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Abstract. New particle formation and growth has a very im-
portant role in many climate processes. However, the overall
knowlegde of the chemical composition of atmospheric nu-
cleation mode (particle diameter, d<20 nm) and the lower
end of Aitken mode particles (d≤50 nm) is still insufficient.
In this work, we have applied the UFO-TDMA (ultrafine or-
ganic tandem differential mobility analyzer) method to shed
light on the presence of an organic fraction in the nucleation
mode size class in different atmospheric environments. The
basic principle of the organic fraction detection is based on
our laboratory UFO-TDMA measurements with organic and
inorganic compounds. Our laboratory measurements indi-
cate that the usefulness of the UFO-TDMA in the field exper-
iments would arise especially from the fact that atmospher-
ically the most relevant inorganic compounds do not grow
in subsaturated ethanol vapor, when particle size is 10 nm in
diameter and saturation ratio is about 86% or below it. Fur-
thermore, internally mixed particles composed of ammonium
bisulfate and sulfuric acid with sulfuric acid mass fraction
≤33% show no growth at 85% saturation ratio. In contrast,
10 nm particles composed of various oxidized organic com-
pounds of atmospheric relevance are able to grow in those
conditions. These discoveries indicate that it is possible to
detect the presence of organics in atmospheric nucleation
mode sized particles using the UFO-TDMA method. In the
future, the UFO-TDMA is expected to be an important aid to
describe the composition of atmospheric newly-formed par-
ticles.

1 Introduction

Newly-formed nanometer-sized particles can grow to larger
aerosol particles and cloud condensation nuclei (CCN),
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which scatter incoming radiation and contribute a direct and
an indirect (via clouds) cooling effect to the Earth’s radia-
tion budget (Slingo, 1990). While a significant amount of
new nanometer-sized particles are lost through coagulation
scavenging, a noticeable fraction may grow by both gas-to-
particle conversion and coagulation processes (Mäkel̈a et al.,
1997) into Aitken and accumulation modes. Thus, new par-
ticle formation and growth has a very important role in many
climate processes. Furthermore, ultrafine particles (particle
diameter, d≤100 nm) have been shown to relate to adverse
health effects (e.g. Ibald-Mulli et al., 2002).

However, details of the processes controlling nucleation
and growth in the ultrafine size range in different environ-
ments (e.g. boreal, urban, coastal) are still widely undeter-
mined. To understand properly particle formation and growth
and their effects on climate processes, the chemical composi-
tion of ultrafine particles needs to be characterized. Because
of the difficulties in studying the composition of the ultra-
fine particles, the overall knowlegde of the chemical compo-
sition of atmospheric nucleation and the lower end of Aitken
mode particles (d≤50 nm) is still insufficient. Especially, be-
low 20 nm (in diameter) very little information is available on
particle compositions in different environments. Techniques
that have been used for obtaining information on compo-
sition of particles smaller than 20 nm include UFH-TDMA
(ultrafine hygroscopicity tandem differential mobility ana-
lyzer), Hämeri et al. (2000); TEM (transition electron mi-
croscopy), M̈akel̈a et al. (2002); PHA-UCPC (pulse height
analyzer ultrafine condensation particle counter), O’Dowd et
al. (2003) and TDCIMS (thermal desorption chemical ion-
ization mass spectrometer), Smith et al. (2004). Overall,
however, it is very difficult to perform chemical analysis of
such small particles by any method, because of their very
small masses, the fact that the possible constituents include
hundreds or thousands of compounds, and the possibility that
chemical reactions may change their composition as a func-
tion of time.
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 Fig. 1. A schematic picture of the UFO-TDMA system.

The ultrafine particles can be composed of inorganic
and/or organic compounds, which both are known to be im-
portant in the Earth’s atmospheric processes, and their pres-
ence in the nucleation mode particles is expected to be related
to local environments (e.g. coastal vs. boreal). In this work,
the UFO-TDMA (ultrafine organic tandem differential mo-
bility analyzer) method has been applied to shed light on the
presence of organic fraction in the nucleation mode size class
(i.e. d<20 nm). The basic principle of the organic fraction
detection is based on our laboratory UFO-TDMA measure-
ments with organic and inorganic compounds (measurement
range 6–50 nm in diameter). Our laboratory measurements,
presented in more details in the following sections, indicate
that the usefulness of the UFO-TDMA in the field experi-
ments would arise especially from the fact that atmospheri-
cally the most relevant inorganic compounds do not grow in
subsaturated ethanol vapor, when particle size is 10 nm in di-
ameter and saturation ratio is about 86% or below it. Further-
more, the internal mixtures of ammonium bisulfate and sul-
furic acid with sulfuric acid mass fraction below 33% show
no growth at 85% saturation ratio when the particle size is
10 nm. In contrast, various oxidized organic compounds of
atmospheric relevance are able to grow under those condi-
tions.

2 Methods

2.1 The UFO-TDMA system

In this work, the ultrafine organic tandem differential mo-
bility analyzer (UFO-TDMA) was used in laboratory con-
ditions to test growth factors (GFs) of atmospherically the
most relevant inorganic and some relevant organic com-
pounds in size classes of the lower end of ultrafine parti-
cles (i.e. 6≤d≤50 nm). In the present UFO-TDMA system,

ethanol (purity 99.7 weight percent) is used as the organic
solvent. Even though other kind of solvent types (e.g. some
long chain aliphatic or nonpolar solvent) could also be use-
ful, the first chosen solvent was ethanol. The main reasons
for the selection are the following: Solubility information
for different organic and inorganic compounds is well avail-
able; available information tells that various oxidized organic
compounds are soluble or very soluble in ethanol whereas
typical atmospheric inorganic species are not soluble or are
only slightly soluble; ethanol solubility properties differ suf-
ficiently from those of water; ethanol is not harmful, toxic,
corrosive, explosive or too reactive; pure ethanol is easy to
supply and storage, and the price is usually low.

Figure 1 shows a schematic diagram of the UFO-TDMA
setup. The first DMA (Differential Mobility Analyzer;
Hauke type, length 11 cm; Winklmayr et al., 1991) classi-
fies a desired size (for example, 10 nm) from a polydisperse
aerosol flow, after which the selected particles are introduced
into air with a known solvent saturation ratio S. The second
DMA, identical to the first one, then measures the change
in particle size due to the interaction with the subsaturated
ethanol vapor. The growth factors, i.e., the final diameter af-
ter vapor uptake divided by the initial “dry” diameter of the
particles, are characteristic for each particle composition. In
the growth factor calculations, the geometric number mean
diameter of the measured size distribution was used as an
average particle size. The number size distributions were
determined using a standard DMA data inversion algorithm
(Knutson and Whitby, 1975; Reischl, 1991).

The UFO-TDMA used in this study was built following
guidelines of the O-TDMA (Joutsensaari et al., 2001) sys-
tem but with the some differences: Shorter DMAs (Hauke
type, length 11 cm; Winklmayr et al., 1991) and high voltage
power supplies (F.u.G. Elektronik GmbH, Germany) with
lower maximum voltages (1.25 kV for the first DMA and
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Table 1. Manufacturer, mole mass (g/mol), density (g/cm3), purity (%) and nebulized solution concentration (mol/L) information for
compounds studied in this work by the UFO-TDMA. The supercripts1 and2 mean CRC Handbook of Chemistry and Physics (1996) and
this work, respectively.

Compounds Manufacturer M (g/mol) Density (g/cm3) Purity (%) Conc. (mol/L)

I2O4 selfmade2 317.80 4.201 Raman 0.05
iodine tetroxide checked 0.002
I2O5 Merck 333.80 4.98 >99 0.01
iodine pentoxide
(NH4)2SO4 FF-Chemicals 132.14 1.77 >99 0.01
ammonium sulfate
(NH4)HSO4 Fluka 115.11 1.78 >99 0.01
ammonium bisulfate
NaCl FF-Chemicals 58.44 2.17 99.8 0.01
sodium chloride
NH4NO3 Sigma 80.04 1.72 99.5 0.63
ammonium nitrate
C6H8O.

7H2O Fisher Chemicals 210.14 1.665 99.9 0.01
citric acid.H2O
C4H6O6 Aldrich 150.09 1.76 99.5 0.01
L(+)-tartaric acid
C7H6O2 Aldrich 122.12 1.27 99 0.01
benzoic acid
H2SO4 Riedel- de Häen 98.08 1.84 95–97 –
sulfuric acid

2 kV for the second DMA) were used in the UFO-TDMA.
The DMAs were operated with aerosol and sheat flows of 1
and 10 L/min, respectively. Additionally, to decrease diffu-
sion losses of the ultrafine particles, the length of all lines
was minimized in the whole system. Bipolar neutralizer was
radioactive63Ni β-source (370 MBq, 29.1.2003; AEA Tech-
nology QSA GmbH). The ethanol saturator was only used in
the sheath line, i.e., particles were treated with ethanol only
inside the second DMA by ethanol-rich sheath air (ethanol
treatment time was about 1 s in order to avoid chemical reac-
tions; see Joutsensaari et al., 2004), and ethanol-rich sheath
air was produced by bubbling dry air through liquid ethanol,
which was heated in a temperature controlled (32◦C) water
bath (HBR 4D, IKA). Furthermore, in order to avoid tem-
perature differences in the flows of the second DMA and
to keep the temperature constant, the system temperature
(∼25◦C) was controlled by an effective water bath (RCG CS,
Lauda) heating/cooling a water circulation covering the sec-
ond DMA in the thermal insulated box. Ethanol friendly Sol-
Vent (Gelman Sciences) filters were used instead of HEPA
(high efficiency particle arresting) filters in the ethanol vapor
lines. The saturation ratio of the ethanol vapor was deter-
mined using a dew point meter (General Eastern, Hygro M4
with model D-2 chilled mirror sensor; accuracy±0.2◦C for
water vapor) with a corrosive durable mirror. In order to ap-
ply the dew point meter for ethanol vapor (if one excludes
water or ethanol, one can measure the other; G. Schultz, pri-
vate communication, 29 February 2000), dried and purified

sheath air (water saturation ratio about 0.03) was used. The
temperature difference between the saturator and the con-
denser in the CPC was maximized to 25 K (condensation
particle counter, TSI 3010; Quant et al., 1992) to detect parti-
cles down to 6 nm (Mertes et al., 1995), which is the smallest
particle size that can be investigated with this configuration.
Correspondingly, the largest measurable particle diameter is
about 85 nm. Also 3 nm size measurements might be pos-
sible with the condensation particle counter TSI 3025 when
the particles are present in high concentrations in spite of
the small inlet flow and high diffusion losses. Because of
the comparably low voltages used in the short DMAs, sparks
that could ignite the ethanol vapor do not occur. The UFO-
TDMA system can therefore be used without supervision,
making diurnal measurements possible. Typically, the mea-
surement time is between 2–5 min depending on the selected
measurement range. Uncertainties of growth factors were es-
timated for each particle size based on relative growth factor
change between consecutive dry size measurements. Satura-
tion ratios normally change less than 0.005 units during the
measurements and it has only a very small effect on GF val-
ues because organics typically exhibit very smooth growth
behavior. Thus, we estimated the error in the GF values to be
smaller than 0.01 for 10–50 nm particles, 0.013 for 8 nm par-
ticles, and 0.017 for 6 nm particles (for 6 and 8 nm particles
the estimation was carried out based on the 0.1 uncertainty
in the particle diameter measurements, i.e. 0.1/6 and 0.1/8).
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2.2 Laboratory measurements

The aerosol particles were generated from aqueous (particles
are usually in aqueous form in atmospheric air) nebulized
solutions by a constant output atomizer with a dry and pu-
rified airflow (screw compressor, Atlas Copco, ZT30, 25◦C;
pre-filter (EU 7); Domnick hunter drier, PNEUDRI MiDAS,
DAS 2; HEPA filter) of 3 L/min. The precursor water (Milli-
Q water, Millipore; de-ionized and distilled) solution was fed
to the sample line by a syringe pump (Hostec R-50, Finland)
and a peristaltic pump (Pharmacia, Fine Chemicals, Swe-
den). The generated aerosol was diluted immediately after
the generator with a dry and purified airflow (screw com-
pressor, Atlas Copco, ZT30, 25◦C; pre-filter (EU 7); Dom-
nick hunter drier, PNEUDRI MiDAS, DAS 2; HEPA filter)
of ∼27 L/min. During the dilution (dilution ratio 1/10), the
water evaporated from formed droplets, thus forming solid
particles. RH (relative humidity) of the aerosol flow was
typically about 3% after the first DMA. Hypp̈onen (2004)
measured the number size distributions of ammonium sul-
fate particles generated in this way from solutions of various
strengths. The mode of the distribution was between 25–
30 nm with the 0.08 M solution and between 50–60 nm with
the 0.8 M solution. It is worth of mentioning that no particles
were detected in nucleation mode size class (6, 8, and 10 nm)
when UFO-TDMA measurements were conducted with par-
ticles originating from pure water (Milli-Q water, Millipore;
de-ionized and distilled).

In order to solve the growth for atmospherically the most
relevant inorganic compounds of the lower end of Aitken
mode (i.e. d≤50 nm) and the nucleation mode (i.e. d<20 nm)
sized particles, growth factors (GFs) were measured for am-
monium sulfate, ammonium bisulfate, sodium chloride, io-
dine tetroxide, iodine pentoxide and ammonium nitrate, re-
spectively, in subsaturated ethanol vapor. Typically, ammo-
nium, sulfate and nitrate ions have been found in air masses
from various origins (e.g. Putaud et al., 2004), while iodine
oxides (e.g. Burkholder et al., 2004; McFiggans et al., 2004)
and sodium chloride (included to sea salt) (O’Dowd et al.,
2004) are related to marine origin.

Additionally, GFs were measured for acidic ammoniated
sulfate particles created by mixing ammonium bisulfate, a
dissociation product of sulfuric acid in the aqueous phase,
with mass fraction of 18–50% of sulfuric acid, which is ex-
pected to be an important and typical component in atmo-
spheric air during new particle formation events (e.g. Laak-
sonen et al., 1995; Kulmala, 2003; Kulmala et al., 2004).
Usually, there is a lot of anthropogenic ammonia to neutral-
ize at least a part of sulfuric acid in the tropospheric par-
ticles. It is probable in those conditions that sulfuric acid
is transformed to more ammonium bisulfate and ammonium
sulfate like forms in the aqueous particle phase (Seinfeld and
Pandis, 1998). Interestingly, the recent study of Vehkamäki
et al. (2004) implies that all sulfuric acid in the atmosphere
seems to be bound to tiny ammonium bisulfate clusters which

are the basic building blocks in the nucleation process.

For comparison, the growth factors of some atmospher-
ically relevant organic compounds were studied: citric
acid (C6H8O7), tartaric acid (C4H6O6) and benzoic acid
(C7H6O2). Citric acid has been shown to be an important
species in marine waters (Creac’h, 1955) and in sea salt par-
ticles (Ming and Russell, 2001). Tartaric acid is found at
continental rural and urban particulate matter, mainly dur-
ing summer, suggesting biogenic origin (Röhrl and Lammel,
2002). Aromatic benzoic acid has been shown to exist in
urban particulate matter (e.g. Hamilton et al., 2004) and its
source is anthropogenic (e.g. Seinfeld and Pandis, 1998).

Manufacturer, mole weight, density, purity and concentra-
tion of the individual compounds in nebulized water solution
are summarized in Table 1. Two kinds of nebulized solu-
tions were used for the iodine tetroxide experiments. This
is because the stronger solution (0.05 M) did not produce a
high enough particle concentration for the nucleation mode
sized particles (i.e. 6–20 nm). However, the stronger nebu-
lized solution was needed for the lower end of Aitken mode
sized particles (i.e. 20–50 nm). Because iodine tetroxide was
not commercially available, it was selfmade following guide-
lines from Daehlie and Kjekshus (1964). The purity of io-
dine tetroxide was assured by Raman spectroscopy. The den-
sity information for it is based on CRC Handbook of Chem-
istry and Physics (1996). Mass fractions and concentrations
in nebulized water solution of sulfuric acid and ammonium
bisulfate mixtures are summarized in Table 2.

The working fluid of the UFO-TDMA was ethanol (pu-
rity 99.7 mass weight percent). Because the purpose of these
experiments is to aid interpreting the results of atmospheric
field measurements, the ethanol saturation ratios were chosen
to be between 72–88% which cover typical saturation values
used in the field experiments (e.g. Petäjä et al., 2005). In this
study, the classified dry diameters were 6, 8, 10, 20, 30 and
50 nm. In order to get dry diameters for GF calculations and
to test if measured compounds or mixtures are volatile in the
UFO-TDMA system, dry size (no ethanol vapor at all) mea-
surements were carried out for all measured compounds and
mixtures at each dry diameter.

2.3 Theoretical and experimental calculations

In order to study how the Kelvin effect influences the mea-
sured growth factors of particles with different dry diameters
(ddry), we first calculated theoretical GFs for the dry particle
sizes of 100, 50, 30, 20, 10, 8 and 6 nm using the Köhler
theory (Köhler, 1936) including the Kelvin term and some
simplifying assumptions (solution is ideal and dilute; the par-
tial molar volume of solute in solution is equal to the mo-
lar volume of pure solute; the surface tension of solution is
equal to that of pure ethanol (i.e. 0.02275 J/m2); and the dry
particle was assumed to be spherical). The theoretical GFs
were solved for ammonium bisulfate, citric acid, tartaric acid

Atmos. Chem. Phys., 5, 3277–3287, 2005 www.atmos-chem-phys.org/acp/5/3277/



P. Vaattovaara et al.: Detection of organic fraction using the UFO-TDMA 3281

Table 2. Mass fractions (m%) and concentrations (mol/L) of the aqueous nebulized solutions for mixtures of sulfuric acid and ammonium
bisulfate.

Mixtures m% Conc. (mol/L) m% Conc. (mol/L) m% Conc. (mol/L) m% Conc. (mol/L)

H2SO4 + 18 0.54 25 0.63 33 0.51 50 1.03
NH4HSO4 82 2.07 75 1.55 67 0.87 50 0.87

and benzoic acid particles, respectively, using the following
Eqs. (1), (2) and (3):

GF =

3

√√√√√ S
Ke

1−
S

Ke

× Msolvent× ρsolute

Msolute× ρsolvent
+ 1, (1)

where

Ke = exp

(
4 × Msolvent× σsolution

R × T × ρsolvent× d

)
, (2)

GF =
3

√√√√4/3 × π ×

(
d3

8

)
Vdry

, (3)

where S=saturation ratio (0.86), Msolvent=molar mass
of solvent (0.04607 kg/mol), Msolute=molar mass of so-
lute (kg/mol), ρsolvent=density of solvent (789.3 kg/m3),
ρsolute=density of solute (kg/m3), Vdry=dry volume of parti-
cle (m3), σsolution=surface tension of solution droplet (J/m2),
R=molar gas constant (8.31451 J/mol/ K), T=temperature
(298.15 K) and d=diameter of solution droplet (m). Den-
sities and molar masses of the solutes were obtained from
Table 1. Because the solvent is organic, we expect the as-
sumptions made (especially the assumption that the surface
tension equals that of pure ethanol) to hold better for organic
compounds than for inorganics.

In practice, we iterated Eqs. (1–3) to obtain the theoretical
diameter d of the grown droplet. After the theoretical GFs
(=d/ddry) had been solved for the different sizes, we calcu-
lated the ratios of the theoretical GFs for each pair of con-
secutive dry particle sizes (i.e. 100/50, 50/30, 30/20, 20/10,
10/8 and 8/6). The theoretical Kelvin terms (Ke) were also
solved from Eqs. (1), (2) and (3). Experimental GF ratios for
the pairs of dry particle were obtained from the UFO-TDMA
measurements, and the experimental Kelvin terms were cal-
culated by substitution of the measured solution droplet di-
ameters (d) into Eq. (2). Finally, the ratios of the theoretical
and experimental Kelvin terms ratio were calculated.

3 Results and discussion

The results reveal that it is possible to detect the organic frac-
tion in 10 nm particles by the UFO-TDMA method, even
though the sulfuric acid mass fraction would be as high as
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Fig. 2. Experimental growth factors (GFs) of ultrafine (10, 20, 30
and 50 nm, respectively) ammonium bisulfate particles as a func-
tion of ethanol saturation ratio (S%). Error limits are inside the data
points in the figure. Also GFs for 100 nm ammonium bisulfate par-
ticles (Joutsensaari et al., 2004) are shown in the figure.

33%. The solubility and growth information for all mea-
sured individual compounds at 86% saturation ratio have
been summarized in Table 3. The solubility (22◦C) of iodine
tetroxide was tested in ethanol by dissolving iodine tetroxide
in 1 L pure ethanol, until the solution was saturated. The re-
sult 0.12 g/1 L means that iodine tetroxide can be regarded as
insoluble in ethanol. The solubility for ammonium nitrate
was not measured because it was too volatile in 6–50 nm
sizes. The solubility information for other compounds is
based on CRC Handbook of Chemistry and Physics (1996).

The laboratory experiments show (Table 3) that atmo-
spherically relevant 50 nm ammonium sulfate, sodium chlo-
ride, iodine pentoxide and iodine tetroxide particles do not
grow at 86% ethanol saturation ratio. This indicates that 1)
they will not grow at lower saturation ratios, and 2) smaller
particles consisting of these materials will not grow at 86%
or below. Furthermore, ammonium nitrate is too volatile to
show any growth.

Figure 2 shows our experimental growth factor data for
10–50 nm ammonium bisulfate particles at ethanol satura-
tion ratios between 78% and 86%. It is seen that the GFs
of the particles become smaller with decreasing particle size.

www.atmos-chem-phys.org/acp/5/3277/ Atmos. Chem. Phys., 5, 3277–3287, 2005
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Table 3. Ethanol saturation ratio, water solubility, ethanol solubility and ethanol growth information for particles (10–50 nm) composed of
individual compounds. The supercripts1 and2 refer to CRC Handbook of Chemistry and Physics (1996) and this work, respectively.

Individual compounds S (%) sol. H2O 1 sol. EtOH1 growth EtOH2

I2O4, 86 slightly soluble insoluble2 no
iodine tetroxide 84
I2O5, iodine pentoxide 86 soluble insoluble no
(NH4)2SO4, 86 very soluble insoluble no
ammonium sulfate
(NH4)HSO4, 86 very soluble insoluble yes/no
ammonium bisulfate
NaCl, sodium chloride 86 soluble slightly soluble no
NH4NO3, 84 very soluble – volatile
ammonium nitrate
C6H8O7, citric acid.H2O 86 very soluble very soluble yes
C4H6O6, tartaric acid 86 soluble soluble yes
C7H6O2, benzoic acid 85 slightly soluble very soluble yes
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Fig. 3. Experimental and theoretical growth factor (GF) ratio, re-
spectively, for two consecutive ammonium bisulfate dry particle
sizes (i.e. 100/50, 50/30, 30/20 and 20/10) at 86% saturation ratio.
Also shown are Kelvin term ratios (theoretical/experimental), for
100, 50, 30, 20 and 10 nm particles. The denominators determine
(e.g. 50/30–>30 nm; 50/50–>50 nm) the position on the x-axis.

Compared with the behavior of 100 nm particles measured
earlier by Joutsensaari et al. (2004), the GFs of 10–50 nm
particles are markedly lower. It is clear that the Kelvin effect
alone is not sufficient to explain the difference between 100
and 50 nm particles at low saturation ratios. Also at S∼86%,
the experimental GF ratios (see Fig. 3) 100/50 and 50/30,
respectively, are a little bit larger than the theoretical ratios.
The interpretation of the difference between the theoretical
and experimental GF ratios for particles down to 10 nm is
complicated, because experiments show that 10 nm ammo-
nium bisulfate particles do not grow. However, the ratio of
the theoretical and experimental Kelvin terms shows that the
experimental Kelvin values are bigger than the theoretical
ones for 10–50 nm particles. Interestingly, at smaller diame-
ters the difference gets bigger, indicating an additional effect
beside the Kelvin effect.

In Joutsensaari et al. (2004), we argued that the growth
of 100 nm bisulfate particles is most likely related to their

hygroscopicity (i.e. water affinity). The particles were pro-
duced from aqueous solution, and even though they were
dried at lowRH, they may have contained some water that
prompts the ethanol uptake. When the residence time of the
particles in the ethanol vapor was increased from about 2 s
to 30 s the GF dropped close to unity, which was attributed
to sulfate esterification reactions and decreased uptake of
ethanol with the associated evaporation of water molecules.
Now, it is probable that the amount of water held by the “dry”
particles decreases with particle size (as a result of the Kelvin
effect experienced by the water molecules). Furthermore, the
Laplace pressure of the smaller particles may cause increased
chemical reaction constants (e.g. Sanfeld et al., 2000; San-
feld and Steichen, 2003) and thus, the chemical composition
of the smaller particles may change more rapidly. Taken to-
gether, the low GFs seen in Fig. 2 may then be explained
(1) by decreased water content of the smaller “dry” parti-
cles, (2) by the Kelvin effect of the ethanol-bisulfate droplets,
and (3) by changed chemical composition due to the Laplace
pressure especially in the smallest (10–20 nm) particles.

The UFO-TDMA measurements show that mixed particles
of ammonium bisulfate and sulfuric acid with sulfuric acid
mass fractions of 18% (Fig. 4), 25% (Fig. 5), 33% (Fig. 6)
and 50% (Fig. 7) grow, when the particle diameter is 50 nm
and saturation ratio about 85%. The mixtures behave quali-
tatively in a similar manner as the pure bisulfate particles as
the GFs decrease quite pronouncedly as a function of par-
ticle size. As with the ammonium bisulfate particles, the
decrease is stronger than what would be expected based on
the Kelvin effect alone. A point in case is the behavior of
the 10 nm particles which show no growth for the 18–33%
mixtures. Sulfuric acid is even more hygroscopic than am-
monium bisulfate, and thus the explanation of the bisulfate
particle behavior given above may also apply to the mixed
particles.

Atmos. Chem. Phys., 5, 3277–3287, 2005 www.atmos-chem-phys.org/acp/5/3277/
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Fig. 4. Experimental growth factors (GFs) of ultrafine particles (10,
20, 30 and 50 nm, respectively) with sulfuric acid mass fraction of
18% as a function of ethanol saturation ratio (S%). Error limits are
inside the data points in the figure.
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Fig. 5. Experimental growth factors (GFs) of ultrafine particles (10,
20, 30 and 50 nm, respectively) with sulfuric acid mass fraction of
25% as a function of ethanol saturation ratio (S%). Error limits are
inside the data points in the figure.

The 10 nm particles consisting of 50% sulfuric acid so-
lution show modest growth (Fig. 7), however, this should
not affect our conclusions concerning atmospheric particles
since the sulfuric acid solutions found in the boundary layer
will always be much more dilute. For example, a low am-
monia concentration environment study of Boy et al. (2005)
estimated that the sulfuric acid fraction is between 3 to 17%
in newly formed particles during nucleation events. The very
recent study of Fiedler et al. (2005) concluded that the per-
centage contribution of sulfuric acid to new particle forma-
tion and growth at a continental boreal forest area and at a
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Fig. 6. Experimental growth factors (GFs) of ultrafine particles (10,
20, 30 and 50 nm, respectively) with sulfuric acid mass fraction of
33% as a function of ethanol saturation ratio (S%). Error limits are
inside the data points in the figure.
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Fig. 7. Experimental growth factors (GFs) of ultrafine (8, 10, 20, 30
and 50 nm, respectively) particles with sulfuric acid mass fraction
of 50% as a function of ethanol saturation ratio (S%). Error limits
are inside the data points in the figure.

polluted continental region are below 10% at both places.
Thus, sulfuric acid mass fraction of 18–33% used in our labo-
ratory UFO-TDMA measurements is high enough to indicate
that it is possible to carry out the UFO-TDMA field mea-
surements at such a saturation ratio that sulfuric acid will not
cause any growth for 10 nm particles.

In contrast to inorganic compound growth behavior, the or-
ganic compounds citric acid (Fig. 8), tartaric acid (Fig. 9) and
benzoic acid (Fig. 10) exhibit clear growth behavior, when
particle size is 10–50 nm or even below that. Again, GFs de-
crease with decreasing particle size. The size dependence of
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Fig. 8. Experimental growth factors (GFs) of ultrafine (8, 10, 20, 30
and 50 nm, respectively) citric acid particles as a function of ethanol
saturation ratio (S%). Error limits are inside the data points in the
figure.
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Fig. 9. Experimental growth factors (GFs) of ultrafine (6, 8, 10, 20,
30 and 50 nm, respectively) tartaric acid particles as a function of
ethanol saturation ratio (S%). Error limits are inside the data points
in the figure.

the GFs may be explained for the most part with the Kelvin
effect down to 20 nm particles. However, between 20 and
10 nm, quite a sizeable gap appears. Figures 11–13 show
that theoretical GF ratios are smaller than the experimental
ones, especially between 20 and 10 nm. Once again, the the-
oretically calculated Kelvin effect alone is not sufficient to
explain the differences for 10–20 nm particles, although also
the theoretical Kelvin effect increases strongly between those
sizes. The curves showing ratios of theoretical and experi-
mental Kelvin terms (Figs. 11–13) also illustrate that ratios
are near 1 for bigger sizes, but show increasing departure
from unity as the particle sizes decrease. Thus, the additional

Benzoic acid

0,95
1,00
1,05
1,10
1,15
1,20
1,25
1,30
1,35
1,40
1,45
1,50
1,55
1,60

72 74 76 78 80 82 84 86 88

S (%)

G
F

6 nm
8 nm
10 nm
20 nm
30 nm
50 nm

 

Fig. 10. Experimental growth factors (GFs) of ultrafine (6, 8, 10,
20, 30 and 50 nm, respectively) benzoic acid particles as a function
of ethanol saturation ratio (S%). Error limits are inside the data
points in the figure.

Citric acid

0,90

1,00

1,10

1,20

1,30

0 10 20 30 40 50

Diameter (nm)

R
at

io
o

GF ratio experimental GF ratio theoretical Kelvin terms ratio 

 
Fig. 11. Experimental and theoretical growth factor (GF) ra-
tio, respectively, for two consecutive citric acid dry particle sizes
(i.e. 100/50, 50/30, 30/20, 20/10 and 10/8) at 86% saturation ra-
tio. Also shown are Kelvin term ratios (theoretical/experimental),
for 50, 30, 20, 10 and 8 nm particles. The denominators determine
(e.g. 50/30–>30 nm; 50/50–>50 nm) the position on the x-axis.

reason for that kind of behavior could once more be that
the chemical composition of the smallest particles changes
more rapidly (i.e. within the time the particles spend inside
the UFO-TDMA) due to their higher Laplace pressure. The
correctness of this explanation can be checked by varying the
residence times of different sized particles in ethanol vapor
and measuring the GFs. However, because of experimental
difficulties related to increased diffusion losses of the small-
est particles when the residence time is increased, we will
leave reporting of the results to a follow-up publication.

An interesting question is whether the present method for
the detection of the organic fraction can be extended to dry
particles larger than 10 nm. It should be noted that ammo-
nium bisulfate does not really grow any more at ethanol
saturation ratios of 0.82 and below. Thus, if solar radia-
tion is not efficient enough to produce lot of sulfuric acid
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Fig. 12. Experimental and theoretical growth factor (GF) ratio,
respectively, for two consecutive tartaric acid dry particle sizes
(i.e. 50/30, 30/20, 20/10, 10/8 and 8/6) at 86% saturation ratio (ex-
perimental GF values for 8 and 6 nm are at S∼85%). Also shown
are Kelvin term ratios (theoretical/experimental), for 50, 30, 20,
10, 8 and 6 nm particles. The denominators determine (e.g. 50/30–
>30 nm; 50/50–>50 nm) the position on the x-axis.

(e.g. cloudy sky or night time), or sulfuric acid is aged in the
particle phase (i.e. reacted to less acidic form), or ammonia
concentration is high enough for immediate neutralization
(e.g. polluted regions), the 20–50 nm sulfate particles are
not expected to grow at ethanol saturation ratios below 0.82.
It remains an open question whether it is possible to find
such an ethanol saturation ratio at which highly concentrated
(e.g. 18 m%) sulfuric acid particles do not grow but many
types of organic particles do. As an interesting detail, it has
been shown that sulfuric acid concentrations are generally
relatively low (i.e. percentage contribution below 10%) in
usual lower troposphere situations (e.g. diesel engine at 40%
engine load, Tobias et al., 2001; a boreal forest site and a
polluted continental area, Fiedler et al., 2005).

4 Conclusions

In this study, we have applied the UFO-TDMA method to de-
tect the presence of organic fraction in atmospherically rel-
evant nucleation mode sized particles. Based on our labora-
tory measurements, the usefulness of the UFO-TDMA in the
field experiments will arise especially from the fact that the
most relevant and common inorganic compounds (i.e. am-
monium sulfate, ammonium bisulfate, sodium chloride, io-
dine tetroxide and iodine pentoxide) do not show growth in
the UFO-TDMA when the particle size is 10 nm and ethanol
saturation ratio is below 86%. Furthermore, mixed 10 nm
particles of ammonium bisulfate and sulfuric acid H2SO4
mass fractions below 33% do not grow at 85% saturation ra-
tio while atmospherically relevant organic compounds, citric
acid, tartaric acid, and benzoic acid do exhibit measurable
growth at those conditions.

Naturally, real atmospheric nucleation mode particles can
be composed of mixtures of inorganic and organic com-
pounds. It is also possible that the inorganic fraction hin-
ders the growth of the organic fraction in the UFO-TDMA.
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Fig. 13. Experimental and theoretical growth factor (GF) ratio,
respectively, for two consecutive benzoic acid dry particle sizes
(i.e. 50/30, 30/20, 20/10, 10/8 and 8/6) at 86% saturation ratio
(experimental GF values for 10 and 6 nm particles are at S∼85).
Also shown are Kelvin term ratios (theoretical/experimental), for
50, 30, 20, 10, 8 and 6 nm particles. The denominators determine
(e.g. 50/30–>30 nm; 50/50–>50 nm) the position on the x-axis.

Furthermore, all organic compounds do not grow in subsatu-
rated ethanol vapor. Therefore, when the UFO-TDMA does
not show any growth for ambient 10 nm or below that parti-
cles, it is not certain that the particles would be purely inor-
ganic. However, in cases where 10 nm or below that ambient
particle growth is detected, it can be quite safely concluded
that the particles do contain organic matter. The results of
Peẗajä et al. (2005), for example, showed clear growth for
10 nm particles at ethanol saturation ratio of about 82%. That
also proves the usefulness of the UFO-TDMA in studying the
composition of nucleation mode sized particles in the field
experiments. Thus, we believe that the UFO-TDMA will be
an important method to shed light on the nucleation mode
particle compositions in different atmospheric conditions.

In the future, laboratory experiments with different or-
ganic compounds will be carried out in order to evaluate
effects of different functional groups and chain length to
the growth behavior of organic compounds in nucleation
mode sized particles. Furthermore, mixtures of atmospheri-
cally relevant organic compounds and inorganic compounds,
which are specific to certain field environments, will be car-
ried out in order to describe nucleation mode sized particles
also more quantitatively, in addition to the current qualitative
analysis.
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