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Introduction by the Organisers

This meeting, the second Oberwolfach workshop devoted to zeta functions, was
attended by 42 participants representing 16 countries. The scientific program
consisted of 32 talks of various lengths and a problem session. In addition, social
activities were organised: a hike in the mountains and piano recitals by Peter
Elliott and Valentin Blomer.

Since the times of Dirichlet and Riemann, zeta functions and Dirichlet series
have played a central role in analytic number theory, and in recent times con-
nections have been found with other areas of mathematics and its applications,
including theoretical physics. The talks represented the various aspects of the
theory of zeta functions. In particular, the following topics were discussed, among
others:

• Connections of classical zeta functions with automorphic functions and spectral theory.

• Estimates of the size of zeta and L-functions, both at individual points and in mean
value.

• Problems concerning the zeros of zeta functions (Riemann’s hypothesis and other ques-
tions such as the Siegel zero and the distribution of zeros of Epstein’s zeta functions).

• Applications of zeta and L-functions to arithmetic functions, and the duality between
arithmetic and analysis.

• Random Matrix Theory, which shed new light light on mean value estimates and their
consequences.

• Numerical calculations related to the zeros of Riemann’s zeta function and other com-
putational projects.
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Abstracts

Omega results for the Riemann zeta function and the error terms in
the summatory functions of arithmetic functions

R. Balasubramanian

Let f(s) =
∑∞

n=1 ann
−s be a Dirichlet series, convergent in σ > 1 and analyti-

cally continuable in σ > −a with a finite number of poles. Here a is a positive
real number or ∞ . We assume that the poles are situated in |t| 6 A . We further
suppose that f(s) is of finite order, that is there exists a constant B > 0 , such
that |f(σ+ it)| = O

(
|t|+1)B

)
for |t| > A .

In this talk, we shall discuss the lower bound for
∫ T+H

T |f(σ+ it)2 dt and some
applications to arithmetic function.

We start with some preliminary observations. First note that | exp(sin2 z)| 6

exp
(
− exp(y/2)

)
where z = x+ iy . The exponential decay of exp(sin2 z) imme-

diately yields

Lemma 1. If |x| < π/6 , x 6= 0 , then
∫ ∞

−∞

∣∣∣
exp(sin2 z)

z

∣∣∣ dy = O
(

log
1

|x|
)
.

We shall employ an averaging technique which we explain. Fix T sufficiently
large, H 6 (log logT )2 6 T, U = H7/8, r = 100. Instead of considering a function
g(t), it becomes advantageous to consider g̃(t) =

∫ u
0 du1

∫ u
0 du2 · · ·

∫ u
0 g(t−S)dur ,

where S = u1 + u2 + . . .+ ur .

For Dirichlet series, which are functions of s = σ + it the averaging is done
with respect to the variable t.

Lemma 2. Let a(n), b(n) be complex numbers which are o(nε) . Let

A(s) =
∑

n6H

ann
−s , B(s) =

∑

m>H+H1/4

bmm
−s, and f(s) = A(1−s)B(s) .

Then for any σ > 1 ,

f̃(σ + it) ≪ H−10
∑

n6H

m>H+H1/4

|an||bm|
n1−σmσ

.

Proof. Note that

f(σ + it− iS) =
∑

n6H

m>H+H1/4

anbm
n1−σmσ

( n
m

)i(t−S)
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Integrating with respect to u1, u2, . . . , ur we get

f̃(σ + it) =
1

U r

∑

n,m

anbm
n1−σmσ

(
1 −

(
n
m

)−iu

i log n
m

)r ( n
m

)it

≪
∑

n,m

anbm
n1−σmσ

(
2

U log m
n

)
.

Since U log m
n > H7/8 log H+H1/4

H >
1
2H

1/8 , we get the lemma.

Lemma 3. With the above notation, assume B(s) has an analytic continuation
in σ > 0 . Then, for T + U 6 t 6 T +H − U ,

∫ 2

1/2

f̃(σ+it) dσ ≪ 1

U

∫ T+H

T

∣∣f(1
2 + it)

∣∣ dt .

Proof. We have

f(σ+ it) =
1

2πi

∫

D
f(σ+ it+w) exp

(
sin2(w/10)

) dw
w

where D is the rectangle 1/2 − σ ± iu, 2 − σ ± iU . This gives

f̃(σ+ it) =

∫
f̃(σ+ it+w) exp

(
sin2(w/10)

) dw
w
.

On the right vertical f̃ is small by Lemma 2. On the horizontals, the integral is
small because of exp

(
sin2(w/10)

)
. On the left vertical putting w = 1/2 − σ −

it+ is+ iv we get the contribution to be

6
1

2π

1

U r

∫ U

0

du2 · · ·
∫ U

0

dur

∫ T+H

T

|f(1
2 + iv)|dv

×
∫ 2

1/2

dσ

∫ ∣∣∣∣
exp

(
sin2

(
1
10 (1

2 − σ − it+ is− iv)
)

1
10

(
1
2 − σ − it+ is− iv

)
∣∣∣∣ du1 .

Now by Lemma 1, the last integral is O
(

log
(
σ−1/2

10

))
and

∫ 2

1/2

log
(σ − 1/2

10

)
= O(1) .

This completes the proof.

Lemma 4. If I is an interval contained in [T + U, T +H − U ] then
∫

I

f̃
(

1
2 + it

)
dt ≪ H−9

∑

n,m

|an||bm|
n1−σmσ

+
1

U

∫ T+H

T

|f(1
2 + it)| dt .

Proof. Move the line of integration from σ = 1/2 to σ = 2 and by Lemma 3,

the error is small. Since f̃(2 + it) is small, the result follows.
We finally observe that, by passing to average, we do not lose much, at least for
the positive function.
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Lemma 5. If g(t) is non-negative, then

∫ T+H

T

g(t)dt >

∫ T+H

T+101U

g̃(t) dt >

∫ T+H−101U

T+101U

g(t) dt .

Proof.

T+H∫

T+101U

g̃(t) dt =
1

U r

U∫

0

du1

U∫

0

du2 · · ·
U∫

0

dur

T+H∫

T+101U

g(t− S) dt

=
1

U r

U∫

0

du1

U∫

0

du2 · · ·
U∫

0

dur

T+H−S∫

T+101U−S

g(t) dt .

Since
∫ T+H−S

T+101U−S
g(t)dt 6

∫ T+H

T

g(t)dt

the first inequality follows. The proof of the second inequality is similar.

We are now in a position to state the main result.

Theorem. We have

∫ T+H

T

|f
(

1
2 + it

)
|2dt >

(
H +O(U)

) ∑

n6H

|an|2
n

(
1 +O

( 1

M

))
+O

(∑
|an|2

)

where M2
∑

H<n6H+H1/4

|an|2
n

=
∑

n6H

|an|2
n

=: L.

Proof. Let

F (t) = f(1
2 + it) −

∑

n6H

an
n1/2+it

−
∑

H<n6H+H1/4

an
n1/2+it

= G1(t) −G2(t) −G3(t) .

We assume that the result is not true and get a contradiction. Then
∫ T+H

T |G1(t)|2dt
= O(HL) . Using the Montgomery-Vaughan inequality

∫ T+H

T |G2(t)|2dt ≪ HL

and
∫ T+H

T |G3(t)|2dt≪ HLM−2 . Now G1(t) = F (t) +G2(t) +G3(t) . Hence

∫ ∣∣G1(t)
∣∣2dt =

∫ ∣∣F (t)
∣∣2dt+

∫ ∣∣G2(t)
∣∣2dt+

∫ ∣∣G3(t)
∣∣2

+ 2ℜ
(∫ T+H

T

G2(t)G3(t) dt+

∫ T+H

T

F (t)G2(t) dt+

∫ T+H

T

F (t)G3(t) dt

)
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∫ T+H

T

∣∣G1(t)
∣∣2dt >

∫ T+H

T+101U

∣∣G̃1(t)
∣∣2dt

>

∫ T+H

T+101U

(∣∣G̃2(t)
∣∣2 + 2ℜF (t)G̃2(t) + 2ℜF (t)G3(t) + 2ℜG2(t)G3(t)

)
dt .

Since
∫ T+H

T
|G3(t)|2dt ≪ HSM−2 , the terms involving G3(t) give a small error

term by the Cauchy-Schwarz inequality.
Since G2(t) is

∑
n6H ann

−s at s = 1/2+ it , and F (t) is the analytic continua-

tion of
∑

n>H+H1/4 ann
−s at s = 1/2 + it , the integral

∫ T+H−101U

T+U G2(t)F (t) is
of the form discussed in Lemma 4 and hence small. Again by Lemma 5,

T+H∫

T+101U

|G̃2(t)|2 dt >

T+H−101U∫

T+101U

|G2(t)|2dt =
∑

n6H

(
H − 204U +O(n)

) |an|2
n

.

This completes the proof.

Applications to omega results for the error term in the summatory functions of
arithmetic functions were also given.
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A continuity property connected with Nyman’s criterion
for the Riemann hypothesis

Michel Balazard

(joint work with Nicolas Jousse)

Let {u} denote the fractional part of the real number u, and, for u > 0 , α > 0 ,
define gα(u) := {α/u} . Let B be the set of linear combinations of the gα’s, and
N be the subset of those elements of B which vanish on (1,+∞) . We observe
that B ⊂ Lp(0,+∞) for 1 < p 6 +∞ , and that N ⊂ L∞(0, 1) .

A striking result from Nyman’s thesis (1950) is the following.

Theorem 1. (Nyman [2]) The Riemann hypothesis is equivalent to N being dense
in L2(0, 1) .
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It is easy to see that N is dense in L2(0, 1) if, and only if the characteristic
function χ of (0, 1) lies in the closure of B in L2(0,+∞) . Thus Nyman’s the-
orem gives a reformulation of the Riemann hypothesis (RH) as an approximation
problem in a Hilbert space. A further rephrasing of (RH) involves the quantity

δn := inf
{∥∥χ−

n∑

k=1

ckgαk

∥∥ : ck ∈ C, 0 6 αk 6 1, k = 1, . . . , n
}
,(1)

the distance in L2(0,+∞) between χ and the set of all n-terms linear combina-
tions of the gα’s ; (RH) is plainly equivalent to δn = o(1) , n→ +∞ .

The inequality δn 6 δn+1 is obvious. Is the sequence (δn) strictly decreasing?
The answer is positive and was given by Nicolas Jousse in his thesis (2004).

Theorem 2. (Jousse [1]) or every n > 1 , one has δn+1 < δn .

It turns out that the main step in the proof of Theorem 2 consists in showing
that the infimum in (1) is in fact a minimum. With this goal in mind, we denote by
PV the orthogonal projection on the closed subspace V of the (implicit) Hilbert
space H. In the case H = L2(0,+∞) , one has

δn = inf
{∥∥χ− PVect(gα1 ,...,gαn )(χ)

∥∥ : 0 6 α1, . . . , αn 6 1
}
,

so that a sufficient condition for this infimum to be a minimum is the continuity
of the map

[0,+∞[n → H

(α1, . . . , αn) 7→ PVect(gα1 ,...,gαn )(χ) .

This last question is an instance of a general problem studied by Jousse. We
discuss now the simplest form of this problem, whereas the application to (δn) is
handled by means of a slightly modified variant.

Let G be a locally compact abelian group, noted multiplicatively, with Haar
measure µ . For G ∈ H := L2(G) , and α ∈ G , define gα(x) := g(xα−1) , x ∈ G .

Definition. The function g ∈ L2(G) is admissible if, for every y0 ∈ G , and
every positive integer n , the map

Gn → H

(α1, . . . , αn) 7→ PVect(gα1 ,...,gαn )(y0) .

is continuous.

The general problem is to obtain a characterization of admissible functions. It
may be difficult to get a complete answer. Let us note that some very regular
functions, such as non-zero continuously differentiable functions with compact
support (in the case where G is the real line), are not admissible.

Jousse described a class of admissible functions. We begin with two definitions
and then state his result.

Definition. A measurable function f : g → C is an exponential polynomial if
the vector space Vect(fα, α ∈ C) has finite dimension.
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In the case where G = (]0,+∞[,×) , the exponential polynomials are linear

combinations of functions x 7→ xρ logk x , ρ ∈ C , k ∈ N .

Definition. A measurable function f : g → C is countably simple if f(G) is
countable.

Theorem 3. (Jousse [1]) Assume G is σ-compact, metrizable and not compact.
Let f ∈ L2(G) be such that f = f ′ + f ′′ , where f ′ is an exponential polynomial,
and f ′′ is countably simple. Then f is admissible.

Observe that the error terms of analytic number theory are often sums (or differ-
ences) of an exponential polynomial on ]0,+∞[ and a countably simple function.
In particular, this is the case for t 7→ {1/t} .

References
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Non-vanishing of class group L-functions at the central point

Valentin Blomer

The question as to whether an L-function vanishes at a special point on the
critical line has arisen in various contexts and is apparently a fundamental one.
By now there are numerous results that many members – in some cases even a
positive proportion – of a certain family of L-functions do not vanish at the central
point. This is of interest in various aspects such as the Birch–Swinnerton–Dyer
conjecture, the Siegel zero (see [4]) and the theory of modular forms of half-integral
weight (see [6]). A large number of old and new results around this theme can be
found in [5].

Here we consider L-functions attached to class group characters of an imag-
inary quadratic field. Let K = Q

(√
−D

)
be the imaginary quadratic field of

discriminant −D . We denote its class group by C and write h = #C . For each
character χ ∈ Ĉ we have an L-function

LK(s, χ) =
∑

a

χ(a)(N a)−s,

the summation being taken over all nonzero integral ideals a . For real characters
LK(s, χ) is the product of two Dirichlet L-functions, while for complex characters
LK(s, χ) comes from the cusp form

∑
a χ(a)e(zN a) of weight 1 for Γ0(D) and

character χD . We shall obtain the following result [1].

Theorem. There is an absolute constant c > 0 such that
1

h
#
{
χ ∈ Ĉ | L(1/2, χ) 6= 0

}
> c

∏

p|D

(
1 − 1

p

)
(1)
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for sufficiently large D .

Since we appeal to Siegel’s lower bound for L(1, χ−D) , we do not know how
large D must be chosen to ensure the validity of (1). The constant c is in principle
computable, but we did not make any effort to do so because our method yields
only a very small value for c , something around 10−6 . According to general
conjectures on zeros of L-functions coming from random matrix theory we would
expect that 100 percent of the LK(s, χ) do not vanish at s = 1/2 . In fact, the
present family of L-functions has been studied by Fouvry and Iwaniec [3] who
showed under the Riemann hypothesis for the LK(s, χ) that the distribution of
low-lying zeros is governed by the symplectic group.

For the proof of the theorem we compare different weighted averages over the
set of L-functions for Q

(√
−D

)
. We consider

L1 :=
1

h

∑

χ∈Ĉ

(∑

q∈Q
λ(q)

∑

q:Nq=q

χ(q)

)
LK(1/2, χ)

and

L2 :=
1

h

∑

χ∈Ĉ

(∑

q∈Q
λ(q)

∑

q:Nq=q

χ(q)

)2∣∣LK(1/2, χ)
∣∣2.

Here Q := {q 6 Dη : µ2(q) = 1, (p | q ⇒ χ−D(p) = 1)} with a small parameter
0 < η < 1/4 , and the λ(q)’s are suitably chosen real numbers. By the Cauchy-
Schwarz inequality we have

#{χ ∈ Ĉ : LK(1/2, χ) 6= 0} > hL2
1L−1

2 .

The sum
∑
λ(q)

∑
q χ(q) is supposed to work as a mollifier and to smooth out

irregularities in the behaviour of the LK(1/2, χ) so that not too much is lost when
we apply the Cauchy-Schwarz inequality.

It is a priori not clear whether the set Q contains elements other than 1, so the
character sum may be trivial if the class number is extraordinarily small and there
are only few or no small split primes. However, it turns out that the smaller the
class number is, i.e. the less effective the mollifier works, the less variation exists,
roughly speaking, in the values of LK(1/2, χ) . Thus our method works even in
the improbable case of an exceptionally small class number, and we need not to
appeal to any unproven hypothesis.

The mean L1 can be evaluated asymptotically relatively easily using the func-
tional equation for the Epstein zeta function. The second moment is hard to
evaluate, and the estimations rely ultimately on deep results from spectral theory
of modular forms and equidistribution properties of Heegner points [2]. Finally
we optimize the coefficients λ(q) by minimizing the quadratic form L2 subject
to the linear constraint coming from L1 . We end up with an estimate of the type

L2
1L−1

2 ≫
( 3∑

j=0

cjL
j(1, χ−D)(logD)1−j

)−1 ∑

g∈Q

τ(g)

g
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with certain positive constants cj . Using some sieve ideas, this can be estimated
by ≪η

∏
p|D(1 − p−1) which completes the proof of the theorem.
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On the zeros of certain Epstein zeta functions

Enrico Bombieri

(joint work with Julia Mueller)

Let Q(x, y) = ax2+bxy+cy2 be a positive definite quadratic form with a, b, c ∈ Z ,
a > 0 , and discriminant D := b2 − 4ac . The Epstein zeta function associated to
Q is

E(s,Q) :=
∑

(m,n) 6=(0,0)

1

Q(m,n)s
.

If the class number is 1 then the Epstein zeta function coincides up a constant
factor with the Dedekind zeta function of the quadratic field. In particular, it has
an Euler product and it is expected to satisfy a corresponding Riemann Hypoth-
esis. If the class number is 2 or more, the distribution of zeros of Epstein’s zeta
functions is also quite mysterious. In this case, Davenport and Heilbronn [2] have
shown that E(s,Q) has infinitely many zeros in the half-plane ℜ(s) > 1 .

If the class number is 2 , let ζK(s) and LK(s) be the Dedekind zeta function
and the L-function associated to the non-trivial real character of the class group.
Then the equation E(s,Qi) = 0 , i = 1, 2 , is equivalent to ζK(s)/LK(s) = ∓1 ,
and we can exploit the Euler product and Bohr almost periodicity. A similar idea
occurs in the work of Gonek [3] in the study of the distribution of zeros on the
line ℜ(s) = 1/2 of special instances of the Hurwitz zeta function ζ(s, a) .

We consider only the simplest case with discriminant −20 and the two reduced
quadratic forms Q1 = m2 + 5n2 , Q2 = 2m2 + 2mn+ 3n2 . Then

ζK(s)

LK(s)
=

(
1 + 2−s

1 − 2−s

) ∏

p≡3,7 (mod 20)

(
1 + p−s

1 − p−s

)2
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and
E(s,Q1) = ζK(s) + LK(s) , E(s,Q2) = ζK(s) − LK(s) .

Let σ(Q) be the abscissa defining the largest half-plane free from zeros of
E(s,Q) .

Theorem 1. The abscissa σ(Q1) is the unique solution σ > 1 of the equation

arctan(2−σ) + 2
∑

p≡3,7 (mod 20)

arctan(p−σ) =
π

2
.

The abscissa σ(Q2) is the unique solution σ > 1 of the equation

arctan(2−σ) − 2
∑

p≡3,7 (mod 20)

arctan(p−σ) = 0 .

We have

σ(Q1) = 1.133906322092828621637158+,

σ(Q2) = 2.158504990900088015136407+.

Theorem 2. For any fixed ε > 0 there are infinitely many zeros of Z(s,Qi) in
the region

σ > σ(Qi) −
1

(log(|t| + 3))1−1/σ(Qi)−ε .

Moreover, there are positive constants A, B such that

σ > σ(Qi) −
A

(|t| + 3)B

contains no zeros of Z(s,Qi) .

The proofs use on a method of Bohr and Jessen [1] on sum of convex domains, a
quantitative form of Kronecker’s theorem on simultaneous approximations, New-
ton iteration method to locate zeros, and a lower bound for the approximation
of the ratio of two logarithms by rational numbers obtained by Baker’s method
of linear forms in logarithms. We expect that the first statement of the second
theorem is quite close to give the true zero-free region for Z(s,Qi) .
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On the explicit spectral formula for the fourth moment of the
Riemann zeta function

Roelof W. Bruggeman

(joint work with Yoichi Motohashi)

In Chapter 4 of [4], Motohashi gives an explicit formula for the fourth moment of
the Riemann zeta function. I sketch a new proof, to appear in [2].

The explicit formula expresses
∫ ∞

−∞

∣∣ζ
(

1
2 + it

)∣∣4 g(t) dt

as a sum of three terms, some of which are seemingly unrelated to the Riemann
zeta function. The test function g is holomorphic and quickly decreasing on a
wide horizontal strip.

The first of the terms is called the trivial one:

−2πℜ
(
(cE − log 2π)g (i/2) + g′ (i/2) /2

)
.

The main term is the value at (1/2, 1/2, 1/2, 1/2) of the sum of 13 meromorphic
functions in w = (w1, w2, w3, w4) , with a common structure. As an example, I
give the third term:

ζ(w3 + w4)ζ(w1 + w2 − 1)ζ(w3 − w2 + 1)ζ(w1 − w4 + 1)

ζ(w3 + w4 − w1 − w2 + 2)

× Γ(w1 + w2 − 1)

∫ ∞

−∞

Γ(1 − w1 − it)

Γ(w2 − it)
g(t) dt .

Conrey, Farmer, Keating, Rubinstein, Snaith, [3], have emphasized the common
structure of terms 1–12 .

The spectral term is related to the decomposition of L2 (Γ\G) in terms of au-
tomorphic forms, where Γ = PSL2(Z) and G = PSL2(R) . Let {V } be the
complete orthogonal system of Hecke-invariant irreducible subspaces of the cuspi-
dal subspace of L2 (Γ\G)) . Each V contributes to the spectral term the quantity
cVHV (1/2)3Θ(νV ; g) , where
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Θ(ν; g) =

∫ ∞

0

ĝ

(
1

2π
log
(
1 +

1

r

))
Ξ(r; ν)

dr√
r2 + r

,

Ξ(r; ν) =

∫

R\{0}
j0(−u)jν(u/r)

du

|u|3/2 ,

jν(u) =
π|u|

sinπν

(
J

(signu)
−2ν

(
4π|u|1/2

)
− J

(signu)
2ν

(
4π|u|1/2

))
,

J
(+)
2ν = J2ν , J

(−)
2ν = I2ν .

cV is essentially the Fourier coefficient of V of order one, and HV the finite part
of the L-function of V . There is also an integral with an analogous structure,
corresponding to the Eisenstein series.

The two known proofs use a meromorphic function of four variables w =
(w1, w2, w3, w4) :

J(w) =

∫ ∞

−∞
ζ(w1 − it)ζ(w2 + it)ζ(w3 + it)ζ(w4 − it)g(t) dt ,

and break it up as a quadruple sum (for ℜwj > 1 ):

J(w; g) =
∑

a,b,c,d>1

a−w−1b−w2c−w3d−w4 ĝ

(
log(ad/bc)

2π

)
(1)

= J0(w; g) + J1(w; g) + J1(w2, w1, w4, w3) ,

according to ad = bc , ad > bc , and ad < bc .

The original proof of Motohashi transforms J1 , and reduces it essentially to
a double sum of Kloosterman sums. The sum formula of Kuznetsov, see e.g.,
Chap. 2 of [4], relates this to sums of products of Fourier coefficients of modular
forms. The relation between |ζ|4 and modular forms looks accidental.

In the present proof

J1(w; g) =
1

8

∑

a,b,c,d∈Z, ad>bc

fψ
(
a
c
b
d

)
,

fψ
(
a
c
b
d

)
= |a|−w1 |b|−w2 |c|−w3 |d|−w4ψ

(
ad

bc

)
,

with ψ(x) + ψ(−x) = 2ĝ
( log |x|

2π

)
. We use the Hecke decomposition M2(Z) ∪

GL+
2 (R) to write this as a sum of Hecke operators applied to a Poincaré series
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on G :

J1(w; g) =
1

4

∑

n>1

n−z1TnPfψ(1) ,

Tnf(X) = n−1/2
∑

ad=n, b(d)

f
(

1√
n

(
a
c
b
d

)
X
)

(Hecke operator),

Pf(X) =
∑

γ∈Γ

f(γX) (Poincaré series),

with z1 = 1
2 (w1 + w2 + w3 + w4 − 1) . To make the Poincaré series convergent for

X ∈ G , we replace fψ by fψ,η
(
a
c
b
d

)
= fψ

(
a
c
b
d

)
η
(
d
c

)
, where η is a smooth function

on R , highly zero at 0 , and ±∞ , which we view as an approximation of 1 . For
technical reasons, we also add a factor τ(ad) , with τ a smooth approximation of
the characteristic function ι of (−∞, 0) . Now

(2) J1(w; g) = lim
η↑1

lim
τ↑ι

1

2

∑

n>1

n−z1TnPfψ,τ,η(1).

After subtraction of a sum of Eisenstein series, we arrive at P0fψ,τ,η ∈ L2(Γ\G) .
We carry out the spectral expansion in a reasonable explicit way. After taking
the limits of τ and η we arrive at a explicit formula for w in a suitable re-
gion. All terms allow meromorphic continuation to a neighborhood of the point
(1/2, 1/2, 1/2, 1/2) . Thus the explicit spectral formula is obtained.

In the contributions M0(g), . . . ,M12(g) to the main term, the term M0 comes
from J0 in (1). The term M2 (in the notation of [4]) comes from the non-square
integrable contribution to Pfψ,τ,η . The terms M1 , and M3, . . . ,M6 come
from the continuous spectrum. The terms M7, . . . ,M12 arise similarly from
J1(w2, w1, w4, w3) . So most of the contributions to the “main term” also have a
spectral nature. This proof does not explain all symmetries pointed out in [3].
However, in it the connection with automorphic forms arises naturally.

I do not think that the method extends to
∫∞
−∞ |ζ(1/2+ it)|2kg(t) dt for k > 3 .

The algebraic group leaving invariant the form v1 · · · vk−w1 · · ·wk does not seem
suitable for the present purpose. However, there may be a relation with the paper
[1] of Beineke and Bump. Embed M2 into GL4 by

X 7→
(
I X
0 I

)
.

Conjugation by

(
g1 0
0 g2

)
, with g1, g2 ∈ GL2 , det g1 = det g2 , gives the group

Q of all linear transformation of M2 that leave invariant the determinant form.

We have used automorphic forms on the subgroup

{
∗ 0
0 I

}
of Q . The group

Q is contained in the group

M =

{(
∗ 0
0 ∗

)}
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that plays a role in the discussion by Beineke and Bump of the connection between∫
|ζ|4 and Eisenstein series on GL4 .
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Automorphic summation formulae and moments of ζ(s)

Daniel Bump1

(joint work with Jennifer Beineke2)

We begin by recalling a parallel, pointed out by Beineke and Bump [1], between
conjectural asymptotics for the moments of the Riemann zeta function and the
constant terms of Eisenstein series. Let α = (α1, . . . , α2n) , |αi| small,

Z(s, α) = ζ(s+ α1) · · · ζ(s+ αn)ζ(1 − s− αn+1) · · · ζ(1 − s− α2n) .

We are interested in ∫ ∞

−∞
Z
(

1
2 + it, α

)
g(t) dt

with a suitably smooth test function g(t) and the αi near zero. Conrey, Farmer,
Keating, Rubinstein and Snaith [3] conjectured that this should match

∫ ∞

−∞
M
(

1
2 + it, α

)
g(t) dt ,

where M will now be describe. It is a sum of
(
2n
n

)
terms indexed by w ∈ Ξ , the

subset of the symmetric group S2n consisting of permutations that satisfy

w(1) < · · · < w(n), w(n+ 1) < · · · < w(2n) .

Let R(α) = A(α)N(α) where

N(α) =
∏

16j6n

n+16k62n

ζ(1 + αj − αk) .

We won’t define the “arithmetic part” A(α) . It is an Euler product, convergent
if ℜ(αi) are small. We have
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M
(

1
2 + it, α

)
=

(
t

2π

)−α1−...−αn+αn+1+...+α2n

×
∑

w∈Ξ

R(wα)

(
t

2π

)−αw(1)−...−αw(n)+αw(n+1)+...+αw(2n)

.

To summarize, the 2n-th moment
∫ ∞

−∞

n∏

j=1

ζ
(

1
2 + αj

)
ζ
(

1
2 − αn+j

)
g(t) dt

is conjecturally a sum of
(
2n
n

)
terms, each involving a product N(wα) of n2 zeta

functions.

Let A be the adele ring on Q , and let Eα be the Eisenstein series on GL(2n,A)
whose L-function is

ζ(s+α1)· · ·ζ(s+αn)ζ(s+αn+1)· · ·ζ(s+α2n) = χ(s+αn+1)· · ·χ(s+α2n)Z(s, α).

It is shown in [1] that the constant term
∫

Matn(Q)\Matn(A)

E

((
In X

In

)
g

)
dX

is a sum of
(
2n
n

)
terms indexed by w ∈ Ξ , each of which is N(wα) times an

Eisenstein series on GLn × GLn . See [1] for a precise statement. Note however
that the parallel between the Eisenstein series and the moment conjectures is very
striking

• The L-function of the Eisenstein series matches the integrand in the 2n-th
moment;

• The constant term of the Eisenstein series, like M in the moment con-
jectures is a sum of

(
2n
n

)
terms, each involving a product of n2 zeta

functions.

The explanation for this mystery when n = 1 involves the summation formula
of Oppenheim [5]. It is explained in [1] how Oppenheim’s summation formula can
be deduced from the theory of Eisenstein series. On the other hand, it is known
(see Matsumoto [4] and [1]) that the Oppenheim summation formula implies the
conjectures of [3] (proved in 1927 by Ingham) for the second moment of zeta.

A generalization of the Oppenheim summation formula to GL2n was obtained
in Beineke and Bump [2]. This generalization involves a generalization of the
classical divisor function also studied in Sato [6]. Let L ⊆ Zn be a lattice, that
is, a subgroup of finite index. Let a ∈ C , and define

τa(L) =
∑

lattice L′

L⊆L′⊆Zn

(
[Zn : L′]

[L′ : L]

)a
.



Theory of the Riemann Zeta and Allied Functions 2437

We have

∑

L

τa(L) [Zn : L]−s =
n−1∏

k=0

ζ(s+ a− k)ζ(s − a− k) .

Let Mat∗n(Z) = Matn(Z) ∩ GLn(R) . This is a parameter space for lattices:
If A ∈ Mat∗n(Z) , let LA be a row lattice, A→ LA is a bijection

GLn(Z) \Mat∗n(Z) →
{
Lattices L ⊆ Zn

}
.

If A ∈ Mat∗n(Z) , we will denote τa(A) = τa(LA) . If Φ ∈ C∞
c (GLn(Z) \GLn(R))

the new summation formula expresses
∑

A∈GLn(Z)\Mat∗n(Z)

τn(s−1/2)(A)Φ(A)

in terms of a certain “Hankel transform” Φ̃ of the original function Φ . It is an
integral of Φ against Bessel distribution on GLn , arising from the study of the
degenerate principal series representations of GL2n(R) . There are two main terms

ζ(2ns) ζ(2ns− 1) · · · ζ(2ns− n+ 1)

∫

GLn(R)\Matn(R)

| det(g)|n(s−1/2)Φ(g) dg

+ ζ(2n− 2ns) ζ(2n− 2ns+ 1) · · · ζ(n+ 1 − 2ns)

×
∫

GLn(R)\Matn(R)

| det(g)|n(1/2−s)Φ(g) dg .

There is also
∑

A∈GLn(Z)\Mat∗n(Z)

τn(s−1/2)(A) Φ̃(A) .

If n = 1 , this is all, and this is the Oppenheim summation formula. If n > 2 ,
there are more terms, and the case n = 2 is made completely explicit in [2].
Although this formula will itself not be directly applicable to the moments of ζ ,
it is hoped that a variant will be so applicable. The proof depends on the theory
of Eisenstein series on GL2n .

1 Supported in part by NSF grants DMS-9970841 and FRG DMS-0354662.
2 Supported in part by NSF grant DMS-0203353.
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The ratios conjecture for the Riemann zeta function

Brian Conrey1

(joint work with Nina Snaith2 )

Let ζ(s) be the Riemann zeta function, let s = 1/2 + it , and let ℜγ, δ > 0 and
|α|, |β| < 1/4 . Then the ratios conjecture of Conrey, Farmer, and Zirnbauer [5]
asserts that
∫ T

0

ζ(s+α)ζ(1−s+β)

ζ(s+γ)ζ(1−s+δ)
dt =

∫ T

0

(
ζ(1+α+β)ζ(1+γ+δ)

ζ(1+α+δ)ζ(1+β+γ)
Aζ(α, β, γ, δ)

+
( t

2π

)−α−β ζ(1−α−β)ζ(1+γ+δ)

ζ(1−β+δ)ζ(1−α+γ)
Aζ(−β,−α, γ, δ)

)
dt+O

(
T 1/2+ε

)

where

Aζ(α, β, γ, δ) =
∏

p

(
1 − 1

p1+γ+δ

)(
1 − 1

p1+β+γ − 1
p1+α+δ + 1

p1+γ+δ

)
(
1 − 1

p1+β+γ

)(
1 − 1

p1+α+δ

) .

This conjecture is an analogue of the random matrix theorem (see [5] or [4])
∫

U(N)

ΛA(e−α)ΛA∗(e−β)

ΛA(e−γ)ΛA∗(e−δ)
dA =

z(α+β)z(γ+δ)

z(α+δ)z(β+γ)
+ e−N(α+β) z(−α−β)z(γ+δ)

z(−β+δ)z(−α+γ)

where z(x) = (1− e−x)−1 . Here, ΛA(s) denotes the characteristic polynomial of
an N ×N unitary matrix A and is defined by

ΛA(s) = det(I−sA∗) =
N∏

n=1

(1−se−iθn) ;

A∗ denotes the matrix which is the conjugate transpose of A , and the eiθn are
the eigenvalues of A .

More generally, [5] gives precise conjectures for averages of ratios of L-functions
from a family, where the ratio may have any number of L-functions in the numer-
ator or denominator.

We give some applications of this collection of ratios conjectures to various
calculations of interest to number theorists. The first application is to the pair-
correlation conjecture of Montgomery. We assume the Riemann Hypothesis, and
let the non-trivial zeros of the Riemann zeta function be denoted by 1/2+iγ . The
pair-correlation conjecture is an assertion about the distribution of the differences
γ − γ′ as γ and γ′ range independently over the zeros of ζ in some interval. A
convenient way to state the pair-correlation conjecture is through the use of a test
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function f . We assume that f is holomorphic in a strip of fixed width, say 1,
around the real axis and rapidly decaying as the absolute value of the real part of
the variable gets large; suppose also that f is even.

Theorem 1. Assuming the ratios conjecture,

∑

0<γ,γ′6T

f(γ−γ′) =
1

(2π)2

T∫

0

(
2πf(0) log

t

2π
+

T∫

−T

f(r)
(
log2 t

2π
+ 2
(
(ζ′/ζ)′(1+ ir)

+
( t

2π

)−ir
ζ(1− ir)ζ(1+ ir)A(ir) −B(ir)

))
dr

)
dt+O

(
T 1/2+ε

)
;

here the integral is to be regarded as a principal value near r = 0 ,

A(η) =
∏

p

(
1 − 1

p1+η

)(
1 − 2

p + 1
p1+η

)

(
1 − 1

p

)2 ,

and
B(η) =

∑

p

(
log p(

p1+η − 1
)
)2

.

This assertion is a much more precise version of the ‘usual’ pair-correlation
conjecture:

∑

0<γ,γ′6T

f
((γ−γ′) logT

2π

)
∼ T logT

2π

(
f(0) +

∫ ∞

−∞
f(u)

(
1 −

( sinπu

πu

)2)
du

)

for suitable test-functions. The formula above was originally derived by Bogo-
molny and Keating heuristically from the Hardy-Littlewood conjectures about the
distribution of pairs of primes with a fixed difference. The ratios conjecture leads
to the same result but with a much simpler calculation.

As a second example, we consider the second moment of |ζ′(ρ)| averaged over
zeros ρ = 1/2+ iγ of ζ(s) with 0 < γ < T . Gonek [6] obtained the leading term
for this, assuming only the Riemann Hypothesis.

Theorem 2. The ratios conjecture implies

∑

γ<T

∣∣ζ′(ρ)
∣∣2 =

1

2π

∫ T

0

(
1

12
log4 t

2π
+

2γ

3
log3 t

2π
+ (γ2 − 2γ1) log2 t

2π

−
(
2γ3+10γγ1+γ2

)
log

t

2π
+2γ4 +12γ2γ1 +14γ2

1 +8γγ2 +
10γ3

3

)
dt

+O(T 1/2+ǫ)

where the γj are the coefficients from the Laurent expansion of ζ(1 + s) around
s = 0 :

ζ(1 + s) =
1

s
+ γ − γ1s+

γ2

2!
s2 − γ3

3!
s3 · · · .
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It is possible that a similar result might be obtained by Gonek’s method as-
suming only RH. The ratios conjectures similarly imply precise conjectures for the
2k-th moment of |ζ′(ρ)| for any positive integer k . These agree with Hughes’
conjectures [7] for the leading order terms of these moments.

As a third application, we compute a “mollified fourth moment” of ζ(1/2+ it) .
Chris Hughes has recently proven an asymptotic formula for

∫ T

0

∣∣ζ(1/2 + it)
∣∣4 ∣∣A(1/2 + it)

∣∣2 dt

where A(s) =
∑

n6y ann
−s is an arbitrary Dirichlet polynomial and where y = T θ

with θ < 5/27 . For applications to zeros of ζ(s) it is useful to know this asymp-
totic formula more explicitly in the case that A(s) = M2(s, P ) is a mollifying
polynomial

M2(s, P ) =
∑

n6y

µ2(n)P

(
log y

n

log y

)
n−s

where y = T θ and µ2 is defined by 1/ζ(s)2 =
∑∞
n=1 µ2(n)n−s .

Theorem 3. Assuming the ratios conjecture, if P (x) is a real polynomial for
which P (j)(0) = 0 for 0 6 j 6 4 , then for any θ > 0 we have

1

T

∫ T

0

∣∣ζ(1/2 + it)
∣∣4 ∣∣M2(1/2 + it, P )

∣∣2 dt

∼
∫ 1

0

(1 − η)3

6

(
2P (η)P (4)(η) + 8P (3)(η)P ′(η) +

4

θ
(P (4)(η)P ′(η)

+ 3P ′′(η)2) +
16

θ
P (3)(η)P ′′(η) +

4

θ2
P (4)(η)P ′′(η) +

4

θ2
P (3)(η)2

+
4

3θ3
P (4)(η)P (3)(η) +

1

12θ4
P (4)(η)2

)
dη .

We remark that this is a computation that can, in principle, be carried out
unconditionally (for restricted θ ) by Hughes’ method; the ratios conjecture affords
a relatively simple way to perform the computation, and also serves as a check.

There are a number of other applications in the forthcoming paper [3], including
some applications to lower order terms in computations of the one-level density
for zeros of different families of L -functions. Also, we mention that Tsz Ho Chan
[2] has used the ratios conjectures to compute all of the lower order main terms in

the second moment
∫ T
0
S(t)2 dt where S(t) = (1/π) arg ζ(1/2 + it) ; these are all

of the terms of the size T/(logn T ) for some n .

1 Supported in part by FRG NSF grant DMS-0244660.
2 Supported in part by a Dorothy Hodgkins Fellowship.
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An arithmetic characterisation of the logarithm

Peter D.T. A. Elliott

In 1946 P. Erdős [1], proved that a real-valued additive arithmetic function,
monotonic on the positive integers, must be a constant multiple of a logarithm.
The result of Erdős was reformulated by P. Turán, c.f. E. Wirsing [3], p.46, as a
characterisation of the Riemann zeta function amongst those Dirichlet series that
posses non-decreasing positive coefficients and an Euler product. In the lecture I
presented an overview of the following sharpening of Erdős’ result.

Theorem. A real-valued additive arithmetic function is monotonic on all suffi-
ciently large shifted primes, p+1 , if and only if it has the form A log on the odd
integers, whilst also being of the form A log + constant on the powers of 2.

It follows from an old result of Hardy and Littlewood [2], that for some positive
absolute constant c, any interval of length y contains at most cy/ log y shifted
primes. To this extent there are decidedly fewer primes than integers. Moreover,
no initial bound upon the additive function is apparent.

To establish the theorem I employ the representation of integer powers by ra-
tios of shifted primes, (p+1)/(q+1) , concentration function estimates for additive
functions on shifted primes, and the fact that primes are well distributed in residue
classes to moduli that are multiplicative perturbations of a high power of an inte-
ger. Necessary auxiliary results are obtained via harmonic analysis.

The theorem reinforces the notion that in some multiplicative sense the set of
shifted primes contains almost as much information as the set of positive integers.
What would an analogue of Turan’s reformulation be?
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Irregularities in the distribution of imaginary parts of the Riemann
zeta function and L-functions

Kevin Ford1

(joint work with Alexandru Zaharescu)

Fix a nonzero real number α . We study the sequence {αγ} , where {y} is the
fractional part of y (the image of y in the torus T = R/Z ) and γ runs over the
imaginary parts of the zeros of ζ(s) . Rademacher [9] showed that the sequence
is uniformly distributed on RH, and later Hlawka [5] gave an unconditional proof.
Hlawka further showed that the discrepancy function

D∗
α(T ) = sup

06y61

∣∣∣
1

N(T )

∑

0<γ6T
{αγ}6y

1 − y
∣∣∣

satisfies D∗
α(T ) ≪α 1/ logT on RH. Fujii [3] has shown unconditionally that

D∗
α(T ) ≪α (log logT )/(logT ) .

We study the finer distribution of {αγ} , uncovering an irregularity when α is
a rational multiple of (log p)/(2π) for some prime p . In particular, our results
imply that for such α , D∗

α(T ) ≫α 1/ logT . Central to these investigations is a
formula of Landau [7]:

∑

0<γ6T

xρ = − T

2π
Λ(x) +Ox(log T ) (x > 1) ,

where ρ = β+iγ are the nontrivial zeros of ζ , Λ(x) is the von Mangoldt function
for integral x > 1 and Λ(x) = 0 for non-integral x > 1 . On RH,

∑

0<γ6T

xiγ = − T

2π
√
x

Λ(x) +Ox(log T ) (x > 1) .(1)

Based on this observation, Rademacher [9] asserted that if α = k(log p)/(2π)
where p is prime and k a positive integer, then there should be a “predominance
of terms which fulfill |{αγ} − 1/2| < 1/4 ”.

To each α we associate a function gα on T , which is identically zero unless
α = a

q
log p
2π with p prime, a and q positive integers with (a, q) = 1 . In this case
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gα(t) = − (pa/2 cos 2πqt− 1) log p

π(pa − 2pa/2 cos 2πqt+ 1)
.

Theorem 1. (cf. [1], Theorem 1) Let h : T → C and suppose α > 0 . Then

1

T

∑

0<γ6T

h(αγ) − N(T )

T

∫

T

h →
∫

T

hgα (T → ∞)(2)

holds for all h ∈ C2(T) . On RH, (2) holds for all absolutely continuous functions
h on T .

The main tools used to prove Theorem 1 are a version of Landau’s formula with
explicit dependence on x [4], zero-density estimates and results on the rate of
convergence of Fourier series. When α = (log p)/(2π) , gα(0) < 0 and thus there
is a shortage of zeros with {αγ} near 0.

We conjecture that (2) holds with h the characteristic function of [0, y] , the
convergence uniform in y . One consequence is

D∗
α(T ) = (1 + o(1))

log p

πq

arcsin(p−a/2)

logT

for α = a
q

log p
2π , and D∗

α(T ) = o(1/ logT ) for α not of this form. Similar conjec-

tures were made by Kaczorowski [6], concerning the quantity

sup
06t61

∣∣∣
1

n!Sn

∑

γ>0

06{αγ}<t

e−γγn − t
∣∣∣ , Sn =

1

n!

∑

γ>0

e−γγn ,

where γ runs over the imaginary parts of zeros of ζ(s) or of a Dirichlet L-
function.

In the opposite direction, (2) cannot hold for all functions h which are con-
tinuous and differentiable on T . This is a consequence of a property of general
sequences, uniformly distributed or not.

Theorem 2. ([1], Theorem 7) Let a1, a2, . . . be an arbitrary sequence of numbers
in T , let t be a point in T , and let f(x) be a function decreasing monotonically
to 0 arbitrarily slowly. Then there is a function h, continuous and differentiable
on T , and which is C∞(T\{t}) , so that for infinitely many positive integers n,

∣∣∣ 1

n

n∑

j=1

h(aj) −
∫

T

h
∣∣∣ > f(n) .

In a second paper [2], we consider generalizations to other L-functions F in
the Selberg class. We assume that for some A > 0 and B > 0 ,

NF (σ, T ) ≪ T 1−A(σ−1/2) logB T ,(3)

where NF (σ, T ) is the number of zeros β+ iγ of F with 0 6 γ 6 T and β > σ .
Such zero density estimates are known for the Riemann zeta function, Dirichlet
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L-functions, and certain L-functions attached to holomorphic cusp forms (all with

B = 1 ). Define gF,α to be identically zero unless α = a
q

log p
2π , in which case

gF,α(t) = − 1

π
ℜ

∞∑

m=1

ΛF (pam)

pam/2
e2πiqmt .

Here ΛF (n) are the coefficients in the Dirichlet series of −F ′(s)/F (s) .

Theorem 3. Assume (3) holds. Let α > 0 and h : T → C . Then

1

T

∑

0<γ6T

h(αγ) − N(T )

T

∫

T

h →
∫

T

hgF,α (T → ∞)(4)

holds for all h ∈ C2(T) . On RH for the function F , (4) holds for all absolutely
continuous functions h on T .

In particular, if F is a Dirichlet L-function attached to a Dirichlet character
χ , α = log p

2π and χ(p) = e2πiξ , then gF,α(t) has a minimum at t = 1 − ξ .
Consequently, there is a shortage of zeros of F with {αγ} near 1 − ξ .

We also estimate the discrepancy function D∗
F,α(T ) using the Erdős-Turán

inequality and the moment method of Selberg and Fujii (see [3]).

Theorem 4. Suppose (3) holds and gF,α is not identically zero. Then

D∗
F,α ≫F,α

1

logT
.

Theorem 5. Fix α > 0 and assume (3) holds. Then

D∗
F,α(T ) ≪F,α

( log logT

logT

)2/3

.

If (3) holds with B = 1 , then

D∗
F,α(T ) ≪F,α

log log T +
√
Q log logT

logT
, Q =

∑

p6T

|aF (p)|2
p

,

where aF (n) are the coefficients of the Dirichlet series for F (s) . If RH is true
for F , then

D∗
F,α(T ) ≪F,α

1

logT
.

1 Supported in part by NSF grant DMS-0301083.
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Discriminants of cubic fields

Étienne Fouvry

(joint work with Karim Belabas)

Let p always denote a prime number and let K be the set of the cubic extensions

K of Q , satisfying K ⊂ Q ⊂ C . We denote by K̃ the orbit of K under

the action of Gal(Q/Q) , and K̃ be the set of these orbits. The aim of [2] is to

study the distribution of disc K̃ in the arithmetic progressions. For X < Y real
numbers and q integer we define

N(X,Y ; q) = card
{
K̃ ∈ K̃ : X < disc K̃ < Y, q | disc K̃

}
.

We prove

Theorem 1. For every positive ε , we have

N(0, X ; q) ∼ 1

12 ζ(3)

∏

p | q

( p2 + p

p2 + p+ 1

)
· X
q

and

N(−X, 0; q) ∼ 1

4 ζ(3)

∏

p | q

( p2 + p

p2 + p+ 1

)
· X
q
,

when X → +∞ , uniformly for q a squarefree integer, satisfying q 6 X1/24−ε .
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Theorem 2. There exists a positive absolute constant C0 , such that, for every
X > 2 and every squarefree q 6 X1/4 , we have the inequality

N(−X,X ; q) 6 C0

∏

p | q

(
3 +

1

p

)
· X
q
.

When q is a prime, we have the inequality

N(−X,X ; q) 6 C′
0 ·
X

q
,

for some positive C′
0 , for any X > 2 , and q 6 X15/58(logX)−6/29 .

Theorem 3. There exist two absolute constants c1 > 0 and c2 , such that, for
any X > 2 , and for any integer q not divisible by 16 and not divisible by the
square of an odd prime, we have the lower bound

N(0, X ; q), N(−X, 0; q) > c1
ϕ(q)

q
· X
q

− c2

(X
q

)1/2∏

p | q

(
1 + p−1/2

)
.

In particular, there exists X0 and c3 > 0 such that, for any integer q as above,
satisfying the inequality q 6 X exp

(
−√

logX
)
, we have the lower bound

N(0, X ; q), N(−X, 0, q) > c3
ϕ(q)

q
· X
q
,

for X > X0 .

The cornerstone of these results is the famous paper of Davenport and Heilbronn
[3], where Theorem 1 is proved in the particular case q = 1 . Note that Theorem 1
is the first result dealing with the distribution of cubic discriminants in arithmetic
progressions, with a large uniformity over the modulus (however note the result
([1], Théorème 7.1) where such a question is studied for cubic discriminants which
are also discriminants of quadratic fields).

Following the theory of Delone–Faddeev [4] and Davenport–Heilbronn, we con-

struct a function Φ which, to each K̃ , associates a class (modulo the action of
GL(2,Z) ) of cubic forms

F (x, y) = ax3 + bx2y + cxy2 + dy3

with integers coefficients. This class of cubic form F = Φ(K̃) has the same
discriminant

∆(a, b, c, d) = b2c2 + 18abcd− 27a2d2 − 4b3d− 4c3a

as K̃ . The problem is now to ensure that Φ is bijective, by finding a fundamental
domain. Let V be the set of points (a, b, c, d) ∈ Z4 satisfying the inequalities

a > 1, |bc− 9ad| 6 b2 − 3ac 6 c2 − 3bd ,(1)

and some local conditions Up , for each prime p (Up is too long to be defined
here). Then Davenport and Heilbronn proved that, roughly speaking, Φ can

be seen as a bijection between the set K̃+ of class of cubic fields with positive
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discriminants and the set V modulo the identification (a, b, c, d) ∼ (a,−b, c,−d) .
The same type of result is true for negative cubic discriminants. Since Φ preserves
the discriminant, we see that, with a negligible error, N(0, X ; q) is equal to

1

2
· card

{
(a, b, c, d) ∈ W(X) : (a, b, c, d) ∈ Up (for every p), q |∆(a, b, c, d)

}
,

where W(X) is defined by (1) and by the inequality 0 < ∆(a, b, c, d) < X . We
are led to count integers points in a volume W(X) in Z4 , satisfying congruences
conditions. As in [3], we dissect W(X) into a cusp (which is treated trivially)
and, as in [1], into hypercubes of dimension 4 , where we study the polynomial
congruence ∆(a, b, c, d) ≡ 0 modulo q, eventually with the help of exponential
sums. Note that the local conditions Up are responsible of the rather small domain
of uniformity in q .

Theorem 2 is the analogue of the Brun–Titchmarsh theorem for primes in arith-
metic progressions. Its proof is based on the geometric property of W(X) to
contain rather long segments in c .

The proof of Theorem 3 is independent of Davenport–Heilbronn theory. The
key tool is a result due to Mayer ([5], Theorem 1.1), consequence of Hasse’s theory.
It gives a formula for

∑
f ′ | f m(∆f ′2) , where ∆ is a discriminant of a quadratic

field, f an integer and m(d) is the number of elements of K̃ with discriminant
equal to d . This formula introduces rather delicate algebraic quantities. However,
we deduce a useful lower bound which leads to the question of counting squarefree
integers in arithmetic progressions.
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On a Divisor Sum

John B. Friedlander1

(joint work with Henryk Iwaniec 2)

We are interested in the divisor sums∑

n6x

an τk(n)

for polynomial sequences an . In addition to being of interest on their own these
sums arise as a tool in the study of the distribution of primes, for example by
means of Linnik’s identity [3]:
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For each integer n > 1 ,

Λ(n)

logn
=

∞∑

j=1

(−1)j−1

j
tj(n)

where tj(n) denotes the number of ways of writing n as the ordered product
of j integers each being strictly greater than one. These in turn can easily be
expressed in terms of the usual divisor functions τk(n) . Thus, success with the
above divisor sums for a given sequence serves as a measure of our progress toward
the goal of an asymptotic formula for counting the primes in that sequence.

Previously in [2] we proved the asymptotic formula for the distribution of prime
values of a4 + b2 . The methods suggested that it should become possible, once
sufficiently strong bounds were available, to do the same for the prime values of
a6 + b2 , which would also then have a nice application to the theory of elliptic
curves. It is thus important to study the above divisor sums for this sequence.
Here the cases k = 1 and k = 2 are relatively straight–forward and indeed are
already known for the much sparser sequence 1 + b2 ; see for example [1] which
has the sharpest results to date on this.

In this talk the main result gives the asymptotic formula for the much more
difficult case of τ3 . We have

∑

a6+b26x

(a,b)=1

τ3(a
6 + b2) = κPx2/3

(
log x

)2
+O

(
x2/3

(
log x

)15/8)
.

Here the constant P is a rather complicated looking Euler product and κ is the
integral which counts asymptotically the number of integer points (a, b) in the
region under consideration.

It would be possible to evaluate the corresponding sum where the co–primality
condition on a with b is dropped but it would be technically more complicated
and in any case is irrelevant for the problem of counting primes.

We described a number of subsidiary results used in the derivation of the main
theorem, thus suggesting the flow of the proof. We believe these to be of indepen-
dent interest. In addition we mentioned some other applications of this circle of
ideas.

1 Supported in part by NSERC grant A5123 and a Killam Research Fellowship.
2 Supported in part by NSF grant DMS-03-01168.
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Counting primes, groups, and manifolds

Dorian Goldfeld1

(joint work with Alexander Lubotzky, Nikolay Nikolov and László Pyber)

Let Γ denote the modular group SL2(Z) and Cn(Γ) the number of congruence
subgroups of Γ of index at most n. We prove that

lim
n→∞

logCn(Γ)

(log n)2/ log logn
=

3 − 2
√

2

4
.

The proof of this asymptotic formula is achieved by first obtaining a lower bound
by counting primes satisfying certain congruence conditions and then obtaining an
upper bound by counting subgroups of an abelian group. Remarkably, although
the two counting methods are totally different, the same answer is achieved.

The counting methods used in the above result are capable of vast generaliza-
tion. Consider an absolutely simple, connected, simply connected algebraic group
G defined over a number field k and let Γ = G(OS) (here S denotes a finite
set of places, OS denotes the ring of S-integers of k ). Let h denote denote the
Coxeter number of the root system associated to G , and define

γ(G) =

(√
h(h+ 2) − h

)2

4h2
.

The following theorem is proved in [1].

Theorem 1. Let G, Γ and γ(G) be as defined above. Assuming GRH we have

lim
n→∞

logCn(Γ)

(logn)2/ log logn
= γ(G) ,

and moreover, this result is unconditional if G is of inner type (e.g. G splits)
and k is either an abelian extension of Q or a Galois extension of degree less
than 42.

The GRH in Theorem 1 refers to the generalized Riemann hypothesis for Artin-
Hecke L-functions of number fields. The cases where the theorem can be proved
unconditionally make use of the Bombieri-Vinogradov theorem (Riemann hypothe-
sis on the average [2] over arithmetic progressions) and its generalization to number
fields [3]

If one considers the simplest possible situation where the counting techniques
used in the above theorems apply, then one is led to the following extremal problem
in multiplicative number theory.
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For n→ ∞ , let

M1(n) = max

{ ∏

16i,j6t

gcd(ai, aj) : 0< t, a1<a2< . . . < at ∈ Z,

t∏

i=1

ai 6 n

}
,

M2(n) = max

{ ∏

p,p′∈P
gcd(p−1, p′−1): P = set of distinct primes where

∏

p∈P
p6n

}
.

One can prove the following theorem which can be considered as a baby version
of Theorem 1 above.

Theorem 2. Let λ(n) = (logn)2/log logn . Then

lim inf
n→∞

logM1(n)

λ(n)
= lim sup

n→∞

logM2(n)

λ(n)
=

1

4
.

1 Supported in part by NSF grant DMS-00-98633.
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Approximating prime tuples

Daniel Goldston1

(joint work with Cem Yalçın Yıldırım)

The twin prime conjecture is a special case of a more general conjecture for prime
tuples, namely that the tuple (n+h1, n+h2, . . . , n+hk) will have primes in every
component for infinitely many n , provided the set of shifts H = {h1, h2, . . . , hk}
does not exclude this possibility by filling every residue class for some prime p .
Hardy and Littlewood [3] made the quantitative conjecture that, letting

Λ(n;H) = Λ(n+ h1)Λ(n+ h2) · · ·Λ(n+ hk)

with Λ the von Mangoldt function,
∑

n6N

Λ(n;H) = N
(
S(H) + o(1)

)
, as N → ∞,

where

S(H) =
∏

p

(
1 − 1

p

)−k (
1 − νp(H)

p

)
,
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and νp(H) is the number of distinct residue classes modulo p the elements of H
occupy. This conjecture lies very deep.

For a number of years we have been working on approximations for primes and
prime tuples which may be applied to the problem of finding small gaps between
primes. In [1, 2], based on the formula

Λ(n) =
∑

d|n
µ(d) log

1

d
,

we used the approximation

ΛR(n) =
∑

d|n
d6R

µ(d) log
R

d

to define the tuple approximation

ΛR(n;H) = ΛR(n+ h1)ΛR(n+ h2) · · ·ΛR(n+ hk) .

With this approximation we were able to obtain the result that there are infinitely
often two prime numbers within 1/4 of the average spacing between primes.

We have recently found a better approximation. Let

PH(n) = (n+ h1)(n+ h2) · · · (n+ hk).

If the tuple (n + h1, n+ h2, . . . , n + hk) is a prime tuple, then PH(n) will have
k prime factors, which we can detect with the generalized von Mangoldt function

Λk(n) =
∑

d|n
µ(d)

(
log

n

d

)k

which is zero if n has more than k distinct prime factors. Our prime tuple
detecting function is

1

k!
Λk
(
PH(n)

)
,

where the normalization by 1/k! simplifies the statement of our results, and now
we take our new prime tuple approximation to be

ΛR(n;H) =
1

k!

∑

d|PH(n)
d6R

µ(d)

(
log

R

d

)k
.

Preliminary results indicate this approximation improves the previous results
on small gaps between primes, and also simplifies the proofs. There is also the
possibility that when utilizing the Elliott–Halberstam conjecture one obtains for
the first time primes closer than any small fraction of the average spacing.

1 The author was supported in part by NSF grant DMS-0300563 and FRG DMS-0244660.
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Work in progress on exponential sums and the Riemann zeta function

Martin N. Huxley

In the Bombieri-Iwaniec method for estimating exponential sums

2M∑

m=M+1

e
(
t F
( m

M

))
,

symmetry prevents cancellation. The symmetries appear as affine maps
(
X
Y

)
→
(
A B
C D

)(
X
Y

)
+

(
G
H

)

with integer coefficients A, B, C, D, G, and H, preserving the integer lattice,
acting on

X = TF
( x

M

)
, Y =

T

2M
F ′( x

M

)
.

For fixed A, B, C, D, the symmetries are parametrised by integer points close
to a certain plane curve, the resonance curve. The resonance curves can now be
regarded as translations of plane sections of a certain seven-dimensional manifold
in ten-dimensional space. The resonance curve usually has a cusp, so the manifold
is not uniformly smooth.

In the special case F (x) = − logx , corresponding to partial sums of the Rie-
mann zeta function in the normalisation ζ

(
1
2 + 2πiT

)
, the manifold is algebraic.

We can state some explicit formulas. We start with the magic matrix, an integer
matrix with ∣∣∣∣

A B
C D

∣∣∣∣ = 1, A > 0, B < 0, C > 0, D < 0 .

Now we choose two more integer matrices of determinant one with
(
f ′ e′

s′ r′

)
=

(
A B
C D

) (
f e
s r

)
,

where
r, s, r′, s′ > 0 ,

e

r
6
−BC +

√
−BC

AC
6
f

s
,

e′

r′
6
−BC −

√
−BC

−CD 6
f ′

s′
.
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This data determines the resonance curve, and in particular, the position of its
cusp. We want a bound on how often the cusp of the resonance curve is close to
an integer point. We have

r′

r
=

(1 + ∆)
(√

−BC + 1
)

A
,

s′

s
=

(1 + E)
(√

−BC + 1
)

A
,

where ∆ and E are small. Modulo a shift by an integer vector, the cusp occurs
at a point (y, z) where

y = 3∆r

√
2T (−B)(

√
−BC + 1)

A
√
−BC

,

z = 3Es

√
2T (−B)(

√
−BC + 1)

A
√
−BC .

An obvious difficulty is that T is a very large parameter, and the typical sizes
for the matrix entries are small powers of T , around T 1/7 . The coordinates of
the resonance curve have order of magnitude

√
T , very large, but smaller than T .

The resonance curves belong to the dignified arithmetic large-scale structure, not
to the volatile short-scale structure which can be modelled by random matrices.
This enables us to prove short interval means of the type

∫ T+U

T−U

∣∣ζ
(

1
2 + it

)∣∣2 dt = O
(
T 89/285U5/19 log2 T

)

for U = O
(
T 1/2004

)
; the exponents are by way of illustration using the results of

“Area, Lattice Points and Exponential Sums”, Oxford 1996, not the latest form
of the method, to appear in Proc. London Math. Soc. in 2004/5.

This work forms part of an INTAS research project, ref. 03-51-5070, on analytic and combinatoric

methods in number theory and geometry.
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The Riemann zeta function and the divisor problem

Aleksandar Ivić

Let d(n) denote the number of divisors of n , and let

∆(x) =
∑

n6x

d(n) − x(log x+ 2γ − 1)
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denote the error term in the Dirichlet divisor problem, and

E(T ) =

∫ T

0

∣∣ζ(1
2 + it)

∣∣2 dt− T

(
log
( T

2π

)
+ 2γ − 1

)

is the error term in the mean square formula for |ζ(1
2+it)| , where γ = 0.577215 . . .

is Euler’s constant. In view of F.V. Atkinson’s explicit formula [1] for E(T ) , the
divisor analogue of E(T ) is the function

∆∗(x) := −∆(x) + 2∆(2x) − 1
2∆(4x)

= 1
2

∑

n64x

(−1)nd(n) − x(log x+ 2γ − 1) .

M. Jutila [6] proved that
∫ T

0

(
E∗(t)

)2
dt ≪ T 4/3 log3 T ,(1)

E∗(t) := E(t) − 2π∆∗
( t

2π

)
.

We present a proof (see [4] for details) of the bound
∫ T

0

(
E∗(t)

)4
dt ≪ε T 16/9+ε,(2)

using (among other things) the recent result of Robert-Sargos [7] that the number

of integers N < n1, n2, n3, n4 6 2N such that
∣∣√n1 +

√
n2 −

√
n3 −

√
n4

∣∣ < δ
√
N

is ≪ε N
ε(N4δ + N2) (δ > 0) . It is indicated that, by similar methods, one can

also prove the new result
∫ T

0

∣∣E∗(t)
∣∣5 dt ≪ε T 2+ε.(3)

Note that (1) and (3) yield, by Hölder’s inequality, the bound (2). We also prove
that

R∑

r=1

(∫ tr+G

tr−G

∣∣ζ(1
2 + it)

∣∣2 dt
)4

≪ε T
2+εG−2 + RG4T ε,

provided that T 1/5+ε 6 G ≪ T, T < t1 < · · · < tR 6 2T, tr+1 − tr > 5G
(r = 1, · · · , R − 1) (see [3] for similar results). This bound yields a new proof of

Heath-Brown’s result [2] that
∫ T
0

∣∣ζ(1
2 + it)

∣∣12 dt≪ε T
2+ε . Power moments of

Jk(t, G) =
1√
πG

∫ ∞

−∞
|ζ(1

2 + it+ iu)|2ke−(u/G)2 du (t ≍ T, T ε 6 G≪ T ),

where k is a natural number, are investigated. The results that are obtained are

used to show how bounds for
∫ T
0 |ζ(1

2 + it)|2k dt may be obtained. In particular,

by employing the foregoing method, it is proved that
∫ 2T

T
Jm1 (t, G) dt ≪ε T

1+ε for

T ε 6 G 6 T if m = 1, 2 ; for T 1/7+ε 6 G 6 T if m = 3 , and for T 1/5+ε 6 G 6 T
if m = 4 .



Theory of the Riemann Zeta and Allied Functions 2455

Finally, we present the recent results obtained jointly with P. Sargos [5] on
higher moments of ∆(x) :

∫ X

1

∆3(x) dx = BX7/4 +Oε
(
X7/5+ε

)
,

∫ X

1

∆4(x) dx = CX2 +Oε
(
X23/12+ε

)
,

where B,C > 0 , improving on the exponents 45/23 and 47/28, respectively, of
K.-M. Tsang [8].
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A uniform bound for Hecke L-functions

Matti Jutila1 and Yoichi Motohashi

Let

Hj(s) =

∞∑

n=1

tj(n)n−s

be the Hecke L-function attached to the j-th Maass form ψj . Thus the coeffi-
cients tj(n) are the corresponding eigenvalues of the Hecke operators T (n) . The
form ψj is also an eigenfunction of the hyperbolic Laplacian, and we write the
eigenvalue as 1/4 + κ2

j . In this talk, a proof of the uniform estimate

Hj(
1
2 + it) ≪ (t+ κj)

1/3+ε, t > 0 ,

is outlined. This is not entirely new; in fact, this was shown for t ≫ κ3
j by

T. Meurman [4] and for t = 0 by A. Ivić [1], and we settled earlier the case

0 6 t≪ κ
2/3
j (see [3]). The whole assertion follows immediately from the following
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theorems (where αj = |ρj(1)|2/ cosh(πκj) in the standard notation of spectral
theory; see e. g. [5]).

Theorem 1. Let K be large and

G = (K + t)4/3K−1+ε, 0 6 t≪ K3/2−ε.

Then ∑

K6κj6K+G

αj |Hj(
1
2 + it)|4 ≪ GK1+ε.

Theorem 2.∑

K6κj6K+G

αj |Hj(
1
2 + it)|2 ≪ (GK + t2/3)1+ε, t > 0, 1 6 G 6 K.

In the proof of Theorem 1, the original spectral sum is first transformed into an
arithmetic form involving Kloosterman sums by the Bruggeman–Kuznetsov sum
formula, and after a Voronoi transformation we end up with the additive divisor
problem. This leads back to spectral theory by an identity due to the second
named speaker, and the new spectral sum is estimated either by the spectral large
sieve or by the following “hybrid” mean value estimate.

Theorem 3. ∑

K6κj62K

αjH
2
j (

1
2 )|Hj(

1
2 + it)|2 ≪ (K2 + t4/3)1+ε.

The proof is analogous to that of Theorem 1 except that, in connection with
the additive divisor problem, the contribution of the holomorphic cusp forms is
comparable with that of the Maass forms, a new phenomenon in applications of
the spectral theory.

The argument of the proof of Theorem 2 (see [2]) is somewhat different from
those sketched above, for the additive divisor problem plays now no role. Instead,
we need some other devices such as estimates for exponential sums.

The proof of Theorem 1 applies, with minor modifications, to the estimation of
the Rankin zeta function

L(s, ψ ⊗ ψj) = ζ(2s)

∞∑

n=1

tψ(n)tj(n)n−s,

where ψ is a fixed cusp form, holomorphic or real analytic. We get a spectral
mean square estimate which implies the bound

L(1
2 + it, ψ ⊗ ψj) ≪ κ

2/3+ε
j , 0 6 t≪ κ

2/3
j .

An analogous but weaker ”subconvexity estimate” has been obtained by P. Sarnak
[6], for fixed t .

1 Supported in part by grant no. 8205966 from the Academy of Finland.
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A refined nonvanishing theorem for automorphic L-functions on
GL(n,AQ)

Wenzhi Luo1

Let F be a number field, π an irreducible cuspidal automorphic representation
of GL(n,AF ) , let S be a finite set of places of F , and let β ∈ C . One asks
whether there always exist infinitely many primitive ray class characters ψ of
F such that ψ is unramified at the places in S and the twisted standard L-
function L(β, π ⊗ ψ) 6= 0 . When n = 1 or n = 2 the answer to this question is
affirmative, in view of the works of Goldfeld–Hoffstein–Patterson [3] and Rohrlich
[9] respectively, see also [2] and [8]. For n > 3 , Barthel and Ramakrishnan [1]
proved the same nonvanishing result under the condition ℜ(β) 6∈ [1/n, 1− 1/n] .

In the current work, we show that if the base field F = Q , then the answer
to the above question is affirmative for n = 3 . Moreover for n > 4 , the same
nonvanishing theorem is true under the condition ℜ(β) 6∈ [2/n, 1 − 2/n] .

Our improvement results from estimating the second moment of the dual sums
in the approximate functional equations, and it is inspired by the work [4]. This
type of nonvanishing theorems are closely related to the Selberg eigenvalue con-
jecture and the generalized Ramanujan conjecture, see [5], [6] and [7].

1 Supported in part by NSF grant DMS-0245258.
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The sum of the Möbius function

Helmut Maier

(joint work with Hugh L. Montgomery1 )

Let

M(x) =
∑

n6x

µ(n) .

Several authors have given estimates for M(x) on assumption of the Riemann
Hypothesis using the method of complex integration.

In 1912 Littlewood [2] proved that M(x) ≪ x1/2+ε . Landau [1] and Titchmarsh
[4] then replaced ε by a function ε(x) . Titchmarsh in 1927 showed that ε(x) =
1/log log x is admissible. The present authors improve on this by showing that

ε(x) = 1/(log x)
22/61

is admissible.

The improvement is due to the choice for the path of integration. In all cases
the crucial estimate is that of ∫

C

xs

sζ(s)
ds

where C is a curve close to the critical line.

The choice of the earlier authors for C was that of a simple curve resembling
a straight line. The present authors choose a piecewise linear path. The distance
of the vertical pieces from the critical line is large in regions where |ζ′(s)/ζ(s)|
assumes large values and small otherwise. The frequency of the occurrence of large
values is determined by a method inspired by work of Selberg [3] .

1 Supported in part by FRG NSF grant DMS-0244660.
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A Burgess-like bound for twisted L-functions

Philippe Michel

(joint work with Valentin Blomer and Gergely Harcos)

Here we discuss a subconvexity problem for L-functions of a modular form twisted
by a character: namely we prove the following

Theorem. Let f be an arbitrary modular form (either holomorphic or Maass)
of level D and some nebentypus, and let χ be a primitive character of conductor
q. Then for ℜs = 1/2 and any ε > 0

L(f ⊗ χ, s) ≪ε,f q
1/2−(1−2θ)/8 .

Here θ denotes any approximation towards the Ramanujan–Petersson conjecture
(the current best value of θ is 7/64 ) and the dependancy is at most polynomial
in the parameters of f.

The method of proof builds on the original amplification method of Duke–
Friedlander–Iwaniec, the Vonoroi summation formulae, Jutila’s variant of the δ-
symbol method and on the large sieve inequalities of Deshouillers–Iwaniec.

Changes of sign of ψ(x) − x

Hugh L. Montgomery1

(joint work with Ulrike M. A. Vorhauer2)

We assume the Riemann Hypothesis (RH) throughout. It is classical that there
is an absolute constant C > 1 such that ψ(x) − x changes sign in every interval
[x,Cx] for x > 1 . Since ψ(x) < x for 1 6 x < 19 , it is clear that C > 19 , and
it is likely that one could show that C = 19 works for all x > 1 . Our interest is
in the limit of constants C that work for all x > x0(C) .

First we consider the classical argument. Put

fm(y) = −
∑

ρ

eiγy

ρ(iγ)m
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where ρ runs over all the trivial non-trivial zeros of ζ(s) . From the explicit
formula for ψ(x) we know that

ψ
(
ey
)
− ey

ey/2
= f0(y) + o(1) .

Let 0 < γ1 6 γ2 6 · · · denote the ordinates of the zeros of the zeta function in
increasing order, and set ρj = 1/2 + iγj . We find that

1

|ρ1|γm1
<

∞∑

j=2

1

|ρj |γmj
for m = 1, 2 but that

1

|ρ1|γ3
1

>
∞∑

j=2

1

|ρj |γ3
j

.

Let θ be determined, 0 6 θ < 2π/γ1 , so that

eiγ1θ

ρ1(iγ1)3
< 0 ,

and put yr = rπ/γ1 + θ . Thus f3(y2r) > 0 and f3(y2r+1) < 0 , and moreover
the quantities |f3(yr)| are bounded away from 0 . Hence f3(yr+3)− 3f3(yr+2) +
3f3(yr+1) − f3(yr) is large in one sign, and f3(yr+4) − 3f3(yr+3) + 3f3(yr+2) −
f3(yr+1) is large in the opposite sign. It follows that f0(y) takes both (relatively)
large positive and negative values in an interval of the form [yr, yr+4] . Since
any interval [y, y + 5π/γ1] contains a subinterval of this form, it follows that
f0(y) takes large positive and negative values in any interval of length at least
5π/γ1 = 1.1113 . . . . Consequently, any C > exp(5π/γ1) = 3.038 . . . suffices, for
all sufficiently large x.

We propose now a new method by which the above bound can be improved. Let
k(y) be an even, nonnegative function of L1(R) with support contained in the
interval [−α, α] for some α > 0 . The sum f0(y) has a logarithmic singularity
at y = 0 , but for y > 0 it is uniformly convergent except in the neighborhood of
the logarithm of a prime power, where it is boundedly convergent. Thus we may
integrate term-by-term to see that

∫ α

−α
k(y)f0(Y + y) dy = −

∑

ρ

eiγY

ρ
k̂
(−γ

2π

)
.(1)

We want k to be sufficiently smooth so that the right hand side is absolutely
convergent, and even more, we want

∣∣∣
k̂(γ1/(2π))

ρ1

∣∣∣ >
∞∑

j=2

∣∣∣
k̂(γj/(2π))

ρj

∣∣∣ .(2)

We now redefine θ to fit the new situation: We choose θ , 0 6 θ < 2π/γ1 , so
that

eiγ1θ

ρ1
k̂(−γ1/(2π)) < 0 .
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We take yr = πr/γ1 + θ as before, but now with this new θ . From (1) and
(2) it follows that f0(y) takes a (relatively) large value of one sign in an interval
[yr − α, yr + α] , and a value of the opposite sign in [yr+1 −α, yr+1 +α] . Hence
f0(y) takes positive and negative values, bounded away from 0, in any interval of
the form [yr−α, yr+1+α] . Since any interval [y, y+2π/γ1+2α] contains such an
interval, it follows that f0 changes sign in any interval of length > 2π/γ1+2α .

We have not yet tried to optimize the choice of the kernel k , but even the
simple choice k(y) = max(0, 1 − |y|) allows us to reduce the constant 1.1113 . . .
to a value near 0.75 . It is possible that with a better choice of the kernel, one
might achieve a value nearer 0.5 .

Concerning the limitations of our approach we make the following observation:
Our argument would apply equally well to the function

f(y) =
cos γ1y

|ρ1|
− cos γ2y

|ρ2|
− cos γ3y

|ρ3|
+

cos γ4y

|ρ4|
+

cos γ5y

|ρ5|
− cos γ6y

|ρ6|
.

Since this function is positive for −0.197 6 y 6 0.197 , it follows that our method
is incapable of reaching the value 0.394 .

The function f0(y) becomes increasingly erratic as y increases, and it is unclear
to us whether one would expect the gaps between sign changes to tend to 0 or
not. Some good heuristics on this point would be valuable.

We close with a remark concerning computation. Odlyzko has placed the first
104 ordinates γj , to 9-digit accuracy, on his web page. Of course many more
zeros beyond that are known to lie on the critical line. To supplement this, it
is useful to note that certain sums over zeros can be computed to high accuracy,
without having to compute the zeros. For example,

(ξ′
ξ

)′
(s) = −

∑

ρ

1

(s− ρ)2
.(3)

Since ξ(s) and its derivatives are easily computed by the Euler–Maclaurin sum
formula, we find that

∑

ρ

1

(ρ− 1/2)2
= −0.04620998 . . . .

By repeatedly differentiating (3) we can similarly evaluate any sum of the form∑
ρ(ρ− 1/2)−2m , m = 1, 2, 3, . . . . Moreover, this evaluation is unconditional.

1 Supported in part by FRG NSF grant DMS-0244660.
2 Supported in part by FRG NSF grant DMS-0244660.
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On a property of the multiplicative order of a (mod p )

Leo Murata1

(joint work with Koji Chinen and Carl Pomerance)

For a fixed natural number a > 2 , let Da(p) denote the residual order of a in
(Z/pZ)∗ . P denotes the set of all prime numbers, and N denotes the set of all
natural numbers. It is known that the map Da fluctuates quite irregularly, and at
the same time, this funtion is (almost) surjective from P to N. In order to study
the property of the function Da more closely, we consider two types of sets:

Qa(x; k, ℓ) =
{
p 6 x : p ∈ P, Da(p) ≡ ℓ (mod k)

}
, 0 6 ℓ < k ∈ N,

M2(x) =
{
p 6 x : p ∈ P, D2(p) ∈ P

}
.

The natural density of Qa(x;k, ℓ) (joint work with K. Chinen)

First we can prove the existence of the natural density of Qa(x; k, j) for general
residue classes:

Theorem 1. ([1]–[4]) We assume the Generalized Riemann Hypothesis (GRH),
and assume a is not a perfect b-th power with b > 2 . Then, for any residue class
j (mod k) , the set Qa(x; k, j) has the natural density ∆a(k, j) , and the values of
∆a(k, j) are effectively computable.

Moreover, we can prove some number theoretical properties of ∆a(k, ℓ) as a
number theoretical function of k and ℓ .

Theorem 2. ([2]) (equi-distribution property) We assume GRH.
(I) If q is an odd prime and r > 2 , then for an arbitrary j , we have

∆a(q
r, j) =

1

q
∆a(q

r−1, j).

(II) If q = 2 and r > 4 , then for any j , we have the same relation.

It seems an interesting phenomenon that, for the remaining cases — when r is
“very small” — we actually find some irregularity. Here we remark that ∆a(k, ℓ)
does not have “multiplicativity”, so it seems difficult to obtain a explicit formula
for a general value of ∆a(k, j) .

An estimate for #M2(x) (joint work with C. Pomerance)

Here we take a = 2 . On the cardinality of the set M2(x) , Pomerance already
proved

Theorem 3. ([6]) We have unconditionaly

#M2(x) ≪ π(x)
log log log x

log log x
,
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and under GRH,

#M2(x) ≪ π(x)
log log x

log x
.

We can improve the latter estimate as follows:

Theorem 4. ([5]) We assume GRH. Then we have

#M2(x) ≪ π(x)
1

log x
.

Here we remark that, this estimate seems to be best possible. In fact, let us consider
the set

L(x) =
{
p 6 x :

p− 1

2
is also prime, p ≡ 7 (mod 8)

}
.

Then, it is easy to see that L(x) ⊂M2(x) , and it is (not yet proved but) conjec-
tured that

#L(x) ∼ C π(x)
1

log x

with a strictly positive constant C , which gives a lower bound of #M2(x) .

1 Supported in part by Grant-in-Aid for Scientific Research (C).
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Pair correlation and the Chebotarev Density Theorem

V. Kumar Murty1

(joint work with M. Ram Murty)

In this recent joint work we study a non-Abelian pair correlation hypothesis and
its implication for the distribution of primes.

Let K/F be a finite Galois extension of number fields with group G . For each
character χ of G, we have the associated Artin L-function L(s, χ) . It is defined
by an absolutely convergent Euler product for ℜ(s) > 1 and has a continuation
as a meromorphic function of s. Artin’s holomorphy conjecture (AC) asserts that
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L(s, χ) is entire except possibly for a pole at s = 1 of order < χ, 1G > the
multiplicity of the trivial character in χ .

Let us set

dχ = χ(1)[F : Q ]

and

Aχ = d
χ(1)Nfχ

F

the Artin conductor of χ . Let us set

w(u) =
4

4 + u2
.

Assuming the GRH (that is, the Riemann Hypothesis for all Dedekind zeta func-
tions), define

PT (Y, χ) =
∑

−T6γ1,γ26T

w(γ1−γ2) exp
(
2πi(γ1−γ2)Y

)
.

The pair correlation hypothesis (PC) in this context is the statement that for

0 < Y 6 Adχ logT,

we have the bound

PT (Y, χ) ≪A T (logAχ + dχ logT ) .

We apply this hypothesis to obtaining a sharper error term for the Chebotarev
Density Theorem. Let C ⊆ G be a conjugacy set (i.e. a union of conjugacy
classes) of G . Define

πC(x) = #
{
p prime of F : NF/Qp 6 x, (p,K/F ) ⊆ C

}
.

Then the Chebotarev Density Theorem asserts that

πC(x) ∼ |C|
|G| πF (x)

where πF (x) denotes the number of prime ideals of F of norm less than or equal
to x. This can be made effective with an explicit error term that depends on
various parameters of the fields (and of course on x). In applications, the theorem
is often applied to a family of fields and therefore, it is necessary that the implied
constants in any error estimate be absolute and that attention be paid to making
the dependence of the error term on field constants as optimal as possible.

Assuming AC, GRH and PC, we show that
∣∣∣πC(x) − |C|

|G| πF (x)
∣∣∣ ≪ n

1/2
F |C|1/2

( |G#|
|G|

)1/4

x1/2 logM(K/F )x

where G# denotes the number of conjugacy classes of G and M(K/F ) is a
“harmless” term depending on the primes of F that are ramified in K .

Observe that the quotient |G|/|G#| is the average size of a conjugacy class.
Observe also that if G is Abelian, this quotient is 1 .
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This result has many applications, but we shall indicate two. First, we discuss
Artin’s primitive root conjecture. For an integer a 6= ±1 , and not a square,
denote by Na(x) the number of primes p 6 x for which a is a primitive root
modulo p . Hooley showed that assuming the GRH,

Na(x) = c(a)
x

log x
+O

(
x

log log x

(log x)2

)
.

Using the GRH and PC (in this case, AC is known), we show that

Na(x) = c(a) Lix+O
(
x10/11(log x)2(log a)

)
.

Thus, we save a power of x in the error term.

Second, we consider one of the Lang–Trotter problems. Let f be a holomorphic
cusp form of weight k > 2 , level N that is a normalized eigenform for the Hecke
operators. Assume that the Fourier coefficients of f are rational integers and
denote by af (n) the n-th Fourier coefficient. Set

πf,a(x) = #
{
p 6 x : af (p) = a

}
.

We prove that for a 6= 0 , we have

πf,a(x) ≪ x3/4(logNx)1/2.

This improves on all earlier results. We also get a result for a = 0 .

1 Research partially supported by NSERC grant 44342

The Selberg Class: Linear and non-linear twists

Alberto Perelli1

(joint work with Jerzy Kaczorowski2 )

Selberg [10] introduced the following axiomatic class of L-functions, now called
the Selberg class S . A function F (s) belongs to S if

(i) (ordinary Dirichlet series) F (s) =
P

∞

n=1
a(n)
ns is absolutely convergent for σ > 1 ;

(ii) (analytic continuation) (s − 1)mF (s) is an entire function of finite order for some
integer m > 0 ;

(iii) (functional equation) F (s) satisfies a functional equation of type Φ(s) = ωΦ(1−s) ,

where f(s) = f(s) and

Φ(s) = Qs

rY
j=1

Γ(λjs + µj)F (s)

with r > 0 , Q > 0 , λj > 0 , ℜµj > 0 , and |ω| = 1 ;

(iv) (Ramanujan conjecture) a(n) ≪ nε for every ε > 0 ;

(v) (Euler product) log F (s) =
P

∞

n=1 b(n)n−s with b(n) = 0 unless n = pm with

m > 1 , and b(n) ≪ nϑ for some ϑ < 1/2 .
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The first three axioms are more of analytic nature, and we denote by S♯ the
extended Selberg class of the not identically vanishing functions satisfying axioms
(i) - (iii).

Here are few examples of functions (conjecturally) in S : the Dirichlet L-
functions L(s, χ) , the Hecke L-functions LK(s, χ) and suitably normalized func-
tions Lf(s) associated with modular forms are in S . The Artin L-functions
(assuming the Artin conjecture) and the automorphic L-functions (assuming the
Ramanujan conjecture) are also in S .

The Structure of S
One of the main problems in the Selberg class theory is: what does S contain?
The Main Conjecture asserts that

S is equal to the class of automorphic L-functions.

If true, this conjecture is very deep since it morally implies the Langlands’ conjec-
tures. Define the degree of F ∈ S by

dF = 2

r∑

j=1

λj ,

and let Sd = {F ∈ S : dF = d} . For example dζ = 1 , dL(·,χ) = 1 , dLf
= 2 ,

dζK = [K : Q] . Then the Main Conjecture splits as

Conjecture 1. (General converse theorem) For d ∈ N

Sd is equal to the automorphic L-functions of degree d .

Conjecture 2. (Degree conjecture) For d /∈ N

Sd = ∅ .

Remark. Conjecture 2 is expected to hold for S♯ as well, but is definitely false if
“ordinary Dirichlet series” in axiom (i) is replaced by “general Dirichlet series”.

Let D(λ, µ,Q, ω) be the vector space of general Dirichlet series satisfying (ii)
and (iii).

Theorem 1. ([8]) D(λ, µ,Q, ω) has an uncountable basis.

Conjectures 1 and 2 are true for 0 6 d < 5/3 . More precisely: S0 = {1} and
Sd = ∅ for 0 < d < 1 (Richert [9], Bochner [1], Conrey-Ghosh [3]; other proofs
have been given more recently). S1 = {L(s+ iθ, χ)} with χ a primitive Dirichlet
character and θ ∈ R (Kaczorowski–Perelli [5]); and Sd = ∅ for 1 < d < 5/3
(Kaczorowski-Perelli [6]).

Linear twists

The main tool for d > 1 are the linear twists

F (s, α) =

∞∑

n=1

a(n)

ns
e(−nα)
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where e(x) = e2πix. In order to study their analytic properties, let N,α > 0 and
K ∈ N . By the Mellin transform and the functional equation we get

FN (s, α) =

∞∑

n=1

a(n)

ns
e(−nα) e−n/N

= RN (s, α) + ωQ1−2s
∞∑

n=1

a(n)

n1−sHK

( n

Q2( 1
N + 2πiα)

, s
)

where

HK(z, s) =
1

2πi

∫

(−K− 1
2 )

r∏

j=1

Γ(λj(1 − s) + µj − λjw)

Γ(λjs+ µj + λjw)
Γ(w) zw dw

are hypergeometric functions. For s fixed, such functions were studied by
Braaksma [2]. Their behaviour depends on the value of

µ = 2

r∑

j=1

λj − 1 = dF − 1 ;

µ = 0 ( dF = 1 ) is a simpler, while µ > 0 ( dF > 1 ) is more complicated due
to the presence of the “exponential part”. Hence, development of a two-variables
theory is required; since N → ∞ , the main interest is for HK(−iy, s) with
y = n/(2πQ2α) . Define the conductor qF and the shift θF by

qF = (2π)dFQ2
r∏

j=1

λ
2λj

j and θF = ℑ
(
2

r∑

j=1

(µj − 1
2 )
)
.

Moreover, the critical value is defined by nα = qFd
−dF

F αdF , and we write a(nα) =
0 if nα /∈ N . Further, let

κ =
1

d− 1
, A = (d− 1) q−κF , s∗ = κ(s+

d

2
− 1 + iθF ) .

Then the properties of the linear twists for 1 6 d < 2 are summarized by

Theorem 2. ([5]) Let F ∈ S♯1 and α > 0 . Then F (s, α) is entire if a(nα) = 0 ,
while if a(nα) 6= 0 then F (s, α) has at most simple poles at sk = 1 − k − iθF
(k = 0, 1, ...) with non-vanishing residue at s = s0 .

Theorem 3. ([6]) Let 1 < d < 2 , F ∈ S♯d , and α > 0 . Then

F (s, α) = eas+b
∞∑

n=1

a(n)

ns∗
e
(
A(n/α)κ

)
+G(s, α)

where a, b are suitable constants, and G(s, α) is holomorphic for σ∗ > σa(F )−κ .

Note that σ∗ > σ for σ > 1/2 and 1 < d < 2 . This is important, and
immediately proves the non-existence of polar functions in the range 1 < d < 2 .

Non-linear twists
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For F ∈ S♯d with d > 0 consider the non-linear twists

F (s, α) =
∞∑

n=1

a(n)

ns
e
(
− n1/dα

)
(α > 0) .

It turns out that Theorem 2 is a special case of the following general result for
non-linear twists.

Theorem 4. ([7]) Let d > 0 , F ∈ S♯d and α > 0 . Then F (s, α) is entire
if a(nα) = 0 , while if a(nα) 6= 0 then F (s, α) has at most simple poles at

sk = d+1
2d − k

d − i θF

d (k = 0, 1, ...), with non-vanishing residue at s = s0 .

Bounds on vertical strips, uniform for F (s) in suitable families F (roughly,
bounded degree and µ-coefficients) can also be obtained. We conclude with an
application of Theorem 4; see [7] for other applications.

For φ(u) smooth with compact support and F ∈ S♯d consider the non-linear
exponential sum

SF (x, α) =

∞∑

n=1

a(n)e
(
− n1/dα

)
φ(n/x) .

Then an asymptotic expansion of type

SF (x, α) =
∑

k

ck(F, α)xsk +O(x−A)

can be obtained. This extends and improves results by Iwaniec-Luo-Sarnak [4]
for GL2 L-functions, obtained by a different method. Uniform versions are also
obtainable.

1 Supported in part by MIUR grant Cofin2002.
2 Supported in part by the Foundation for Polish Science and by KBN grant 1 PO3A 008 26.
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On a sum involving derivative of ζ(s) over simple zeros

Ayyadurai Sankaranarayanan

(joint work with Maubariz Garaev)

For any positive integer m let ζ(m)(s) denote the mth derivative of ζ(s), N (1)(T )
and N(T ) denote the number of simple and the total number of zeros ρ = β+ iγ
of ζ(s) in the rectangle 0 6 β 6 1, 0 < γ < T respectively. The Riemann
Hypothesis (RH) asserts that all the non-trivial complex zeros of ζ(s) are on the
critical line ℜ s = 1/2 .

On p. 374 of Titchmarsh’s book [12] revised by D. R. Heath-Brown, it is proved
that the series

∑∣∣∣ρζ(1)(ρ)
∣∣∣
−1

(1)

diverges, assuming RH, and that all the zeros of ζ(s) are simple. In [7], S. M.
Gonek studies the asymptotic formula for the quantity

∑

0<γ<T

ζ(µ)
(
ρ+ iαL−1

)
ζ(ν)

(
1 − ρ− iαL−1

)

(with L = 1
2π log T

2π , |α| 6 L/2 ). Assuming RH, one deduces from his asymptotic
formula

∑

0<γ<T

∣∣∣ζ(µ)(
1

2
+ iγ)

∣∣∣
2

∼ N(T )
( µ

µ+ 1

)2
(

1

T

T∫

0

∣∣ζ(µ)(
1

2
+ it)

∣∣2dt
)
.(2)

One can combine (2) for µ = 1 with Heath-Brown’s estimate [8] (see also [4] and
[9])

N (1)(T ) >
1

3
N(T )

or even with the better estimate of Conrey [3]

N (1)(T ) >
2

5
N(T ) ,

assuming RH, to obtain the estimate
∑⋆

|γ|6T

∣∣ρζ(1)(ρ)
∣∣−1 ≫ (log T )1/2(3)

where the star means that the summation is taken over the simple zeros only.
Estimate (3) was improved in [5, 6] to the unconditional result

∑⋆

|γ|6T

∣∣ρζ(1)(ρ)
∣∣−1 ≫ (logT )3/4.
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From the arguments of [6] it follows that

∑⋆

|γ|6T

∣∣ζ(1)(ρ)
∣∣−1 ≫ T (logT )−1/4.

We discussed two methods of proving the following result:

Theorem. If all the zeros of ζ(s) are simple, then the estimate

∑

|γ|6T

∣∣ζ(1)(ρ)
∣∣−1 ≫ T(4)

holds and we do not need the Riemann Hypothesis to uphold the above inequality.
Here the sum runs over all the zeros of the Riemann zeta function.

Method 1. There are two central ideas: The first is to use Perron’s formula with
small values of x in contrast to the usual usage of it with large values of x .
The second idea is the crucial application of a theorem of K. Ramachandra and
A. Sankaranarayanan (see [10]) which is an unconditional variant of a conditional
result of J. E. Littlewood.

Method 2. There is a direct approach to this problem suggested by H. L. Mont-
gomery. This method is quite simple and elegant through which we can avoid
completely the usage of Perron’s formula in this situation.
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Siegel zeros and number fields

Harold M. Stark

A CM field K is a totally complex quadratic extension of a totally real field.
Improvements in the Brauer–Siegel theorem [1], [2] in the 1970’s led to the conjec-
ture that there are only finitely many CM fields of any fixed class-number and also
proofs of this conjecture under GRH, thus no Siegel zeros, under Artin’s conjec-
ture on entire L-functions, and unconditionally when K/Q is normed. In 2000, it
was shown that h(K) → ∞ under the modified generalized Riemann hypothesis
(MGRH): If ζK(β+ iγ) = 0 then either β = 1/2 or γ = 0 . Thus, MGRH allows
Siegel zeros to exist. This means the obstruction lies in the possible existence of
complex zeros of ζK(s) with β > 1/2 or γ 6= 0 .

The question naturally arises as to where the zeros are and how many there
are. On investigating this, I have come across a very interesting series of related
harmonic analysis questions of which I give two here. In both cases we are dealing
with a generalized trigonometric polynomial

TN(x) =

N∑

n=1

an cos(θnx)

where θ1, . . . , θN are real and a1, . . . , aN are positive real numbers.

Question 1 (The unrestricted case). Suppose M is a large positive real number
and that TN(x) 6 0 for 0 < X1 6 x 6 MX1 . Find a lower bound for N in
terms of M.

Question 2 (The restricted case). We now assume each an is in the range
0 < an 6 1 and that TN (x) 6 −1/2 for 0 < X1 6 x 6 MX1 . Again, find a
lower bound for N in terms of M.

We have essentially the best possible answer for Question 2:

N > M/L where L is a power of logM , and examples exist with N < ML .

For Question 1, the best I can prove so far is N > M1/2/L .
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Joint universality of L-functions

Jörn Steuding

In 1975 Voronin [4] proved a remarkable analytical property of the Riemann
zeta function. Roughly speaking, Voronin’s universality theorem states that any
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non-vanishing analytic function can be approximated uniformly by certain purely
imaginary shifts of the zeta function ζ(s) in the critical strip. More precisely, let
0 < r < 1/4 and suppose that g(s) is a non-vanishing continuous function on the
disc |s| 6 r which is analytic in the interior. Then, for any ε > 0 ,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

|s|6r

∣∣ζ
(
s+ 3/4 + iτ

)
− g(s)

∣∣ < ε

}
> 0 .

Meanwhile, it is known that there exists a rich zoo of Dirichlet series having some
universality property. Recently, Steuding [3] proved universality for a subclass of

the Selberg class. This subclass S̃ differs from the Selberg class in two additional
axioms. A Dirichlet series

L(s) =

∞∑

n=1

a(n)

ns

from the Selberg class lies in S̃ if it satisfies the following two axioms:

• Polynomial Euler product: For 1 6 j 6 m and each prime p there
exist complex numbers αj(p) such that

L(s) =
∏

p

m∏

j=1

(
1 − αj(p)

ps

)−1

.

• Mean-square: There exists a positive constant κ such that

lim
x→∞

1

π(x)

∑

p6x

|a(p)|2 = κ .

The class S̃ contains the Riemann zeta function, Dirichlet L-functions, Dedekind
zeta functions, Hecke L-functions, L-functions associated with newforms, and
Rankin-Selberg L-functions If one is willing to accept some widely believed con-

jectures, then a large class of functions belongs to S̃ .

Voronin [5] also obtained joint universality for Dirichlet L-functions, that is
simultaneous uniform approximation by a family of L-functions associated with
non-equivalent characters; the non-equivalence of the characters assures a certain
independence of the related L-functions, and this independence is necessary for
joint universality. Recently, Laurinčikas & Matsumoto [2] proved a joint univer-
sality theorem for L-functions associated with newforms twisted by characters.

It is natural to ask for joint universality in the Selberg class. However, all known
jointly universal families are given by (multiplicative or additive) twists of a single
universal Dirichlet series by characters. In some sense, Selberg’s Conjecture B
states that primitive functions form an orthonormal system in the Selberg class.
As proved by Bombieri & Hejhal [1], this implies the statistical independence of
primitive functions. There is some hope that this can be used as substitute for
the independence induced by non-equivalent characters in order to prove joint
universality for distinct primitive L-functions from the Selberg class.
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For 1 6 j 6 m , assume that the L-functions

Lj(s) =

∞∑

n=1

aLj (n)

ns

from S̃ satisfy the orthogonality condition

∑

p6x

aLj (p) aLk
(p)

p
= δjkκj log log x+O(1) ,(1)

where κj is a positive constant depending on Lj , and δjk = 1 if j = k and
δjk = 0 otherwise. This condition is known to hold for several families of L-

functions in S̃ , for example for Dirichlet L-functions associated with pairwise
non-equivalent characters; it is expected to hold for any two distinct primitive L-
functions from the Selberg class (Selberg’s Conjecture B). Moreover, (1) is closely

related to the axiom on the mean square in the definition of S̃ .

Conjecture. Suppose that L1, . . . ,Lm are elements of S̃ satisfying condition
(1). For 1 6 j 6 m let gj(s) be a continuous function on Kj which is non-
vanishing in the interior. Here Kj is a compact subset of the strip

D := {s : max {1/2, 1 − 1/d} < ℜs < 1}
with connected complement, and d is the maximum of the degrees of the Lj (a
quantity determined by the functional equation for Lj ). Then, for any ε > 0 ,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

16j6m
max
s∈Kj

∣∣Lj(s+ iτ) − gj(s)
∣∣ < ε

}
> 0 .
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The error term in the mean square formula for ζ(1/2 + it)

Kai Man Tsang

(joint work with Yuk-Kam Lau)

Let ∆(x) (for x > 1 ) be the error term in the dirichlet divisor problem, that is,

∆(x) =
∑

n6x

d(n) − x log x− (2γ − 1)x .
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Let

E(T ) =

∫ T

0

∣∣ζ
(

1
2 + it

) ∣∣2dt− T log
T

2π
− (2γ−1)T

be the error term in the mean square of ζ(1/2 + it) . These are well-known error
terms in analytic number theory and a lot of researches have been devoted to them.
In 1992, Heath-Brown [1] found a new approach to show that both x−1/2∆(x2)
and t−1/2E(t2) possess limiting distributions. His method, indeed, applies to
functions F (t) which satisfy the following hypothesis.

Hypothesis (H). There exists a sequence a1(t), a2(t), . . . of continuous real-
valued functions of period 1 such that

lim
N→∞

lim sup
T→∞

1

T

∫ T

0

min

{
1,
∣∣∣F (t) −

∑

n6N

an(γnt)
∣∣∣
}
dt = 0 .

Here γ1, γ2, · · · are constants which are linearly independent over the rationals.

In view of the Voronoi formula for ∆(x) and the Atkinson formula for E(T ) ,
both ∆(x) and E(T ) satisfy this hypothesis.

Theorem 1. (Heath-Brown, [1]) If F (t) satisfies the above Hypothesis (H) with
the an(t)’s satisfying the additional conditions:

(i)

∫ 1

0

an(t)dt = 0 for n = 1, 2, 3, . . . ;

(ii)

∞∑

n=1

∫ 1

0

an(t)
2dt < ∞;

(iii) max
06t61

|an(t)| ≪ n1−µ and lim
n→∞

nµ
∫ 1

0

an(t)
2dt = ∞ for some constant

µ > 1 ,

then there exists a function f(α) for which

1

T
meas

{
t ∈ [0, T ] : F (t) ∈ I

}
→
∫

I

f(α) dα

on each interval I as T → ∞ . Furthermore, the probability density function
f(α) satisfies

dk

dαk
f(α) ≪A,k

(
1 + |α|

)−A

for any constant A and k = 0, 1, 2, . . . .

Theorem 2. [2] Under the same assumptions in the above theorem, we have, for
any natural number k ,
∫ ∞

−∞
αkf(α) dα =

∑

16r6k

∑

ℓ1+···+ℓr=k
ℓ1,··· ,ℓr>1

k!

ℓ1!ℓ2! · · · ℓr!
∑

16n1<n2<···<nr

r∏

i=1

∫ 1

0

ani(t)
ℓidt.

The innermost sum here converges absolutely.



Theory of the Riemann Zeta and Allied Functions 2475

Using Theorem 2, we show that the density function f(α) for the error term
∆3(x) in the Pilz divisor problem satisfies∫ ∞

−∞
α3f(α) dα 6= 0 .

Hence f(α) is asymmetric.

Instead of the k-th moments, one can consider more generally the mean value
∫ X

0

F (αx)F (βx)F (γx) · · ·︸ ︷︷ ︸
k copies

dx ,

where α, β, γ, · · · are fixed positive constants. The simplest case is k = 2 , and
we have the following theorem.

Theorem 3. We have

D∆(α) = lim
X→∞

1

X3/2

∫ X

1

∆(αx)∆(x) dx =
α1/4

6π2

∑

n,m>1
αn=m

d(n)d(m)

(nm)3/4
.

DE(α) = lim
T→∞

1

T 3/2

∫ T

0

E(αt)E(t) dt =

(
2

π

)1/2
α

3

1/4 ∑

n,m>1
αn=m

(−1)n+md(n)d(m)

(nm)3/4
.

Clearly, D∆(α) = 0 if α is irrational, and D∆(α) is positive when α is a
positive rational number. The same conclusion holds for DE(α) .

It is more interesting when we take a step further to consider mean values of
triple products ∫ X

0

F (αx)F (βx)F (x) dx ,

where F is ∆ and E respectively.

Theorem 4. For any α, β > 0 , we have

lim
X→∞

X−7/4

∫ X

1

∆(αx)∆(βx)∆(x) dx =
(αβ)1/4

28π3

∑

√
αn±

√
βm±

√
k=0

n,m,k>1

d(n)d(m)d(k)

(nmk)3/4
,

which is positive or zero, according as the equations
√
αn±√

βm±
√
k = 0 have

solutions in natural numbers n,m, and k or not.

Theorem 5. For any α, β > 0 we have

lim
T→∞

T−7/4

∫ T

0

E(αt)E(βt)E(t) dt

=
1

7
√

2

( 2

π

)3/4

(αβ)1/4
∑

√
αn±

√
βm±

√
k=0

n,m,k>1

(−1)n+m+k d(n)d(m)d(k)

(nmk)3/4
.
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If we denote the above sum on the right hand side by C(α, β) , then C(1, 1) > 0 .
However, for any integer h > 5 , C

(
22/3, (1 + 21/3)22h

)
< 0 . Furthermore, there

exist real numbers θ , arbitrarily close to 1, for which C(θ, θ) < 0 .

Remark. Comparing Theorems 4 and 5, we see a marked distinction between
the behaviour of ∆(x) and E(t) . This distinction originates from the extra factor
of (−1)n in each term of the Atkinson formula for E(t) .

Lattice points in circles

Let

Pα(x) =
∑

|n−α|6√
x

n∈Z2

1 − πx ,

the error term in the counting of lattice points in the circle {z : |z − α| 6
√
x}

whose center is at the fixed point α . Then, similar to the case for ∆(x) , we have

Pα(x) = −x
1/4

π

∑

m6X

rα(m)m−3/4 cos
(
2π

√
mx+ π

4

)
+O

(
Xε
)

for X < x 6 4X , where for α = (a, b)

rα(m) =
∑

u,v∈Z

u2+v2=m

cos(2πau) cos(2πbv) .

Hence r0(m) = r(m) , the number of ways of writing m as the sum of two squares.
For α = (1/2, 1/2) , rα(m) = (−1)mr(m) . Similar to Theorems 4 and 5 above,
we show that P0(x) and Pα(x) for α = (1/2, 1/2) behave quite differently in
certain mean values of triple products.
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A variance for k-free numbers in arithmetic progressions

Robert C. Vaughan1

Let k > 2 and µk denote the characteristic function of the k-free numbers, and
define

Qk(x; q, a) =
∑

n6x

n≡a(mod q)

µk(n) , Qk(x) = Qk(x; 1, 0)
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f(q, a) =

∞∑

m=1
(mk,q)|a

µ(m)(mk, q)

mkq
,

V (q) =

q∑

a=1

(
Qk(x; q, a) − xf(q, a)

)2
, V (x,Q) =

∑

q6Q

V (q) .

As promised on page 796 of Vaughan [5], we return to the study of V (x,Q) . It is
a straightforward calculation to show that

f(q, a) = lim
x→∞

x−1Qk(x; q, a) ,

and the variance V (x,Q) has been studied by several authors, mostly in the
special case of squarefree numbers, k = 2 . For general k > 2 in Brüdern, et al
[1] (Lemma 2.2), it is shown that

V (x,Q) ≪
{
x

2
k +εQ2− 2

k , when 1 6 Q 6 x,

Q2 log(2Q), when Q > x,
(1)

it being obvious from (1) above that the gk(q, a) featuring in (2.6) of that paper
satisfy

ζ(k)−1gk(q, a) = lim
x→∞

x−1Qk(x; q, a) = f(q, a).

Theorem 1.2 of Vaughan [5] concerns the distribution of general sequences. In the
special case an = µk(n) it is known that it is possible to take Ψ(x) = x1−1/k and
so, when

√
x log(2x) < Q 6 x ,

V (x,Q) = x2F(x/Q) +O
(
x

3
2 log x+ x

4
3+ 2

3k (log x)
4
3

)
(2)

where

F(y) ∼ cky
1
k−2 as x→ ∞(3)

and ck is a positive constant.

For the particular case of k-free numbers the part of the hypothesis of that
theorem expressed by (1.12) in [5], can be replaced by a more precise statement
of the form

∑

q>y

g(q) = c∗ky
1
k −1 +O

(
yθk
)

where θk <
1
k − 1 and this leads to the conclusion (2) with (3) replaced by

F(y) = cky
1
k−2 +O

(
y

1
k−2−δk

)

where δk > 0 .

In the special case of squarefree numbers, following earlier work of Orr [3] &
[4], Warlimont [6] and Croft [2], Warlimont [7] has shown that when 1 6 Q 6 x ,

V (x,Q) = x2F(x/Q) +O
(
x

3
2 (log x)

7
2

)
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where

F(y) = cky
−3/2 +O

(
y−

7
4 exp

(
− c̃k(log y)1/5

))
.

In all of the methods used hitherto to establish the asymptotic formula for
V (x,Q) , even in the special case k = 2 , there is a natural limit to the method
which forces the error term to be at least as large as x1+1/k log x (and when k > 2
there is no published literature with the exponent of x as small as 1 + 1/k ). In
this memoir it is shown how this limitation can be overcome.

Theorem. There are positive constants c∗k , c̃k such that, whenever Q 6 x ,

V (x,Q) = ckx
1/kQ2−1/k +O

(
x

1
2kQ2− 1

2k exp
(
− c∗k

(log 2x/Q)3/5

(log log 3x/Q)1/5

))

(4)

+O

(
x1+1/k exp

(
− c̃k(log x)3/5

(log log x)1/5

))

where

ck =
2C1k

2
(
− ζ(1/k − 1)

)

ζ(k)2(2k − 1)(k − 1)

and

C1 =
∏

p

(
1 +

(p− 1)2
∑k−1
j=1 p

(2− 1
k )j − 2p2k + p2k−1 + 2pk+1 − p

p2(pk − 1)2

)
.(5)

The approximation (4) is superior to (1) when Q ≫ x1/2, and the main term
in (4) dominates the error terms when x/Q is large and Q is large compared
with

Q1 = x
k

2k−1 exp
(
− k

2k−1
c̃k(log x)3/5(log log x)−1/5

)
.(6)

One curiosity is that improvements in both error terms would follow from a
better zero-free region for the Riemann zeta function alone.

The core of the proof depends heavily on Brüdern et al [1] where excellent
bounds for ∑

n6x

µk(n)e(nα) ,

and related expressions, are obtained.

1 Research supported in part by NSA grant, no. MDA904-03-1-0082.
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Analogues for results of Deshouillers and Iwaniec

Nigel Watt

Let Γ = Γ0(q), a Hecke congruence subgroup. Take B = B(q) = {u1(z), u2(z), . . .}
to be an orthonormal basis for the space that is spanned by the non-holomorphic
cusp forms for Γ with Petersson inner-product. Each uj(z) is an eigenfunction
of the hyperbolic Laplacian operator: ∆uj = λjuj , where λj = 1/4 + κ2

j and, as

shown by Kim and Sarnak in [3], either κj ∈ R or 0 < iκj 6 7/64 = ϑ (say).

In 1982 Deshouillers and Iwaniec established a “large-sieve” upper-bound for

Sa,q,K(b, N) =

(q)∑

|κj |6K

1

cosh(πκj)

∣∣∣
∑

N/2<n6N

bnρja(n)
∣∣∣
2

,

where K,N > 1 , a is a cusp for Γ , b = (bn) is an arbitrary complex sequence,
and ρja(n) is the n-th Fourier coefficient of uj(z) at the cusp a (see [1], Theorem
2). More recently, in the course of working on mean values of Dirichlet’s L-
function, Glyn Harman, Kam Wong and I have needed upper bounds for

(q)∑

|κj |6K

1

cosh(πκj)

∣∣∣
∑

N/2<n6N

bnρj∞(Dn)
∣∣∣
2

= S∞,q,K(b〈D〉, DN),

where D ∈ N can be large and where, for n ∈ N , b
〈D〉
n = bn/D , if n ≡ 0

(mod D) , and 0 otherwise. Given that B is chosen so that each uj(z) is an
eigenfunction of all Hecke operators Td with (d, q) = 1 , the multiplicative nature
of ρj∞(Dn) permits exploitation of Kim and Sarnak’s bound, |τj(d)| 6 dϑτ(d)
(from [3]). This leads to a proof that, if ε > 0 then, for (q,D) = 1 and K,N > 1 ,
one has

S∞,q,K(b〈D〉, DN) ≪ε D
2ϑτ4(D)

(
K2 + q−1N1+ε

) ∑

N/2<n6N

|bn|2.
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This bound helps us to show (in [2], Theorem 1) that, for T > D3/5 , one has

1

φ(D)T

∑

χ mod D

T∫

−T

∣∣L
(

1
2 + it, χ

)∣∣4
∣∣∣∣
∑

m6M

amχ(m)m−it
∣∣∣∣
2

dt

≪ε

(
1 +Dϑ(DT )−1/2M2

)
T εM max

m6M
|am|2 .

The bound for S∞,q,K(b〈D〉, DN) can be improved “on average” (over the level
q ), provided that suitable factorisations of D exist.

Theorem. If no prime factor of D is greater than Dε , then
∑

q6Q

S∞,q,K(b〈D〉, DN)

≪ε

(
Q+D2ϑN + (DN)2ϑ

(
min

(
Q,

√
DN

))1−4ϑ
)(
D2QN

)ε
K2

∑

N/2<n6N

|bn|2 .

The idea of averaging over the level was introduced in Deshouillers and Iwaniec’s
paper [1]. The above theorem is essentially an analogue of one of their results,
([1], Theorem 6). For example, where Deshouillers and Iwaniec use the bound

Y 2iκj 6 Y 2ϑ ( Y > 1 ),

with ϑ = 1/4 (Selberg’s bound λj > 3/16 being the best available when [1] was
written), I use instead the analogous bound

τ2
j (d) 6 d2ϑτ2(d) ≪ε d

2ϑ+ε ( (d, q) = 1 ).

I also use the Bruggeman–Kuznetsov and Kuznetsov summation formulae in a way
that parallels their use in [1].

It is hoped to apply the above theorem (and a stronger result that applies in
special cases) in future work on a mean-value of sums involving Dirichlet charac-
ters. This would be part of some proposed joint work with Glyn Harman, aimed
at adding to what is known regarding the abundance of Carmichael numbers.
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An application of triple correlations of a divisor sum to the
distribution of primes

Cem Yalçın Yıldırım

(joint work with Daniel A. Goldston1)

We use the truncated divisor sums

λR(n) =
∑

r6R

µ2(r)

φ(r)

∑

d|(n,r)
dµ(d)

to study the distribution of primes in short intervals. Goldston (unpublished)
showed that these divisor sums arise from the local approximations used in the
application of the circle method to the twin primes problem. Furthermore, Gold-
ston observed that among sums of the kind

∑

d|n
d6R

a(R, r) with a(R, 1) = 1, a(R, r) ∈ R ,

λR(n) is the best approximation to von Mangoldt’s prime counting function Λ(n)
in an L2-sense. This involves a minimization which was solved in a more general
setting by Selberg [8] for his upper bound sieve. As can be seen from our results, on
average these divisor sums tend to behave similarly to Λ(n) does or is conjectured
to do.

The pure and mixed (with one factor of Λ(n) ) correlations we are interested
in evaluating are

Sk(N, j,a) =
N∑

n=1

λR(n+ j1)
a1λR(n+ j2)

a2 · · ·λR(n+ jr)
ar

and

S̃k(N, j,a) =

N∑

n=1

λR(n+ j1)
a1λR(n+ j2)

a2 · · ·λR(n+ jr−1)
ar−1Λ(n+ jr) .

Here j = (j1, j2, . . . , jr) , a = (a1, a2, . . . , ar) , the ji ’s are distinct integers,
ai > 1 , and

∑r
i=1 ai = k . In the case of the mixed correlations we assume that

r > 2 and take ar = 1 .

For k = 1 and k = 2 these correlations have been evaluated before ([1],
[6]). We calculate the cases with k = 3 , the triple correlations. Our method
consists of evaluating the relevant sums straightforwardly. In the case of the
mixed correlations an important ingredient is the Bombieri–Vinogradov theorem,
and this brings a further restriction on the size of R . We obtain for 1 6 k 6 3 ,
when maxi |ji| 6 N1−ε and R≫ Nε ,

Sk(N, j,a) =
(
Ck(a)S(j) + o(1)

)
N(logR)k−r +O

(
Rk
)
,

where Ck(a) has the values C1((1)) = 1, C2((2)) = 1, C2((1, 1)) = 1, C3((3)) =
3/4, C3((2, 1)) = 1, C3((1, 1, 1)) = 1 . For 2 6 k 6 3 , when maxi |ji| 6 N1/(k−1)−ε
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and Nε ≪ R ≪ N1/(2(k−1))−ε ,

S̃k(N, j,a) =
(
S(j) + o(1)

)
N(logR)k−r.

Here

S(j) =
∏

p prime

(
1 − 1

p

)−r(
1 − νp(j)

p

)
,

and νp(j) is the number of distinct residue classes modulo p that the ji ’s occupy.
Recall that the Hardy–Littlewood prime r-tuple conjecture [4] states

N∑

n=1

Λ(n+ j1)Λ(n+ j2) · · ·Λ(n+ jr) ∼ S(j)N

when S(j) 6= 0 . For r = 1 this reduces to the Prime Number Theorem which is
the only settled case.

The above results agree with those obtained in our former work [3] which used
the truncated divisor sums

ΛR(n) =
∑

d|n
d6R

µ(d) log
(R
d

)
,

and therefore as a corollary one has as in [3]

lim inf
n→∞

(pn+r − pn
log pn

)
6 r −

√
r

2
.

In fact, our results for the correlations are more detailed and with better error
terms than their statement above for which a concise form covering all the cases
was adopted. If the Generalized Riemann Hypothesis is assumed, so that Hoo-
ley’s estimate [5] can be used instead of the Bombieri–Vinogradov theorem, the
results obtained with λR(n)’s also permit us to obtain the following Ω±-result
for the variation in the error term in the prime number theorem. As usual we
write ψ(N) =

∑
n6N Λ(n) . For any arbitrarily small but fixed η > 0 , and for

sufficiently large N , with log14N 6 h 6 N1/7−ε and writing h = Nα , there
exist n1, n2 ∈ [N+1, 2N ] such that

ψ(n1 + h) − ψ(n1) − h >
(√1−5α

2
− η
)
(h logN)1/2

ψ(n2 + h) − ψ(n2) − h < −
(√1−5α

2
− η
)
(h logN)1/2 .

It should be noted that an important ingredient in achieving this result is a recent
theorem of Montgomery and Soundararajan [7] which makes it possible to evaluate
the sum ∑

16j1,j2,j36h

distinct

S
(
(j1, j2, j3)

)
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with a good error term.

This is a new development in the sense that formerly our knowledge under the
Generalized Riemann Hypothesis was restricted to results for the absolute value
of this variation. The strongest of such results were attained in [2] in the more
general case of primes in an arithmetic progression which yielded as a special case

max
N<n62N

|ψ(n+ h) − ψ(n) − h| ≫ε (h logN)1/2

for 1 6 h 6 x1/3−ε . In fact the general case was also obtained by using the
correlations of λR(n)’s. There only the first and second level correlations were
employed, nevertheless in the more general case of n ∈ [N + 1, 2N ] running
through an arithmetic progression n ≡ a(mod q) .

Since the λR(n)’s are related to the Selberg sieve, our results for the correlations
may turn out to be of use in other problems as well.

1 Supported in part by NSF grant DMS-0300563 and FRG DMS-0244660.
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The Mean values of L-functions

Qiao Zhang

Let f be an automorphic form over GLn , then a central problem in analytic
number theory is to estimate the mean values

∑

|D|6x
D fund. disc.

L
(

1
2 , f ⊗ χD

)
(1)

and

(2)

∫ T

0

∣∣L
(

1
2 + it, f

)∣∣2 dt .
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In some special cases, this problem has been extensively studied with fruitful
results and important arithmetic applications.

In this talk, we demonstrate how to attack these mean values through a different
approach. With complex Tauberian theorems in mind, we consider the (discrete
and continuous) Dirichlet series

Zf
(

1
2 , w

)
=

∞∑

D=−∞
D fund.disc.

L

(
1

2
, f ⊗ χD

)
|D|−w (ℜw ≫ 1),

Zf (w) =

∫ ∞

1

∣∣L
(

1
2 + it, f

)∣∣2 t−wdt (ℜw ≫ 1)

and study their analytic properties, in particular their analytic continuations be-
yond ℜw = 1 and polar behaviours at the point w = 1 .

For the integral mean value (2), our goal is to express Zf (w) (asymptotically)
as an inner product of f with a certain kernel function, by directly exploring
the symmetries satisfied by f itself, so that it suffices to study the analytic
properties of this kernel function alone. This realizes and generalizes the ideas
suggested by Good in his 1984 paper. A distinctive characteristic of this ap-
proach is that we have avoided delicate discussions of the arithmetic nature of
those Fourier coefficients, such as estimates of the generalized “additive divisor
problems”

∑
n6x λf (n)λf (n + r) . Instead, we reduce the problem to more rou-

tine analytic manipulations. Hence this approach is applicable to cases where our
knowledge of the arithmetic nature of f is rather limited. This is the main moti-
vation of the present work. As an example of this approach, asymptotic formulas
for mean squares of modular L-functions over Hecke congruence subgroups have
been obtained. During this process, a theory of nonholomorphic Poincaré series is
developed.

For the discrete mean value (1), we observe that the double Dirichlet series

Zf (s, w) =

∞∑

D=−∞
D fund.disc.

L(s, f ⊗ χD) |D|−w (ℜs > 1,ℜw > 1)

enjoys two functional equations, one coming from that of the Dirichlet coefficient
L(s, f ⊗ χD) and the other coming from the quadratic reciprocity law. This fact
enables us to analyze the analytic properties of Zf(s, w) itself. In particular, we
study the cubic moment of quadratic Dirichlet L-functions. With some technical
assumptions, we show that

∑

|D|6x
D fund. disc.

L
(

1
2 , χD

)3
= xR3(log x) + bx3/4 +O

(
x1/2+ε

)
,

where R3 is some polynomial of degree 6 and b is a computable nonzero constant.
The appearance of the “exceptional main term” x3/4 in this asymptotic formula
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is very surprising, and suggests a much finer structure than once expected for the
value distribution of automorphic L-functions with quadratic twists.

Reporter: Ulrike M. A. Vorhauer
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