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Abstract. The workshop focussed on various aspects of optimal control
problems for systems of nonlinear partial differential equations. In particular,
discussions around keynote presentations in the areas of optimal control of
nonlinear/non-smooth systems, optimal control of systems involving nonlocal
operators, shape and topology optimization, feedback control and stabiliza-
tion, sparse control, and associated numerical analysis as well as design and
analysis of solution algorithms were promoted. Moreover, also aspects of con-
trol of fluid structure interaction problems as well as problems arising in the
optimal control of quantum systems were considered.
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Introduction by the Organisers

Optimal control problems for partial differential equations or variational inequal-
ities nowadays increasingly penetrate the applied sciences and by doing so they
are confronted with major new challenges. As a result, besides new mathematical
models, novel analytical as well as numerical tools need to be developed. Corre-
spondingly, motivated by optimal control problems for nonlinear partial differen-
tial equation (PDE) systems which are related to practical applications, the aims
of the workshop were to bring together a group of international experts working
at the forefront of research in the field, to foster in-depth-discussions crystalliz-
ing around a number of keynote presentations as well as discussion groups on



942 Oberwolfach Report 16/2018

focal topics emerging during the workshop, and to establish an (international) ex-
change forum for problems, techniques and solutions, both analytically as well as
numerically. In particular, the organizers also strived for diversity in the group of
invited scientists in order to enable transfer of information from senior to young
researchers, and vice versa.

The scientific activity of the workshop developed around several keynote top-
ics with associated keynote presentations, ad hoc presentations, e.g., in the late
afternoon or evening, and the organization of discussion groups on emerging focal
points. Among the focus topics, the following ones were of particular interest:

• Control of nonlinear or non-smooth state systems. Starting points
for the discussion were, e.g., state systems of (quasi) variational inequality
((Q)VI) type with applications in thermodynamics or chemotaxis. Specif-
ically, advanced analysis of the control-to-state map and the derivation of
proper (sharp) stationarity conditions were focus points. Moreover, local
stability analysis (in the spirit of second-order conditions) was considered.

• Control of state systems with nonlocal operators. Specific exam-
ples which were highlighted are nonlocal convective Cahn-Hilliard sys-
tems, systems for describing non-isothermal phase transitions, and non-
local Cahn-Hilliard-Navier-Stokes systems. Additional complexities came
from degenerate mobilities or singular potentials, and connections to non-
smooth systems arise whenever non-smooth potentials, such as the double
obstacle potential, were considered.

• Shape and topology optimization. This is an important branch of
optimal design subject to partial differential equations with many applica-
tions in engineering and recently also biomedical sciences. Specific topics
of interest discussed at the meeting were the establishment of analytical
tools for enabling a joint shape and topological derivative (currently, and
apart from a very small number of attempts, these two concepts are still
considered in separate), second-order analysis, and problems with non-
smooth components, either in the data or through considering VI state
systems.

• Feedback control or stabilization. Feedback stabilization or control
are important topics not only in aero-dynamics, but also in other problems
involving fluid flow such as stabilization of unsteady flow, flow over sur-
faces, injection of polymer solutions, mass transport through porous walls,
etc. Some of the major research questions discussed during the meeeting
involved the type of feedback law (linear vs. nonlinear), the proper choice
of Lyapunov functionals, and the treatment of Riccati equations. The
latter also play a role for instance in applications of robust optimal place-
ment of sensor networks. This problem class was also considered in this
workshop, and it was highlighted that it typically requires to develop suit-
able solution techniques for ultra-high dimensional Riccati equations upon
discretization.



Challenges in Optimal Control of Nonlinear PDE-Systems 943

• Sparse control. Very recently non-smooth control problems with the
aim of computing optimal controls with sparse support set have come
into focus. Particular applications are related to the optimal placement
of actuators. But there is also a connection to inverse problems with
sparsity-promoting priors. The workshop focued on modeling, analysis
and numerics for such problems. In particular, as the associated optimal
controls are typically measures only, dualization frameworks (including
the sound understanding of dense embeddings of classes of convex sets in
Sobolev spaces) were studied, proper stationarity and stability concepts
were derived and optimal discretization schemes were addressed.

• Numerical analysis and algorithm design / analysis. As many of
the aforementioned problem classes are either entirely new or have been
studied from an analytical point of view only, the workshop also strived for
advancing the development of proper discretization and numerical solution
schemes. Exemplarily we mention that optimal control problems for VIs
cannot be solved by techniques known for the iterative solution of optimal
control problems for PDE-systems. This is related to the non-smooth
character of the VI problem and the constraint degeneracy which prevents
existence of Karush-Kuhn-Tucker-type multipliers. Another example is
related to sparse controls which gives rise to questions concerning the
discretization of measures and their efficient numerical treatment.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.





Challenges in Optimal Control of Nonlinear PDE-Systems 945

Workshop: Challenges in Optimal Control of Nonlinear PDE-
Systems

Table of Contents
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Abstracts

Sparse optimal control for the heat equation with mixed control-state
constraints

Fredi Tröltzsch

(joint work with Eduardo Casas)

We consider the optimal control problem

min J(y, u) :=
1

2

∫∫

Q

|y − yQ|2 + ν|u|2 dxdt + κ

∫∫

Q

|u| dxdt

subject to

∂ty −∆y = u in Q := Ω× (0, T )

∂ny = 0 in Σ := Γ× (0, T )

y(x, 0) = 0 in Ω,

subject to the mixed control-state constraint

ua ≤ u(x, t) ≤ ud + y(x, t)

for a.a. (x, t) ∈ Q.
Here, yQ ∈ L2(Q), T > 0, the Tikhonov parameter ν > 0, the sparse parameter

κ > 0, and bounds ua < 0, ud > 0 are given. The state y is defined in W (0, T ) :=
{y ∈ L2(0, T ;H1(Ω)) : ∂ty ∈ L2(0, T ;H1(Ω)′)} and the control u is searched in
L2(Q). The L1-term of the control in the functional J accounts for the effects of
sparsity.

Since the celebrated paper of Stadler [4], sparsity has been discussed extensively
in the community of PDE-constrained optimization. We refer exemplarily to [1, 3]
and the references therein. The main novelty of this presentation is the discussion
of sparsity under a mixed pointwise control-state constraint. Special emphasis is
laid on existence and boundedness of Lagrange multipliers for the mixed control-
state constraints. To this aim, a duality theorem for linear programming problems
in Hilbert spaces is proved and applied to the given optimal control problem.

Having a Lagrange multiplier µ̄ ∈ L∞(Q), we introduce an extended adjoint
state ψ̄ by the following adjoint parabolic equation:

−∂tψ̄ −∆ψ̄ = ȳ − yQ − µ̄ in Q

∂nψ̄ = 0 in Σ

ψ̄(x, T ) = 0 in Ω.

A suitable necessary optimality condition is formulated below. There, we use the
functional j(u) := ‖u‖L1(Q) and its subdifferential ∂j(u) ⊂ L∞(Q).

Theorem 1 ([2]). Assume that the control u = ua satisfies the mixed control state
constraints, let ū be optimal and ȳ be the associated state. Then a non-negative
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Lagrange multiplier µ̄ ∈ L∞(Q) and a function λ̄ ∈ ∂j(ū) exist such that
∫∫

Q

(ψ̄ + ν ū+ κ λ̄)(u− ū) dxdt ≥ 0 ∀u ∈ L2(Q) : ua ≤ u ≤ ud + ȳ

holds. The multiplier µ̄ can be selected such that

‖µ̄‖L∞(Q) ≤M

is satisfied with M independent of κ.

Notice that the constraint of the variational inequality above is defined upon the
fixed optimal state ȳ, hence it acts as a pointwise control constraint. The proof
of the uniform boundedness of the multiplier with respect to κ is a particular
difficulty.

Based on this result, the following theorem on sparsity properties of the optimal
control can be proven:

Theorem 2 (Sparsity, [2]). Assume that the control u = ua satisfies the mixed
control state constraints and let ū be optimal. Then a Lagrange multiplier µ̄ ∈
L∞(Q) exists such that a.e. in Q the implications

|ψ̄(x, t)| ≤ κ =⇒ ū(x, t) = 0

ū(x, t) = 0 =⇒ ψ̄(x, t) ≤ κ

hold true. For some κ0 > 0 and a.a. (x, t) ∈ Q, we have

ū(x, t) = 0 ⇐⇒ |ψ̄(x, t)| ≤ κ ∀κ ≥ κ0.

There is some κ1 > 0 such that ū = 0 is satisfied for all κ ≥ κ1. The element
λ̄ ∈ ∂j(ū) is given by

λ̄(x, t) = P[−1,1]

{
− 1

κ
ψ̄(x, t)

}
,

where the projection is defined by P[−1,1](s) = max{−1,min{1, s}}.
We also have a more general version of this theorem, where the constraints

ua ≤ u ≤ ub, u ≤ ud + y are given. Then the situation is slightly more complex,
cf. [2].
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About the controllability of an advection-diffusion equation with
respect to the diffusion coefficient

Arnaud Münch

Let L > 0, T > 0 and QT := (0, L)× (0, T ). The talk is concerned with the scalar
advection-diffusion equation

(1)





yεt − εyεxx +Myεx = 0, (x, t) ∈ QT ,
yε(0, t) = vε(t), yε(L, t) = 0, t ∈ (0, T ),
yε(x, 0) = yε0(x), x ∈ (0, L),

where yε0 ∈ H−1(0, L) is the initial data. The parameter ε > 0 is the diffusion
coefficient while M ∈ R⋆ is the transport coefficient; vε = vε(t) is the control
function in L2(0, T ) and yε = yε(x, t) is the associated state. For any yε0 ∈
H−1(0, L) and vε ∈ L2(0, T ), there exists exactly one solution yε to (1), with
the regularity yε ∈ L2(QT ) ∩C([0, T ];H−1(0, L)). Accordingly, for any final time
T > 0, the associated null controllability problem at time T > 0 is the following:
for each y0 ∈ H−1(0, L), find v ∈ L2(0, T ) such that the corresponding solution to
(1) satisfies

(2) y(·, T ) = 0 in H−1(0, L).

For any T > 0, M ∈ R and ε > 0, the null controllability for the parabolic type
equation (1) holds true. We therefore introduce the non-empty set of null controls

C(y0, T, ε,M) := {(y, v) : v ∈ L2(0, T ); y solves (1) and satisfies (2)}.
We are mainly concern here with the asymptotic behavior of null controls for

(1) when the coefficient ε is small. System (1) can be seen as a simple example
of complex models where the diffusion coefficient is very small compared to the
others. We have notably in mind the Stokes system where ε stands for the viscosity
coefficient. (1) may also be seen as a regularization of conservation law system.
Precisely, we are interested with the control of minimal L2-norm and define for
any ε > 0 the cost of control by the following quantity :

(3) K(ε, T,M) := sup
‖y0‖L2(0,L)=1

{
min

u∈C(y0,T,ε,M)
‖u‖L2(0,T )

}
.

K(ε, T,M) is the norm of the (linear) operator yε0 → vεHUM where vεHUM is the
control of minimal L2-norm. We also define by TM the minimal time for which
the cost K(ε, T,M) is uniformly bounded with respect to ε. In other words, (1)
is uniformly controllable with respect to ε if and only if T ≥ TM .

For ε = 0, the system (1) degenerates into a transport equation and is uniformly
controllable as soon as T is large enough, according to the speed |M | of transport,
precisely as soon as T ≥ L/|M |. Indeed, if T ≥ L/|M |, the zero function is a
null control - and so the control of minimal L2-norm - for the transport equation.
According, K(0, T,M) = 0 for any T ≥ L/|M |. On the other hand, the behavior
of K(ε, T,M) is more involved and has been the subject of several recent works.
We may expected naively that the cost K(ε, T,M) goes to zero as ε → 0 as
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soon as T ≥ L/|M | and therefore that TM = 1/|M |. But, at least for M < 0,
this is false since the cost K(ε, T,M) blows up exponentially as ε → 0+ for any

T ≤ 2(1 +
√
3)/|M | which is strictly greater that 1/|M |. This is a surprising and

non expected result. There is a kind of balance between the term −εyεxx which
favors the diffusion (and so the null controllability) for ε large and the term Myεx
which enhance the complete transport of the solution out of the domain (0, L) for
ε small.

One may tackle this problem and the determination of the minimal uniform
controllability time TM using at least two distincts approaches.

A first one consists in approximating numerically the costK(ε, T,M) for various
values of ε and T > 0, the ratio L/M being fixed. This step requires first the
reformulation of the cost as the solution of a generalized eigenvalues problem for
the control operator. This eigenvalues can be solved iteratively and requires the
approximation of the control of minimal L2-norm, which is a challenging task for
small values of ε. This has been done and discussed at length in [3]. Numerical
experiments performed in the positive caseM > 0 suggests that the cost is achieved

for the initial condition yε0(x) = Kεe
−Mx

2ε sin(πx) and that TM = L/M .
A second approach consists in performing, in the spirit of the book [2], an as-

ymptotic analysis of the optimality system corresponding the control of minimal
L2 norm . However, in spite of the apparent simplicity of the system (1), such
analysis is not straightforward because, as ε goes to zero, the direct and adjoint
solutions exhibit boundary layers in the transition parabolic-hyperbolic. For ex-
ample, for M > 0, the solution yε exhibits a first boundary layer of size O(ε) at
x = L and a second boundary boundary layer of size O(

√
ε) along the charac-

teristic {(x, t) ∈ QT , Lx −Mt = 0}. A third singular behavior due to the initial
condition yε0 occurs for yε in the neighborhood of the points (x0, t0) = (0, 0) and
(x1, t1) = (L, 0). A full asymptotic asymptotic analysis is performed in [1] and
allows to described very precisely the behavior of the solution of the direct prob-
lem (1) with respect to ε, vε being assumed of the form vε =

∑m
k=0 ε

kvk. This

then allows to determine the vk’s and obtain approximate controllability results
for T > L/M and M > 0.

The determination of the minimal uniform controllability time TM remains an
open problem.
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Cahn–Hilliard systems with general fractional operators

Jürgen Sprekels

(joint work with Pierluigi Colli, Gianni Gilardi)

Let Ω ⊂ IR3 denote a bounded and smooth domain, T > 0, and Q := Ω × (0, T ).
Moreover, let H := L2(Ω), and let (·, ·) and ‖·‖ denote the standard inner product
and norm in H . We study in this contribution the following system of equations:

∂ty +A2rµ = 0 in Q,(1)

τ∂ty +B2σy + f ′(y) = µ+ u in Q,(2)

y(0) = y0 in Ω,(3)

where we postulate that τ ≥ 0, r > 0 and σ > 0. Moreover, we generally assume:

(A1) A : D(A) ⊂ H → H and B : D(B) ⊂ H → H are selfadjoint, unbounded
and positive linear operators having compact resolvents.

Under these assumptions, there exist countably many eigenvalues {λj} and {λ′j} of
A and B, respectively, ordered by their magnitudes, with associated eigenfunctions
{ej} and {e′j} such that

0 ≤ λ1 ≤ λ2 ≤ . . . , 0 ≤ λ′1 ≤ λ′2 ≤ . . . , lim
j→∞

λj = lim
j→∞

λ′j = +∞,

Aej = λej , Be′j = λ′je
′
j, (ej , ek) = (e′j , e

′
k) = δjk, ∀j, k ∈ IN,

and such that both systems of eigenfunctions form complete subsets of H . We
then define for r > 0 the fractional order operator

(4) Arv :=
∑

j∈IN

λrj(v, ej)ej

on the domain

(5) D(Ar) :=
{
v ∈ H :

∑

j∈IN

λ2rj |(v, ej)|2 < +∞
}
.

The fractional order operators Bσ for σ > 0 are defined accordingly.
We notice that the system (1)–(3) coincides with the classical Cahn–Hilliard

system in the special case that τ = 0 and A = B = −∆ with the domain D(−∆) =
{v ∈ H2(Ω) : ∂nv = 0 on ∂Ω}, where ∂n denotes the outward normal derivative
on the boundary ∂Ω. Recall that the classical Cahn–Hilliard system constitutes
a model for the separation of two phases in a container Ω through the process of
spinodal decomposition under the action of the nonmonotone thermodynamic force
f ′(y). In this connection, the unknowns µ and y represent the chemical potential
and the order parameter (usually a scaled density of one of the involved phases) of
the phase separation process, respectively, while u stands for a distributed control.
Typical forms of the associated nonconvex thermodynamic potential f are given



954 Oberwolfach Report 16/2018

by the expressions

freg(r) =
1

4
(r2 − 1)2 , r ∈ IR,(6)

flog(r) = ((1 + r) ln(1 + r) + (1 − r) ln(1− r)) − c r2 , r ∈ (−1, 1),(7)

fobs(r) = I[−1,1](r) − c r2 , r ∈ IR,(8)

which are usually referred to as the regular, logarithmic, and double obstacle po-
tential, in this order.

Recently, evolutionary processes exhibiting fractional-order diffusive patterns
have been observed in various applied fields (see, e.g., the references given in
[1]), and first papers (cf. [2, 3]) were devoted to the study of Cahn–Hilliard
type equations with fractional orders of the negative Laplacian −∆ with zero
Dirichlet conditions. Since in the case of a phase separation process with mass
conservation in a container zero Neumann boundary conditions are more natural,
which renders the analysis of the Cahn–Hilliard system considerably more difficult,
we have investigated the questions of well-posedness, regularity and stability for
the general fractional system (1)–(3) with the aim to include the case of zero
Neumann conditions as well. Under suitable assumptions on the initial datum y0
and on the potential f , which allow for the cases (6)–(8), in [4, Thm. 2.6] for every
r > 0 and σ > 0 the existence of a unique weak solution to the system (1)–(3)
could be proved that enjoys the regularity

y ∈ H1(0, T ; (V r
A)

∗) ∩ L∞(0, T ;V σ
B ), τ∂ty ∈ L2(0, T ;H),(9)

µ ∈ L2(0, T ;V r
A).(10)

Here, we denote V σ
B := D(Bσ), which is a Hilbert space when endowed with the

inner product

(11) (v, w)V σ
B
= (v, w) + (Bσv,Bσw) for v, w ∈ V σ

B .

For the entire analysis, and, in particular, for the definition of V r
A and of its

dual space (V r
A)

∗, the first eigenvalue λ1 of A plays a special role. Indeed, if λ1
is positive, then the operators A and B may be completely unrelated, and we can
put V r

A = D(Ar), which in this case becomes a Hilbert space when endowed with
the inner product

(12) (v, w)V r
A
= (Arv,Arw) for v, w ∈ V r

A;

however, in the case λ1 = 0 it must be assumed that λ1 is a simple eigenvalue and
that the corresponding eigenfunction e1 is constant and belongs to V r

B (which, for
instance, holds true if B = −∆ with zero Neumann boundary condition). In this
case, we put V r

A = D(Ar) and endow this space with the inner product

(13) (v, w)V r
A
= (v, e1)(w, e1) + (Arv,Arw) for v, w ∈ V r

A.

Better regularity properties can be shown under stronger assumptions on the
data. A corresponding result was proved in [4, Thm. 2.8]. Under the conditions
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given there, one obtains that

∂ty ∈ L∞(0, T ;V r
A) ∩ L2(0, T ;V σ

B ) and µ ∈ L∞(0, T ;V r
A) if τ ≥ 0,(14)

∂ty ∈ L∞(0, T ;H) and µ ∈ L∞(0, T ;V 2r
A ) if τ > 0.(15)

We conclude with some remarks on the paper [5], which deals with distributed
optimal control problems for the system (1)–(3), where it is assumed that τ > 0.
It turns out that for such problems it is indispensable to postulate a certain global
L∞(Q)-boundedness of the unknown y and of the quantities f (i)(y), for i = 1, 2, 3.
Sufficient conditions for this to hold are given. Under the additional assumption
that V σ

B ⊂ L4(Ω), it can be shown that the control-to-state operator S : u 7→ (µ, y)
is Fréchet differentiable between suitable Banach spaces, which paves the way to
derive first-order necessary optimality conditions. For details, we refer the reader
to [5].
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Some applications & challenges for PDE control and optimization

John Burns

(joint work with Gene Cliff, Terry Herdman)

Thermal management systems (TMS) are complex interconnected systems mod-
eled by coupled ordinary and partial differential equations, algebraic equations
and empirical mappings. A fundamental component in the system model are the
PDEs that govern thermal fluids in heat exchangers. The development of dynamic
mathematical models suitable for control and optimization is a ongoing challenge
in this area. In addition, the development of accurate and efficient approxima-
tion schemes is needed to construct numerical models for design optimization and
control. Some issues are:

• Current models fail at low or zero flows flows.
• Most approximation schemes used today are based on low order finite
volume methods.

• Control system properties can be lost in the discretization process and
hence these models are rendered unsuitable for optimization & control
design.

• Actuator dynamics are rarely included in the models.
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• Empirical functions and equations of state are not always smooth.

In this talk we discuss the role of full flux modeling in addressing low flow con-
ditions and higher order numerical methods for approximating composite control
systems defined by coupled hyperbolic PDEs and ordinary differential equations.
Although the work is motivated by applications to optimization and control of full
thermal management systems, we focus on a simple counterflow heat exchanger
based on models found in [1], [3], [4] and [5], where one includes the effect of axial
conduction and boundary control inputs with actuator dynamics. This “full-flux”
model is described by the coupled system

(1)

∂T1(t,x)
∂t

= µ1
∂2T1(t,x)

∂x2 − v1(t, x)
∂T1(t,x)

∂x
+ h1 [T2(t, x)− T1(t, x)]

∂T2(t,x)
∂t

= µ2
∂2T2(t,x)

∂x2 + v2(t, x)
∂T2(t,x)

∂x
+ h2 [T2(t, x)− T2(t, x)]

,

where the constants h1, h2 are heat transfer coefficients, µ1, µ2 are diffusion coeffi-
cients and v1(t, x), v2(t, x) are flow velocities for channels one and two, respectively.
The flow velocities v1(t, x) and v2(t, x) are possible control inputs.

For channel one we have the boundary conditions

(2) T1(t, 0) = v(t), µ1[T1]x(t, L) = 0,

where v(·) is a “boundary control term” and for channel two we have

(3) −µ2[T2]x(t, 0) = 0, T2(t, L) = 0.

The Neumann boundary conditions arise from the assumption that the system is
fully developed at the outflow boundaries. Initial conditions for each channel are
given by

(4) T1(0, x) = ϕ(x) and T2(0, x) = ψ(x), 0 < x < L.

In addition, we assume the actuator dynamics are described by a finite dimensional
system of the form

(5) ẇa(t) = Aawa(t) +Bau(t),

with output

(6) v(t) = Hawa(t),

where we assume that Aa is an n× n stable matrix and Ba is an n×m matrix.
The combined composite system can be written as

ż(t) = µAz(t) + v(t)Hz(t) +Hz(t) + Fwa(t) +Bu(t)

(7)

ẇa(t) = Aawa(t) +Bau(t),

which is an abstract bilinear control system of the type found in [2].
This framework allows us to discuss and compare various finite element (FE),

finite volume (FV), combined FE-FV and higher order “DG” type methods for
simulation, optimization and control of such systems. These schemes are applied
to a simple numerical example to illustrate the idea.



Challenges in Optimal Control of Nonlinear PDE-Systems 957

References

[1] E. Aulisa, J. A. Burns, and D. S. Gilliam. The effect of viscosity in a tracking regulation
problem for a counter-flow heat exchanger. In 2015 54th IEEE Conference on Decision and
Control, Osaka, Japan, pages 561–566, 2015.

[2] Tobias Breiten, Karl Kunisch, and Laurent Pfeiffer. Control strategies for the fokker-planck
equation. ESAIM: Control, Optimisation and Calculus of Variations, 2017.

[3] John A. Burns and Boris Kramer. Full flux models for optimization and control of heat

exchangers. In 2015 American Control Conference, Chicago, IL., pages 577–582, 2015.
[4] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary geometric control of a

counter-current heat exchanger. Journal of Process Control, 19(2):297–313, 2009.
[5] Ahmed Maidi, Moussa Diaf, and Jean-Pierre Corriou. Boundary control of a parallel-flow

heat exchanger by input–output linearization. Journal of Process Control, 20(10):1161–1174,
2010.

Optimal control of an evolution equation with non-smooth dissipation

Daniel Wachsmuth

(joint work with Tobias Geiger)

1. Abstract

We study an optimal control problem subject to an evolution equation with non-
smooth dissipation. The solution mapping of this system is non-smooth, and hence
the analysis is quite challenging. Our approach is to formulate the equation as a
variational inequality of the second kind, which gives us the opportunity to apply
known results to obtain optimality conditions.

2. State equation

We consider a quadratic energy E and a dissipation function D of the form

E : H1
0 (Ω) → R, E(z, g) :=

∫

Ω

1

2
|∇z|2 − zg dx

D : H1
0 (Ω) → R,D(ż) =

∫

Ω

|ż|+ σ

2
|∇ż| dx.

Here, Ω ⊂ Rn is a bounded domain. Minimization with respect to z motivates the
differential inclusion

(1) 0 ∈ −∆z − g − σ∆ż + ∂|ż| in H−1(Ω) a.e. on I = (0, T ),

where ∂|ż| := ∂‖ · ‖L1(Ω)(ż). The control is g and the state z. This system is
inspired by rate-independent systems, which one gets by setting σ = 0, see also
[5]. Optimal control problems of rate independent systems were analyzed in [6].
One drawback in this kind of optimal control problem is the low regularity of the
adjoint states. By adding the term −σ∆ż with σ > 0, which can be interpreted as
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viscosity, we hope to get an optimality system with higher regularity of the adjoint
states and hence stronger formulation of the respective equations.

For every control g ∈ H1(I, L2(Ω)) there exists a unique z ∈ H1(I,H1
0 (Ω)) that

solves the state equation (1) equipped with initial condition z(0) = 0. In fact, the
state equation can be written as the initial value problem

(2)

{
ż(t) = 1

σ
prox‖·‖L1(Ω)

(
(−∆)−1(g)− z

)
a.e. in I,

z(0) = 0

in the Banach space H1
0 (Ω), which is uniquely solvable since the prox-operator is

a globally Lipschitz continuous mapping.

3. Optimal control problem

Let functions j1 : L2(I,H1
0 (Ω)) → R, j2 : H1

0 (Ω) → R be given, which are assumed
to be Fréchet differentiable and bounded from below. We equip the state equation
with the initial and compatibility conditions z(0) = 0, g(0) = 0. The optimal
control problem, that we consider, is the following. Minimize:

(P) J(z, g) := j1(z) + j2(z(T )) +
1

2
‖g‖2H1(I,L2(Ω))

for

(z, g) ∈ H1(I,H1
0 (Ω)) ×H1(I, L2(Ω))

subject to

0 ∈ ∂|ż(t)| − σ∆ż(t)−∆z(t)− g(t) in H−1(Ω) for a.a. t ∈ I,

g(0) = 0, z(0) = 0.

The existence of global solutions can be shown by standard arguments involving
weakly converging subsequences, embeddings, and weak lower semicontinuity of
norms.

4. Optimality system

There are several possibilities to get an optimality system for this optimal control
problem. One can consider a smoothed version of the state equation by replacing
the absolute value function in the L1(Ω)-norm by smooth functions which depend
on a parameter ρ and converge to the absolute value function for ρ → 0, see
[4]. Another possibility is to consider a discretization of the time interval, derive
optimality conditions for the respective optimal control problem, and driving the
discretization parameter to zero. We will present another approach, in which we
formulate the state equation (1) as a variational inequality. We define y(t) :=

ż(t) and hence z(t) =
∫ t

0 y(s) ds =: Jy since z(0) = 0. Moreover, we define the
(nonsymmetric) bilinear form

a(v, w) :=
(
σ∇v +∇(Jv),∇w

)
L2(Ω)

, v, w ∈ L2(I,H1
0 (Ω)).
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Then the state equation (1) is equivalent to the variational inequality

(3) a(y, v−y)+‖v‖L1(I×Ω)−‖y‖L1(I×Ω) ≥ (g, v−y)L2(I×Ω) ∀ v ∈ L2(I,H1
0 (Ω)).

Optimal control problems of variational inequalities of the second kind are analyzed
e.g. in [1, 2, 3]. Applying the result from [2] we get an optimality system for our
problem. Let (z̄, ḡ) be locally optimal and define ȳ := ˙̄z and q̄ ∈ ∂|ȳ|. Then there
exists

(p, u) ∈ L2(I,H1
0 (Ω)) ×H1(I,H−1(Ω))

such that the following system is satisfied.
{
u̇ = −∆p− j′1(z̄) in H−1(Ω) a.e. on I,

u(T ) = j′2(z̄(T )) in H−1(Ω),
(4a)

(p, v)L2(I,L2(Ω)) + (g, v)H1(I,L2(Ω)) = 0, ∀v ∈ H1(I, L2(Ω)) : v(0) = 0,(4b)
∫

I

〈u+ σ∆p, p〉H−1(Ω),H1
0 (Ω) dt ≥ 0,(4c)

∫

I

〈u+ σ∆p, y〉H−1(Ω),H1
0 (Ω) dt = 0.(4d)

The initial value problem (4a) is the adjoint equation. Equation (4b) is obtained by
the gradient of the reduced functional and can be interpreted as a weak formulation
of

−¨̄g + ḡ + p = 0, ḡ(0) = ˙̄g(T ) = 0.

Finally, (4c) and (4d) are complementarity conditions. Unfortunately, one comple-
mentarity condition could not be proven, which one expects from formal optimality
conditions. This condition reads

(5) 〈p, 1− |q̄|〉 = 0.

Since this condition is non-linear in q̄, and every known approximation scheme
only yields weak convergent approximations of q̄, it is open whether this condition
is a necessary optimality condition. Under structural assumptions on the solu-
tion ȳ, this complementarity condition is part of strong stationarity conditions
obtained in [2, Theorem 5.1] and [4, Section 5.5] for optimal control problems
subject to variational inequalities of the second kind in the space H1(Ω). Hence,
any counter-example to the complementarity condition (5) has to violate those
structural assumptions, which makes such a construction a tedious task.
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Hyperbolic Maxwell system of quasi-variational inequality type
governed by Bean’s critical-state law with temperature effects

Irwin Yousept

Ever since the discovery of superconductivity by Heike Kamerlingh Onnes in 1911,
various modern applications and key technologies have been developed, including
resonance imaging, magnetic confinement fusion, and magnetic levitation. Such
technological advances are made possible by superconductors due to their funda-
mental properties of vanishing electrical resistance and expulsion of applied mag-
netic fields (Meissner effect) occurring when the temperature is cooled down below
the critical one. A prominent critical-state model describing the irreversible mag-
netization process in high-temperature (type-II) superconductivity was proposed
by Bean [4, 5]. His model postulates a nonlinear and non-smooth constitutive
relation between the current density and the electric field through the so-called
critical current as follows:

(B1) The current density strength |J | cannot exceed the critical current jc.
(B2) If |J | is strictly less than jc, then the electric field E vanishes.
(B3) The electric field E is parallel to the current density J .

Under the eddy current approximation for the electromagnetic fields, (B1)-(B3)
lead to a parabolic obstacle-type variational inequality (see [1, 2, 3]), whereas it
becomes a quasi-variational inequality in the case of jc = jc(H). If we consider the
original Maxwell formulation for the electromagnetic fields, then (B1)-(B3) lead
to a hyperbolic variational inequality of the second kind (see [6]): Find (E,H) ∈
W 1,∞((0, T ),L2(Ω)×L2(Ω)) ∩ L∞((0, T ),H0(curl)×H(curl)) such that

(1)





∫

Ω

ǫ∂tE(t) · (v −E(t)) + µ∂tH(t) · (w −H(t)) dx

+

∫

Ω

curlE(t) ·w − curlH(t) · v dx+

∫

Ω

jc|v(x)| dx

−
∫

Ω

jc|E(x, t)| dx ≥
∫

Ω

u(t) · (v −E(t)) dx,

for a.e. t ∈ (0, T ) and all (v,w) ∈ L2(Ω)×L2(Ω),

(E,H)(0) = (E0,H0).

In real applications of superconductivity, the critical current density jc depends
not only on the magnetic field but also on the temperature. In particular, the
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temperature dependence cannot be neglected since it strongly influences the su-
perconducting state. We consider the case jc = jc(x,H(x, t), θ(x, t)) in (1), which
leads to a hyperbolic Maxwell quasi-variational inequality of the second kind with
temperature dependence. By means of the implicit Euler scheme, we analyze the
resulting nonlinear time-discrete problem and prove its existence using a fixed
point argument in combination with techniques from variational inequalities. Af-
terwards, we study the stability analysis for the solution of the time-discrete prob-
lem. Based on the derived stability results along with the Maxwell compactness
property and energy balance equalities, we are able to prove a convergence result
for the time-discrete solution, which in turn yields a well-posedness result for the
original quasi-variational inequality.
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Solvability and optimal velocity control of a Cahn–Hilliard system
with convection and dynamic boundary conditions

Pierluigi Colli

(joint work with Gianni Gilardi, Jürgen Sprekels)

This note is concerned with a PDE system coupling equation and boundary con-
dition both of Cahn–Hilliard type; an additional convective term with a forced
velocity field, which may act as a control on the system, is also present in the bulk
equation. Either regular or singular potentials are discussed and both the viscous
and pure Cahn–Hilliard cases are investigated. Such systems govern phase sepa-
ration processes between two phases taking place in an incompressible fluid in a
container and, at the same time, on the container boundary. The optimal control
problem deals with a cost functional of standard tracking type, while the control is
exerted by the velocity of the fluid in the bulk. In this way, the coupling between
the state (given by the associated order parameter and chemical potential) and the
control variables in the governing system of nonlinear partial differential equations
is bilinear, then causing some difficulty for the analysis.
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The state system reads

∂tρ+∇ρ · u−∆µ = 0 in Q ,(1)

τΩ ∂tρ−∆ρ+ f ′(ρ) = µ in Q ,(2)

∂tρΓ + ∂nµ−∆ΓµΓ = 0 and µ|Σ = µΓ on Σ ,(3)

τΓ ∂tρΓ + ∂nρ−∆ΓρΓ + f ′
Γ(ρΓ) = µΓ and ρ|Σ = ρΓ on Σ ,(4)

ρ(0) = ρ0 in Ω, ρΓ(0) = ρ0|Γ on Γ ,(5)

where Ω ⊂ R3 is an open, bounded and connected set having smooth boundary Γ
and unit outward normal n; ∂n, ∇Γ, ∆Γ denote the outward normal derivative,
the tangential gradient, and the Laplace–Beltrami operator on Γ, respectively;
some final time T > 0 is fixed and Q := Ω × (0, T ) and Σ := Γ × (0, T ) are the
space-time domain and its lateral boundary.

The variables are ρ, the order parameter, and µ, the chemical potential; accord-
ing to whether the coefficients τΩ and τΓ are positive or zero, we speak of viscous
Cahn–Hilliard or pure Cahn–Hilliard system; please note in (1) the convection
term ∇ρ ·u, coupling the gradient of the order parameter with some fixed velocity
vector u such that div u = 0 in Q and u ·ν = 0 on Σ .We point out that f ′ is the
derivative of a double-well potential f (same f ′

Γ of fΓ), which may have bounded
domain and become singular: in particular let us recall the logarithmic potential

flog(r) = ((1 + r) ln(1 + r) + (1 − r) ln(1− r)) − c r2, r ∈ (−1, 1),

where the coefficient c is greater than 1 so that flog is non-convex.
We are interested to state the well-posedness of the system (1)–(5) in the case

when f ′
Γ dominates f ′ in terms of the growth: thus, we review the results in [2].

Then, we switch to the optimal control problem:
(CP) minimize the cost functional

J (µ, µΓ, ρ, ρΓ, u) :=
β1
2

∫

Q

|µ− µ̂Q|2 +
β2
2

∫

Σ

|µΓ − µ̂Σ|2(6)

+
β3
2

∫

Q

|ρ− ρ̂Q|2 +
β4
2

∫

Σ

|ρΓ − ρ̂Σ|2

+
β5
2

∫

Ω

|ρ(T )− ρ̂Ω|2 +
β6
2

∫

Γ

|ρΓ(T )− ρ̂Γ|2 +
β7
2

∫

Q

|u|2 ,

subject to the state system (1)–(5) and to the control constraint

(7) u ∈ Uad ,

where Uad is a suitable closed, convex, and bounded subset of the control space X
defined by

X := L2(0, T ;Z) ∩ (L∞(Q))3 ∩H1(0, T ;L3(Ω)3),(8)

where

Z :=
{
w ∈ (L2(Ω))3 : divw = 0 in Ω and w · ν = 0 on Γ

}
.(9)



Challenges in Optimal Control of Nonlinear PDE-Systems 963

In (6), the constants βi, 1 ≤ i ≤ 7, are nonnegative but not all zero, and µ̂Q, µ̂Σ,
ρ̂Q, ρ̂Σ, ρ̂Ω, and ρ̂Γ, are given target functions. We note that the total mass of the
order parameter is conserved during the separation process; indeed, integrating
(1) for fixed t ∈ (0, T ] over Ω, and using the condition u(t) ∈ Z and (3), we readily
find that

(10) ∂t

(∫

Ω

ρ(t) +

∫

Γ

ρΓ(t)
)
= 0 .

We also assume that the densities of the local free bulk energy f and the local
free surface energy fΓ are of logarithmic type. The optimal control problem is
intensively discussed in the talk, by reporting the results of [3] for the viscous
Cahn–Hilliard system (τΩ > 0, τΓ > 0). A distinguishing feature of our approach
is that we use the fluid velocity as the control variable: in practice, this can be
realized by placing either a mechanical stirring device or an ultrasound emitter into
the container. The related convective term ∇ρ · u produces some complication in
the analysis due to the nonlinear coupling between control and state variables.

In our analysis [3], we deal with controls u which, among other constraints, have
to obey the somewhat unusual regularity condition u ∈ H1(0, T ;L3(Ω)3): this is
exactly the kind of regularity that guarantees the existence of a unique solution
to the state system having sufficient regularity properties. Under these premises,
we are able to show the Fréchet differentiability of the control-to-state operator
in suitable Banach spaces. Morever, we can prove the existence of an optimal
control and, in a slightly less general setting (β1 = β2 = 0), we also derive proper
first-order necessary conditions for optimality.

In the case of general potentials and without convective term (u = 0), the
problem (1)–(5) has been investigated in [1] from the point of view of existence,
uniqueness and regularity (see also [6] for a boundary control problem) using an
abstract approach.

We also discuss the case in which the bulk and surface free energies are of double
obstacle type:

f2obst(r) = I[−1,1](r) + c(1− r2), r ∈ R, c > 0,

where IS = indicator function of S: 0 in S and +∞ outside,

which renders the potentials f and fΓ nondifferentiable: for such cases standard
constraint qualifications are not satisfied so that standard methods do not apply to
yield the existence of Lagrange multipliers. In [4], this difficulty can be overcome
by taking advantage of the results established for logarithmic nonlinearities, using
the so-called “deep quench approximation”. The existence of optimal controls is
shown and the first-order necessary optimality conditions are stated in terms of a
variational inequality and the associated adjoint system.

Finally, the contributions [5] and [7] are mentioned for the study of the long-
time behavior and for the results on the optimal control of the pure Cahn–Hilliard
system (τΩ = τΓ = 0), which are obtained as asymptotic limits of the correspond-
ing results for the viscous Cahn–Hilliard problem, but in the case of everywhere
defined smooth potentials f and fΓ.
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Infinite-horizon bilinear optimal control problems

Tobias Breiten, Laurent Pfeiffer

(joint work with Karl Kunisch)

Optimal feedback laws for nonlinear control problems are intimately related to
the computation of the optimal value function V which is known to satisfy the
Hamilton-Jacobi-Bellman (HJB) equation. In order to overcome the curse of di-
mensionality, approximation techniques for the HJB equation have received in-
creasing interest over the last years. In the finite-dimensional case, Taylor series
approximations of V have been proposed and numerically investigated, [1, 9]. For
nonlinear infinite-dimensional control systems, feedback controls are often designed
by a Riccati-based approach for the linearized system, see, e.g., [10].

Polynomial feedback laws

With the intention of constructing higher-order approximations of the optimal
feedback law, consider the bilinear infinite-horizon optimal control problem:

(P )

inf
u∈L2(0,∞)

J (u, y0) :=
1

2

∫ ∞

0

‖Cy(t)‖2Z dt+
α

2

∫ ∞

0

u(t)2 dt,

where:

{
ẏ(t) = Ay(t) + (Ny(t) +B)u(t), for t > 0
y(0) = y0 ∈ Y,

Here, V ⊂ Y ⊂ V ∗ is a Gelfand triple of real Hilbert spaces, A : D(A) ⊂ Y → Y
is the infinitesimal generator of an analytic C0-semigroup eAt on Y , B ∈ Y ,
C ∈ L(Y, Z), N ∈ L(V, Y ). Under appropriate assumptions on the operators,
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in particular stabilizability and detectability, we construct in [5] a polynomial
approximation Vk of the value function V as follows:

Vk : Y → R, Vk(y) =

k∑

j=2

1

j!
Tj(y, . . . , y),

where T2,...,Ti,...,Tk are bounded multilinear forms of order 2, . . . , i, . . . , k. The first
multilinear form, the bilinear form T2, is obtained as the solution to an algebraic
operator Riccati equation, the other multilinear forms are obtained as the solutions
to multilinear generalized Lyapunov operator equations.

A natural polynomial feedback law uk based on Vk is the following:

uk(y) = − 1

α
DVk(y)(Ny +B)

= − 1

α

( k∑

i=2

1

(i− 1)!
Ti(Ny +B, y, . . . , y)

)
.

It is shown that the associated closed-loop system

ẏk(t) = Ayk(t) + (Nyk(t) +B)uk(yk(t)), yk(0) = y0,

is locally well-posed and asymptotically stable.

Numerical and algorithmic realization

We illustrate in [4] the numerical applicability of the results by means of a bilinear
optimal control problem for the controlled Fokker-Planck equation taken from [3]:

∂ρ

∂t
= ν̃∆ρ+∇ · (ρ∇G) + u∇ · (ρ∇α) in Ω× (0,∞),

0 = (ν̃∇ρ+ ρ∇G) · ~n on Γ× (0,∞),

ρ(x, 0) = ρ0(x) in Γ,

where ν̃ > 0, Ω ⊂ Rn denotes a bounded domain with smooth boundary Γ = ∂Ω,
and ρ0 denotes an initial probability distribution with

∫
Ω
ρ0(x)dx = 1. The Fokker-

Planck equation models the evolution of the probability distribution ρ(·, t) of a very
large set of particles that are confined by a ground potential G. The uncontrolled
system converges to the stationary distribution. The convergence rate depends
on the confining potential and the barrier height between adjacent potential wells
and can be extremely slow. In order to speed up the rate of convergence, we thus
consider an appropriate infinite-horizon stabilization problem. Motivated by the
concept of optical tweezing, see e.g., [8], the control interacts with the ground
potential along a prescribed control shape function α.

As a model problem, we focus on a spatially discretized two-dimensional Fokker-
Planck equation with n = 50×50 degrees of freedom. The design of the polynomial
feedback is based on a reduced-order model obtained by a generalization of the
method of balanced truncation as it has been discussed in, e.g., [2]. For the
computation of the feedback gain, we exploit the tensor product structure of the
generalized Lyapunov equations and approximate the solutions by means of an



966 Oberwolfach Report 16/2018

appropriate tensorial quadrature formula from [7]. We show that this allows to
construct polynomial feedback laws up to order 5.

Error analysis

We analyze in [6] the performance of uk in comparison with the optimal control.
To this purpose, we introduce the mapping Φ defined by

Φ: (y, u, p) 7→




y(0)
ẏ − (Ay + (Ny +B)u)

−ṗ−A∗p− uN∗p− C∗Cy
αu+ (Ny +B)∗p


 .

For a solution ū to problem (P ) with initial condition y0 and with associated
trajectory ȳ and costate p̄, the first-order optimality conditions write: Φ(ȳ, ū, p̄) =
(y0, 0, 0, 0). Our analysis mainly lies on the fact that the mapping Φ is invertible
around (y, u, p) = (0, 0, 0), with a C∞ inverse. This enables to show in particular
that the value function V is C∞ in the neighborhood of the steady state.

For deriving an error estimate for the feedback law uk, we construct a costate
variable pk satisfying a perturbed costate equation. Denoting by uk the open-
loop control generated by uk, we show that Φ(yk, uk, pk) = (y0, 0, wk, 0), where
the perturbation term wk can be conveniently estimated. We finally obtain the
following estimate:

‖(ȳ, ū, p̄)− (yk, uk, pk)‖ = ‖Φ−1(y0, 0, 0, 0)− Φ−1(y0, 0, wk, 0)‖
= O(‖wk‖) = O(‖y0‖k),

for appropriate norms, and for an initial condition y0 sufficiently close to 0.
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Optimal model switching for gas flow in pipe networks

Falk M. Hante

(joint work with Volker Mehrmann, Fabian Rüffler)

Gas flow in a pipeline can be modeled by a hierarchy ranging from nonlinear
hyperbolic balance laws

∂t̺+ ∂x(̺v) = 0,

∂t(̺v) + ∂x(P + ̺v2) = −θ̺v|v| − g̺h′,

to stationary models that can be obtained from the limit ε → 0 of a semilinear
approximation

ε∂t̺+ ∂xq = 0,

ε∂tq + c2∂x̺ = −θ q|q|
̺

− gh′̺,

where ̺ denotes the density, v the velocity, P the pressure, q = ̺v the flux of the
gas and g is the gravitational constant, h′ the slope and θ a friction coefficient
for the pipe. A gas network is composed by a coupling of these pipe models on a
graph G = (V,E) with nodes V = (v1, . . . , vm) and edges E = (e1, . . . , en) using
transmission conditions for the density

αk
x(v,ek)

̺k(t, Lkx(v, ek)) = αl
x(v,el)

̺l(t, Llx(v, el)), ∀ ek, el incident to v,
and a balance equation for the fluxes

∑

ej ingoing

qj(t, Lj)−
∑

ej outgoing

qj(t, 0) = qv(t) at node v,

where α and qv can be used to model active elements such as valves and compres-
sors as well as in- and outflow to the network. For modeling details and similar
hierarchies, for example in water canals, see [3].

For a numerical simulation or optimization of such a network, it can be ad-
vantageous to switch the pipe model individually in order to balance numerical
efficiency and accuracy [2, 5]. In [8], we consider such model switching exemplary
for the semilinear dynamic and stationary pipe model by switching the parameter
ε between 1 and a positive value ε̄ > 0 close to zero. As a cost function associated
to a time dependent choice ε ∈ {1, ε̄} for each edge given by a switching sequence
(µ, τ) and the corresponding solution z = (ρj , qj)j for the network dynamics we
consider

J(µ, τ, z) =
n∑

j=1

∫ T

0

∫ Lj

0

γ1(̺
j(t, x) − ̺jd(t, x))

2 + γ2(q
j(t, x)− qjd(t, x))

2 dx dt

+ γ3

N∑

k=1

n∑

j=1

1

Lj

∫ τk+1

τk

(µj
k − ε̄)2dt+ γ4N

with zd being the reference obtained from choosing ε = 1 for all edges, Lj being
the length of the pipe for ej, N being the number of switches and γ1, . . . , γ4 ≥ 0
being desired weights. Our techniques can also be applied to other cost functions.
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In [8], we prove that, for any choice ε ∈ {1, ε̄} for each edge, the homogeneous
part of the dynamics on the network generates a strongly continuous semigroup
with data in L2 on the edges. This allows us to pose the model switching problem
as an optimal switching control problem for hybrid semilinear evolution equations

ż(t) = Aµkz(t) + fµk(t, z(t)), k ∈ {1, . . . , N}, t ∈ (τk−1, τk),

z(τk) = gµk,µk+1(z−(τk)), k ∈ {1, . . . , N},
with initial condition z(τ0 = 0) = z0 as considered in [6]. For γ4 > 0, the existence
of optimal (τ∗, µ∗) can be obtained as in [4]. In view of optimality conditions, we

can define an adjoint state pj = (pj1, p
j
2)j satisfying

[
pj1
pj2

]

t

+

[
0 c2j
1 0

] [
pj1
pj2

]

x

= θ

[
0 − qj |qj |

̺j |̺j |

0 2 |qj |
̺j

][
pj1
pj2

]
+ γ1

[
̺j − ̺jd
qj − qjd

]
,

[
pj1
pj2

]
(T, x) = 0,

on each edge along with adjoint coupling conditions

αj

x(v,ek)
pj1(t, Lkx(v, ek)) = αk

x(v,el)
pk1(t, Llx(v, el)), ∀ ek, el incident to v,

∑

ej ingoing

pj2(t, Lj)−
∑

ej outgoing

pj2(t, 0) = 0 at node v,

so that the derivative for the reduced cost function Φ(µ, τ) = J(µ, τ, z(µ, τ)) with
respect to the k-th switching time τk satisfies

∂Φ

∂τk
=
∑

ej∈E

[∫ Lj

0

pj(τk, x)
[
(Aµk )j − (Aµk−1 )j

]
zj(τk, x) dx

+ γ2
[
(µk(m)− ε̄)2 − (µk−1(m)− ε̄)2

] ]
.

Moreover, the sensitivity of the cost function with respect to introducing a new
mode µ′ on an infinitesimal time interval at the point τ ′ satisfies

∂Φ

∂µ′
(τ ′) =

∑

ej∈E

[∫ Lj

0

pj(τ ′, x)
[
(Aµk)j − (Aµ′

)j
]
zj(τ ′, x) dx

+ γ2
[
(µk(m)− ε̄)2 − (µ′(m)− ε̄)2

] ]
,

where µk is the original mode at time τ ′. These results yield necessary optimality
conditions for a switching sequence (µ, τ) of the form that τ is a KKT-point for µ
fixed for the ordering condition τk ≤ τk+1 and ∂Φ

∂µ′ (τ
′) ≥ 0 for all modes µ′ and all

times τ ′ ∈ [0, T ]. Points satisfying these conditions can be found systematically
for example using a two-stage projected gradient descent method [1]. The compu-
tation of the gradients can be realized very efficiently, because the adjoint state p
is the same for all partial derivatives.
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In [8], we report numerical results for an ideal gas in a test network of 10 pipes
with two cycles and a total length of 340 km with a dynamic in- and outflow
scenario. The two-stage projected gradient descent method combined with a 2-
step-Richtmyer-method with artificial viscosity and an explicit 4-th order Runge-
Kutta-scheme for space and discretization of the forward and adjoint equations
then identifies a model where one of the cycles can be switched to a stationary
mode for most of the time with a maximal relative error of 6% with respect to
flow and 1% with respect to density.

Our prototypical approach can be applied in a similar fashion to realistic in-
dustrial networks in order to identify reduced models. In [7], we have shown that
the same techniques can also be applied to compute optimal compressor and valve
switching controls.

Future working directions include extensions to parameterized models and a
combination of the methods with the optimization of those parameters, also in the
context of receding horizon strategies.
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On an optimal control problem with quasilinear parabolic PDE

Ira Neitzel

(joint work with Lucas Bonifacius)

In this talk we present optimality conditions for optimal control problems gov-
erned by quasilinear parabolic PDEs on rough domains with control q and state
u. Special emphasis is placed on deriving second order sufficient conditions with-
out two-norm discrepancy and minimal gap to the associated necessary ones. A
typical model problem in two or three space dimensions is given by

(1a) Minimize J(u, q) :=
1

2
‖u− û‖2L2((0,T )×Ω) +

λ

2
‖q‖2L2(Λ,̺),

(1b)
∂tu+A(u)u = Bq in (0, T )× Ω,

u(0) = u0 in Ω,

(1c) q ∈ Qad ⊂ Q,

where

A(u) = −∇ · ξ(u)µ∇
with ξ being a scalar function, and µ is a spatially dependent coefficient function.
Boundary conditions are implicitly included in the definition of the differential
operator in (1b).

Our theory also covers Neumann boundary control in two dimensions, or Neu-
mann boundary control only depending on time, with fixed shape functions in
space, in three dimensions. Details regarding the precise functional analytic set-
ting as well as the full analysis can be found in [2].

Optimal control problems with quasilinear parabolic PDEs have been considered
mainly with respect to existence of solutions and first order necessary otpimality
conditions, see e.g. [3, 10, 1, 14, 15] or [12, 13, 8]. Regarding second order sufficient
conditions, we are only aware of one other recent publication, [4], where the authors
prove first and second order optimality conditions for quasilinear parabolic control
problems with distributed control with possibly unbounded nonlinearity, yet on
smooth domains.

The starting point for our work are recent uniform Hölder estimates for linear
parabolic equations subject to mixed boundary conditions and rough domains,
established in [11]. These imply that the state belongs to

W 1,s((0, T );W−1,p
D ) ∩ Ls((0, T );W 1,p

D ) →֒c C
α((0, T );Cκ(Ω)),

for any right-hand side in Ls((0, T );W−1,p
D ).

Adapting the ideas of Casas and Tröltzsch from [5, 6], we prove second order
necessary as well as sufficient optimality conditions. A key challenge lies in the
fact that the first and second derivative of the reduced objective functional have to
be extended to L2(Λ, ̺), but the linearized state equation contains an additional
term involving the gradient of u. This difficulty can be treated with a careful
regularity analysis of linear equations based on works by [7].
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In order to eventually apply the second order conditions to e.g. stability analysis
with respect to perturbations in the nonlinear operator, we show improved regular-

ity results for the state and adjoint state for right-hand-sides in Ls((0, T );H−ζ,p
D ).

In fact, then the state belongs to

W 1,s((0, T );H−ζ,p
D (Ω))∩Ls((0, T );D

H
−ζ,p
D

(Ω) (−∇ · µ∇)) →֒c C
α((0, T );W 1,p

D (Ω)),

where H−ζ,p
D (Ω) is the Bessel-potential space that can be obtained by complex

interpolation between Lp(Ω) and W−1,p
D (Ω), and D

H
−ζ,p
D (Ω) (−∇ · µ∇) is the do-

main of −∇ · µ∇ considered on H−ζ,p
D (Ω). This functional analytic setting has

been proposed in [9] and covers rough domains and mixed boundary conditions.

References

[1] N. U. Ahmed, Optimal control of a class of strongly nonlinear parabolic systems, J. Math.
Anal. Appl., 61 (1977), 188–207.

[2] L. Bonifacius, I. Neitzel, Second order otpimality conditions for optimal control of quasilinear

parabolic equations Mathematical Control & Related Fields, 8 (2018), 1–34.
[3] E. Casas, L. A. Fernández and J. Yong, Optimal control of quasilinear parabolic equations,

Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 545–565.
[4] E. Casas and K. Chrysafinos, Analysis and optimal control of some quasilinear parabolic

equations, Submitted.
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Recent results for the 3D Cahn-Hilliard-Brinkman system with
unmatched viscosities

Andrea Giorgini

(joint work with Monica Conti)

Many applications in Engineering rely on the interaction between multicompo-
nent fluid mixture. Due to the complexity of the dynamics at the interface, the
mathematical description of the motion of globally immiscible materials, such as
alloys and viscous fluids, is a long-standing problem in Material Science and Fluid
Dynamics starting at the beginning of the 19th century. Since then, a vast liter-
ature has been devoted to find accurate models which comply the physical laws
and lead to efficient numerical calculations. The mutual interaction between the
interface dynamics and the surrounding fluid motion is indeed a complex phenom-
enon, depending on surface tension effects, temperature gradients and viscosity
ratios. The common goal among these investigations has been understanding the
nature of the interface. In the classical attempt, the interface is assumed to be an
evolving surface with zero thickness, across which physical quantities must satisfy
suitable boundary conditions. A radical change of view in the theory dates back
to Van der Waals which postulated in [20] the notion of diffuse interface. This idea
inspired many physicists during the last century leading to the development of the
so-called phase field method. The origin of the first equations can be attributed to
Cahn and Hilliard in [6], whose aim was to describe the spinodal decomposition in
alloy mixtures. Later on this approach has been employed in many areas of Ma-
terials Science such as solidification of pure and binary materials, grain boundary,
nucleation, solid-solid or liquid-liquid phase transition and crystallization (see [8]).

The key concept of diffuse interface methods is treating the interface as a finite-
width region in which physical quantities have a rapid but smooth variation. The
evolution of thick interfaces is taken into account by means of an additional vari-
able. This is the so-called order parameter (or phase field) ϕ which distinguishes
one constituent from the other. The order parameter is ruled by an additional
equation based on the mass balance of the mixture, assuming Fick’s law and free
energy from Statistical Mechanics. The resulting equation is the so-called (con-
vective) Cahn–Hilliard equation

(1) ∂tϕ+ u · ∇ϕ = ∆(−∆ϕ+Ψ′(ϕ)).

Here u is the volume-averaged velocity and Ψ′ is the first derivative of a double
well potential Ψ. The thermodynamically relevant energy density Ψ is

(2) Ψ(s) =
θ

2

(
(1 + s) ln(1 + s) + (1− s) ln(1− s)

)
− θ0

2
s2, ∀s ∈ (−1, 1),

where the parameters θ and θ0 satisfy the physical relations 0 < θ < θ0. To model
the dynamics of two incompressible Newtonian fluids, (1) is coupled with a system
of PDEs ruling the velocity u. Let us report two important cases:
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(i) Model H. This is a Cahn–Hilliard–Navier–Stokes (CHNS) system where
u satisfies the Navier–Stokes equations (see, e.g., [4, 12, 15])

(3) ∂tu+ (u · ∇)u = div (ν(ϕ)Du)−∇π + µ∇ϕ, divu = 0.

(ii) Hele–Shaw flows. The flow confined in a Hele–Shaw cell is modelled by
the so-called Cahn–Hilliard–Hele–Shaw (CHHS) system, where the veloc-
ity field fulfils the Darcy’s law (see [14, 10, 16])

(4) ν(ϕ)u+∇π = µ∇ϕ, divu = 0.

The viscosity term ν is a linear combinations of the components (see, e.g., [13])
ν(s) = ν1

1+s
2 + ν2

1−s
2 , where ν1, ν2 are the viscosities of the two fluids. In this

approach topological changes of the interface are naturally allowed by the formu-
lation of the system. This is one of the main reasons that made this approach
widespread in numerical simulations. The Cahn-Hilliard-Brinkman (CHB) model
arises in this context as a model for phase separation phenomena in porous media
(see [18, 19]) and as a regularized system of the models mentioned above. In a
bounded domain Ω ⊂ R3, the system reads as

(5)

{
−div (ν(ϕ)Du) + η(ϕ)u+∇π = µ∇ϕ, divu = 0,

∂tϕ+ u · ∇ϕ = ∆(−∆ϕ+Ψ′(ϕ)),
in Ω× (0, T ),

completed with u = 0 and ∂nϕ = ∂nµ = 0 on ∂Ω× (0, T ), and ϕ(0) = ϕ0.
The mathematical analysis of these diffuse interface systems, in particular the

uniqueness issue and the existence of global-in-time strong solutions, is quite chal-
lenging. This is due to the intrinsic difficulty of handling the equations for the
velocity field and the singular behavior of Ψ′(s) and its derivatives as s approaches
±1. To simplify the analysis, most of the papers addressed the case of regular po-
tentials, namely, (2) is replaced with polynomial functions. However, this choice
cannot ensure that ϕ ranges in the physical interval [−1, 1]. Under such restric-
tions, the CHB system has been investigated in [2]. In the same framework,
among a vast literature, we refer the reader to [3, 9, 15] for the CHNS system
and to [17, 21, 22] for the CHHS system. On the other hand, the are only few
papers concerning the above-mentioned systems with the physically relevant log-
arithmic potential. The sole contribution on the CHNS model is [1]. Notably, the
well-posedness of strong solutions is established: the order parameter ϕ is global
in any dimensions, while the velocity field u is global in dimension two and local
in dimension three. The CHHS model with logarithmic potential and matched
viscosities has been studied in [11]. The uniqueness of weak solutions and their
instantaneous regularization have been achieved in dimension two. Besides, in
dimension three the existence of global strong solution is shown provided that the
initial state ϕ0 is sufficiently close to any local minimizer of the Ginzburg–Landau
free energy. The result of our investigation on the CHB system is a comprehensive
mathematical theory in dimension three. More precisely, our main results in a
smooth domain Ω ⊂ R3 are the following: uniqueness of weak solutions, global
well-posedness of strong solutions, further regularity properties and validity of the
separation property. In accordance with the previous discussion, the completeness
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of these results is a validation of the CHB system as a robust diffuse interface
model for the description of three dimensional two-component flows.
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Multiscale optimal control of collective behavior phenomena

Dante Kalise

Multi-agent dynamical systems (MAS) naturally arise in the mathematical model-
ing of social dynamics in a wide spectrum of applications such as animal behavior,
cellular aggregation, opinion dynamics and human crowd motion, among many
others (see [10, 12] and references therein). So far, it has been of utmost interest
to study different collective behavior phenomena such as clustering or consensus
emergence without external forces. Depending on the degree of cohesiveness of
the initial configuration of the agents and their interaction strength, dynamical
patterns may arise naturally by self-organization. However, if self-organization is
not sufficient to enforce a stable pattern, collective behavior can be induced by
means of exogenous interventions. Our goal is to study the design of external
control actions which are able to steer a MAS towards prescribed stable consensus
patterns. We will address this challenge by means of optimal control techniques,
thus minimizing an energy measure of both the control and the state of the system,
constrained to the multi-agent dynamics.

MAS are naturally represented as particle sets dynamically interacting under
simple rules such as attraction, repulsion, or alignment. We are interested in an
optimal control formulation for MAS, so we will be concerned with a large-scale
system of coupled nonlinear stochastic differential equations of the type

dxi =


 1

N

N∑

j=1

P (xi, xj)(xj − xi) + ui


 dt+

√
2σ dBt

i , i = 1, · · · , N, t > 0,

where the kernel P : Rd × Rd → R encodes the interaction forces between agents,
and the control u = (u1, . . . , uN ) minimizes a given functional J(x, u). As an
example we can consider the following variational formulation

u∗ = argmin
u∈U

J(x, u) := E

[∫ T

0

1

N

N∑

i=1

(
1

2
|xi − xd|2 + γΛ(ui)

)
dt

]
,

where xd represents a target reference point, γ is the penalization parameter of
the control u, which is chosen among the admissible controls in U , and Λ : Rd →
R+ ∪ {0} is a convex function. The choice of this particular cost function is
absolutely arbitrary.

As the number of agents increases, the complexity of the associated optimal
control problem becomes prohibitively expensive, a phenomenon often referred
as Bellman’s curse of dimensionality. In order to circumvent this difficulty, we
follow a multiscale (MS) approach. By borrowing a leaf from statistical mechanics,
the mean field approximation of a multi-agent system replaces the microscopic
representation of the state by an agent density function which evolves according
to a nonlinear, nonlocal transport equation

∂tρ+∇ · ((P [ρ] + u) ρ) = σ∆ρ,



976 Oberwolfach Report 16/2018

where the interaction force P is given by

P [ρ](x) =

∫
P (x, y)(y − x)ρ(y, t) dy

and the solution ρ is controlled by the minimizer of the cost functional

J(ρ, u) =

∫ T

0

(
1

2

∫
|x− xd|2ρ(x, t) dx + γ

∫
Λ(u)ρ(x, t) dx

)
dt.

Overall, our research is focused around the following three challenges:

(1) The derivation of MS models for the control of collective behavior and its
analysis.

(2) The numerical analysis of the solution of multiscale optimal control prob-
lems (MSOC), and the quantification of the closed-loop MSOC perfor-
mance over the original microscopic models.

(3) The analytical and computational study of applications in animal and
human crowd motion, and opinion dynamics.

Previous research

The topic of emergent collective behavior in multi-agent systems has been linked
the study of pattern formation and self-organization phenomena [13, 14], and to
recent developments covered within the area of Mean Field Games (MFG) [17, 6, 9].
In the case of self-organization, focus is put on the study of system dynamics and
the internal structures which can lead to consensus. On the other hand, the
approach based on MFG does include a decision process, but its design is based
on the optimization of individual goals, as for instance in the financial market, and
the emphasis is in the characterization of Nash equilibria. We follow a different
approach, enforcing consensus by optimizing the intervention of an external policy
maker endowed with limited resources. This approach has been already studied
for microscopic dynamics in [11, 8, 7, 5], and at the mean-field level in [6, 15, 16]
among others. In [1], we have developed an analytical and computational MSOC
approach for the control of mean-field dynamics through the inclusion microscopic
leaders, with applications in crowd motion evacuation. More recently, in [2, 3, 4]
we developed a mean-field control hierarchy, where optimal feedback controllers
are computed for a binary system of particles, and its action is inserted in the
mean-field dynamics, regulating the density evolution towards a target. Starting
from these works, we expect to further develop the advancement of this framework
by deriving new MS mean-field models, by studying improved optimal control
formulations and by quantifying the performance of the MS optimal controllers.
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Necessary optimality conditions for infinite dimensional state
constrained control problems

Helene Frankowska

(joint work with Elsa Maria Marchini, Marco Mazzola)

The maximum principle for optimal control problems can be considered as a mile-
stone in the theory of first order necessary optimality conditions. Due to its
importance, an extensive literature has been devoted to this subject, both in finite
and in infinite dimensions. The main interest of the infinite dimensional setting is
due to the fact that many physical models can be formulated in this framework,
as for instance heat conduction, reaction-diffusion processes, properties of elastic
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materials, to mention only a few of them. To optimize a measure of best per-
formance is indeed a natural need in concrete problems. For this reason optimal
control governed by PDEs is a very active field of research, see e.g. the classical
books, [3, 5, 6, 12, 18, 19, 21], containing also rich bibliographies. In the literature
two strategies can be found : the abstract semigroup approach, and a direct one
relying on PDEs methods. The advantage of the second approach is that many
fine properties of the solutions, as regularity, can be used. In contrast, the first
more general framework directly applies to a variety of models.

We discuss here the first approach, relying on some results derived in the ab-
stract setting in [13, 14], suitable to deal with state constrained problems. In
particular, we have proved some neighbouring feasible trajectory (NFT) theorems
allowing to estimate the distance between a given trajectory of an evolution system
and its trajectories lying in the interior of the state constraint. (NFT) theorems
have been studied in depth in the finite dimensional setting, see for instance [15]
and the references contained therein. Let us underline that control systems under
state constraints are of crucial importance in applied sciences because constraints
do appear naturally in many models. The most frequently used tool to deal with
state constrained optimization problems is the penalization technique that replaces
a given optimization problem by a family of penalized problems without state con-
straints. Then the idea is to get optimal solutions and multipliers for the penalized
problems and to pass to a limit. In infinite dimensions this technique should be
used with caution, because weak limits of multipliers may be trivial. In contrast,
(NFT) theorems are kind of implicit function theorems allowing to replace any
given trajectory violating state constraints by a feasible trajectory satisfying some
estimates. Such feasible trajectory is obtained in a constructive way making this
approach more efficient than penalization.

In an infinite dimensional separable Banach space X , consider the solutions
x : I = [0, 1] → X of the control system

(1) ẋ(t) = Ax(t) + f(t, x(t), u(t)), a.e. t ∈ I ,

that satisfy state constraints of the form

(2) x(0) ∈ Q0, x(t) ∈ K, ∀ t ∈ I .

Here, u is a measurable selection of a given measurable set valued map U : I  
Z with closed non-empty images, and Z is a complete separable metric space
modeling the control set. The densely defined unbounded linear operator A is the
infinitesimal generator of a strongly continuous semigroup S(t) : X → X , the map
f : I × X × Z → X is Fréchet differentiable with respect to the second variable
x, Q0 and K are closed subsets of X . The trajectories of (1) are understood in
the mild sense. Notice that we allow nonsmooth constraints, that are important
in the applications (industrial, medical, economical...).

Given a differentiable map g : X → R, consider the Mayer optimization problem

(3) minimize
{
g(x(1)) : x is a solution of (1), (2) for some control u(·)

}
.
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Recall that optimal control problems involving the integral cost can be reduced to
(3) by adding an extra variable. Our main result is a direct proof of the follow-
ing constrained Pontryagin Maximum Principle (PMP): for any locally optimal
trajectory/control pair (x̄, ū) for problem (3) and any nonempty convex cone C0

contained in the contingent cone TK∩Q0(x̄(0)) to K ∩ Q0 at x̄(0), there exist a
multiplier λ ∈

{
0, 1
}
and a countably additive regular measure of bounded varia-

tion γ, not vanishing simultaneously, such that the solution z (in the sens of [12])
to the measure-driven adjoint variational equation

(4)

{
dz(t) = −

(
A∗ + ∂xf(t, x̄(t), ū(t))

∗
)
z(t)dt− γ(dt) , t ∈ I

z(1) = λ∇g(x̄(1)) ,
satisfies the optimality condition

(5) 〈z(t), f(t, x̄(t), ū(t))〉 = min
u∈U(t)

〈z(t), f(t, x̄(t), u)〉, for a.e. t ∈ I

together with the transversality condition −z(0) ∈ C−
0 .

The maximum principle in Banach spaces has been studied in the 60ies, see for
instance [9, 10]. Since then, many authors have contributed to extend it to the
state constrained case, both in the abstract semigroup setting and in the PDEs
framework: among many others we mention [1, 2, 4, 7, 17, 20], the classical books
quoted above, and the references contained therein. The novelty of our approach
relies in the fully general state constrained evolutionary systems considered. For
these problems we are able to provide a simple proof of the constrained (PMP)
together with sufficient conditions implying the validity of the optimality condition
in a qualified (normal) form.

To derive this result, instead of using Ekeland’s principle, as it was done in
many papers dealing with necessary optimality conditions, both in the abstract
semigroup setting and in the direct approach to PDEs, see e.g. [12], we apply
a variational technique based on our results from [14]. The main idea is to lin-
earize the constrained control problem, using convexified variational differential
inclusions and a convex linearization of the state constraints and to prove the gen-
eralized Fermat rule thanks to the (NFT)-theorem. Then, the duality arguments
lead to necessary conditions for optimality in a straightforward way. Moreover,
by exploiting inward pointing conditions, we guarantee that (PMP) holds in the
normal form, that is with λ = 1 (see [16] for an overview of the existing results
in finite dimension). Normality of the maximum principle plays a crucial role in
necessary optimality conditions since it allows to deduce qualitative properties of
the optimal trajectories.
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A parallel-in-time gradient-type method for optimal control of
nonlinear systems

Matthias Heinkenschloss

(joint work with Xiaodi Deng)

A new parallel-in-time gradient-type method for the solution of time dependent
optimal control problems is introduced. Each iteration of the classical gradient
method requires the solution of the forward-in-time state equation followed by the
solution of the backward-in-time adjoint equation to compute the gradient. To
introduce parallelism, the time steps are split into N time subintervals. If correct
state and adjoint information was available at the time subinterval boundaries,
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the time subdomain problems could be solved in parallel to compute the gradient.
However, the state and adjoint information at the time subinterval boundaries
must now be computed as part of the optimization problem. Unlike in multiple
shooting formulations, were continuity conditions of the state equation at time
subinterval boundaries are introduced as constraints and states at time subinter-
val boundaries are introduced as additional optimization variables, we simply use
state and adjoint information at time subinterval boundaries from the previous it-
eration. Given this information, on each time subinterval the forward-in-time state
equation is solved, the backward-in-time adjoint equation is solved, gradient-type
information is generated, and the controls are updated. These computations can
be performed in parallel across time subintervals. State and adjoint information at
time subinterval boundaries is then exchanged with neighboring subintervals and
the process is repeated. The overall structure of the algorithm is nearly identical
to the classical gradient method, and therefore relatively easy to implement. Since
the state and adjoint equations are not satisfied at time subdomain boundaries the
algorithm is not a gradient method, and a new convergence analysis is needed.

Applied to a convex linear quadratic optimal control problem with controls in
Rm, this method can be interpreted as a so-called (2N − 1)-part iteration scheme.
Convergence of this iteration scheme can be proven by analyzing the spectrum of
the corresponding iteration matrix, a block (2N−1)×(2N−1) companion matrix.
We prove that the spectral radius of this companion matrix is less than one for
sufficiently small, positive step sizes. Therefore, the parallel-in-time gradient-type
method converges for sufficiently small, positive step sizes. The step size typically
depends on the number N of time subintervals, and a better characterization of
suitable step-sizes is work in progress.

For general nonlinear, smooth problems basic first-order convergence is proven
for sufficiently small positive step sizes, by estimating the difference between the
gradient-type direction and the gradient direction. Currently, these results are
established for problems with finite dimensional controls, but it seems possible to
extend the proofs to problems with controls in Hilbert spaces.

The convergence of the new method is illustrated on two examples, a 3D linear-
quadratic parabolic advection diffusion control problem, and a well rate optimiza-
tion problem for a two-phase immiscible reservoir. Nearly perfect speed-up is
observed for a small to moderate number of time subdomains. For the second
example two-level parallelism is employed. Within the computations on a single
time subdomain parallel solvers were used for nonlinear and linear systems in the
state and adjoint computations. It is demonstrated that the speed-up due to time
decomposition multiplies the speed-up due to parallelization in the solution of
state and adjoint equations.
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Second order optimality conditions and applications for some
bang-bang control problems of semilinear parabolic equations

Eduardo Casas

(joint work with Mariano Mateos, Arnd Rösch)

We consider the following optimal control problem

(P) min
u∈Uad

J(u) =

∫

Q

L(x, t, yu(x, t)) dx dt,

where

Uad={u = (uj)
m
j=1 ∈ L∞(0, T )m : αj ≤ uj(t) ≤ βj for a.a. t ∈ (0, T ), 1 ≤ j ≤ m}

with −∞ < αj < βj < +∞ for j = 1, . . . ,m; and yu is the solution of the equation
(1)



∂y

∂t
(x, t) −∆y(x, t) + f(x, t, y(x, t)) =

m∑

j=1

uj(t)gj(x) in Q = Ω× (0, T ),

y(x, t) = 0 on Σ = Γ× (0, T ),

y(x, 0) = y0(x) in Ω.

We assume that Ω ⊂ R
n (1 ≤ n ≤ 3) is a bounded domain with a Lipschitz

boundary, y0 ∈ L∞(Ω) and the functions {gj}mj=1 ⊂ Lp̂(0, T ;Lq̂(Ω)) \ {0} (p̂, q̂ ∈
[2,∞] and

1

p̂
+

n

2q̂
< 1) have pairwise disjoint supports ωj = supp(gj). We also

assume that f, L : Q × R −→ R are Borel functions, of class C2 with respect to
the last variable. The function f satisfies for almost all (x, t) ∈ Q

f(·, ·, 0) ∈ Lp̂(0, T ;Lq̂(Ω)),(2)

∃Λ ∈ R :
∂f

∂y
(x, t, y) ≥ Λ ∀y ∈ R,(3)

∀M > 0 ∃CM :

∣∣∣∣
∂f

∂y
(x, t, y)

∣∣∣∣+
∣∣∣∣
∂2f

∂y2
(x, t, y)

∣∣∣∣ ≤ CM ∀|y| ≤M,(4)





∀M > 0 and ∀ρ > 0 ∃ε > 0 such that∣∣∣∣
∂2f

∂y2
(x, t, y2)−

∂2f

∂y2
(x, t, y1)

∣∣∣∣ ≤ ρ if |y2 − y1| < ε and |y1|, |y2| ≤M.
(5)
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Finally, L satisfies for almost all (x, t) ∈ Q

L(·, ·, 0) ∈ L1(Q),(6)

∀M > 0 ∃ψM ∈ Lp̂(0, T ;Lq̂(Ω)) :

∣∣∣∣
∂L

∂y
(x, t, y)

∣∣∣∣ ≤ ψM (x, t) ∀|y| ≤M,(7)

∀M > 0 ∃CM :

∣∣∣∣
∂2L

∂y2
(x, t, y)

∣∣∣∣ ≤ CM ∀|y| ≤M,(8)





∀M > 0 and ∀ρ > 0 ∃ε > 0 such that∣∣∣∣
∂2L

∂y2
(x, t, y2)−

∂2L

∂y2
(x, t, y1)

∣∣∣∣ ≤ ρ if |y2 − y1| < ε and |y1|, |y2| ≤M.
(9)

Following [1], we say that ū is a strong local minimum of (P) with a local
quadratic growth if there exist ε > 0 and κ > 0 such that

(10) J(ū) +
κ

2
‖yu − ȳ‖2L2(Q) ≤ J(u) ∀u ∈ Uad : ‖yu − ȳ‖L∞(Ω) < ε.

We prove that ū ∈ Uad satisfies (10) if besides the first order optimality condi-
tion, the following second order condition holds

(11) ∃τ > 0, ∃δ > 0 : J ′′(ū)v2 ≥ δ‖zv‖2L2(Q) ∀v ∈ Cτ
ū ,

where

Cτ
ū = {v ∈ L2(0, T )m : vj(t)





≥ 0 if ūj(t) = αj

≤ 0 if ūj(t) = βj

= 0 if
∣∣∣
∫
Ω
ϕ̄(t)gj dx

∣∣∣ > τ
for a.a. t ∈ (0, T )},

Above, ϕ̄ denotes the adjoint state associated with ū. Then, under the assump-
tion (11), we can prove stability of optimal states of the control problem with
respect to some perturbations of the data, and we can prove some error estimates
corresponding to the optimal states for the numerical discretization of the con-
trol problem. In order to deduce estimates for the optimal controls, an additional
hypothesis is assumed:

(12) ∃K > 0 : ∀ε > 0
∣∣∣
{
t ∈ (0, T ) :

∣∣∣
∫

Ω

ϕ̄(t)gj dx
∣∣∣ < ε

}∣∣∣ ≤ Kε ∀1 ≤ j ≤ m.

If ū ∈ Uad satisfies the first order optimality conditions, (11) and (12), then
there exist ε > 0, ν > 0, and κ > 0 such that

J(ū) +
ν

2
‖u− ū‖1+

1
γ

L1(Q) +
κ

2
‖yu − ȳ‖2L2(Q) ≤ J(u) ∀u ∈ Uad : ‖yu − ȳ‖L∞(Ω) < ε.

This inequality is used to derive error estimates for the discretization of the con-
trols.
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Explicit exponential stabilization of nonautonomous linear
parabolic-like systems by a finite number of internal actuators

Sérgio S. Rodrigues

(joint work with Karl Kunisch)

The aim is to construct an explicit finite-dimensional feedback controller for stabi-
lization of linear parabolic equations, with a time-dependent reaction-convection
operator. The reason for looking for finite-dimensional controls is motivated by ap-
plications where only a finite number of actuators can be tuned. Feedback controls
are also important for applications due to their robustness against small measure-
ment/disturbance errors. We also look for an explicit feedback law/operator which
is easy to compute, because as it is well known, computing the classical Riccati
feedback operator can be a quite demanding numerical task.

The range of the controller is modeled by indicator functions of small subdo-
mains. Its dimension M depends polynomially on a suitable norm of the reaction-
convection operator. A sufficient condition for stabilizability is given, which in-
volves the asymptotic behavior of the eigenvalues of the (time-independent) dif-
fusion operator, the norm of the reaction-convection operator, and the norm of
the nonorthogonal projection onto the controller’s range along a suitable infinite
dimensional (higher-modes) eigenspace. To construct the explicit feedback, the
essential step consists in computing the nonorthogonal projection. Numerical sim-
ulations are presented, in 2D, showing the practicability of the controller and its
response to measurement errors, where the actuators are indicator functions of
suitable small subsets.

We consider a nonautonomous parabolic system in a smooth bounded do-
main Ω ⊂ Rd

(1) ẏ(t)− ν∆y(t) + a(t)y(t) +∇ · (b(t)y(t))−
M∑

i=1

ui(t)1ωi
= 0, y(0) = y0,

where y = y(t, x) is the state, y0 is given in L2(Ω), u(t) = (u1, . . . , uM )(t) is
a control function at our disposal, taking values in RM , and and 1ωi

= 1ωi
(x),

i ∈ {1, 2, . . . , M}, are indicator functions of some small domains ωi ⊂ Ω.
Here, we assume Dirichlet boundary conditions, y|∂Ω = 0.
Let 0 < αi, i ∈ N0, be the increasing sequence of (repeated) eigenvalues of −ν∆

and let EM be the span of the eigenfunctions associated with its first M eigenval-
ues. We will assume that our actuators satisfy L2(Ω) = U ⊕ E⊥

M , which allow us

to define the (nonorthogonal) projection P
E⊥

M

U : L2(Ω) → U onto U along E⊥
M .

Let us denote the operator y 7→ Arcy = a(t)y +∇ · (b(t)y). The main result is
as follows: if

L2(Ω) = U ⊕ E⊥
M ,(2a)

µM := αM+1 −
(
6 + 4

∣∣∣PE⊥

M

U

∣∣∣
2

L(L2(Ω))

)
|Arc|2L∞((0,+∞),L(L2(Ω),H−1(Ω))) > 0,(2b)
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then, for any given constant λ > 0, a feedback stabilizing control is given by

(3) y 7→ K(t)y := P
E⊥

M

U (−ν∆y +Arc(t)y − λy) .

More precisely, the system

(4) ẏ(t)− ν∆y(t) +Arc(t)y(t)−K(t)y(t) = 0, y(0) = y0,

is exponentially stable: there exist suitable constants µ > 0 and D ≥ 1 such that

|y(t)|2L2(Ω) ≤ De−µ(t−s) |y(s)|2L2(Ω) , for all t ≥ s ≥ 0.

Observe that (4) is exactly (1), with u given by

(5)
M∑
i=1

ui1ωi
= P

E⊥

M

U (−ν∆y +Arcy − λy).

Once we have an estimate ŷ(t) for y(t), we can compute an estimate of our
control as K(t)ŷ(t). Feedback controls are demanded in applications, because
they are able to respond to (small) measurement/estimation errors. In Figure 1
we confirm that our proposed feedback is robust against such errors. As the
magnitude of the noise (measurement error), η := ŷ(t) − y(t), gets smaller the
solution goes to a smaller neighborhood of zero.

We present the results corresponding to simulations of the system (1) with a
perturbed feedback (i.e., with an estimated feedback control K(t)ŷ(t)):

ẏ − ν∆y + ay +∇ · (by)− P
E⊥

M

U (−ν∆ŷ + aŷ +∇ · (bŷ)− λŷ) = 0,(6)

y(0) = y0.(7)

where ŷ := y + η. We have taken

a(t, x1, x2) = −0.1− 0.2| sin(t+ x1)|R, b(t, x1, x2) =

(
0.1(x1 + x2)
0.1 cos(t)x1x2

)
,(8)

{
ν = 0.1,
y0 = 0.01e1.

(9)

and we have taken 4 actuators 1ωi
, i ∈ {1, 2, 3, 4}, whose regions are as in Figure 1.
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Figure 1. Response to measurement errors and actuators regions.
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The value ϑM in Figure 1 defines the norm of the nonorthogonal projection

as
∣∣∣PE⊥

M

U

∣∣∣
2

L(L2(Ω))
= ϑ−1

M .

We took the noise in the form η = η1y + η2 having a component η1y which is
proportional to the state y and a component η2 which is independent of the state.

We tested with a hypothetical noise η (“typnoi” in figures) as

η(x, t) = rndn(t, x, ζ)

:= eζ
(
(min{1,max{−1, vran1(x, t)}} − 1)y(x, t) + min{1,max{−1, vran2(x, t)}}

)
,

The function rndn is “random” and is to be understood as follows: once we
have solved our system up to time tm = mk, say we have just found y(tm), then
we generate random vectors vrani(tm) ∈ RN+1, from which we construct the noise
function rndn at time t = tm.

The vectors vrani(tm), were generated by the Matlab function randn.
Further details may be found in the preprint [1], where we can also find further

numerical results, including the 1D case.
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Optimization problems with quasi-variational inequality constraints

Carlos N. Rautenberg

(joint work with Amal Alphonse, Michael Hintermüller)

We consider a non-standard optimization problem with Quasi-Variational Inequal-
ities (QVIs) constraints. The objective functional of the optimization problem
takes set valued arguments, and the reduced formulation can be posed in terms of
minimal and maximal solutions to the QVI. The stability of minimal and maximal
elements of the solution set with respect to perturbations of the forcing term is
considered, and a well-posedness result for the optimization problem is provided.

The optimization problem

The QVI problem class under consideration is given by

Problem (PQVI) : Given f ∈ V ′

(PQVI) Find y ∈ K(y) : 〈A(y)− f, v − y〉 ≥ 0, ∀v ∈ K(y),

where K(y) ∈ 2V for each y ∈ V .

In this setting, we assume that V is the state space on a Hilbert space Gelfand
triple (V,H, V ′), of real valued maps on a certain domain Ω ⊂ RN with N ∈ N,
where L∞(Ω) embeds continuously into H . We further suppose that the operator
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A : V → V ′ is homogenous of degree one, Lipschitz continuous, and uniformly and
T-monotone. We further assume that there exists a closed convex cone H+ in H
satisfying

H+ = {v ∈ H : (v, y) ≥ 0, for all y ∈ H+}.
The cone H+ defines the cone of non-negative elements inducing the vector order-
ing: x ≤ y if and only if y − x ∈ H+, and we assume that V is compatible with
this order in the following sense: y ∈ V ⇒ y+ ∈ V and there exists µ > 0 such
that ‖y+‖V ≤ µ‖y‖V , for all y ∈ V . Note that the ordering in H induces one in
V ′: if f, g ∈ V ′, we write f ≤ g if 〈f, φ〉 ≤ 〈g, φ〉 for all g ∈ V+ := V ∩ H+ and
define V ′

+ := {f ∈ V ′ : f ≥ 0}.
The general structure of K is of obstacle type and given by

K(v) := {w ∈ V : w ≤ Φ(v)},
where Φ : H → H is increasing: if v ≤ w, then Φ(v) ≤ Φ(w), and non-negative
above zero, that is, Φ(0) ≥ 0. Additionally, we consider the set of admissible
forcing terms Aad = {g ∈ Uad : 0 ≤ g ≤ fmax}, for some fmax ∈ U , where
Uad ⊂ U ⊂ H , where U is a subspace of H .

The optimization problem of interest is given by

Problem (P):

minimize J(O, f) := J1(Tsup(O), Tinf(O), f)

over (O, f) ∈ 2H × U,

subject to f ∈ Aad,

y ∈ O, O = {z ∈ V : z solves (PQVI) ∩ [y, y]}.

(P)

In the above problem we consider J1 : H ×H ×U → R and for y, y ∈ H we define
the set map Tsup

Tsup(O) :=

{
supz∈O∩[y,y] z, O ∩ [y, y] 6= ∅ ;

y, otherwise.

The map Tinf defined analogously as

Tinf(O) :=

{
infz∈O∩[y,y] z, O ∩ [y, y] 6= ∅ ;

y, otherwise.

In our setting, the supremum of an arbitrary subset of H that is bounded above
(in the order) is also correctly defined since H is Dedekind complete, which shows
that Tinf and Tsup are well defined in our setting.

Thermoforming. In the industrial production of plastics, the technique of ther-
moforming is usually used. In this procedure, a plastic sheet is heated to pliable
temperature and then forced towards a mold, commonly made of metal and asso-
ciated to some cooling mechanism.

The time asymptotic behaviour of the thermoforming process leads to an elliptic
problem. We consider a plastic membrane y over the domain Ω, assume that the



988 Oberwolfach Report 16/2018

temperature T of the membrane remains constant (neglecting changing rheological
properties), and denote Φ to the position of the mold.

The problem is then given by: Find (y,Φ, T ) ∈ V × V ×W such that

y ≤ Φ, 〈Ay − f, y − v〉 ≤ 0, ∀v ∈ V : v ≤ Φ

〈kT −∆T,w〉 = (g(Φ− u), w) ∀w ∈ W

Φ = Φ0 + LT, in V

where f ∈ H+, k > 0 is a constant, Φ0 ∈ V , and L : W → V is a (locally) order
preserving bounded linear operator, g : R → R is decreasing with g(0) =M > 0 a
constant, 0 ≤ g ≤M and g′ bounded.

The reduced problem, well-posedness, and open questions

Solutions to the QVI of interest can be posed as fixed points of an increasing
map. In fact, the Tartar-Birkhoff fixed point theorem establishes that we have the
operators

m : Aad → V and M : Aad → V,

that take elements of Aad to the minimal and maximal solutions to (PQVI) on
the interval [y, y] = [0, A−1fmax]. Then the reduced version of problem (P) is
formulated in terms of m and M as

minimize J1(M(f),m(f), f)

subject to f ∈ Aad.
(Pred)

An important class of examples is given when we want to force the solution set
to be a singleton and at the same time close to some desired state yd. Here, a
possible choice for J1 is given by

J1(M(f),m(f), f) =
1

2

∫

Ω

|M(f)−m(f)|2dx+
σ

2

∫

Ω

|yd −m(f)|2dx.

In the setting of the thermoforming example this is the expected problem to solve.
If we consider the solutions to (PQVI) to be limits as t → ∞ of an underlying
evolutionary process, such control problem can be translated as an attempt to
force production to be as uniform as possible, together with forcing it to be close
to yd.

The well-posedness result that can be obtained is: Suppose that Uad ⊂ H is
bounded, Uad ⊂ L∞

ν (Ω) = {h ∈ L∞(Ω) : h ≥ ν > 0 a.e. in Ω}, and that the
embedding U →֒ L∞(Ω) is compact. Then, there exists a solution to problem (P),
provided structural assumptions on the map Φ, and assuming that Φ : V → V is
completely continuous. The structural results mentioned are satisfied if the map
R+ ∋ λ 7→ λΦ(y)− Φ(λy) is increasing for any y ∈ V ∩H+.

Such a result hinges on the stability of the maps f 7→ m(f) and f 7→ M(f), and
a full characterization of such has not been obtained yet. Specifically, if {fn} is in
Aad, what conditions are necessary and sufficient so that

m(fn) → m(f) and M(fn) → M(f)

in H and in V ?
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On the Barzilai-Borwein step-sizes for optimization problems in
Hilbert spaces

Behzad Azmi

(joint work with Karl Kunisch)

Due to simplicity and numerical efficiency, the Barzilai and Borwein (BB) method
[1] has received a considerable amount of attention in different fields of optimiza-
tion. In this method, to incorporate the quasi-Newton property, the Hessian is
approximated by a scalar multiple of the identity in such a manner that the se-
cant condition holds. In this talk, we discuss the convergence of this method
for problems posed in infinite-dimensional Hilbert spaces. First, based on the
spectral analysis, the R-linear global convergence of this method for strictly con-
vex quadratic problems is presented. Then this result is extended to the local
convergence for twice continuously Fréchet differentiable functions. Next, aiming
at problems governed by partial differential equations, the results concerning the
mesh-independent principle for the BB-method are presented. Numerical experi-
ments are also given.
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Phase field systems with maximal monotone nonlinearities related to
SMC problems

Michele Colturato

(joint work with Pierluigi Colli)

We investigate phase field systems and Cahn-Hilliard systems perturbed by max-
imal monotone nonlinearities and singular terms, proving existence, uniqueness
and longtime behavior of the solution. Then, we consider the related sliding mode
control (SMC) problem: the main idea behind this scheme is first to identify a
manifold of lower dimension (called the sliding manifold) where the control goal
is fulfilled and such that the original system restricted to this sliding manifold
has a desired behavior, and then to act on the system through the control in or-
der to constrain the evolution on it, that is, to design a SMC-law that forces the
trajectories of the system to reach the sliding surface and maintains them on it.
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Phase-field systems. In [1] we consider a phase-field system of Caginalp type
arising from a recent study of a sliding mode control problem. The two-phase–
system is written in terms of a rescaled balance of energy and of a balance law
for the microforces that govern the phase–transition. Moreover, the first equation
of the system is perturbed by the presence of an additional maximal monotone
nonlinearity. The unknowns of the problem are the absolute temperature ϑ and
a phase–parameter ϕ which may represent the local proportion of one of the two
phases. To ensure thermomechanical consistency, suitable physical constraints on
ϕ are introduced: if it is assumed, e.g., that the two phases may coexist at each
point with different proportions and it turns out to be reasonable to require that
ϕ lies between 0 and 1, with 1−ϕ representing the proportion of the second phase.
In particular, the values ϕ = 0 and ϕ = 1 may correspond to the pure phases,
while ϕ is between 0 and 1 in the regions when both phases are present. Clearly,
the following system should provide an evolution for ϑ and ϕ that complies with
the previous physical constraint:

(1) ∂t(ϑ+ ℓϕ)− k∆ϑ+ ζ = f a.e. in Q := (0, T )× Ω,

(2) ∂tϕ− υ∆ϕ+ ξ + π(ϕ) = γϑ a.e. in Q,

(3) ζ(t) ∈ A(ϑ(t) + αϕ(t) − η∗) for a.e. t ∈ (0, T ),

(4) ξ ∈ β(ϕ) a.e. in Q,

where Ω is the domain in which the evolution takes place, T is some final time, ℓ,
k, υ, γ and α are positive constants, η∗ is a function in H2(Ω) with null outward
normal derivative on the boundary of Ω and f is a source term.

The term ξ + π(ϕ), appearing in (2), represents the derivative of a double-well
potential W associated with the phase–configuration. W can be defined as the

sum W = β̂ + π̂, where β̂ : R → [0,+∞] is a proper, l.s.c. and convex function
and π̂ : R → R is a function in C1(R) such that π := π̂′ is Lipschitz continuous.

Due to the properties of β̂, the subdifferential ∂β̂ =: β is well defined and is a
maximal monotone graph. In the problem (1)–(4) a maximal monotone operator
A : L2(Ω) → L2(Ω) also appears. We assume that A is the subdifferential of a
proper, convex and lower semicontinuous function Υ : L2(Ω) → R which takes
its minimum in 0, and A is linearly bounded in L2(Ω). The above system is
complemented by homogeneous Neumann boundary conditions for both ϑ and ϕ,
that is, ∂νϑ = 0, ∂νϕ = 0 on Σ := (0, T )×Γ, where Γ is the boundary of Ω and ∂ν
denotes the outward normal derivative. Finally, we prescribe the initial conditions
ϑ(0) = ϑ0 and ϕ(0) = ϕ0 in Ω. The paper [1] will focus only on analytical aspects:
we prove existence and uniqueness of strong solutions for problem (1)–(4) and
show the continuous dependence on the initial data.

Cahn–Hilliard systems. In the paper [2] we prove existence and regularity
for the solutions to a Cahn–Hilliard system describing the phenomenon of phase–
separation for a material contained in a bounded and regular domain. Using the



Challenges in Optimal Control of Nonlinear PDE-Systems 991

same assumptions and notations listed in the previous paragraph, the system under
study is

(5) ∂t(ϑ+ ℓϕ)−∆ϑ+ ζ = f a.e. in Q,

(6) ∂tϕ−∆µ = 0 a.e. in Q,

(7) µ = −υ∆ϕ+ ξ + π(ϕ) − γϑ a.e. in Q,

(8) ζ(t) ∈ A(aϑ(t) + bϕ(t)− η∗) for a.e. t ∈ (0, T ),

(9) ξ ∈ β(ϕ) a.e. in Q,

(10) ∂νϑ = ∂νϕ = ∂νµ = 0 on Σ,

(11) ϑ(0) = ϑ0, ϕ(0) = ϕ0 in Ω,

where a, b are positive constants and µ denotes the chemical potential. We point
out that here ϑ does not represent the absolute temperature Θ, but it is related
to it by ϑ = Θ − Θc where Θc denotes a critical temperature. We observe that
the system (5)–(11) contains a fourth-order equation and it is constructed as the
conserved version of the phase-field system (1)–(4), thoroughly discussed in [1].
The second part of the paper [2] is devoted to the sliding mode control (SMC)
problem: the main idea behind this scheme is first to identify a manifold of lower
dimension (called the sliding manifold) where the control goal is fulfilled and such
that the original system restricted to this sliding manifold has a desired behavior,
and then to act on the system through the control in order to constrain the evolu-
tion on it, that is, to design a SMC-law that forces the trajectories of the system to
reach the sliding surface and maintains them on it. The main advantage of sliding
mode control is that it allows the separation of the motion of the overall system in
independent partial components of lower dimensions, and consequently it reduces
the complexity of the control problem. In particular, we prove the existence of
sliding modes for the solutions of our system (5)–(11) for a suitable choice of the
operator A and the coefficients a and b.

Singular phase–field systems. In [3] we consider a singular phase–field
system located in a smooth and bounded three-dimensional domain. This system
is constructed with the help of an entropy balance equation, which includes a
logarithmic nonlinearity and additionally shows an extra term involving a possibly
nonlocal maximal monotone operator. In order to explain the role of this further
nonlinearity, we refer to [1, 2], where a class of sliding mode control problems is
considered. The second equation of the system accounts for the phase–dynamics,
and it is deduced from a balance law for the microscopic forces that are responsible
for the phase–transition process. We also prescribe a no-flux condition on the
boundary for both variables, while initial conditions are stated for lnϑ and ϕ:

(12) ∂t(lnϑ+ ℓϕ)− k∆ϑ+ ζ = f a.e. in Q,

(13) ∂tϕ−∆ϕ+ β(ϕ) + π(ϕ) ∋ ℓϑ a.e. in Q,
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(14) ζ(t) ∈ A(ϑ(t) − ϑ∗) for a.e. t ∈ (0, T ).

(15) ∂νϑ = 0, ∂νϕ = 0 on Σ,

(16) lnϑ(0) = lnϑ0, ϕ(0) = ϕ0 in Ω.

The resulting system is highly nonlinear. The main difficulties lie in the treatment
of the doubly nonlinear equation (12): the expert reader can realise that it is not
trivial to recover some coerciveness and regularity for ϑ from (12), (14) and (15);
moreover, the presence of both lnϑ under time derivative and the selection ζ from
A(ϑ−ϑ∗) complicates possible uniqueness arguments. The paper [4] focuses on the
study of well-posedness and longtime behavior for a singular phase–field system
with perturbed phase–dynamics, i.e., a problem similar to (12)–(16) character-
ized by the presence of a nonlocal maximal monotone nonlinearity in the second
equation (13).
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Optimal control of the 3D thermistor problem

Hannes Meinlschmidt

(joint work with Christian Meyer, Joachim Rehberg)

This talk is about the optimal control of the three-dimensional so-called thermistor
problem, a coupled system of PDEs modeling the heating of a 3D workpiece Ω by
inducing electrical current flow and using the Joule heating effect. The equations
under consideration are as follows:

• a quasilinear potential equation for the potential ϕ with a temperature-
dependent electrical conductivity σ(θ)ε subject to mixed boundary con-
ditions, corresponding to grounding (on the part D), insulation, and the
area where the current u is induced (on ∂Ω \D = N), in weak form:

−∇ · σ(θ)ε∇ϕ = Bu in W−1,q
D (Ω)

with B being the adjoint of the trace operator onto N , and
• an also quasilinear heat equation with heat conductivity η(θ)κ, subject to
Robin boundary conditions η(θ)∇θ · ν = α(θ − θℓ), where the heat source
is given by the electrical field strength σ(θ)∇ϕ · ∇ϕ, in weak form:

θ′ −∇ · η(θ)κ∇θ = σ(θ)∇ϕ · ∇ϕ+ Bα(θ − θℓ) in W−1,q
∅ (Ω)
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with Bα the α-weighted adjoint of the trace operator onto ∂Ω.

Here, we allow Ω to be nonsmooth (in the class of Lipschitz domains), and require
only L∞-coefficient functions ε and κ as well as locally Lipschitz continuous con-
ductivities σ and η; of course the assumptions for σ and η have to be improved
to continuous differentiability with Lipschitz continuous derivatives for first-order
optimality theory.

The goal is to control the induced current u in such a way that after some fixed
time T a given temperature profile θd is achieved as close as possible in the L2(Ω)-
sense. Thereby, it is necessary to also include control and state constraints in the
form 0 ≤ u ≤ umax and θ ≤ θmax, the former corresponding to a maximal heating
power, the latter assuring that a certain melting point θmax of the material of Ω
is not surpassed. A similar problem without the quasilinear structure in the heat
equation in two spatial dimensions was treated in [1].

Due to the very nonlinear structure in the state system and the quite general
assumptions, the optimal control problem exhibits quite some difficulties such as
in general no global solutions to the PDE system in the maximal regularity class—
which we use to obtain continuous solutions in view of the state constraints—and
very little a priori bounds on the solutions (θ, ϕ) in terms of u. This makes in
particular the proof of existence of optimal controls quite difficult. Using maximal
parabolic regularity techniques [4, 5], we were able to show that the set of controls
whose associated state (θ, ϕ) exists globally in the maximal regularity space is
nonempty and open, which allows to restrict the optimal control problem to such
controls in a meaningful way. Further “minimal” bounds on the states were en-
forced using the objective functional, which allowed to derive a satisfactory theory
for the optimal control of this nonlinear system of PDEs [2, 3].
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On Optimal Control Problems in Thermoelastoplasticity

Roland Herzog

(joint work with Christian Meyer, Ailyn Stötzner)

We consider the following quasistatic, thermoelastoplastic model at small strains
with linear kinematic hardening and von Mises yield condition:

stress-strain relation: σ = C
(
ε(u)− p− t(θ)

)
,(1)

conjugate forces: χ = −Hp,(2)

viscoplastic flow rule: ǫ ṗ+ ∂ṗD(ṗ, θ) ∋ [σ + χ] ,(3)

balance of momentum: − div
(
σ + γ ε(u̇)

)
= ℓ,(4)

heat equation:
̺ cp θ̇ − div(κ∇θ) = r + γ ε(u̇) : ε(u̇) + (σ + χ) : ṗ

−θ t′(θ) : C(ε(u̇)− ṗ).
(5)

The unknowns are the stress σ, back-stress χ, plastic strain p, displacement u and
temperature θ. The first three are functions with values in the symmetric 3 × 3-
matrices. Further, C and H denote the elastic and hardening moduli, respectively.
ε(u) denotes the symmetrized gradient, or linearized strain, associated with u.
The temperature dependent term t(θ) expresses thermally induced strains. The
dissipation function D is given by

D(q, θ) :=
√
2/3σ0(θ) |q|.

Here σ0 denotes the temperature dependent yield stress, and |q| is the Frobenius
norm, associated with the inner product A : B = trace(A⊤B).

The right hand sides ℓ and r in (4) and (5) represent mechanical and thermal
volume and boundary loads, respectively. ̺, cp and κ describe the density, spe-
cific heat capacity and thermal conductivity of the material. Finally, the positive
parameters ǫ and γ represent viscous effects in the evolution of the plastic strain
and in the balance of momentum.

The existence of a unique solution, given (ℓ, r) in suitable function spaces,
has been established in [4] under appropriate assumptions on the data. A major
challenge in this analysis is the low integrability of the nonlinear terms on the
right hand side of the heat equation (5). Several approaches for similar models
have been previously discussed in [1, 2, 3, 6].

A second result proved in [4] is the weak sequential continuity of the map
(ℓ, r) 7→ (u,p, θ). Consequently, when (ℓ, r) serve as optimization variables in an
associated optimal control problem, the existence of a global minimizer can be
proved by standard techniques.

In a subsequent paper [5] we consider the differentiability of the control-to-state
map. To this end, it turns out to be useful to equivalently reformulate the plastic
flow rule (3) as the following Banach space-valued ordinary differential equation,

(6) ṗ = −ǫ−1min

(√
2/3σ0(θ)∣∣[σ + χ]D

∣∣ − 1, 0

)
[σ + χ]D,
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where [ · ]D denotes the deviatoric part of a matrix. Due to the non-smoothness of
this equation, the control-to-state map will in general not be differentiable. How-
ever we obtain in [5] its directional, and in fact Hadamard differentiability. The
directional derivative is characterized by the corresponding linearized system. As
a consequence, we can obtain first-order necessary optimality conditions in primal
form for associated optimal control problems. Sufficient conditions for the linear-
ity of the directional derivative at a certain control pair (ℓ, r) can be established
as well. At such a point the control-to-state map is Gâteaux differentiable and the
derivative can be evaluated via an adjoint approach.
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Directional differentiability for elliptic quasi-variational inequalities

Amal Alphonse

(joint work with Michael Hintermüller, Carlos N. Rautenberg)

We consider the differentiability of the solution map associated to the quasi-
variational inequality (QVI)

(1)
y ∈K(y) : 〈Ay − f, v − y〉 ≥ 0 ∀v ∈ K(y)

K(y) := {v ∈ V : v ≤ Φ(y)},

in particular, the multi-valued mapping taking the source term f into the set
of solutions y. Showing that this map is differentiable (in a suitable sense) is
not only an interesting analytical problem in its own right but is also of use for
optimal control, numerics and applications. We give a first result for the directional
differentiability for QVIs in the infinite-dimensional setting (the corresponding
theory for variational inequalities (VIs) has been thoroughly investigated [2, 3, 4]).
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1. Functional framework and background

Let X be a locally compact topological space, countable at infinity, with ξ a Radon
measure on X . Suppose V ⊂ L2(X ; ξ) =: H is a Hilbert space with the embedding
continuous and dense and such that |u| ∈ V whenever u ∈ V , and let A : V → V ′

be a bounded, linear, coercive and T-monotone operator. Assume also that

V ∩ Cc(X) ⊂ Cc(X) and V ∩Cc(X) ⊂ V are dense embeddings.

Define V ′
+ := {g ∈ V ′ : 〈g, v〉 ≥ 0 ∀v ∈ V+} which arises from the cone V+ which

is the set of almost everywhere (a.e.) non-negative elements of V . Precisely, we
study the directional differentiability of the map Q : V ′

+ ⇒ V taking f 7→ y in (1).
Before proceeding, let us recall the sensitivity result for VIs. Given an obstacle

φ ∈ V+, define the set

K := {w ∈ V : w ≤ φ},
and given a source term f ∈ V ′, define by S : V ′ → V the mapping such that S(f)
solves the inequality in (1) with K(y) replaced by K (and hence the inequality
simplifies into a VI). The tangent cone and the critical cone associated to K are
given respectively by

TK(y) := {ϕ ∈ V : ϕ ≤ 0 q.e. on {y = φ}} and KK(y) := TK(y) ∩ [f −Ay]⊥,

where the notation ‘q.e.’ means quasieverywhere. Given f ∈ V ′ and d ∈ V ′,
Theorem 3.3 of [3] yields that the map S is directionally differentiability in the
sense that there exists a function S′(f)(d) ∈ V such that

S(f + td) = S(f) + tS′(f)(d) + o(t) ∀t > 0

where t−1o(t) → 0 as t→ 0+ in V and δ := S′(f)(d) is positively homogeneous in
d and it satisfies the VI

δ ∈ KK(y) : 〈Aδ − d, v − δ〉 ≥ 0 ∀v ∈ KK(y), where y = S(f).

2. Directional differentiability for QVIs

To formulate the QVI case, consider (1) with Φ: V → V an increasing map with
Φ(0) ≥ 0. The idea in [1] is the following: approximate a QVI solution q(t) ∈
Q(f + td) by a sequence qn(t) of solutions of VIs, obtain suitable differential
formulae for those qn(t) and then pass to the limit in those formulae to obtain an
expansion formula relating elements of Q(f + td) to elements of Q(f). There are
some delicacies in this procedure:

(1) derivation of the expansion formulae for the above-mentioned VI
iterates qn(t); they must relate q(t) to a y ∈ Q(f), and recursion plays a
highly nonlinear role in the relationship between the iterates

(2) obtaining uniform bounds on the directional derivatives of the
iterates; even though the derivatives satisfy a VI, one has to handle a
recurrence inequality (unless some regularity is available [1, §4.3] which
allows some simplification)
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(3) identifying the limit of the higher-order terms as a higher-order
term; this procedure involves two limits: one as t → 0+ and one as n →
∞, and commutation of limits in general requires an additional uniform
convergence.

The main difficulty is indeed the final point here. The iteration scheme alluded to
above requires some further restrictions on the data f and the direction d, namely
f, d ∈ V ′

+. Since we study the differentiability of implicit obstacle problems defined
through the obstacle mapping Φ, it is clear that at least some differentiability is
required of Φ and we introduce these further assumptions below. First, first let us
fix some notation. Define ȳ ∈ V as the weak solution of the unconstrained problem
Aȳ = f. In a similar fashion, define q̄(t) ∈ V as the solution of the unconstrained
problem with right hand side f + td: Aq̄(t) = f + td. The following set can be
thought as a translated critical cone:1

KK(y)(y, α) := Φ′(y)(α) +KK(y)(y).

The main result of [1] is the following.

Theorem 3 (Theorem 1.6 of [1]). Let f, d ∈ V ′
+. Given y ∈ Q(f)∩ [0, ȳ], assume

the following:

(1) the map Φ: V → V is Hadamard directionally differentiable
(2) either

(a) Φ: V → V is completely continuous, or
(b) V = H1(Ω), X = Ω where Ω is a bounded Lipschitz domain,

Φ: L∞
+ (Ω) → L∞

+ (Ω) and is concave with Φ(0) ≥ c > 0, and f, d ∈
L∞
+ (Ω)

(3) the map Φ′(v) : V → V is completely continuous (for fixed v ∈ V )
(4) for any b ∈ V , h : (0, T ) → V and λ ∈ [0, 1],

‖Φ′(y + tb+ λh(t))h(t)‖V
t

→ 0 as t→ 0+ if
h(t)

t
→ 0 as t→ 0+

(5) given T0 ∈ (0, T ) small, if z : (0, T0) → V satisfies z(t) → y as t → 0+,
then

‖Φ′(z(t))b‖V ≤ CΦ‖b‖V where CΦ <
1

1 + c−1C

for all t ∈ (0, T0), where C and c are (respectively) the constants of bound-
edness and coercivity of A.

Then there exists q(t) ∈ Q(f + td) ∩ [y, q̄(t)] and α = α(d) ∈ V+ such that

q(t) = y + tα+ o(t) ∀t > 0

holds where t−1o(t) → 0 as t→ 0+ in V and α satisfies the QVI

α ∈ KK(y)(y, α) : 〈Aα− d, v − α〉 ≥ 0 ∀v ∈ KK(y)(y, α)

The directional derivative α = α(d) is positively homogeneous in d.

1Explicitly this set is {ϕ ∈ V : ϕ ≤ Φ′(y)(w) q.e. on {y = Φ(y)} and 〈Ay−f, ϕ−Φ′(y)(w)〉 =
0}.
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It should be emphasized that the assumptions 4 and 5 depend on the specific
function y, i.e., these are local conditions. The result in the general multi-valued
setting given in Theorem 3 is a differentiability result for a specific selection mech-
anism that associates to a function y ∈ Q(f) a function q(t) ∈ Q(f + td). A useful
variant of the theorem would be to obtain the result for the mapping that selects
the minimal or maximal solution to the QVI, i.e., if M(f) ∈ Q(f) is the maximal
solution of the QVI with source term f , is M directionally differentiable?

Theorem 4 (Theorem 1.7 of [1]). In the context of Theorem 3, if the set
KK(y)(y, w) simplifies to

SK(y)(y, w) := {ϕ ∈ V : ϕ = Φ′(y)(w) q.e. on {y = Φ(y)}},
then the derivative α satisfies

α ∈ SK(y)(y, α) : 〈Aα − d, α− v〉 = 0 ∀v ∈ SK(y)(y, α).

In this case, if h 7→ Φ′(v)(h) is linear, α = α(d) satisfies α(c1d1+c2d2) = c1α(d1)+
c2α(d2) for constants c1, c2 > 0 and directions d1, d2 ∈ V ′

+.

Current and future work involves deriving strong stationarity conditions for
optimal control problems with QVI constraints and sensitivity for the parabolic
QVI case.
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An optimal control approach for determining optical flow

Gabriela Marinoschi

(joint work with Viorel Barbu)

A fundamental problem in the processing of image sequences is the measurement
of the image velocity. A sequence of ordered images provide information about the
arrangement of objects in space, the distances between them and the rate at which
these change, enabling thus the perception of the motion. The optical flow is the
field velocity of the apparent motion of an object image between two consecutive
frames. The optical flow problem under discussion in this report consists in deter-
mining, by a variational method, the velocity field on the basis of the observation
of the brightness pattern of the object in a sequence of images at fixed sampling
times. Apart from the previous models in the literature (see [2-6]) in which the
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brightness intensity of the moving object was considered to be constant in time
along a moving pattern defined by the deterministic linear transport equation, the
model considered in this report is derived from a new assumption, that is, the
brightness intensity is conserved on a trajectory driven by a Gaussian stochastic
process (see [1]). Thus, the main assumption is that the image trajectory obeys
the stochastic equation

dX(t) = U(t,X(t))dt+ dW (t), 0 ≤ t ≤ T,

X(0) = x

whereW (t) is a Gaussian (Wiener) process of the formW (t) =

{
d∑

i=1

aijβi(t)

}d

j=1

,

{βi}di=1 is a system of independent Brownian motions in a probability space

{Ω,F ,P} , and the real matrix (aij)
d

i,j=1 is not singular. Here, bij will be taken

of the form 2µδij , where µ > 0 and δij is the Kronecker symbol. Imposing that
the brightness I(t, x) is constant along this trajectory, that is, dI(t,X(t)) = 0, by
performing a straightforward stochastic calculus involving Itô’s formula, followed
by the computation of the expectation J(t, x) = E[I(t,X(t, x))] in the probability
space {Ω,F ,P}, one deduces the equation

∂

∂t
J(t, x) + U(t, x) · ∇J(t, x) + 1

2
L(J(t, x)) = 0,

with L(y) =
d∑

i,j=1

bij
∂2y

∂xi∂xj
the second order elliptic operator. This equation is

completed by a final condition J(T, x) = 0 and by natural homogeneous Neumann
boundary conditions.

In this way, the determination of the optical flow U(t, x) which transports an
initially observed image of intensity J0 to a final image of intensity J1 within an
interval of time T is reduced to the minimization problem

minimize

{
1

2

∫

O

(J(0, x)− J0(x))
2dx+

σ

2

∫ T

0

∫

O

|U(t, x)|2d dxdt
}

subject to

∂J

∂t
+ µ∆J + U · ∇J = 0 in Q = (0, T )×O,

J(T, x) = J1(x) in O,
∂J

∂ν
= 0 on Σ = (0, T )× ∂O,

with U such that ∇·U(t, x) = 0, a.e. (t, x) ∈ Q, and U(t, x) ·ν(x) = 0, a.e. (t, x) ∈
Σ. The divergence free constraint was chosen to preserve the conservation of the
flow volume and to prevent it not to vary too much inside a non-deforming moving
object, while the tangential velocity field was assumed as a natural condition for
the pattern dynamics. Here, O ⊂ Rd, d = 2, ν is the unit outer normal to ∂O and
σ is a positive constant. The functions J0 and J1 represent known data and |·|d
denotes the Euclidian norm in Rd.



1000 Oberwolfach Report 16/2018

Changing t to T − t and setting u(t, x) = U(T − t, x), y(t, x) = J(T − t, x),
y0(x) = J1(x) and y1(x) = J0(x) we reformulate the previous optimal control
problem as the following problem, called (P ),

minimize
u∈L2(0,T :H)

{
1

2

∫

O

(y(T, x)− y1(x))
2dx+

σ

2

∫ T

0

∫

O

|u(t, x)|2d dxdt
}

subject to the forward parabolic equation

∂y

∂t
− µ∆y − u · ∇y = 0 in Q,

y(0, x) = y0(x) in O,
∂y

∂ν
= 0 on Σ,

where H is the free divergence tangential vector space

H = {u ∈ (L2(O))d; ∇ · u = 0 in O, u · ν = 0 on ∂O}.
Existence, uniqueness and other properties of a weak solution to the state system
and the existence of at least a solution to (P ) are proved. Since the optimal
controller has not enough regularity to enhance the rigorous computation of the
first order conditions of optimality, we introduce, for ε > 0, the approximating
control problem (Pε),

minimize
u∈L2(0,T :H)

{
1

2

∫

O

(y(T, x)− y1(x))
2dx+

σ

2

∫ T

0

∫

O

|u(t, x)|2d dxdt
}

subject to the approximating state system

∂y

∂t
− µ∆y −

(∫ T

0

((I + εA)−1u(s))ρε(t− s)ds

)
· ∇y = 0, in Q,

yε0 = (I − ε∆)−1y0 in O,
∂y

∂ν
= 0 on Σ,

where −∆ : H2(O) ∩ H1
0 (O) ⊂ L2(O) → L2(O) and A = Π(−∆u) is the Stokes

operator. We recall that

A : D(A) ⊂ H → H, D(A) = (H2(O))d ∩ (H1
0 (O))

d ∩H,
where Π : (L2(O))d → H is the orthogonal projection of (L2(O))d on H (the Leray
projector) and that A is self-adjoint and m-accretive on H.

After proving the existence of at least a solution (u∗ε, y
∗
ε ) to (Pε), the conver-

gence to (Pε) to (P ) concludes that u∗ε → u∗ strongly in L2(0, T ;H), y∗ε → y∗

strongly in L2(0, T ;H1(O)), y∗ε (t) → y∗(t) strongly in L2(O), uniformly on [0, T ],
and establishes that (u∗, y∗) is optimal in (P ). Next, the approximating optimal-
ity conditions are determined and they provide at limit the system of optimality
conditions for (P ), formed by the state system for y∗, together with the relation
for u∗ and the adjoint system,

u∗(t) =
1

σ
Π(p(t)∇y∗(t)), for all t ∈ [0, T ],
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∂p

∂t
+ µ∆p− u∗ · ∇p = 0 in Q,

p(T, x) = −(y∗(T )− y1(x)) in O,
∂p

∂ν
= 0 on Σ.

A discussion regarding the controller uniqueness reveals that for smooth initial
and observed data, under certain conditions involving a relation between the L∞-
norms of y∗, ∇y∗, p, σ and µ, the controller u∗ is unique in the class of L∞-
functions, on a time interval bounded by a constant depending on ‖y∗‖L∞(Q) and

‖p‖L∞(Q).

Continuation of this work will aim at studying new models for other types of
Gaussian processes W and the construction of a rigorous algorithm for the image
reconstruction, based on the optimality conditions system.
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Shape optimization for unsteady fluid-structure interaction

Michael Ulbrich

(joint work with Johannes Haubner)

Fluid-structure interaction problems are challenging both theoretically and com-
putationally. On the one hand, the not fully compatible regularity properties of
solutions to the elasticity equations and the Navier-Stokes equations require par-
ticular care such as hidden regularity results for hyperbolic systems. On the other
hand, the canonical frameworks for the fluid and solid equations are different. A
well-known approach for a unified framework is the Arbitrary Lagrangian-Eulerian
(ALE) framework [2]. We apply ALE in the way that the solid’s displacement on

the Lagrangian reference domain Ω̂s is suitably extended to a fluid reference do-

main Ω̂f . From this, a transformation X̂(·, t) : Ω̂f → Ω̌f (t) with inverse Y̌ that
maps the time-dependent fluid domain to a fixed reference domain is obtained.
The transformed Navier-Stokes equations contain highly nonlinear terms involv-
ing the transformation and the state. For the theory, we choose a fully Lagrangian
approach and the ALE transformation then depends on the primitive of the ve-
locity w.r.t. time. For the numerical implementation, the ALE displacement on
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the fluid reference domain is introduced as a new state variable that extends the
solid displacement by solving a biharmonic equation. Based on this formulation
we perform shape optimization. An approach that fits well to the concept of do-
main transformations is the method of mappings [1, 6]. This method allows for
a reformulation of the shape optimization problem in an optimal control setting.
To this end, a shape reference or nominal domain Ω̃ is introduced. Instead of
optimizing over the admissible domains Ω̂ ∈ Ôad, we optimize over the admissible
transformations τ̃ ∈ T̃ad, which is a suitable subset of bi-Lipschitz transformations
defined on Ω̃. This additional transformation of the FSI system from the ALE
domain Ω̂ to the shape reference domain Ω̃ of the partial differential equations on
Ω̃ results in further nonlinear terms involving τ̃ and the state.
The resulting optimization problem that we consider is of the form

min
τ̃∈T̃ad

J̃((ṽ, p̃, w̃), τ̃ )

s.t. (ṽ, p̃, w̃) fulfills the transformed monolithic formulation

of the FSI problem on the shape reference domain Ω̃,

where J̃ denotes an appropriate objective function. The monolithic formulation of
the fluid-structure interaction problem on Ω̃ with fluid-solid interface Γ̃s is given
by

∂tṽ − ν∆ṽ +∇p̃ = F̃(ṽ, p̃, τ̃ ) in Ω̃f × (0, T ),

div(ṽ) = G̃(ṽ, τ̃ ) in Ω̃f × (0, T ),

ṽ = ∂tw̃ on Γ̃s × (0, T ),

σf (ṽ, p̃)ñf = σs(w̃, τ̃)ñf + H̃(ṽ, p̃, τ̃ ) on Γ̃s × (0, T ),

∂ttw̃ − div(σs,z(w̃, τ̃)) = 0 in Ω̃s × (0, T ),

and additional initial and boundary conditions. Here, ṽ denotes the fluid velocity,
p̃ the fluid pressure and w̃ the solid displacement. The fluid and solid stress tensors
are denoted by σf and σs. The right hand sides F̃ , G̃ and H̃ collect all nonlinear
terms.
In an appropriate setting that considers the Navier-Stokes equations coupled to
the Lamé system, local-in-time existence and uniqueness results [7] can be adapted
to show that a unique solution

(ṽ, p̃, w̃) ∈ ẼT × P̃T × (C0([0, T ], H
7
4+

ℓ
2

# (Ω̃s)) ∩ C1([0, T ], H
3
4+

ℓ
2

# (Ω̃s)))

exists if T > 0 is sufficiently small. Here, the velocity space is given by ẼT =

H
2+ℓ,1+ ℓ

2

# (Ω̃f × (0, T )) with ℓ ∈ (12 , 1) and the pressure space PT is chosen as an

appropriate subspace of L2(Ω̃f × (0, T )).
Based on these results, which are shown using a fixed point argument, we develop
a general framework for showing continuity and differentiability for parametric
unsteady PDE systems. In order to apply it, the nonlinearities on the right hand
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side must be Lipschitz with sufficiently small modulus as well as Fréchet differen-
tiable. The latter is, e.g., the case if these terms are Lipschitz continuous with a
Lipschitz constant that is bounded by CTα for some constants α > 0 and C > 0
independent of T .
We apply this approach to the FSI problem on the shape reference domain and
derive local-in-time Fréchet differentiability of the states with respect to shape
variations:

||ṽ(τ̃ + h̃)− ṽ(τ̃ )− δhṽ(τ̃ )||ẼT
≤ C||h̃||2

H2+ℓ(Ω̃)
,

||p̃(τ̃ + h̃)− p̃(τ̃ )− δhp̃(τ̃ )||P̃T
≤ C||h̃||2

H2+ℓ(Ω̃)
.

Here, δhṽ(τ̃ ) and δhp̃(τ̃) are solutions of a linearized state equation, τ̃ , τ̃ + h̃ ∈ T̃ad
are sufficiently close to the identity, and

τ̃ ∈ T̃ad := {τ̃ ∈ H2+ℓ
# (Ω̃f ) ; ∇τ̃ is invertible a.e., ||∇τ̃ ||

H
1+ℓ
# (Ω̃f )

≤ α1,

||(∇τ̃ )−1||
H

1+ℓ
# (Ω̃f )

≤ α1, τ̃ |Ω̃s
= id, supp τ̃ ∩ supp ṽ0 = ∅},

with an appropriate constant α1 > 0 and initial fluid velocity ṽ0. A paper con-
taining the details of our analysis will be finished soon [4].
The numerical implementation can handle a more general setting. and our numer-
ical tests are based on the FSI benchmark II problem. It models fluid flow in a
two dimensional pipe around an obstacle to which an elastic flag is attached. The
fluid is modeled by the Navier-Stokes equations and the solid by the nonlinear
elasticity equations with St.Venant-Kirchhoff material. The goal is to minimize
the drag along the obstacle and the flag plus a suitable regularization term by
optimizing the shape of the obstacle subject to suitable constraints. The numeri-
cal discretization of the ALE formulation of the FSI problem is similar to [9] and
uses a biharmonic extension to obtain the ALE mapping. The shape variations
are represented by design boundary normal displacements which are extended to
the domain by again using a biharmonic equation. Exact discrete gradients are
evaluated via the adjoint and application of the chain rule. Our implementation
couples FEniCS [5], dolfin-adjoint [3], and IPOPT [8] and uses parallelization. A
transformation of variables is used to achieve that IPOPT implicitly works with
the correct inner product. The numerical results show the viability of the ap-
proach. In comparison to the initial configuration, the drag is reduced by more
than 40 %.
This project is part of the DFG/FWF-funded international research training group
IGDK 1754 “Optimization and Numerical Analysis for Partial Differential Equa-
tions with Nonsmooth Structures”.
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Shape optimization from an optimal control perspective

Volker Schulz

Shape optimization is a practically relevant and theoretically challenging field of
mathematical research. Recent results on the treatment of shape optimization
problems as optimization on shape manifolds are reported, where particular em-
phasis is laid on the proper choice of the respective Riemannian metric for usage
in PDE constrained shape optimization problems [1, 2, 3]. A Steklov-Poincaré
type metric is reported to be of practically good use [1]. In the final part of the
talk, the perspective is shifted from optimization of shapes to optimization of de-
formation vector fields like S(Ω◦) := {W (Ω◦) |W ∈ H2(D,Rd)},Ω0 ⊂ D. The
respective vector fields have two algebraic structures, a group structure (concate-
nation, V2 ◦V1) and a vector space structure (tV1+sV2). It is shown that a second
order derivative of shape functionals J(Ω) based on the group structure, i.e.,

d2grJ(W )[V1, V2] =
d

ds s=0+

d

dt t=0+

J((id+ sV2) ◦ (id+ tV1)(W (Ω◦)))

leads to the (nonsymmetric) classical shape Hessian. On the other hand, the
Hessian based on the vector space structure, i.e.,

d2vsJ(W )[V1, V2] =
d

ds s=0+

d

dt t=0+

J((W + tV1 + sV2)(Ω◦))
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is inherently symmetric and easily provides a Taylor series expansion. However,
the vector space Hessian has a huge kernel, which means that increments ∆W in
Newton-like methods have to use pseudo inverses ideally based on an appropriate
bilinear form like the variational form of the elasticity equation (a(., .)) in the
manner

min
∆W

a(∆W,∆W )

s.t. d2vsJ(W )[∆W,V ] = dvsJ(W )[V ] , ∀V .
In this way a new approach to PDE constrained shape optimization is opening up
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Tomographic reconstruction with few views

Maitine Bergounioux

(joint work with Isabelle Abraham, Romain Abraham, Guillaume Carlier,
Emmanuel Trélat)

The project we report concerns a specific application of tomographic reconstruc-
tion for a physical experiment whose goal is to study the behavior of a material
under a shock. The experiment consists in causing the implosion of the hull of
some material (usually, a metal) whose features are well known, using surrounding
explosives. The problem is to determine the shape of the interior interface at a
specific moment of the implosion. For this purpose, at most two or three radio-
graphs (projections on detectors) are acquired, and the shape of the object must
then be reconstructed using a tomographic approach.

When enough projections of the object, taken from different angles, are avail-
able, several techniques exist for tomographic reconstruction, providing an analytic
formula for the solution. There is a huge literature about theoretical and practical
aspects of the problem of reconstruction from projections. When only few pro-
jections are known, these methods cannot be used directly, and some alternative
methods have been proposed to reconstruct partially the densities.

As in any tomographic reconstruction process, this problem leads to an ill-posed
inverse problem. Since we only have few radiographs at our disposal, data are not
redundant and the ill-posed character is even more accurate. Moreover, the flash
has to be very brief (several nanoseconds) due to the imploding movement of the
hull. Such X-rays cannot be provided by standard sources, and hence numerous
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drawbacks appear, for instance the X-rays beam is not well focused and the X-
rays source is not punctual. This causes a blur on the radiograph. Furthermore,
contrarily to medical radiography where photons are absorbed by bones, here X-
rays must cross a very dense object and therefore must be of high energy. Most of
the photons are actually absorbed by the object and only a few number of them
arrive at the detector. It is therefore necessary to add some amplification devices
and very sensitive detectors, which cause a high noise level and another blur.

(1) To simplify the problem we first assumed that all components of the ini-
tial physical setup are axially symmetric, and are assumed to remain as
such during the implosion process. Therefore a single radiograph of the
cross section suffices in theory to reconstruct the 3D object.Based on a
single X-ray radiograph which is at our disposal, it is our aim to perform
a tomographic reconstruction to reconstruct the whole axially symmetric
object. We first proposed in [1] a variational method adapted to the to-
mographic reconstruction of blurred and noised binary images, based on a
minimization problem in the space of bounded variation functions, using
the concept of total variation, prove existence and uniqueness results. The
binary structure of the material under consideration is modeled as a binary
constraint: the intensity function is either equal to 0 or 255 (normalized
to 0 and 1). Due to this binary constraint, deriving an optimality system
is not straightforward, and we propose a penalization method for which
we establish some properties and derive an optimality system.

(2) Later, in [5], we provide a refined functional analysis of the Radon oper-
ator restricted to axisymmetric functions, and show that it enjoys strong
regularity properties in fractional order Hilbert spaces. We proposed a
variational approach to handle this problem, consisting in solving a min-
imization problem settled in adapted fractional order Hilbert spaces. We
showed the existence of solutions, and then derived first order necessary
conditions for optimality in the form of optimality systems. Numerical
experimentation was achieved (to appear).

(3) We also investigated an active curve method for this problem in [2]. The
model lives in the BV space and leads to a non local Hamilton-Jacobi
equation, via a local set strategy.

(4) Next, we abandoned the axisymmetry assumption and investigated a dif-
ferent modeling using an optimal transport approach [3]. Indeed, we want
to move an object (given by its density ρ0 which has been computed by
the former methods for example) toward an unknown object ρT , with an
optimal transport mapping. We made the optimal transport model pre-
cise, gave a dual formulation and proved existence and uniqueness of the
solution. However, the numerical computation of the problem may cost-
ful (many inf-convolution process to compute). So, we gave an equivalent
multi-marginal formulation of the same problem. We presented numerical
hints based on the dual formulation of the multi-marginal problem and
some preliminary results.
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(5) More recently, we still use the optimal transport framework but rather use
a PDE formulation. This leads to an optimal control problem driven by
a PDE. Indeed,using Benamou-Brenier [4], we interpret the Wasserstein
distance as the kinetic energy associated to a transport equation. Precisely,
a time interval [0, T ] and Ω ⊂ Rd are given and we introduce a density
function ρ : [0, T ] × Ω → R (with compact support) and a velocity field
v : [0, T ]× Ω → Rd that satisfy:

(1) ∂tρ+ v∇ρ = 0 on (0, T )× R
d, ρ(0, ·) = ρ0

with ρ0 ∈ Lp(Rd) with p ∈ [0,+∞], v ∈ L1
loc(0, T ; (L

1(Rd)d ∩ (Lq(Rd))d)
and div v = 0. The (unique) solution to (1) is denoted ρ[v]. Then the
Wassertein distance W2 satisfies

(2) W2
2 (ρ0, ρT ) = inf

(ρ,v)solution to (1)−ρ(T )=ρT

T

∫

Rd

∫ T

0

ρ[v](t, x)|v(t, x)|2 dx dt .

As ρT is unknown, we use the projection information (arising from the
tomographic process). The model writes

(P) min
v∈Uad

J (v) ,

where
• the velocity field v plays the role of the control. We include constraints
as div v = 0 in the admissible set Uad.

• the cost functional J has the following form J = J1+αJ2+βJ3 with

(3) qJ1(v) :=

∫

Rd

∫ T

0

ρ[v]|v|2 dx dt.

(4) J2(v) :=

∫

Rd−1

k∑

i=1

‖Πi(ρ[v])(T )− πi‖2 dx.

Here Πi is the projector operator on the ith detector and πi is the
data.
The third term J3 is an ad-hoc regularization of v that should indicate
that we do not transport anything when there is nothing. One could
choose a sparsity term for example as

(5) J3(v) :=

∫

Rd

∫ T

0

|v(t, x)| dx dt.

Under classical assumptions for transport equations, we can prove exis-
tence of a solution and optimality conditions.
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[1] R. Abraham, M. Bergounioux and E. Trélat, A penalization approach for tomographic recon-
struction of binary radially symmetric objects, Applied Mathematics and Optimiza-
tion, Vol. 58, no. 3, pp. 345-371, 2008

[2] I. Abraham, R. Abraham and M. Bergounioux, An Active Curve Approach for Tomographic
Reconstruction of Binary Radially Symmetric Objects , Numerical Mathematics and
Advanced Applications, Kunisch K. , Of G., Steinbac O. (Eds.), pp. 663-670, 2008

[3] I. Abraham, R. Abraham, M. Bergounioux and G. Carlier, Tomographic reconstruction from
a few views: a multi-marginal optimal transport approach, Appl Math Optim (2017) 75:
55.

[4] J. D. Benamou and Y. Brenier A computational fluid mechanics solution to the Monge-
Kantorovich mass transfer problem Numerische Mathematik, 84(3), 375-393, (2000).
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Optimal control methods in shape optimization

Dan Tiba

A typical example of shape optimization problems has the form:

(1) Min
Ω∈O

∫

Λ

j(x, yΩ(x),∇yΩ(x))dx,

(2) −∆yΩ = f in Ω,

(3) yΩ = 0 on ∂Ω

with other supplementary constraints (on y,Ω, etc.), if necessary. Here, Ω ⊂ D is
an (unknown) domain, D is some given bounded Lipschitzian domain, f ∈ L2(D),
j(., ., .) is a Caratheodory mapping and Λ is either Ω or some fixed subdomain
E ⊂ D . The cases of boundary observation, Neumann boundary conditions are
not discussed here and we refer to [11], [12].

The problem (1) - (3) has the structure of an optimal control problem: cost
functional, state system, constraints. The main difference and difficulty is that
the minimization parameter is the domain Ω itself, where the state equation is
defined. Consequently, it is a natural approach to study (1) - (3) by using optimal
control methods. This is a rather old research direction: even the pioneering
”mapping method” of Murat and Simon enters already in this category (control by
the coefficients), see Pironneau [10]. Its drawbacks are given by the high regularity
assumptions on the class of admissible domains Ω, their prescribed topological
type, the control parameter TΩ (the involved diffeomorphism) appears together
with its derivatives in the transformed problem, etc.

Let me also mention that many geometric optimization problems arising in
mechanics (for plates, beams, arches, curved rods or shells), are expressed, as well,
as optimal control problems by the coefficients, due to the special form of their
models. See [6], [5].
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Recently, more direct approaches, under low regularity hypotheses and with a
large range of applications, have been introduced in optimal design problems, with
relevance both at the computational and theoretical levels. The admissible family
of domains O is represented as the subgraphs of a family of functions F satisfying
appropriate assumptions. Then, the characteristic functions of the unknown do-
mains may be represented by applying the Heaviside operator to the elements in
F . This also allows their regularization via the Moreau-Yosida approximation and
standard smoothing techniques. One procedure going back to Kawarada [2] gives
the approximation of (2), working in the given domainD and this may be extended
to the shape optimization problem (1) - (3). Notice that such a technique allows
simultaneous boundary and topological variations of the unknown geometry, [8],
[7], [5]. Recent developments have a wide range of applications [11], [12].

We remark that such ideas are also useful in free boundary problems and vari-
ational inequalities, where geometric unknowns play an outstanding role as well,
[3], [1], [4].

The presentation will discuss in detail two cases: optimization of a plate with
holes and a penalization approach to a general shape optimization problem.

An essential ingredient in these developments is the new implicit parametriza-
tion method that allows an advantageous description of implicitly defined mani-
folds via iterated Hamiltonian systems, [9], [13].
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Numerical analysis of sparse initial data identification for parabolic
problems

Boris Vexler

(joint work with Dmitriy Leykekhman, Daniel Walter)

In this talk we discuss the problem of identification of initial data for a homo-
geneous heat equation from an observation of the terminal state. This problem
is known to be exponentially ill-conditioned. Under the assumption that the un-
known initial state is sparse, we formulate the problem as a PDE-constrained
optimal control problem on a measure space for the control variable as follows:

minimize
1

2
‖u(T )− ud‖2L2(Ω) + α‖q‖M(Ω),

for q ∈ M(Ω), subject to

∂tu−∆u = 0 in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u(0) = q in Ω.

Here, Ω ⊂ Rd (d = 2, 3) is a convex polygonal / polyhedral domain, M(Ω) is
the space of regular Borel measures, which can be identified with the dual space
of continuous functions, i.e M(Ω) = C0(Ω)

∗, ud ∈ L2(Ω) is the desired terminal
state. The terminal time is denoted by T > 0 and the cost parameter by α > 0.

A similar problem, which is equivalent to the problem described above, is ana-
lyzed in [1]. There, optimality conditions and structural properties of the optimal
control are derived, and finite element discretization is considered. However, only
plain convergence result (without rates) is shown. The goal of my talk is to
present numerical analysis with convergence rates for a space-time finite element
discretization.

The optimal control problem under consideration possesses a unique solution
consisting of the optimal control q̄ ∈ M(Ω) and the corresponding optimal state
ū ∈ Lr(0, T ;W 1,p(Ω)) with ū(T ) ∈ H2(Ω) ∩ H1

0 (Ω). It is characterized by the
following optimality system involving the adjoint state z̄ ∈ W (0, T ) with z̄(0) ∈
H2(Ω) ∩H1

0 (Ω) →֒ C0(Ω),
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(1a)

∂tū−∆ū = 0 in (0, T )× Ω,

ū = 0 on (0, T )× ∂Ω,

ū(0) = q̄ in Ω,

(1b)

−∂tz̄ −∆z̄ = 0 in (0, T )× Ω,

z̄ = 0 on (0, T )× ∂Ω,

z̄(T ) = ū(T )− ud in Ω,

(1c) −〈q − q̄, z̄(0)〉 ≤ α
(
‖q‖M(Ω) − ‖q̄‖M(Ω)

)
for all q ∈ M(Ω).

This optimality system implies that ‖z(0)‖C0(Ω) ≤ α and the following support

condition for the optimal control q̄ = q̄+ − q̄− holds:

supp q̄+ ⊂ Ω+ = { x ∈ Ω | z̄(0, x) = −α } , supp q̄− ⊂ Ω− = { x ∈ Ω | z̄(0, x) = α } ,
see [1] and [2] for the elliptic case. This condition leads to sparsity of q̄ since the
sets Ω± are the sets of measure zero. This is due to the fact that Ω± lie in the
interior of Ω and z(0) is analytic there.

We discretize the problem using discontinuous Galerkin method dG(r) of order
r in time and usual conforming cG(1) finite elements in space. The corresponding
discrete space is called Xkh with k being the maximal time step and h the max-
imal mesh size, see, e.g., [4] for details of this notation in the context of optimal
control problems. The control variable is discretized using the space Mh ⊂ M(Ω)
being the span of Dirac functionals δxi

corresponding to all interior nodes of the
underlying finite element mesh. This results in the discrete problem

minimize
1

2
‖ukh(T )− ud‖2L2(Ω) + α‖qkh‖M(Ω),

for qkh ∈Mh, subject to ukh ∈ Xkh and

B(ukh, ϕkh) = 〈qkh, ϕkh(0)〉 for all ϕkh ∈ Xkh,

where B is the standard bilinear form used for formulation of dG(r) discretization
in time. This discrete problem possesses a unique solution (q̄kh, ūkh). For the error
in the optimal state we prove the following error estimate

‖ū(T )− ūkh(T )‖L2(Ω) ≤ c(T )|lnh||ln k| 12
(
kr+

1
2 + h

)
.

For the optimal control no convergence of ‖q̄ − q̄kh‖M(Ω) can be expected. We
show (cf. also [1]) that

q̄kh
∗
⇀ q̄ in M(Ω) and ‖q̄kh‖M(Ω) → ‖q̄‖M(Ω), (k, h) → 0.

Under the following additional structural assumption we can provide further
information on the convergence of support points.
Assumption. We assume that

(1) supp q̄ = { x ∈ Ω | |z̄(0, x)| = α } = {x1, x2, . . . , xN},
(2) For xi with z̄(0, xi) = −α the Hessian matrix∇2

xz̄(0, xi) is positive definite,
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(3) For xi with z̄(0, xi) = α the Hessian matrix ∇2
xz̄(0, xi) is negative definite.

This assumption states that the minima and maxima of z̄(0) fulfill standard
second order sufficient optimality conditions. A similar assumption can be found
in the literature in the context of optimal control problems with state constraints,
see, e. g., [5].

Under this assumption we know that the optimal control q̄ is a linear combina-
tion of Dirac delta functions, i.e.

q̄ =

N∑

i=1

βiδxi

with

βi > 0 for z̄(0, xi) = −α and βi < 0 for z̄(0, xi) = α.

For the discrete control q̄kh we can prove the following: There are ε > 0,
k0, h0 > 0 such that for all k < k0 and h < h0

(1) supp q̄kh ∩Bε(xi) 6= ∅, i = 1, 2, . . . , N,
(2) supp q̄kh ⊂ ∪iBε(xi). Moreover, we can estimate the distance between any

support point xi,kh ∈ Bε(xi) of q̄kh and xi by

|xi − xi,kh| ≤ c(T )|lnh||ln k|
(
k

r
2+

1
4 + h

1
2

)
.

The main tool used in the proof are sharp smoothing type pointwise finite
element error estimates for homogeneous parabolic equations, which are based on
smoothing estimates and discrete maximal parabolic regularity from [3].
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Unique global solutions in optimal control with PDEs and VIs

Michael Hinze

(joint work with Ahmad Ahmad Ali, Klaus Deckelnick)

In [1] we consider an optimal control problem subject to a semilinear elliptic PDE
together with its variational discretization, where we provide a condition which
allows to decide whether a solution of the necessary first order conditions is a
global minimum. This condition can be explicitly evaluated at the discrete level.
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Furthermore, we prove that if this condition holds uniformly with respect to the
discretization parameter the sequence of discrete solutions converges to a global so-
lution of the corresponding limit problem. Moreover, in [2] we prove error estimates
for those discrete global solutions, which are confirmed by numerical experiments.
Our approach can be modified and adapted in order to derive corresponding con-
ditions for the optimal control of the obstacle problem. With this talk we present
an overview of our achievements obtained so far.
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Convergence of the SQP method for problems with low regularity

Arnd Rösch

SQP methods are often used to solve optimal control problems numerically. We
study here the convergence of the Lagrange-Newton SQP method. The first con-
vergence proof for optimal control problems governed by ODEs was given by Alt
[1] and for PDEs by Alt, Sontag and Tröltzsch [2].

Nowadays the convergence of the Lagrange-Newton SQP is well studied even for
coupled system of semilinear or quasilinear partial differential equations. However,
a series of new challenges appear if one changes the objective in a simple way.
We demonstrate these effects on two problems. The first one is the most simple
nonlinear optimal control problem.

We aim to minimize the functional

min
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2L2(Ω)

subject to the state equation

(∇y,∇v) + (d(y), v) = (u, v) ∀v ∈ H1
0 (Ω)

and the control constraint

u ≤ ψ a.e. in Ω.

The second example differs in the norm of the control in the objective and in
the box constraints. Here we aim to minimize

min
1

2
‖y − yd‖2L2(Ω) +

α

2
‖u‖2H1(Ω)

subject to the state equation

(∇y,∇v) + (d(y), v) = (u, v) ∀v ∈ H1
0 (Ω)

and the box constraints

ua ≤ u ≤ ub a.e. in Ω.
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The standard approach for proving convergence of the Lagrange-Newton SQP
method reformulates the necessary optimality condition of these optimal control
problems into generalized equations of the form

0 ∈ F (w) +N(w)

where the vector w contains the state y, control u, the adjoint state p, and the
Lagrange multiplier µ. The normal cone is denoted by N(w). The Lagrange-
Newton iterate can be written in a similar form

0 ∈ F (wk) + F ′(wk)(w − wk) +N(w).

Again, the generalized equation can be interpreted as a solution of a generalized
equation. For convenience we write the Newton iteration in a different way

δk+1 ∈ F (w̄) + F ′(w̄)(wk+1 − w̄) +N(wk+1)

with

δk+1 = F (w̄)− F (wk) + F ′(w̄)(wk+1 − w̄)− F ′(wk)(wk+1 − wk)

where w̄ denotes the solution of the generalized equation. To show local quadratic
convergence, two estimates of the perturbation δk+1 are important

‖δk+1‖Z ≤ L‖wk − w̄‖W ≤ Lr

and
‖wk+1 − w̄‖W ≤ Lδ‖δk+1‖Z

with appropriate function spaces Z and W . For the first example we find

Y = H1
0 (Ω) ∩ C(Ω̄),

W = Y × L∞(Ω)× Y × L∞(Ω),

Z = L2(Ω)× L∞(Ω)× L2(Ω)× L∞(Ω).

The convergence analysis for a specific problem requires now the derivation of these
two inequalities. The first inequality can often be obtained by standard methods.
Boundedness results and Lipschitz properties of the involved partial differential
equations yield the desired first inequality.

The derivation of the second inequality is very different. One has to show
Lipschitz stability of a generalized equation with respect to a perturbation term.
Here, the following steps are important. First, testing the weak formulations of
the elliptic equations with suitable terms, a basic estimate is established. Second,
a careful discussion of the multiplier term is needed to get an estimate of the form

L′′(w̄)(δy, δu)2 ≤ ‖δp‖‖δ1 − δ′1‖+ ‖δy‖‖δ2 − δ′2‖
+‖δu‖‖δ3 − δ′3‖+ ‖δµ‖‖δ4 − δ′4‖.

where L denotes the Lagrangian of the optimal control problems. In a third step a
sufficient second-order optimality condition is applied. Until now, only the primal
variables can be estimated by this inequality. The insertion of the dual variables
has to be done in a fourth step. This leads to a relation of the form

‖δw‖L2(Ω)4 ≤ c‖δ − δ′‖L2(Ω)4 .
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In a last step, the L2(Ω)-norms are replaced byW - and Z-norms using the mapping
properties of the optimality system. At the end one has shown local quadratic
convergence of the SQP method for the first problem.

The second example cannot be handled in the same way. The optimality con-
dition yields an obstacle problem as optimality condition. The choice of the space
for the Lagrange multiplier becomes crucial. The choice L2(Ω) cannot be used
since the solution mapping of the obstacle problem is not Lipschitz continuous.
The Lipschitz continuity holds for the choice H−1(Ω). Because of the measure na-
ture of the multiplier, new techniques have to be developed to get local quadratic
convergence for the second example, too.
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Institut de Mathématiques de Toulouse
Université Paul Sabatier
118, route de Narbonne
31062 Toulouse Cedex 9
FRANCE

Prof. Dr. Elisabetta Rocca

Dipartimento di Matematica
Universita di Pavia
Via Ferrata, 1
27100 Pavia
ITALY

Dr. Sérgio S. Rodrigues

Johann Radon Institute for
Computational
and Applied Mathematics (RICAM)
Austrian Academy of Sciences
Altenberger Strasse 69
4040 Linz
AUSTRIA

Prof. Dr. Arnd Rösch
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