Such an outstanding

thermoelectric performance originates from its unique band structure offering a high band

degeneracy (Nv) of 10 in conjunction with a low thermal conductivity benefiting from the low

mean sound velocity (vm ∼2800m s−1). Our work demonstrates that ZrCoBi-based half-

Heuslers are promising candidates for high-temperature thermoelectric power generation.
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Thermoelectric generators enable a direct energy conversion
from heat to electricity1,2. This solid-state energy conver-
sion technique has advantages of reliability, simplicity,

compactness, and environmentally friendliness. However, the
application of thermoelectric modules is currently limited to
niche market due to the relatively low efficiency comparing to the
traditional heat engines. The conversion efficiency of the ther-
moelectric modules is jointly determined by the Carnot efficiency,
as well as the material’s figure-of-merit (ZT):

η ¼ Thot � Tcold
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where Thot is the hot-side temperature, Tcold is the cold-side
temperature, and Tm is the average temperature. ZT is the ther-
moelectric figure-of-merit, which is the critical measure for the
materials’ performance that defined as:

ZT ¼ S2σ
κL þ κe

T ð2Þ

where S, σ, κL, κe, and T are the Seebeck coefficient, electrical
conductivity, lattice thermal conductivity, electronic thermal
conductivity, and absolute temperature, respectively3–6. At a
given temperature difference (Thot–Tcold), the improvements in
thermoelectric conversion efficiency entirely rely upon the ZT
enhancement. Therefore, improving the performance of existing
materials and identifying new compounds with intrinsically high
ZT are two basic concepts in the research of thermoelectric
materials.

However, simultaneous optimization of the thermoelectric
transport parameters remains to be a grand challenge owing to
their intricate inter-dependences7. The S, σ, and κe are closely
correlated with each other via the carrier concentration, while κL
is relatively independent. Therefore, improving the power factor
(S2σ) and reducing the lattice thermal conductivity are two main
strategies for enhancing the thermoelectric performance. On the
one hand, the power factors can be optimized by tuning the
carrier concentration, and further enhancement can be achieved
by band engineering8–10, modulation doping11, introducing the
resonant level12, and tuning the carrier scattering mechanism13–

15. Among these approaches, band engineering via increasing the
degenerate band valleys (Nv), either by alloying or exploiting the
temperature dependence of the electronic bands, has been
demonstrated to be particularly effective in enhancing the power
factor. In this case, a high electrical conductivity can be obtained
with the presence of multiple conducting channels enabled by the
high number of band valleys. In the meanwhile, the Seebeck
coefficient can still be maintained since the high electrical con-
ductivity do not involve any increase in the carrier concentration.

On the other hand, reduction of the lattice thermal con-
ductivity has been proven quite effective in enhancing the ZT.
According to the kinetic theory, κL¼ 1

3Cvvphl, where Cv is the heat
capacity, vph is the phonon velocity, and l is the phonon mean
free path16. Extensive results have demonstrated that shortening
the phonon mean-free-path via phonon scattering by micro-
structural defects17–20 and nanostructures21–23 can noticeably
reduce the lattice thermal conductivity. In addition, phonon
velocity as another important parameter for lattice thermal con-
ductivity can also be tailored for phonon engineering. Usually, the
phonon velocity is simply approximated by the low frequency
sound velocity (v / ffiffiffiffiffiffiffiffi

B=δ
p

), where B is the elastic modulus and δ
is the density of the compound24. Therefore, sound velocity,
which is closely associated with the crystal structure, chemical
composition, and bonding, can play a decisive role in the lattice

thermal conductivity. More specifically, the materials with a low
sound velocity usually tend to have a low lattice thermal con-
ductivity25. Therefore, a novel compound that simultaneously
possesses a high band degeneracy (i.e., high power factor) in
combination with an intrinsically low sound velocity (i.e., low
thermal conductivity) is very likely to demonstrate a promising
thermoelectric performance.

Among the various thermoelectric materials, half-Heusler
compounds, with large power factors26, robust mechanical
properties27, and excellent thermal stabilities28, have been
recently recognized as one of the most promising candidates for
high temperature thermoelectric power generation29–33. How-
ever, due to the relative high lattice thermal conductivity (usually
on the magnitude of ∼10Wm−1 K−1 for the pristine com-
pounds), the ZTs (especially the average ZTs) of the state-of-the-
art half-Heuslers remains relatively low comparing to other well-
established material systems. Consequently, future development
of the half-Hesulers thermoelectric module hinges largely on
identifying a new compound with high thermoelectric
performance.

Here we report the discovery of p-type ZrCoBi-based half-
Heuslers that possess a high band degeneracy (Nv= 10) in con-
junction with a lowest mean sound velocity (vm ∼2800 m s−1)
among the state-of-the-art half-Heuslers25,34. Benefiting from the
combination of the appealing electronic and thermal properties, a
record-high peak ZT of ∼1.42 at 973 K can be achieved. Such an
exceptionally high thermoelectric performance is further vali-
dated by the efficiency measurement and a high thermoelectric
conversion efficiency of ∼9% is achieved at the temperature dif-
ference of ∼500 K. Our work demonstrates that ZrCoBi-based
half-Heuslers are quite promising for high-temperature thermo-
electric power generation. Importantly, the Bi-based half-Heus-
lers, which have long been ignored for thermoelectric application,
open up a new avenue for designing advanced half-Heusler
thermoelectric materials in the future.

Results
High thermoelectric performance of ZrCoBi. To demonstrate
the high thermoelectric performance of the ZrCoBi-based half-
Heuslers, comparison of the temperature-dependent ZT between
ZrCoBi0.65Sb0.15Sn0.20 and the state-of-the-art p-type half-
Heuslers (e.g., HfCoSb-baseds, ZrCoSb-based, and NbFeSb-
based half-Heuslers)26,35–37 is shown in Fig. 1a. Clearly, ZrCo-
Bi0.65Sb0.15Sn0.20 outperforms all the other p-type half-Heuslers in
the whole temperature range and a record-high peak ZT of ∼1.42
at 973 K can be achieved. The average ZT is further calculated by
the integration method in the temperature of 300 to 973 K, where
ZrCoBi0.65Sb0.15Sn0.20 demonstrates the highest average ZT of
∼0.81, and it is only ∼0.69 for Nb0.88Hf0.12FeSb, ∼0.57 for
Nb0.8Ti0.2FeSb, ∼0.54 for Hf0.44Zr0.44Ti0.12Sb0.8Sn0.2, and ∼0.53
for Hf0.8Ti0.2CoSb0.8Sn0.2.

High band degeneracy leads to high power factor. To under-
stand the origin for such a high thermoelectric performance of
ZrCoBi-based half-Heuslers, the first-principles calculation on the
band structure of ZrCoBi (Fig. 2a) was employed to evaluate its
electronic thermoelectric performance. The valence band maxima
(VBM) locates at Γ point (marked by blue color), while the
valence bands at L point (marked by red color) show a negligible
energy difference (ΔE) of ∼0.001 eV lower than that of Γ point.
The valence bands converge at Γ point and split slightly at L point
due to spin-orbit coupling effect as shown in the Supplementary
Fig. 1. Due to the negligible energy difference, all the valence
bands that converge at L and Γ points will contribute jointly to
the hole-transport. Since the two bands converging at L point give
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a band degeneracy of 8 and those at Γ point provide an additional
band degeneracy of 2, therefore in total yielding a high band
degeneracy of 10 for p-type ZrCoBi (Fig. 2b). To highlight such a
high band degeneracy in ZrCoBi, band structures for the iso-
structural half-Heuslers ZrCoSb (Fig. 2c) and TiCoSb (Fig. 2e)
were also calculated for comparison. In contrast, there is an
appreciable energy difference of L and Γ points for ZrCoSb (ΔE
∼0.13 eV) and TiCoSb (ΔE ∼0.11 eV), which means only the
valence bands at one of the points will contribute to the hole-
transport. To better illustrate the differences in band degeneracy
among the three compounds, iso-energy surface at 0.1 eV below
VBM is plotted (Fig. 2b, d, f). The band degeneracy equals 8 for
ZrCoSb and only 3 for TiCoSb, both of which are noticeably
lower than that of ZrCoBi. According to the above-mentioned
relationship between the band degeneracy and power factor, it
strongly suggests that p-type ZrCoBi-based compounds could
demonstrate a quite promising electronic thermoelectric
performance.

In this work, ZrCoBi-based materials are synthesized by the
ball-milling and hot-pressing technique (details can be found in
the methods section). All the prepared specimens demonstrate a
single half-Heusler phase as shown in the Supplementary Fig. 2.
Figure 3a shows the electrical conductivity of ZrCoBi1−xSnx (x=
0, 0.05, 0.10, 0.15, and 0.20), where a monotonic increase of
electrical conductivity with the Sn concentration can be observed.
The room temperature electrical conductivity is ∼1.14 × 103 Ohm
−1 m−1 for ZrCoBi and it is ∼1.66 × 105 Ohm−1 m−1 for
ZrCoBi0.8Sn0.2. The enhancement in electrical conductivity
should be mainly attributed to the effectively increased Hall
carrier concentration (nH), as shown in the Supplementary Fig. 3.

The almost linear increase of Hall carrier concentration with
respect to the Sn concentration (it is ∼0.75 × 1021 cm−3 for
ZrCoBi0.95Sn0.05 and ∼2.75 × 1021 cm-3 for ZrCoBi0.8Sn0.2)
demonstrates the high doping efficiency of Sn in p-type ZrCoBi.
Similarly, the effectiveness of Sn as a p-type dopant was also
reported in (Hf, Zr, Ti)CoSb35,36. Figure 3b shows the
temperature-dependent Seebeck coefficient of
ZrCoBi1-xSnx. It is noteworthy that the pristine ZrCoBi shows
an intrinsic n-type transport characteristic and Sn-doping (Sn
concentration as low as ∼5%) successfully converts it into fully p-
type. At relatively low Sn concentration (x= 0.05), the bipolar
conduction can be observed at high temperature and it disappears
when the Sn concentration is increased.

By optimizing the Sn concentration, high power factors can be
obtained for ZrCoBi1-xSnx (Fig. 3c). The room temperature power
factor is ∼25 µW cm−1 K−2 and the peak power factor reaches
∼40 µW cm−1 K−2 for ZrCoBi0.80Sn0.20. In addition, Sn-doped
TiCoSb and ZrCoSb (both were prepared in this work with
identical approach) with similar Hall carier concentration are also
ploted for comparison. As shown in Fig. 3c, ZrCoBi0.75Sn0.15 and
ZrCoBi0.80Sn0.20 show noticeably higher power factors than that
of Sn-doped ZrCoSb and TiCoSb. Band-degeneracy-dependent
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power factor at different temperatures is further plotted for the
three compounds, as shown in Fig. 3d. The power factor increases
monotonically with the band degeneracy at all of the tempera-
tures. This unambiguously demonstrates that band degeneracy
plays a pivotal role in the power factor. In other words, the high
power factor achieved in ZrCoBi-based compounds should be
mainly ascribed to the high band degeneracy for this compound
as indicated by the theoretical calculations (Fig. 2b).

Low sound velocity leads to low lattice thermal conductivity. As
mentioned above, sound velocity plays a vital role in the lattice
thermal conductivity. The relationship between the Young’s
modulus (E) and the mean sound velocity (vm) for the state-of-
the-art half-Heuslers25,27,34,38 is shown in Fig. 4a. Compared to
the Sn-based and Sb-based half-Heuslers (NbFeSb, MNiSn, and
MCoSb, where M=Hf, Zr, Ti), the ZrCoBi-based compounds
possess the lowest mean sound velocity ∼ 2850 m s−1 (details can
be found in the Supplementary Table 1) and Young’s modulus.
Such a low mean sound velocity and Young’s modulus originate
from the weaker chemical bonding and heavy atomic mass of Bi.
For the ZrCoBi-based compounds, the strong relativistic effect of
Bi contracts the 6 s shell and increases its inertness for bonding.
Therefore, the low mean sound velocity and Young’s modulus
will jointly contribute to an intrinsically low lattice thermal
conductivity for ZrCoBi.

The temperature-dependent thermal conductivities of ZrCoBi1
−xSnx are shown in Fig. 4b. In addition, the thermal conductiv-
ities of the undoped TiCoSb39, ZrCoSb40, and NbFeSb26 are also

plotted, where the pristine ZrCoBi shows a much lower thermal
conductivity compared to the other half-Heuslers. The room
temperature thermal conductivity is ∼19Wm-1 K-1 for TiCoSb,
∼19Wm-1 K-1 for ZrCoSb, and ∼17Wm−1 K−1 for NbFeSb, but
∼9Wm−1 K−1 for ZrCoBi, which is only half of the other p-type
half-Heuslers. Importantly, the thermal conductivity of ZrCoBi1
−xSnx decreases noticeably with Sn concentration, which should
be mainly ascribed to the reduction in the lattice thermal
conductivity. As shown in Fig. 4c, the lattice thermal conductivity
of ZrCoBi1−xSnx is greatly suppressed with the increase of Sn
concentration. The room temperature lattice thermal conductiv-
ity of ZrCoBi is ∼9Wm−1 K−1 but only ∼2.6Wm−1 K−1 for
ZrCoBi0.80Sn0.20, where a reduction of ∼71% is achieved after Sn
doping. It is noteworthy that the minimum lattice thermal
conductivity of ZrCoBi0.80Sn0.20 can reach as low as ∼1.6Wm−1

K−1 at 973 K. Such a significant phonon scattering by Sn-doping
should be mainly attributed to the substantial atomic mass
difference between Sn (atomic weight: ∼118.71) and Bi atoms
(atomic weight: ∼208.98) that leads to an intense point defect
scattering. The accumulated lattice thermal conductivities with
respect to the phonon mean-free-path for ZrCoBi and ZrCo-
Bi0.80Sn0.20 are calculated and shown in Fig. 4d. The calculated
lattice thermal conductivity of ZrCoBi0.80Sn0.20 is indeed much
lower compared to that of ZrCoBi. The individual contributions
from acoustic and optical phonons are marked by different colors.
Clearly, the significantly reduced acoustic phonon contribution
leads to the much lower thermal conductivity of ZrCoBi0.80Sn0.20.
Such a significant scattering of acoustic phonon should be mainly
attributed to the point defect scattering induced by Sn-doping.
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Meanwhile, a substantially reduced grain size after Sn doping has
also been observed and the average grain size is ∼250 nm for
ZrCoBi0.80Sn0.20 (Supplementary Fig. 4). The reduction in grain
size should be attributed to the suppressed grain growth during
the hot-pressing process. Such a reduced average grain size is
beneficial for inducing additional grain boundary scattering to
decrease the latttice thermal conductivity. However, as shown in
Fig. 4d, the phonon with mean-free-path lower than 100 nm
dominates the lattice thermal conductivity. Therefore, compared
to the alloying scattering, the grain boundary scattering plays a
secondary role in reducing the thermal conductivity of ZrCoBi-
based materials.

Owing to the simultaneously enhanced power factor and
reduced thermal conductivity via Sn doping, ZT can be noticeably
improved in ZrCoBi1−xSnx (as shown in Fig. 4e). A high peak ZT
of ∼1.3 at 973 K can be achieved by ZrCoBi0.80Sn0.20. However,
according to the composition-dependent lattice constant of
ZrCoBi1−xSnx (Supplementary Fig. 5), the maximum solubility
of Sn at Bi site of ZrCoBi is ∼20%. Therefore, in order to further
minimize the lattice thermal conductivity, Sb alloying at the Bi
site is conducted based upon the best composition of ZrCo-
Bi0.80Sn0.20. As shown in the Supplementary Fig. 6d, e, a
noticeable reduction in thermal conductivity can be successfully
achieved by Sb alloying. The room temperature lattice thermal
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conductivity is ∼2.6Wm−1 K−1 for ZrCoBi0.80Sn0.20 and it is
∼2.2Wm−1 K−1 for ZrCoBi0.65Sb0.15Sn0.20, an additional reduc-
tion of 15%. In the meanwhile, the power factors of ZrCoBi0.80
−ySbySn0.20 remain quite similar (Supplementary Fig. 6c). Collec-
tively, an even higher peak ZT of ∼1.42 at 973 K is achieved in
ZrCoBi0.65Sb0.15Sn0.20. To prove the reproducibility of the high
performance of ZrCoBi0.65Sb0.15Sn0.20, four samples were pre-
pared from different batches and quite comparable results were
obtained, as shown in Fig. 4f. Detailed thermoelectric properties
of the four samples are shown in the Supplementary Fig. 7.

High thermoelectric conversion efficiency. To further validate
the high thermoelectric performance of ZrCoBi0.65Sb0.15Sn0.20,
heat-to-electricity conversion efficiency (η) and output power
density (ω) were measured on a single-leg device with a home-
made system (Fig. 5a and Supplementary Fig. 8). The thermo-
electric material (will be referred as leg in the following) was
polished to the size of 1.5 × 2.4 mm2 in cross-section and ∼ 4.65
mm in thickness. The cold side of the leg was electroplated with
copper, nickel, and gold layers consequently, then soldered
(In52Sn48, melting point 391 K) to copper plate, and the hot side
of the leg was directly brazed (Ag56Cu22Zn17Cd5, liquidus point
923 K) with copper plate. The temperature of cold side was
maintained by water circulation and temperature of hot side was
controlled by PID. The experiments were conducted under high
vacuum (below 10−6 mbar) to reduce the heat conduction. To
measure conversion efficiency (η), the input power from hot side

(Qin) and the generated power (P) were measured at the same
time. The direct measurement of Qin is of great challenge due to
the heavy heat loss at high temperature. According to Fourier’s
Law, a bulk polycrystalline graphite with measured geometry and
thermal conductivity was placed below cold side to measure the
heat flow out of cold side (Qout). The thermal conductivity of the
bulk polycrystalline graphite was confirmed before in the same
way as described in the methods section. In order to measure
temperature differences of the leg and graphite bulk, K-type
thermocouples were embedded at the interfaces. It should be
noticed that the hot-side temperature of graphite can be regarded
as the cold-side temperature of the leg if the setup is working
under a large pressure as shown in Supplementary Fig. 8. The
total Qin includes Qout, P and radiation loss from the leg (Qrad).
Therefore, the conversion efficiency (η) can be written as the
following:

η¼ P
Qin

¼ P
Qout þ P þ Qrad

ð3Þ

Since Qrad cannot be directly measured, in real measurement Qin

is composed of Qout and P which leads to the measurement error
of η. By tuning the current in the circuit, a series of Qin, P can be
measured at the same time. Therefore, both maximum η and P
can be found. To minimize the radiation loss, copper foil working
as a radiation shield is brazed with copper plate of hot side. Since
this radiation shield is at higher temperature than the leg, it
will add additional heat flow into the leg, therefore the measured
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Qout will actually be higher than without the shield. This should
lead to a more conservative value of efficiency.

In this work, all the parameters for the single leg device of
ZrCoBi0.65Sb0.15Sn0.20, including temperature difference, electric
current (I), voltage (V), output power (P), and input power (Qin)
can be obtained simultaneously, as shown in Fig. 5b. Due to the
limited heating power of the system, the hot-side temperature
(TH) can only be raised to ∼823 K. The measured hot-side-
temperature-dependent maximum output power density (ωmax)
and maximum efficiency (ηmax) are shown in Fig. 5c, d,
respectively. The peak output power density is ∼9.3W cm-2 and
the efficiency is ∼9% at the hot-side temperature of ∼823 K
(Fig. 5d). It is noted that the obtained results are slightly lower
than that of the theoretical calculations41, especially at high
temperature. This should be mainly ascribed to the radiation heat,
the rise of cold-side temperature, and parasitic electrical and heat
loss. By minimizing these adverse effects, it is expected that the
measured maximum efficiency and output power density will be
closer to the calculated values ∼12% and ∼11W cm-2 at hot-side
temperature of ∼823 K. Even higher values of maximum output
power density and efficiency can be possibly achieved by
increasing the hot-side temperature, as shown in Supplementary
Fig. 9.

Good thermal stability. Since the potential applications of the
half-Heusler materials are usually associated with a high tem-
perature difference and repeat thermal shocks, it is necessary to
further verify the thermal stability of the materials. As shown in

Fig. 6, the thermal stability for ZrCoBi0.65Sb0.15Sn0.20 has been
tested. Repeat thermoelectric measurements between 300 and
973 K for this sample has been conducted and thermoelectric
properties remain similar for each cycle (Fig. 6a-c). Afterwards,
the sample was then sealed in an evacuated quartz ampoule and
directly heated in the furnace with the temperature of 973 K for
10 min and then rapidly cooled to room temperature by air
quenching. Such a thermal shock treatment has been repeated for
ten times. The thermoelectric properties were then measured
again and the results still remain similar. In addition, to evaluate
the effect of large temperature gradient on the stability of ther-
moelectric performance for ZrCoBi-based half-Heuslers, the
ZrCoBi0.65Sb0.15Sn0.20 leg has been maintained at a cold-side
temperature of ∼368 K and a hot-side temperature of ∼803 K
(corresponding to a large temperature gradient of ∼100 Kmm−1)
for 6 h. The current-dependent voltage and output power have
been measured for each hour and the results are quite comparable
(Fig. 6d). Furthermore, a thermogravimetric analysis was con-
ducted for ZrCoBi0.65Sb0.15Sn0.20 and no decomposition of the
sample was observed up to 1273 K in the Ar atmosphere (Sup-
plementary Fig. 10). Therefore, all the results indicate the good
thermal stability of the prepared ZrCoBi-based half-Heuslers.

Discussion
In this work, p-type ZrCoBi-based half-Heuslers with high ther-
moelectric performance are reported. A record-high ZT ∼1.42 at
973 K is achieved in ZrCoBi0.65Sb0.15Sn0.20 that outperforms all
the previously report p-type half-Heuslers at the same
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temperature. Importantly, the average ZT of ∼0.81 (calculated by
integration method between 300 and 973 K) for ZrCo-
Bi0.65Sb0.15Sn0.20 is also the highest value among all the p-type
half-Heusler compounds. In addition, maximum output power
density and conversion efficiency of ∼9.3W cm-2 and ∼9% were
realized with cold-side and hot-side temperature being 323 and
823 K, respectively. In addition, a good thermal stability for the
ZrCoBi-based half-Heusler has also been confirmed. Our results
demonstrate that ZrCoBi-based half-Heusler compounds are
promising high-temperature thermoelectric materials. More
importantly, our work indicates that the Bi-based half-Heuslers,
which their thermoelectric properties have rarely been investi-
gated previously, have a great potential for realizing high ther-
moelectric performance.

Methods
Synthesis. The ZrCoBi samples were prepared by ball-milling and hot-pressing
method. Pure elements (Zr granules, 99.2%; Co powders, 99.8%; Bi ingots,
99.999%; Sb ingots, 99.999%; and Sn powders, 99.8%; Alfa Aesar) according to the
composition of ZrCoBi1−xSnx (x= 0, 0.05, 0.10, 0.15, 0.20, and 0.25), and
ZrCoBi0.80−ySbySn0.20 (y= 0.05, 0.10, 0.15, 0.20) were loaded in a stainless-steel jar
under an argon atmosphere in the glove box. The ball milling process was con-
ducted on SPEX 8000M Mixer/Mill for 20 h. The ball-milled powders were
compacted to disk by a direct current induced hot press at about 1173 K for 5 min
and under the pressure of ∼50MPa.

Transport properties measurement. The Seebeck coefficient and electrical con-
ductivity were obtained simultaneously by a commercial (ZEM-3, ULVAC) system
under a helium atmosphere. The thermal conductivity κ=DCpρ was calculated
from the thermal diffusivity D (Supplementary Fig. 11a and 11b), specific heat Cp

(Supplementary Fig. 11c), and mass density ρ, which were measured by laser flash
(LFA457, Netzsch), a differential scanning calorimeter (DSC 404 C; Netzsch), and
an Archimedes’ kit, respectively. Hall carrier concentrations nH were measured on
a commercial system (PPMS, Quantum Design), with a magnetic field of ±3 T and
an electrical current of 8 mA.

Microstructural characterization. Phase identification were carried out by X-ray
diffraction (XRD) on a PANalytical multipurpose diffractometer with an X’Ce-
lerator detector (PANalytical X’Pert Pro). The morphology and microstructures
were characterized by a field emission scanning electron microscope (FESEM, LEO
1525) and a high-resolution transmission electron microscope (HRTEM, JEOL
2010F) as shown in Supplementary Fig. 12. SEM and EDS were performed by
energy-dispersive X-ray spectroscopy (JEOL JSM-6330F) as shown in Supple-
mentary Figs. 13-15. Thermogravimetric analysis was carried out by the simulta-
neous thermal analyzer (NETZSCH STA 449 F3 Jupiter).

Sound velocity measurement. Sound velocity measurements were carried out by
a RITEC Advanced Ultrasonic Measurement System RAM-5000. The system
realizes pulse-echo method of time propagation measurements with an accuracy of
about 10−3 µs. To generate longitudinal (L) and shear (S) ultrasonic bulk waves,
Olympus transducers V129-RM (10MHz) and V157-RM (5MHz) were used.
Propylene glycol and SWC (both from Olympus) were used as couplant materials
for L and S modes, respectively. Thickness measurements were carried out using
Mitutoyo ID-HO530 device. All data were obtained at 300 K.

Theoretical calculation. The electronic structures were obtained using the line-
arized augmented plane-wave (LAPW) method as implemented in the WIEN2K
code42. The experimental lattice constants were fixed for TiCoSb, ZrCoSb, and
ZrCoBi and the internal atomic positions were relaxed within the Perdew, Burke,
and Ernzerhof (PBE) functional43 by total energy minimization. Then the modified
Becke–Johnson (mBJ) potential44 was used for the band structure and isosurface
calculations. We used LAPW sphere radii of 2.4 Bohr for Ti, Co and Sb, and 2.5
Bohr for Zr and Bi. A basis set cut-off parameter RminKmax= 9 was used. We used
well converged k-point grids for the relaxation and self-consistent calculations, and
denser k-meshes in the isosurface calculations. Spin-orbit coupling (SOC) is
included in all the calculations except for the structural relaxations.

The lattice thermal conductivity of ZrCoBi1−xSnx was calculated within the
virtual crystal approximation, where we averaged the harmonic and anharmonic
inter-atomic force constants (IFCs) of ZrCoBi and ZrCoSn according to the doping
level x. The three-phonon scattering of ZrCoBi1−xSnx was then calculated through
the harmonic and anharmonic IFCs45. The scattering of the phonons by the Bi/Sn
doping effect was included with the mass-variation approximation46. The
Peierls–Boltzmann equation was then solved iteratively to compute the lattice
thermal conductivity at different x and temperatures. All first-principles
calculations were carried out in the QUANTUM ESPRESSO package47 with the

Perdew–Burke–Ernzerhof exchange-correlation functional43. We first optimized
the lattice constants of ZrCoBi and ZrCoSn in the MgAgAs structure. The harmonic
IFCs were then calculated within the density functional perturbation theory48 as
implemented in QUANTUM ESPRESSO on a 6 × 6 × 6 qmesh. The anharmonic IFCs
were computed with the finite difference method on a 3 × 3 × 3 supercell. The MFP for
a particular phonon mode λ= (q, v) is defined as lλ= |vλ|τλα, where τλα is the phonon
lifetime at reciprocal vector q and branch index v and α is the Cartesian direction.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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