1 Supplementary information

2 Carbon budget categories and the scenario database

- 3 Table S1 provides an overview of the total number of scenarios in each carbon budget class (shown for
- 4 illustrative purposes in the various figures). The classes correspond to temperature outcomes assuming
- 5 medium forcing for non-CO₂ forcing agents (see Methods).

Cumulative Carbon range (GtCO ₂)		Numb	Median T outcome range in 2100			
	Total	Optimal	Delay	Baseline	Other	
525-1025	71	47	24			[1.49, 2.05]
1025–1775	292	192	81		19	[1.58, 2.41]
1775–2475	155	123	14		18	[2.04, 2.57]
2475-3525	29	12			17	[2.62, 3.11]
>3525	222	1		177	44	[2.78, 5.59]

6

7 Specifications and goodness of fit of regressions

8 TABLE S2: Specifications and goodness of fit values of the regressions shown in all figures. Goodness of

9 fit has been computed by means of a pseudo-R-square value(Koenker and Machado, 1999).

Figure 1	panel a	panel b				
Degree of polynomial	2	2				
Pseudo-R-square						
10 th percentile	0.75	0.70				
50 th percentile	0.86	0.85				
90 th percentile	0.88	0.88				
Figure 3	panel a	panel b	panel c	panel d		
Degree of polynomial	3	2	3	3		
Pseudo-R-square						
10 th percentile	0.73	0.81	0.65	0.25		
50 th percentile	0.76	0.82	0.72	0.26		
90 th percentile	0.67	0.73	0.65	0.26		
Figure 5	panel a	panel b	panel c	panel d	panel e	panel f
Degree of polynomial	3	3	3	3	3	3
Pseudo-R-square						
10 th percentile	0.14	0.40	0.20	0.60	0.14	0.40
50 th percentile – optimal	0.28	0.50	0.43	0.72	0.22	0.48
50 th percentile – delay	0.18	0.55	0.27	0.73		
90 th percentile	0.22	0.37	0.35	0.57	0.22	0.37
Figure 6	panel a	panel b	panel c	panel d	panel e	panel f
Degree of polynomial	3	3	3	3	3	3
Pseudo-R-square						
10 th percentile	0.08	0.12	~0	0.29	0.25	0.0005
50 th percentile	0.17	0.15	0.19	0.39	0.20	0.38
90 th percentile	0.24	0.26	0.23	0.35	0.32	0.27

12 Cumulative CO₂ emissions and IPCC AR5-WG3 scenario categories

- 13 In the AR5-WG3 IPCC report, the scenarios submitted to the database were categorized on the basis of
- 14 expected (median) 2100 forcing levels. If models did not report sufficient information on forcing agents
- 15 other than CO₂, cumulative CO₂ emissions were used to classify scenarios instead. The CO₂ budget
- 16 criteria in AR5 are described in the Method and Metrics Annex of the WG3 report(Krey et al., 2014). In
- 17 the paper, we have looked at the relationships between carbon budgets and a set of policy relevant
- 18 indicators using a continuous cumulative CO₂ emission axis. The graphs also show, for illustrative
- 19 purposes, coloured horizontal areas corresponding to specific temperature outcomes on the basis of
- 20 cumulative CO₂ emissions assuming an average non-CO₂ forcing. Clearly, as a result of different levels of
- 21 non-CO₂ forcing these classifications and the resulting forcing and temperature outcomes are complex as
- also illustrated in Figure S1 (indicating the CO_2 budgets, the IPCC categories, the horizontal bars used in the paper and the forcing and temperature outcomes). The correlation, however, is strong enough (R²
- 24 near 0.9) for the illustrative purpose between cumulative CO₂ emissions and temperature outcomes
- 25 used in the main paper.
- 26

Figure S1: Cumulative CO₂ emissions versus forcing and global mean temperature increase by 2100.

- 29 The scenarios (dots) are coloured on the basis of the IPCC category assigned in the database. The
- 30 coloured horizontal areas correspond (from left to right) to staying likely below 1.5, 2, 2.5, 3, 3.5 and
- 31 >3.5°C on the basis of cumulative CO₂ emissions assuming an average non-CO₂ forcing (see Methods).
- 32

34 21^{st} -century cumulative CO₂ budget vs cumulative budget until the peak

- 35 We focused our analysis on the relationship between different pathways and cumulative CO₂ budgets
- 36 over the 2010–2100 period. These CO₂ budgets correlate well with the 2100 temperature outcome. The
- 37 maximum temperature during the 21st century (peak temperature) is also often used as a key indicator in
- 38 addition to the 2100 temperature in the literature. In the figure below, we show peak temperature
- 39 against the 2010–2100 cumulative emissions and the cumulative emissions over the period between
- 40 2010 and the moment of peak temperature (panel c and panel d). For the overall range of scenarios, the
- 41 differences between the different graphs are relatively small. This can be easily understood, as for high
- 42 emission scenarios, the maximum 21st-century temperature actually occurs in 2100 (although by then
- 43 the temperature not yet will have peaked but will continue to increase after 2100). Stringent scenarios,
- 44 however, show a clear difference, and cumulative CO₂ emissions until the peak show a stronger
- 45 relationship than the 2010–2100 budget. Nevertheless, the 21st-century emissions and peak temperature
- 46 also show a reasonable correlation.

Figure S2: Cumulative CO₂ emissions versus 2100 temperature and the maximum in the 21st century (peak temperature).

50

51 Influence of model bias

In the AR5 database, a very wide range of different models have contributed to the results. As it has
been noticed earlier that individual models can have a specific preference for specific technologies we

54 have looked into the model dependence of the results. So-far, studies suggest that the model itself (and

its assumptions) tend to have a larger influence than the type of model. In Figure S3 we have plotted the

results of the models that contributed the most scenarios to the database, a group of energy system

- 57 model output and other models. It can be seen that indeed typical model outcomes can be found in
- panel a, b, and c (for example, the REMIND model is typically high on biomass consumption while the
- 59 MESSAGE model relies more on non-biomass renewables). However, at the level of the sum of low-
- 60 carbon emissions technologies this bias cannot be seen anymore (as here the overall requirements of
- 61 meeting energy demand and reducing greenhouse gas emissions force models to move towards a more
- 62 robust finding). The Figures shows that using a range of models as done in the AR5 database is
- 63 important to avoid specific preferences for individual technologies.

66

64

67 Koenker, Machado (1999) Goodness of Fit and Related Inference Processes for Quantile Regression. .

58 Journal of the American Statistical Society 94:1296-1310.

- 69 Krey V, Masera O, Blanford G, et al. (2014) Annex II: Metrics & Methodology. in Edenhofer O, Pichs-
- 70 Madruga R, Sokona Y, et al. (eds.) Climate Change 2014: Mitigation of Climate Change. Contribution of
- 71 Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
- 72 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

73