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Abstract

We consider the sharp interface limit of a diffuse phase field model with prescribed total mass
taking into account a spatially inhomogeneous anisotropic interfacial energy and an elastic en-
ergy. The main aim is the derivation of a weak formulation of an anisotropic, inhomogeneous,
elastically modified Gibbs–Thomson law in the sharp interface limit. To this end we show that
one can pass to the limit in the weak formulation of the Euler–Lagrange equation of the diffuse
phase field energy.

1 Introduction

Phase transition phenomena are described mainly by two types of models: namely sharp interface
and diffuse phase field models. In a sharp interface model interfaces, separating coexisting phases
or structural domains, are modeled as hypersurfaces at which certain quantities fulfill jump
conditions. Interfacial energy can be accounted for by integrating a surface energy density over
the hypersurface. In general the surface energy density will be inhomogeneous and anisotropic,
i. e. the density will depend on the position in space and on the local orientation of the interface.

In a diffuse interface model interfacial energy is modeled within the context of the van der
Waals–Cahn–Hilliard theory of phase transitions. Classically, the interfacial energy is then given
as

∫

Ω

(ε

2

∣

∣∇c
∣

∣

2
+

1

ε
ψ(c)

)

dx, (1.1)

where ε > 0 is small, c is an order parameter, ψ is a double well potential and Ω is a domain
in R

n. The diffuse phase–field model describes the interface between different phases as a thin
transition region, where the order parameter, representing the phases, changes its state smoothly.

It has been shown that the phase field energy (1.1) converges under suitable assumptions to
a sharp interface energy measuring the total surface area, see [27] and [25]. In addition, it is
also possible to pass to the limit in the Euler–Lagrange equation to (1.1) recovering the mean
curvature of the interface in the sharp interface limit. More precisely, Luckhaus and Modica [24]
showed that if one minimizes (1.1) subject to a mass constraint then the Lagrange multiplier
related to the mass constraint converges to a Lagrange multiplier associated to the analogue
constraint in the sharp interface limit. In fact, the Lagrange multiplier in the sharp interface
limit is the mean curvature of the hypersurface. Also several results for the sharp interface limit
of phase field models are known for time dependent situations, see [9], [22], [2] and [30].

In this paper we study situations in which the energy of the system consists of an inhomo-
geneous, anisotropic interfacial energy and an elastic energy resulting from stresses caused by
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different elastic properties of the phases. The consideration of these types of energies is for in-
stance important for a realistic modeling of phase separation and coarsening processes in alloys,
cf. [10, 7].

In a phase field framework it is possible to include anisotropic and inhomogeneous effects in
the energy through the gradient term, see Subsection 2 and [8, 29, 12, 1]. Also in this case the
sharp interface Γ–limit has been identified, see [8, 29]. It is also possible to pass to the limit in
time dependent problems, e. g. for the anisotropic Allen–Cahn equation which is the L2–gradient
flow of the phase field energy, see [12, 1]. To the knowledge of the authors all results on the
sharp interface limit of anisotropic phase field equations are based on maximum and comparison
principles, see e.g. [12, 1].

We plan to study the sharp interface limit for an inhomogeneous anisotropic interfacial
energy supplemented by elastic energy contributions in a situation where we prescribe the total
mass. In such situations no maximum and comparison principles are available. Instead we will
use approaches of Luckhaus and Modica [24] (with respect to the surface energy) and Garcke
[18] (with respect to the elastic energy) together with new ideas to handle the anisotropic and
inhomogeneous nature of the surface energy in order to pass to the sharp interface limit of the
Lagrange multipliers. In the sharp interface limit we will derive an anisotropic, inhomogeneous,
elastically modified Gibbs–Thomson law as the singular limit of the phase field model.

1.1 Phase–field and sharp interface energy functionals and the Gibbs–Thomson
law

We consider a phase–field energy functional for a two phase system which is in a normalized
form of the following structure

Eε(c, u) =

∫

Ω

(

εσ2(x, c,∇c) +
1

ε
ψ(c) + W

(

c, E(u)
)

)

dx, ε > 0, (1.2)

where c denotes a scalar phase–field function, i. e. a scaled concentration difference, and u is the
displacement field. The first term in Eε is a generalization of the classical Dirichlet energy and
allows for anisotropy. The function ψ is the chemical free energy density, which has for a two
phase system usually the form of a double–well potential, and W is the elastic free energy density,
where E is the strain tensor. Note, this energy functional contains the classical Ginzburg–Landau
energy functional as the special case σ(x, c,∇c) = |∇c| and W = 0.

The width of the transition layer scales with order ε and the diffuse interface becomes sharp
as ε → 0. In the asymptotic limit, the first two volume integrals of Eε reduce to an area integral.
The corresponding sharp energy functional is given by

E0(c, u) =

∫

I

σ0(x, ν−)dHn−1 +

∫

Ω
W

(

c, E(u)
)

dx, (1.3)

where I denotes the interface, σ0(x, ν−) = 2
∫ c+
c−

√

ψ(s)σ(x, s, ν−)ds, c− and c+ represent the
two phases and ν− is the unit normal vector of the interface pointing into the phase with
concentration c+.

One naturally associated quantity to the generalized Ginzburg–Landau free energy is its
functional derivative under mass conservation:

λε =
δEε

δc
= −2ε∇·

(

σ(x, c,∇c)σ,p(x, c,∇c)
)

+2εσ(x, c,∇c)σ,c(x, c,∇c)+
1

ε
ψ,c(c)+W,c(c, E(u)),
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where λε is the Lagrange multiplier (for the mass constraint) and the indices c and p stand for
the partial derivatives with respect to c and the n–dimensional variable p. The first variation of
the sharp interface functional at a smooth hypersurface I subject to mass constraint leads to

λ =
(

− σ0,x(x, ν−) · ν− −∇I ·σ0,p(x, ν−) + ν−[WId − (∇u)T W,E ]+−ν−
)

/(c+ − c−), (1.4)

where λ is the Lagrange multiplier (for the mass constraint), W,E is the partial derivative of W
with respect to E and [·]+− denotes the jump of the quantity in brackets across the interface. The
relation in (1.4) is an extended Gibbs–Thomson law which connects local geometric quantities
at the phase boundary to functions in the bulk, where the Lagrange multiplier λ often corre-
sponds to the chemical potential. The Gibbs-Thomson law states that the system is in local
thermodynamical equilibrium.

1.2 Main results

The main aim of this work is the study of the limiting behavior of the weak formulation of the
Euler–Lagrange equation for minimizers of the generalized Ginzburg–Landau energy in (1.2) as
the interfacial thickness ε tends to zero. We show that the Lagrange multipliers (associated to a
volume constraint) in the weak formulation of the Euler–Lagrange equation converge and achieve
a weak formulation of a modified Gibbs–Thomson law in the sharp interface limit. The proof is
based on the notion of a generalized total variation for BV –functions, on anisotropic energies
and their geometric properties and on weak convergence theorems for homogeneous functions of
measures. The crucial step is to obtain suitable approximations for certain phase–field quantities
and the Cahn–Hoffman vector at the same time. Our main result is under suitable assumptions
as follows.

Let Ω ⊂ R
n be a domain with C1–boundary and let the Assumptions A 2.1 – A 2.4, see Section

2, be satisfied. Further, let (cε, uε), ε > 0, be a minimizer of Eε subject to the mass constraint
−
∫

Ω cεdx = m ∈ (c−, c+). Then for each sequence {εk}k∈N, limk→∞ εk = 0, with

cεk
→ c in L1(Ω),

and

uεk
→ u in L2(Ω, Rn),

the corresponding sequence of Lagrange multipliers {λεk
}k∈N (associated to the mass constraint)

converges, i. e.
λεk

→ λ,

and λ is a Lagrange multiplier of the minimum problem for E0 with −
∫

Ω c dx = m, i. e.

∫

I

(

σ0(x, ν−)∇·ξ + σ0,x(x, ν−) · ξ − ν− · ∇ξσ0, p(x, ν−)
)

dHn−1

+

∫

Ω

(

W
(

c, E(u)
)

Id −
(

∇u
)T

W,E

(

c, E(u)
)

)

: ∇ξ dx = λ

∫

Ω
c∇·ξdx

for all ξ ∈ C1(Ω, Rn) with ξ · νΩ = 0 on ∂Ω, where νΩ is the outer unit normal of ∂Ω.

Organization of the paper: In Section 2 we introduce some notation and state the assump-
tions. Section 3 treats the Γ–convergence of the phase–field energy functional. Then, in Section
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4, we determine the weak formulation of the Euler–Lagrange equations for the phase–field model
and the corresponding sharp interface model. Section 5 is devoted to the convergence of the
Lagrange multipliers and the weak formulation of the Gibbs–Thomson law. We provide several
asymptotic properties for minimizing sequences and construct approximations for the Cahn–
Hoffman vector. Finally, we deduce in Section 6 the strong Euler–Lagrange equation for E0

under certain regularity assumptions which establishes equilibrium conditions in the bulk, at
the interface and at the boundary of the domain.

2 Notation and Assumptions

We begin with stating the hypotheses for the anisotropy function σ, the chemical free density ψ
and the elastic free energy density W .

If not otherwise mentioned we assume that Ω ⊂ R
n is a bounded domain with C1–boundary.

The first and second partial derivatives of a function f with respect to a variable s are denoted
by f,s and f,ss.

Assumption A 2.1
The anisotropy function σ : Ω × R × R

n → [0, +∞) satisfies the following properties:

(i) σ ∈ C(Ω × R × R
n) ,

σ,x, σ,p ∈ C(Ω × R × R
n\{0}) ,

σ,pp ∈ C(Ω × R × R
n\{0}).

(ii) σ is 1-homogeneous in the third variable such that σ(x, s, λp) = λσ(x, s, p) for all p ∈ R
n

and any λ > 0.

(iii) There exist constants λ1 > 0 and λ2 > 0 such that

λ1|p| ≤ σ(x, s, p) ≤ λ2|p| for all x ∈ Ω, all s ∈ R and all p ∈ R
n.

(iv) σ is strictly convex as a 1-homogeneous function, i. e. there exists a constant d0 > 0 such
that

σ,pp(x, s, p) q · q ≥ d0|q|2

for all x ∈ Ω, all s ∈ R and all p, q ∈ R
n with p · q = 0, |p| = 1.

We like to mention that we consider several times the expressions σ σ,p and g σ,p with g ∈ C1(Ω)
and g = 0 in some neighborhood of 0 ∈ R

n. Clearly, σp is not differentiable at 0 ∈ R
n. However,

if we set σ σ,p = 0 and g σ,p = 0 at 0 ∈ R
n then the above combinations are well defined at 0.

To handle the anisotropy we need the notion of the generalized total variation of BV –
functions:

Let σ : Ω × R × R
n → [0, +∞) be a continuous anisotropy function satisfying (ii) and (iii) of

Assumption A 2.1. Then the dual function σ∗ : Ω × R × R
n → [0, +∞) is given by

σ∗(x, s, q) = sup
{

q · p : p ∈ R
n, σ(x, s, p) ≤ 1

}

= sup

{

q · p
σ(x, s, p)

: p ∈ R
n\{0}

}

. (2.1)

Moreover, let

Kσ(s)(Ω) =
{

η ∈ C1
c (Ω, Rn) : σ∗(x, s, η(x)) ≤ 1 for a. e. x ∈ Ω

}

.
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For any f ∈ BV (Ω) the generalized total variation of f (with respect to σ(s)) in Ω is defined by

∫

Ω
|∇f |σ(s) = sup

{
∫

Ω
f divη dx : η ∈ Kσ(s)(Ω)

}

.

The generalized total variation can be represented by an integral formula in terms of the measure
|∇f |, cf. [3, 4]:

∫

Ω
|∇f |σ(s) =

∫

Ω
σ(x, s, νf ) |∇f |, (2.2)

where νf (x) = − ∇f
|∇f |(x) for |∇f |–almost all x ∈ Ω.

We notice,
∫

Ω |∇f |σ(s) is L1(Ω)–lower semicontinuous on BV (Ω).
In the sequel we make use of the following properties for anisotropy functions.

Lemma 2.2
Let σ be an anisotropy function satisfying Assumption A 2.1. Then there exist constants C1 > 0
and C2 > 0, such that for all x ∈ Ω, s ∈ [c−, c+], ν1, ν2 ∈ S

n−1 and p, p1, p2 ∈ R
n\{0} the

following properties are fulfilled:

(i)

σ, p(x, s, p) · p = σ(x, s, p), σ∗
, p(x, s, p) · p = σ∗(x, s, p), (2.3)

(ii)
σ(x, s, ν1) − σ, p(x, s, ν2) · ν1 ≥ C1|ν1 − ν2|2, (2.4)

(iii)
|σ, p(x, s, ν1) − σ, p(x, s, ν2)| ≤ C2|ν1 − ν2|, (2.5)

(iv)
σ, p(x, s, λp) = σ, p(x, s, p), σ∗

, p(x, s, λp) = σ∗
, p(x, s, p) for λ > 0, (2.6)

(v)
σ
(

x, s, σ∗
, p(x, s, p1)

)

= σ∗
(

x, s, σ, p(x, s, p2)
)

= 1. (2.7)

(vi)

σ(x, s, p)σ∗
, p

(

x, s, σ, p(x, s, p)
)

= p, σ∗(x, s, p)σ, p

(

x, s, σ∗
, p(x, s, p)

)

= p, (2.8)

A proof of Lemma 2.2 can be deduced from [6], [11] and [19] by slight modifications.

In the present work we consider exclusively variational problems under mass conservation. Thus
the variational problem does not change if we subtract from the chemical energy density ψ an
affine function. Therefore, throughout this paper, we restrict ourselves to normalized chemical
energy densities with the form of a double well potential which attain the value 0 at their minima.

Assumption A 2.3
For the chemical energy density ψ : R → [0, +∞) we assume that

(i) ψ ∈ C1(R),
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(ii) ψ(c) = 0 if and only if c ∈ {c−, c+},

(iii) there exist constants d1, d2 > 0 such that

ψ(c) ≥ d1|c|2 − d2.

Elastic interactions are considered within the framework of linear elasticity. Since in phase
separation processes of alloys the deformations are typically small we choose a theory based on
the linearized strain tensor which is given by

E(u) =
1

2

(

∇u +
(

∇u
)T

)

,

where u : Ω → R
n is the displacement field. The elastic energy density W is typically of quadratic

form:

W (c, E) =
1

2

(

E − E∗(c)
)

: C(c)
(

E − E∗(c)
)

. (2.9)

Here, E∗(c) denotes the eigenstrain which is usually linear in c and C(c) is the elasticity ten-
sor which is symmetric and positive definite. If the elasticity tensor does not depend on the
concentration, i. e. C(c) = C, we refer to homogeneous elasticity.

Rigorous results in the present work are obtained under certain growth conditions for the
elastic energy density W . These conditions are, however, only satisfied for W as in (2.9) in the
case of homogeneous elasticity or if E∗(c) does not depend linearly on c. To be more precise, we
need the following hypotheses for W .

Assumption A 2.4
We suppose that W : R × R

n×n → R satisfies the following properties:

(i) W ∈ C1(R × R
n×n),

(ii) W (c, E) = W (c, (E)T ) for all c ∈ R and E ∈ R
n×n,

(iii) W,E(c, ·) is strongly monotone (uniformly in c), i. e. there exists a constant d3 > 0 such
that for all symmetric E1, E2 ∈ R

n×n:

(

W,E(c, E2) − W,E(c, E1)
)

: (E2 − E1) ≥ d3|E2 − E1|2.

(iii) There exists a constant d4 ≥ 0 such that

• |W (c, E)| ≤ d4

(

|E|2 + |c|2 + 1
)

,

• |W,c(c, E)| ≤ d4

(

|E|2 + |c| + 1
)

,

• |W,E(c, E)| ≤ d4

(

|E| + |c| + 1
)

.

The phase–field energy functional Eε and the sharp interface functional E0 depend on u only via
E(u), cf. equations (1.2) and (1.3). Hence infinitesimal rigid displacements have no influence on
Eε and E0. Therefore we may suppose that for critical points (c, u) of Eε and E0 the function
u is chosen such that

u ∈ X⊥
ird =

{

u ∈ H1(Ω, Rn) : (u, v)H1 = 0 for all v ∈ Xird

}

,
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where Xird := {u ∈ H1(Ω, Rn) : u(x) = b + Kx with b ∈ R
n and K ∈ R

n×n skew symmetric}.
Further, we assume that the mass is conserved with −

∫

Ω c dx = m ∈ (c−, c+).

The space of functions of bounded variations is denoted by BV (Ω) and the symbol ∂∗S stands
for the reduced boundary of S, where S ⊂ Ω is a set of finite perimeter. We refer [20] and [5]
for details.

To study variational solutions of Eε and E0 it is convenient to extend the energy functionals
in the following way.

Definition 2.5
(i) Phase–field energy functional.

The phase–field energy functional Êε : BV (Ω) × X⊥
ird → R ∪ {+∞} is defined as

Êε(c, u) =











∫

Ω

(

εσ2(x, c,∇c) + 1
ε
ψ(c) + W (c, E(u))

)

dx if c ∈ H1(Ω) and

−
∫

Ω c dx = m,

∞ elsewhere.

(ii) Sharp interface energy functional.
The sharp interface functional Ê0 : BV (Ω) × X⊥

ird → R ∪ {+∞} is given by

Ê0(c, u) =











∫

I
σ0

(

x, ν−
)

dHn−1 +
∫

Ω W (c, E(u))dx if c ∈ BV (Ω, {c−, c+}) and

−
∫

Ω c dx = m,

∞ elsewhere,

where I := ∂∗Ω− is the reduced boundary of Ω− := {x ∈ Ω : c(x) = c−} and ν− is the outer
unit normal of Ω−. The anisotropy function σ0 : Ω × R

n → [0, +∞) has the form

σ0(x, p) = 2

∫ c+

c−

√

ψ(s)σ(x, s, p)ds.

3 The Γ–limit of the Ginzburg–Landau energy

In this section we shortly discuss the Γ–limit of Êε and the asymptotic behavior of its minimizers.
Such kind of investigations originates in the works [27, 26] of Modica and Mortola, where the
Γ–limit of

∫

Ω

(

ε|∇c|2 +
1

ε
f(c)

)

dx, ε > 0,

was studied. In [25] Modica proved that the corresponding sequence of minimizers {cε} (modulo
a subsequence) converges in L1(Ω) to a function which takes only the values c = c− and c = c+.
Moreover, he showed that the interface between {c = c−} and {c = c+} has minimal area.

Generalizations to anisotropic energies in a very general form but without elasticity were
gained by Owen [28], Owen & Sternberg [29] and Bouchitté [8]. They considered the variational
problem
Minimize

Ẽε(c) =

∫

Ω

(1

ε
f(x, c, ε∇c)

)

dx, ε > 0, (3.1)
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where f ∈ C(Ω × R × R
n, [0,∞)) with some additional conditions. In particular the work [8]

establishes the Γ–limit under very mild assumptions on f .
In the presence of elasticity rigorous results for the Γ–limit and the asymptotic behavior of

minimizers were obtained by Garcke [17, 18]. He investigated the following variational problem
for isotropic σ in the vectorial case:
Minimize

Ẽε(c, u) =

∫

Ω

(

ε|∇c|2 +
1

ε
ψ(c) + W (c, E(u))

)

dx, ε > 0, (3.2)

subject to the constraint −
∫

Ω c dx = m.
The choice of the above scaling for the elastic part is motivated in [23] and [16] by formally

matched asymptotic expansions.
For energy functionals of the form as in (1.2), with inhomogeneous anisotropic interfacial

energy and elasticity, the results of [29], [8] and [17, 18] can be combined to characterize the
asymptotic behavior of Êε and its minimizers:

Theorem 3.1
Let the Assumptions A 2.1 (i) – (iii), A 2.3 and A 2.4 be satisfied and let (cε, uε) ∈ H1(Ω)×X⊥

ird

such that
Êε(cε, uε) is uniformly bounded as ε → 0.

Then there exists a sequence of minimizers {(cεk
, uεk

)}k∈N ⊂ H1(Ω) × X⊥
ird with

cεk
→ c in L2(Ω), c ∈ BV (Ω, {c−, c+}),

and

uεk
→ u in H1(Ω, Rn)

as εk → 0.

In addition the following Γ–convergence result is true.

Theorem 3.2
Let the Assumptions A 2.1 (i) – (iii), A 2.3 and A 2.4 be satisfied. Then Êεk

Γ–converges to Ê0

in the following sense.

(i) For every sequence {(cεk
, uεk

)}k∈N ⊂ BV (Ω) × X⊥
ird, εk > 0 and limk→∞ εk = 0, with

cεk
→ c in L1(Ω), uεk

→ u in L2(Ω, Rn),

it holds
Ê0(c, u) ≤ lim inf

k→∞
Êεk

(cεk
, uεk

).

(ii) For any (c, u) ∈ BV (Ω)×X⊥
ird there exists a sequence {(cεk

, uεk
)}k∈N ⊂ BV (Ω)×X⊥

ird, εk > 0
with limk→∞ εk = 0, satisfying

cεk
→ c in L1(Ω), uεk

→ u in L2(Ω, Rn)

such that
Ê0(c, u) ≥ lim sup

k→∞
Êεk

(cεk
, uεk

).
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Remark 3.3
Let us comment on the hypotheses for Theorem 3.2. The quadratic growth condition on ψ ensures
compactness on {cεk

}k∈N in L2 for sequences {(cεk
, uεk

)}k∈N with uniformly bounded energy
Êεk

(cεk
, uεk

). This compactness property, the growth conditions on W and Korn’s inequality
establish uniform boundedness of {uεk

}k∈N in H1(Ω, Rn). This, in turn, combined with the
monotonicity and growth conditions for W enables to show the lower semicontinuity of

∫

Ω W dx.

The utility of the concept of Γ–convergence lies in the corollary below. Existence of absolute
minimizers of Êε with uniformly bounded energy as ε → 0 results from the direct method in the
calculus of variations and Theorem 3.2 (ii).

Corollary 3.4
Let {(cεk

, uεk
)}k∈N ⊂ BV (Ω) × X⊥

ird be any sequence of minimizers of Êεk
, εk > 0 and

limk→∞ εk = 0. Then there exists a subsequence {(cεkj
, uεkj

)}j∈N which converges in L2(Ω) ×
H1(Ω, Rn) to a limit (c, u), where (c, u) is a minimizer of Ê0.

4 Weak formulation of the Euler–Lagrange equations

We are now going to establish the weak formulation of the Euler–Lagrange equations of the
diffuse phase–field energy functional Eε and the sharp energy functional E0. To this end, we
choose inner variations such that the mass constraint is satisfied as variations of Ê0 with respect
to the dependent variable c are not possible since c attains only the values c− and c+.

Let Ω be a domain with C1–boundary and let Φ : (−τ0, τ0) × Ω → Ω be a differentiable
mapping such that Φ(τ, ·), τ ∈ [−τ0, τ0], is a family of diffeomorphisms of Ω onto itself given by
the initial value problem

Φ(0, x) = x and Φ,τ (τ, x) = ξ(Φ(τ, x)) (4.1)

for x ∈ Ω and τ ∈ [−τ0, τ0], where ξ ∈ C1(Ω, Rn). Then Φ fulfills the following properties:

(i) Φ(τ, ·) is the inverse of Φ(−τ, ·), i. e. Φ(τ, Φ(−τ, x)) = x.

In consequence,

Id = Φ,x

(

τ, Φ(−τ, x)
)

Φ,x(−τ, x),

(ii)
d

dτ

(

det Φ,x(τ, x)
)

∣

∣

∣

τ=0
=

(

∇ · ξ
)

(x),

(iii)
d

dτ

(

(

Φ,x(τ, x)
)−1

)
∣

∣

∣

τ=0
= −∇ξ(x).

To determine the weak formulation of the Euler–Lagrange equation we make use of the following
variational property.
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Lemma 4.1
Let Φ(τ, x) : [−τ0, τ0] × Ω → Ω be a family of diffeomorphisms of Ω onto itself. Then

d

dτ

∫

Ω

∣

∣∇χ−

(

Φ−1(τ, ·)
)
∣

∣

σ0

∣

∣

∣

∣

τ=0

=

∫

Ω

(

σ0

(

Φ(τ, x), H(τ, x)ν−(x)
)

tr

(

∂Φ,τ (τ, x)

∂x

)

+ σ0,x

(

Φ(τ, x), H(τ, x)ν−(x)
)

· d

dτ
Φ(τ, x)

+ σ0,p

(

Φ(τ, x), H(τ, x)ν−(x)
)

· d

dτ

(

Φ,x(τ, x)
)−T

ν−(x)

)∣

∣

∣

∣

τ=0

∣

∣∇χ−(x)
∣

∣,

where χ− is the characteristic function of Ω− = {x ∈ Ω : c(x) = c−} and ν− = − ∇χ−

|∇χ−| for

|∇χ−|–almost all x ∈ Ω.

Proof:
We have
∫

Ω

∣

∣∇χ−

(

Φ−1(τ, ·)
)∣

∣

σ0
=

= sup

{
∫

Ω
χ−

(

Φ−1(τ, z)
)

divg
(

Φ−1(τ, z)
)

dz : g ∈ C1
c (Ω, Rn), σ∗

0(z, g
(

Φ−1(τ, z)
)

≤ 1 for z ∈ Ω

}

= sup

{
∫

Ω
g(x) · H(τ, x)ν−(x)

∣

∣∇χ−

∣

∣ : g ∈ C1
c (Ω, Rn), σ∗

0(Φ(τ, x), g(x)) ≤ 1 for x ∈ Ω

}

,

where the last equality follows from the change of area formula for BV –functions (see [20], proof
of Lemma 10.1), i. e.

∫

Ω
χ−

(

Φ−1(τ, z)
)

div g
(

Φ−1(τ, z)
)

dz =

∫

Ω
g(x) · H(τ, x) ν−(x) |∇χ−(x)|

with H(τ, x) = |detΦ,x(τ, x)|
(

Φ,x(τ, x)
)−T

. Since, compare (2.1),

g(x) · H(τ, x)ν−(x) ≤ σ∗
0

(

Φ(τ, x), g(x)
)

σ0

(

Φ(τ, x), H(τ, x)ν−(x)
)

we obtain

sup

{
∫

Ω
g(x) · H(τ, x)ν−(x)

∣

∣∇χ−

∣

∣ : g ∈ C1
c (Ω, Rn), σ∗

0(Φ(τ, x), g(x)) ≤ 1 for x ∈ Ω

}

≤
∫

Ω
σ0

(

Φ(τ, x), H(τ, x) ν−(x)
)∣

∣∇χ−(x)
∣

∣.

Next we verify the opposite inequality. As χ− ∈ BV (Ω) there exist approximate normals
ϕδ ∈ C∞

c (Ω, Rn) with |ϕδ(x)| ≤ 1 for x ∈ Ω such that

∫

Ω

(

1 − ϕδ · ν−
)

|∇χ−| ≤ δ.

Utilizing the fact that ϕδ and ν− have norm less or equal to one we obtain

|ν− − ϕδ|2 ≤ 2 (1 − ϕδ·ν−).
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Therefore, we can choose a sequence of functions {ϕk}k∈N, ϕk ∈ C1
c (Ω, Rn), such that

ϕk → ν− in L1(|∇χ−|) and ϕk → ν− pointwise |∇χ−|–a. e. .

We now choose a function η ∈ C1
c (R, R) with 0 ≤ |η| ≤ 1, such that

η = 1 on [1/4, 4] and η = 0 on R\[1/8, 8].

Further, we define for τ ∈ [−τ0, τ0] fixed F : Ω × R
n → R

n as follows

F (x, p) = η(|p|)σ0,p(Φ(τ, x), p).

For τ small enough we may assume

1

2
≤ |Hν−| ≤ 2 in Ω

and we may approximate H uniformly by functions Hk ∈ C1
c (Ω, Rn), k ∈ N. Then

(i) F ◦ (Hkϕk) ∈ C1
c (Ω, Rn) with

(

F ◦ (Hkϕk)
)

(x) := F
(

x, Hk(x)ϕk(x)
)

,

(ii) σ∗
0(Φ, F ◦ (Hkϕk)) = η

(

|Hkϕk|
)

σ∗
0(Φ, σ0,p(Φ, Hkϕk)) ≤ 1,

(iii) F ◦ (Hkϕk) → F ◦ (Hν−) |∇χ−|–a. e.,

where (ii) follows from (2.7). Since F is bounded we obtain

∫

Ω

(

F ◦ (Hkϕk)
)

· Hν−|∇χ−| →
∫

Ω

(

F ◦ (Hν−)
)

· Hν−|∇χ−| for k → ∞.

Hence, as 1/2 ≤ |Hν−| ≤ 2,

F ◦ (Hν−) = σ0,p(Φ(τ, x), Hν−).

Setting gk = F ◦ (Hkϕk), k ∈ N, gives for k → ∞ the reverse inequality:

sup

{
∫

Ω
g(x) · H(τ, x)ν−(x)

∣

∣∇χ−

∣

∣ : g ∈ C1
c (Ω, Rn), σ∗

0(Φ(τ, x), g(x)) ≤ 1 for x ∈ Ω

}

≥
∫

Ω
σ0

(

Φ(τ, x), H(τ, x)ν−(x)
)∣

∣∇χ−(x)
∣

∣.

Next we compute the τ–derivative:

d

dτ

∫

Ω

∣

∣∇χ−

(

Φ−1(τ, ·)
)
∣

∣

σ0

∣

∣

∣

∣

τ=0

=

∫

Ω

(

σ0

(

Φ(τ, x), H(τ, x)ν−
)

tr

(

∂Φ,τ (τ, x)

∂x

)

+ σ0,x

(

Φ(τ, x), H(τ, x)ν−(x)
)

· d

dτ
Φ(τ, x)

+ σ0,p

(

Φ(τ, x), H(τ, x)ν−(x)
)

· d

dτ

(

Φ,x(τ, x)
)−T

ν−(x)(x)

)
∣

∣

∣

∣

τ=0

∣

∣∇χ−(x)
∣

∣.

¥
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We also recall that, if M is an n×n–matrix then Id+ηM , η ∈ R, is invertible for |η| sufficiently
small and

det(Id + ηM) = 1 + ηtr(M) +
1

2
η2

(

(trM)2 − tr(M2)
)

+ O(η3),

where tr(M) denotes the trace of M . Moreover,

(Id + ηM)−1 = Id − ηM + η2M2 + O(η3).

Theorem 4.2
Let Ω be a domain with C1–boundary. Further, let assumptions A 2.1 – A 2.4 be satisfied. If

(c, u) ∈ BV (Ω, {c−, c+})×X⊥
ird is a minimizer of Ê0 then there exists a real number λ such that

∫

I

(

σ0

(

x, ν−
)

∇·ξ + σ0,x

(

x, ν−
)

· ξ − ν− · ∇ξ σ0,p

(

x, ν−
)

)

dHn−1

+

∫

Ω

(

W
(

c, E(u)
)

Id −
(

∇u
)T

W,E

(

c, E(u)
)

)

: ∇ξ dx = λ

∫

Ω
c∇·ξ dx (4.2)

for all ξ ∈ C1(Ω, Rn) with ξ · νΩ = 0 on ∂Ω, where νΩ is the outer unit normal of ∂Ω.

Proof:
We choose a family of diffeomorphisms Φ(τ, ·), τ ∈ [−τ0, τ0], of Ω onto itself defined by

Φ(0, x) = x and Φ,τ (τ, x) = ξ
(

Φ(τ, x)
)

for x ∈ Ω and τ ∈ [−τ0, τ0]. Let h ∈ C1
c (Ω, Rn) be any function with

∫

I
h · ν− dHn−1 6= 0 and

consider
Φ̃(x ; τ, w) = Φ(τ, x) + wh(Φ(τ, x)) (4.3)

for x ∈ Ω, τ ∈ [−τ0, τ0] and w ∈ R. Then Φ̃(· ; τ, w), τ ∈ [−τ0, τ0], is also a diffeomorphism of Ω
onto itself if |w| is sufficiently small. Via the above diffeomorphisms we define

Ωτ,w
l = {Φ̃(x ; τ, w) : x ∈ Ωl} for l ∈ {−, +}. (4.4)

Further, we consider

j(τ, w) :=

∫

Ωτ,w
−

1 dy − |Ω−|

=

∫

Ω−

∣

∣detΦ̃,x(x ; τ, w)
∣

∣ dx − |Ω−|,

where |Ω−| = c+−m
c+−c−

|Ω|. Clearly, j(0, 0) = 0. Moreover, j ∈ C1 with

∂j

∂τ
(τ, w)

∣

∣

∣

(τ,w)=(0,0)
=

∫

Ω−

∇·ξ dx

and

∂j

∂w
(τ, w)

∣

∣

∣

(τ,w)=(0,0)
=

∫

Ω−

∇·h dx =

∫

I

h · ν dHn−1

12



by the generalized divergence theorem. In consequence, ∂j
∂w

(0, 0) 6= 0. Thus we may apply the
implicit function theorem and obtain a C1–function η : R → R with

η(0) = 0 and j(τ, η(τ)) = 0 (4.5)

for τ sufficiently small. Without loss of generality we may assume that (4.5) holds for τ ∈
[−τ0, τ0]. Differentiating, we get

∂j

∂τ

(

τ, η(τ)
)

+
∂j

∂w

(

τ, η(τ)
)

η′(τ) = 0.

Therefore,

η′(0) = −
∂j
∂τ

(0, 0)
∂j
∂w

(0, 0)
= −

∫

Ω−

∇·ξ(x) dx
∫

I
h(x)·ν−(x) dHn−1

.

Note, Φ̂(· ; τ) := Φ̃(· ; τ, η(τ)) is for |τ | sufficiently small a diffeomorphism of Ω onto itself. Via
the variation Φ̂ we define

cτ (x) = c
(

Φ̂−1(x ; τ)
)

, χτ
−(x) = χ−

(

Φ̂−1(x ; τ)
)

and uτ (x) = u
(

Φ̂−1(x ; τ)
)

,

where χ− is the characteristic function of Ω−. Furthermore, we set

ντ
−(x) = − ∇χτ

−(x)
∣

∣∇χτ
−(x)

∣

∣

.

Observe, that the variation Φ̂ is mass preserving. Moreover, (c, u) stays a minimizer if we choose
variations for u in the larger class H1(Ω, Rn). Thus we may take (cτ , uτ ) as a comparison
function and obtain E0(c, u) ≤ E0(c

τ , uτ ) for τ ∈ [−τ0, τ0]. This implies

0 =
d

dτ
E0(c

τ , uτ )
∣

∣

∣

τ=0
.

Next we compute the above derivative. Here, we take advantage from the following properties
of Φ̂:

(i)
∣

∣det Φ̂,x(x ; 0)
∣

∣ = 1,

(ii) Φ̂−1
,x (Φ̂(x ; τ) ; τ) =

(

Φ̂,x(x ; τ)
)−1

,

(iii) Φ̂,x(x ; τ) =
(

Id + η(τ)∇h(Φ(τ, x))
)

Φ,x(τ, x).

In particular,
d

dτ

(

Φ̂,x(x ; τ)
)−1

∣

∣

∣

∣

τ=0

= −∇ξ(x) − η′(0)∇h(x).

Using the abbreviation ξ̂(x) := ξ(x) + η′(0)h(x) Lemma 4.1 gives

d

dτ

∫

Ω
σ0

(

z,− ∇zχ−

(

Φ̂−1(z ; τ)
)

∣

∣∇zχ−

(

Φ̂−1(z ; τ)
)
∣

∣

)

∣

∣∇zχ−

(

Φ̂−1(z ; τ)
)∣

∣

∣

∣

∣

∣

τ=0

=

∫

I

(

σ0

(

x, ν−
)

∇·ξ̂ + σ0,x

(

x, ν−
)

· ξ̂ − ν− · ∇ξ̂ σ0,p

(

x, ν−
)

)

dHn−1

=

∫

I

(

σ0

(

x, ν−
)

∇·ξ + σ0,x

(

x, ν−
)

· ξ − ν− · ∇ξσ0,p

(

x, ν−
)

)

dHn−1

−
∫

I

(

σ0

(

x, ν−
)

∇·h + σ0,x

(

x, ν−
)

· h − ν− · ∇hσ0,p

(

x, ν−
))

dHn−1

∫

I
h · ν− dHn−1

∫

Ω−

∇·ξ dx.
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For the elasticity part we have

∫

Ω
W

(

cτ (z), E(uτ (z))
)

dz =

∫

Ω
W

(

c
(

Φ̂−1(z ; τ)
)

,
1

2

(

∇z

(

u(Φ̂−1(z ; τ))
)

+
(

∇z

(

u(Φ̂−1(z ; τ))
)

)T
))

dz .

We obtain

∫

Ω
W

(

cτ (z), E(uτ (z))
)

dz =

∫

Ω
W

(

c(x),
1

2

(

∇u(x)
(

Φ̂,x(x ; τ)
)−1

+
(

∇u(x)
(

Φ̂,x(x ; τ)
)−1

)T
))

∣

∣detΦ̂,x(x ; τ)
∣

∣dx.

The properties of Φ̂ and Φ, the symmetry of W and the growth conditions of W and W,E gives

d

dτ

(
∫

Ω
W

(

cτ , E(uτ )
)

dy

)∣

∣

∣

∣

τ=0

=

∫

Ω

(

W
(

c, E(u)
)

∇·ξ̂ − W,E

(

c, E(u)
)

:
1

2

(

∇u∇ξ̂ +
(

∇u∇ξ̂)T
))

dx

=

∫

Ω

(

W
(

c, E(u)
)

∇·ξ̂ − W,E

(

c, E(u)
)

:
(

∇u∇ξ̂
)

)

dx

=

∫

Ω

(

W
(

c, E(u)
)

∇·ξ̂ − (∇u)T W,E

(

c, E(u)
)

: ∇ξ̂
)

dx,

where ξ̂ = ξ + η′(0)h. Combining the above calculations shows

∫

I

(

σ0

(

x, ν−
)

∇·ξ + σ0,x

(

x, ν−
)

· ξ − ν− · ∇ξσ0,p

(

x, ν−
)

)

dHn−1

+

∫

Ω

(

W
(

c, E(u)
)

Id − (∇u)T W,E

(

c, E(u)
)

)

: ∇ξ dx = λ

∫

Ω
c∇·ξ dx

with

λ = −
(

∫

I

(

σ0

(

x, ν−
)

∇·h + σ0,x

(

x, ν−
)

· h − ν− · ∇hσ0,p

(

x, ν−
)

)

dHn−1

+

∫

Ω

(

W
(

c, E(u)
)

Id − (∇u)T W,E

(

c, E(u)
)

)

: ∇h dx

)

/(

(c+ − c−)

∫

I

h · ν− dHn−1
)

since
∫

Ω c∇·ξ dx = c+

∫

Ω+
∇·ξ + c−

∫

Ω−

∇·ξ = −(c+ − c−)
∫

I
ξ · ν− dHn−1 by the generalized

divergence theorem. This completes the proof. ¥

In the next theorem we state the first variation of Êε. In analogy to the limit problem Ê0, we
choose inner variations.

Theorem 4.3
Let Ω be a domain with C1–boundary. Further, let assumptions A 2.1 – A 2.4 be satisfied.
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If (cε, uε) ∈ H1(Ω) × X⊥
ird is a minimizer of Êε then

∫

Ω

(

(

εσ2(x, cε,∇cε)+
1

ε
ψ(cε)

)

∇·ξ+2 ε σ(x, cε,∇cε)
(

σ,x(x, cε,∇cε)·ξ−∇cε·∇ξ σ,p(x, cε,∇cε)
)

+
(

W
(

cε, E(uε)
)

Id −
(

∇uε

)T
W,E

(

cε, E(uε)
)

)

: ∇ξ

)

dx = λε

∫

Ω
cε∇·ξdx (4.6)

for all ξ ∈ C1(Ω, Rn) with ξ · νΩ = 0 on ∂Ω, where νΩ is the outer unit normal of ∂Ω. The
Lagrange–multiplier λε has the following form:

λε = −
∫

Ω

(

2ε σ(x, cε,∇cε)σ,c(x, cε,∇cε) +
1

ε
ψ,c(cε) + W,c

(

cε, E(uε)
)

)

dx. (4.7)

Proof:
The result established here is an anisotropic version of a computation in [17, 18]. For simplicity
we omit the index ε in this proof. Let ξ ∈ C1(Ω, Rn) be arbitrary up to ξ · νΩ = 0 on ∂Ω. We
choose a one parametric family of diffeomorphisms Φ(τ, ·), τ ∈ [−τ0, τ0], of Ω onto itself defined
by solutions of the initial value problems

Φ(0, x) = x and Φ,τ (τ, x) = ξ
(

Φ(τ, x)
)

,

for x ∈ Ω and τ ∈ [−τ0, τ0]. We consider (cτ , uτ ) with

cτ (x) = c
(

Φ(−τ, x)
)

−−
∫

Ω
c
(

Φ(−τ, y)
)

dy + m

and

uτ (x) = u
(

Φ(−τ, x)
)

,

which is allowed as comparison function since the mass constraint is satisfied and (c, u) stays a
minimizer if we choose variations for u in the larger class H1(Ω, Rn). This implies

0 =
d

dτ
E(cτ , uτ )

∣

∣

∣

τ=0
.

For the derivative of the σ–term we obtain

d

dτ

(
∫

Ω
σ2

(

y, cτ (y),∇yc
τ (y)

)

dy

)
∣

∣

∣

∣

τ=0

=

∫

Ω

(

σ2(x, c,∇c)∇·ξ

+ 2σ(x, c,∇c)
(

σ,x(x, c,∇c) · ξ −∇c · ∇ξ σ,p(x, c,∇c)
))

dx

−
(

−

Z

Ω

2 σ(x, c,∇c)σ,c(x, c,∇c)dx
)

∫

Ω
c∇·ξ dx.

The derivative of the ψ–expression and the elasticity part is computed as in [17, 18], i. e.

d

dτ

(
∫

Ω
ψ

(

cτ (y)
)

dy

)
∣

∣

∣

∣

τ=0

=

∫

Ω

(

ψ(c)∇·ξ
)

dx −
(

−

Z

Ω

ψ,c(c)dx
)

∫

Ω
c∇·ξ dx
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and

d

dτ

(
∫

Ω
W

(

cτ (y), E(uτ (y))
)

dy

)∣

∣

∣

∣

τ=0

=

∫

Ω

(

W
(

c, E(u)
)

∇·ξ −
(

(∇u)T W,E

(

c, E(u)
)

)

: ∇ξ

)

dx

−
(

−

Z

Ω

W,c

(

c, E(u)
)

dx
)

∫

Ω
c∇·ξ dx.

Putting all together shows the claim. ¥

Remark 1 Let us point out that λε is also the Lagrange multiplier of the Euler–Lagrange equa-
tion

∫

Ω

(

2εσ(x, cε,∇cε)σ,p(x, cε,∇cε) · ∇ζ + 2εσ(x, cε,∇cε)σ,c(x, cε,∇cε)ζ +
1

ε
ψ,c(cε)ζ

+ W,c

(

cε, E(uε)
)

ζ
)

dx =

∫

Ω
λε ζ (4.8)

for all ζ ∈ L∞(Ω) ∩ H1(Ω), which are obtained by variations with respect to the dependent
variable c (set ζ ≡ 1 in (4.8) to obtain (4.7)). Luckhaus and Modica [24], who studied the case
for isotropic surface tension and without elasticity, started with equation (4.8) and set ζ = ∇cεξ
to deduce (4.6). Formally, it is also possible to derive (4.6) from (4.8). However we did not
choose this approach because due to the elasticity there is not enough regularity known to make
the formal calculations rigorous.

5 Convergence of the Lagrange–multipliers λελελε

5.1 Properties of anisotropy functions

In the sequel we discuss some properties of anisotropy functions which are utilized to pass to
the limit in the weak formulation of the Euler–Lagrange equation.

Anisotropy can be visualized by the Wulff shape W which varies in our case with x ∈ Ω and
s ∈ R:

W (x, s) = {q ∈ R
n : σ∗(x, s, q) ≤ 1}.

The Wulff shape W (x, s) is convex and its boundary can be expressed as follows:

∂W (x, s) =
{

σ, p(x, s, ν̃) : ν̃ ∈ S
n−1

}

.

The outer unit normal at the point σ,p(x, s, ν) on ∂W (x, s) is ν. For more details on this matter
we refer [21] and [19].

The following lemma is an essential tool for constructing suitable approximations of the
Cahn-Hoffman vector σ,p.

Lemma 5.1
Let σ be an anisotropy function satisfying Assumption A 2.1. Then there exists a constant
C > 0 such that

C |σ, p(x, s, ν) − p|2 ≤ σ(x, s, ν) − p · ν
for all x ∈ Ω, s ∈ [c−, c+], ν ∈ S

n−1 and all p ∈ R
n\{0} with σ∗(x, s, p) ≤ 1.
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Proof:
Let x ∈ Ω, s ∈ [c−, c+], ν ∈ S

n−1 and define Bε(σ,p(x, s, ν)) = {ζ ∈ R
n : |ζ − σ,p(x, s, ν))| < ε}

for ε > 0.

(i) We first assume that p ∈ Bε(σ,p(x, s, ν)) and σ∗(x, s, p) ≤ 1, where ε > 0 is chosen so small
that 0 6∈ Bε(σ,p(x, s, ν)). Since, compare (2.7) and (2.8),

σ∗(x, s, p + tν) ≥ 1 + σ∗
,p

(

x, s, σ,p(x, s, ν)
)

(tν + p − σ,p(x, s, ν))

= 1 +
t

σ(x, s, ν)
+ σ∗

,p

(

x, s, σ,p(x, s, ν)
)

(p − σ,p(x, s, ν))

we may also assume for ε > 0 small enough that for all p ∈ Bε(σ,p(x, s, ν))

1 > τ(x, s) := sup{t ≥ 0 : σ∗(x, s, p + tν) ≤ 1}.

We set
q(x, s) = p + τ(x, s)ν.

Due to the the continuity of σ∗ we obtain σ∗(x, s, q(x, s)) = 1. Note,

|q(x, s) − p| = τ(x, s) and q(x, s) · ν = p · ν + τ(x, s).

As σ∗(x, s, q(x, s)) = 1 there exists some ν ∈ S
n−1 such that

σ, p(x, s, ν) = q(x, s).

From (2.4) and (2.5) we derive

σ(x, s, ν) − σ, p(x, s, ν) · ν ≥ C3 |σ, p(x, s, ν) − σ, p(x, s, ν)|2

for C3 ≤ C1/C2
2 . This yields

σ(x, s, ν) − p · ν = σ(x, s, ν) − q(x, s) · ν + τ(x, s)

≥ C3

∣

∣σ, p(x, s, ν) − q(x, s)
∣

∣

2
+ τ(x, s).

Further, we have

∣

∣σ, p(x, s, ν) − p
∣

∣

2
=

∣

∣σ, p(x, s, ν) + q(x, s) − q(x, s) − p
∣

∣

2

≤ 2
(
∣

∣σ, p(x, s, ν) − q(x, s)
∣

∣

2
+ |q(x, s) − p|2

)

≤ 2
(
∣

∣σ, p(x, s, ν) − q(x, s)
∣

∣

2
+ τ(x, s)

)

.

This shows that there exists some C > 0 (independent of x, s and ν) such that

σ(x, s, ν) − p · ν ≥ C
∣

∣σ, p(x, s, ν) − p
∣

∣

2
.

(ii) Now we assume that the claim is false for the general case. Then there exist sequences
{xk}k∈N with xk ∈ Ω, {sk}k∈N with sk ∈ [c−, c+], {νk}k∈N with νk ∈ S

n−1, {pk}k∈N with
pk ∈ R

n\Bε(σ,p(x, s, ν)) and σ∗(xk, sk, pk) ≤ 1 such that

σ(xk, sk, νk) − pk · νk ≤ 1

k

∣

∣σ, p(xk, sk, νk) − pk

∣

∣

2
.
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Furthermore, there exist convergent subsequences,

xkj
→ x ∈ Ω, skj

→ s ∈ [c−, c+], νkj
→ ν ∈ S

n−1, pkj
→ p̂ ∈ R

n\Bε(σ, p(x, s, ν)).

In particular, we have

σ∗(x, s, p̂) ≤ 1 and σ(x, s, ν) − p̂ · ν = 0

due to the continuity of σ, σ∗ and the uniform boundedness of σ, p. It follows from (2.1) that
p̂ ∈ ∂W (x, s). Thus there exists some ν̃ ∈ S

n−1 such that

p̂ = σ, p(x, s, ν̃).

But this implies ν̃ = ν by (2.4) which is a contradiction to p̂ 6∈ Bε(σ, p(x, s, ν)). ¥

5.2 Slicing and indicator measures

For convenience, we summarize some results on slicing and indicator measures. We refer [5],
[13], [14] and [15] for details. Let Θ be a finite, nonnegative Radon measure on Ω × R

n. The
canonical projection onto Ω is denoted by π, i. e.

π(E) := Θ(E × R
n)

for each Borel set E ⊂ Ω.

Proposition 5.2 (cf. [5])
For π–a. e. point x ∈ Ω there exists a Radon probability measure λx on R

n such that

(i) the mapping x →
∫

Rn f(x, y) dλx(y) is π measurable,

(ii)
∫

Ω×Rn f(x, y) dΘ(x, y) =
∫

Ω

( ∫

Rn f(x, y)dλx(y)
)

dπ(x) (Fubini’s decomposition)

for every continuous and bounded function f : Ω × R
n → R.

Let µ̂ be an R
n–valued measure on Ω with polar decomposition dµ̂ = α dµ. Then the indicator

measure of µ̂ is the finite, nonnegative Radon measure Θ on Ω × S
n−1 defined by

〈Θ, f〉 =

∫

Ω
f
(

x, α(x)
)

dµ(x)

for every continuous and bounded function f : Ω × R
n → R. If E ⊂ Ω is a set with finite

perimeter, i. e.

per(E) =

∫

Ω
|∇χE | < ∞, χE : characteristic function of E,

then the indicator measure of ∇χE has the form

〈Θ, f〉 =

∫

∂∗E

f
(

x,−νE(x)
)

dHn−1(x) , νE : unit outer normal of E.
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Proposition 5.3 (cf. [5], [15])
Let {µ̂k}k∈N be a sequence of R

n–valued measures on Ω with polar decompositions dµ̂k = αk dµk

and suppose that µ̂k → µ̂ weakly∗ with µ̂ = αµ. Then there exists a subsequence {kj}j∈N and a
nonnegative Radon measure Θ∞ ≡ π∞ ⊗ λ∞

x on Ω× S
n−1, λ∞

x being probability measures, such
that

(i) Θkj
≡ µkj

⊗ δαkj
(x) → Θ∞ ≡ π∞ ⊗ λ∞

x weakly∗ , δy Dirac mass,

(ii) µkj
→ π∞ weakly∗ ,

(iii) π∞ ≥ µ.

Moreover, for every f ∈ Cc(Ω × R
n)

lim
j→∞

∫

Ω
f
(

x, αkj
(x)

)

dµkj
=

∫

Ω×Sn−1

f
(

x, y
)

dΘ∞(x, y)

=

∫

Ω

(
∫

Sn−1

f
(

x, y
)

dλ∞
x (y)

)

dπ∞(x).

5.3 Conclusions for minimizing sequences

For our further considerations it is convenient to introduce some abbreviations.

Notation:
Let (cε, uε), ε > 0, be a minimizer of Êε and let {εk}k∈N be a sequence with limk→∞ εk = 0 such
that cεk

→ c in L1(Ω). Then c ∈ BV (Ω, {c−, c+}) and we will use the following notation:

• χs,k stands for the characteristic function of Ωs,k = {x ∈ Ω : cεk
(x) < s}.

• χ− denotes the characteristic function of Ω− = {x ∈ Ω : c(x) = c−}.

• νs,k(x) := − ∇χs,k

|∇χs,k|
(x) for |∇χs,k|–almost all x ∈ Ω.

• ν−(x) := − ∇χ−

|∇χ−|(x) for |∇χ−|–almost all x ∈ Ω.

Lemma 5.4
Suppose Assumptions A 2.1 – A 2.4 are fulfilled. Let (cε, uε), ε > 0, be a minimizer of Êε. If
{εk}k∈N is a sequence with limk→∞ εk = 0 such that

cεk
→ c in L1(Ω) as k → ∞

then the following conditions are satisfied:

(i) There exists a subsequence {εkj
}j∈N such that

χs,kj
→ χ− in L1(Ω) as j → ∞ for a. e. s ∈ [c−, c+].

(ii) For every open set U ⊆ Ω
∫

U

σ(x, s, ν−)|∇χ−| ≤ lim inf
k→∞

∫

U

σ(x, s, νs,k)|∇χs,k| for a. e. s ∈ [c−, c+].
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(iii) lim
k→∞

∫

(−∞,c−)∪(c+,∞)

√

ψ(s)

∫

Ω
σ(x, s, νs,k)|∇χk,s| ds = 0.

In particular,

lim
k→∞

∫

(−∞,c−)∪(c+,∞)

√

ψ(s)

∫

Ω
|∇χk,s| ds = 0.

(iv) lim
k→∞

∫ c+

c−

2
√

ψ(s)

∫

Ω
σ(x, s, νs,k)|∇χs,k| ds =

∫

Ω
σ0(x, ν−)|∇χ−|.

(v) There exists a subsequence {εkj
}j∈N such that

∫

Ω
σ(x, s, νs,kj

)|∇χs,kj
| →

∫

Ω
σ(x, s, ν−)|∇χ−|

as j → ∞ for a. e. s ∈ [c−, c+].

(vi) There exists a subsequence {εkj
}j∈N and some constant M > 0 such that

lim sup
j→∞

∫

Ω
|∇χs,kj

| < M

for a. e. s ∈ [c−, c+].

Proof:
To (i): Since cεk

→ c in L1(Ω) and

∫

Ω
|cεk

− c|dx =

∫ +∞

−∞

(

∫

Ω

∣

∣χs,k − χ{c<s}

∣

∣dx
)

ds,

where χ{c<s} is the characteristic function of {x ∈ Ω : c(x) < s}, we can choose a subsequence
{χs,kj

}j∈N such that

χs,kj
→ χ− in L1(Ω) as j → ∞ for a. e. s ∈ [c−, c+].

To (ii): This property follows immediately since
∫

Ω |∇χ−|σ(s) is L1(Ω)–lower semicontinuous on
BV (Ω).
To (iii) and (iv): From Theorem 3.2 we conclude

lim
k→∞

∫

Ω

(

εk σ2(x, c,∇cεk
) +

1

εk

ψ(cεk
)
)

dx = lim
k→∞

∫

Ω
2
√

ψ(cεk
) σ(x, c,∇cεk

) dx

=

∫ c+

c−

2
√

ψ(s)

(
∫

Ω
σ(x, s, ν−) |∇χ−|

)

ds.

Using the coarea formula and (ii) we deduce

lim
k→∞

∫

Ω
2
√

ψ(cεk
)σ(x, c,∇cεk

) dx = lim
k→∞

∫ +∞

−∞
2
√

ψ(s)

(
∫

Ω
σ(x, s, νs,k) |∇χk,s|

)

ds

≥ lim
k→∞

∫ +c

−c

2
√

ψ(s)

(
∫

Ω
σ(x, s, νs,k) |∇χk,s|

)

ds

=

∫ c+

c−

2
√

ψ(s)

(
∫

Ω
σ(x, s, ν−) |∇χ−|

)

ds.
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Therefore,

lim
k→∞

∫ +c

−c

2
√

ψ(s)

(
∫

Ω
σ(x, s, νs,k) |∇χk,s|

)

ds =

∫ c+

c−

2
√

ψ(s)

(
∫

Ω
σ(x, s, ν−) |∇χ−|

)

ds.

This shows assertion (i) and (iii).
To (v): Because of (ii) and (iv) we get

lim
k→∞

∫ c+

c−

√

ψ(s)

∣

∣

∣

∣

∫

Ω
σ(x, s, νs,k)|∇χs,k| −

∫

Ω
σ(x, s, ν−)|∇χ−|

∣

∣

∣

∣

ds = 0.

Thus there exists a subsequence {εkj
}j∈N such that

∫

Ω
σ(x, s, νs,kj

)|∇χs,kj
| →

∫

Ω
σ(x, s, ν−)|∇χ−| as j → ∞ for a. e. s ∈ [c−, c+].

To (vi): By (v) we know that there exists some constant M > 0 such that

lim sup
j→∞

∫

Ω
|∇χs,kj

| < M for a. e. s ∈ [c−, c+].

¥

Theorem 5.5
Suppose assumptions A 2.1 – A 2.4 are fulfilled. Further, let (cε, uε), ε > 0, be a minimizer of

Êε. If {εk}k∈N is a sequence with limk→∞ εk = 0 and

cεk
→ c in L1(Ω) as k → ∞

then there exists a subsequence {εkj
}j∈N such that

∫

Ω
f
(

x, s, νs,kj
(x)

)∣

∣∇χs,kj
(x)

∣

∣ →
∫

Ω
f
(

x, s, ν−(x)
)∣

∣∇χ−(x)
∣

∣ (5.1)

for all continuous and bounded functions f : Ω × [c−, c+] × R
n → R and a. e. s ∈ [c−, c+].

Proof:
Items (i) and (vi) of Lemma 5.4 assure that there exist a set S ⊂ [c−, c+] of Lebesgue measure
zero and a sequence {εkj

}j∈N such that χs,kj
→ χ− in L1(Ω) and {per(Ωs,kj

)}j∈N is bounded for
s ∈ [c−, c+]\S. This, in turn, is equivalent to χs,kj

→ χ− in L1(Ω) and ∇χs,kj
→ ∇χ− weakly∗

for s ∈ [c−, c+]\S.
For any s ∈ [c−, c+]\S we conclude from Proposition 5.3 (modulo a subsequence) that there

exists a nonnegative Radon measure Θ∞ ≡ π∞ ⊗ λ∞
x on Ω × S

n−1 such that

lim
j→∞

∫

Ω
F

(

x, νs,kj

)

|∇χs,kj
| =

∫

Ω×Sn−1

F
(

x, y
)

dΘ∞(x, y)

=

∫

Ω

(
∫

Sn−1

F
(

x, y
)

dλ∞
x (y)

)

dπ∞(x)

for any F ∈ Cc(Ω × R
n).
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We now claim that λ∞
x is a Dirac mass for |∇χ−|–a. e. x ∈ Ω. For any x̂ ∈ Ω we choose

r > 0 such that B(x̂, r) = {x ∈ R
n : ||x − x̂|| < r} ⋐ Ω, and set

Fg(x, y; s) = Φ1(x)Φ2(y)|σ,p(x, s, y) − gs(x)|2,

where gs ∈ Kσ(s)(Ω), Φ1 ∈ Cc(Ω) with 0 ≤ Φ1 ≤ 1 in Ω and Φ1 ≡ 1 in B(x̂, r) and Φ2 ∈ Cc(R
n)

with Φ2(y) = 0 in {y ∈ R
n : ||y|| < h} for some h > 0 and Φ2(y) = 1 on S

n−1. Thus
Fg(·, · ; s) ∈ Cc(Ω × R

n) and from Proposition 5.3 we attain (modulo a subsequence)

∫

Ω
Φ1(x)

(
∫

Sn−1

Φ2(y)|σ,p(x, s, y) − gs(x)|2dλ∞
x (y)

)

∣

∣∇χ−(x)
∣

∣

≤
∫

Ω
Φ1(x)

(
∫

Sn−1

Φ2(y)|σ,p(x, s, y) − gs(x)|2dλ∞
x (y)

)

dπ∞(x)

= lim
j→∞

∫

Ω
Φ1(x)Φ2(νs,kj

)|σ,p(x, s, νs,kj
) − gs(x)|2|∇χs,kj

|

≤ lim
j→∞

∫

Ω
|σ,p(x, s, νs,kj

) − gs(x)|2|∇χs,kj
|.

(5.2)

Applying Lemma 5.1 and 5.4 (v) we estimate for a. e. s ∈ [c−, c+]

lim
j→∞

∫

Ω
C|σ,p(x, s, νs,kj

) − gs(x)|2|∇χs,kj
| ≤ lim

j→∞

∫

Ω

(

σ(x, s, νs,kj
) − gs(x) · νs,kj

)

|∇χs,kj
|

=

∫

Ω

(

σ(x, s, ν−) − gs(x) · ν−
)

|∇χ−|

≤
∫

Ω

∣

∣σ,p(x, s, ν−) − gs(x)
∣

∣|∇χ−|,

(5.3)

where C > 0 is some constant.
Next we construct smooth approximations for the Cahn–Hoffman vector σ, p. Due to (2.2) there
exists for every δ > 0 and s ∈ [c−, c+] approximative functions gδ

s ∈ Kσ(s) such that

∫

Ω

(

σ(x, s, ν−) − gδ
s(x) · ν−

)

|∇χ−| ≤ δ2.

Thus, by Lemma 5.1,
∫

∂∗Ω−

|σ,p(x, s, ν−) − gδ
s(x)| dHn−1(x) ≤ C1 δ

for some constant C1 > 0 and for every s ∈ [c−, c+]. This implies the existence of a sequence
{gl

s}l∈N, gl
s ∈ C1

c (Ω, Rn), with gl
s(·) → σ,p(·, s, ν−(·)) in L1(Hn−1⌊∂∗Ω−) for s ∈ [c−, c+] since

δ > 0 may be chosen arbitrarily small. Hence, using (5.2) and (5.3),

∫

Ω
Φ1(x)

(
∫

Sn−1

|σ,p(x, s, y) − σ,p(x, s, ν−(x))|2dλ∞
x (y)

)

∣

∣∇χ−(x)
∣

∣ = 0.

In particular

∫

Ω
Φ1(x)

(
∫

Sn−1

|σ,p(x, s, y) · y − σ,p(x, s, ν−(x)) · y|2dλ∞
x (y)

)

∣

∣∇χ−(x)
∣

∣ = 0.
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This implies, according to Lemma 2.2 (ii),

∫

Sn−1

∣

∣ν−(x) − y
∣

∣

4
dλ∞

x (y) = 0 for
∣

∣∇χ−

∣

∣–a. e. x ∈ B(x̂, r).

Hence we obtain that λ∞
x is a Dirac mass, i. e. λ∞

x = δy=ν−(x) for
∣

∣∇χ−

∣

∣–a. e. x ∈ B(x̂, r) and
the claim follows as x̂ ∈ Ω was arbitrary.

Since λ∞
x = δy=ν−(x) for

∣

∣∇χ−

∣

∣–a. e. x ∈ Ω we infer from Lemma 5.3

∫

Ω
σ(x, s, ν−(x))|∇χ−(x)| =

∫

Ω

(
∫

Sn−1

σ(x, s, y) dλ∞
x (y)

)

∣

∣∇χ−(x)
∣

∣

=

∫

Ω

(
∫

Sn−1

σ(x, s, y) dλ∞
x (y)

)

g(x) dπ∞(x)

≤
∫

Ω×Sn−1

σ(x, s, y) dΘ∞(x, y),

where g is the density of |∇χ−| with respect to π∞ and 0 ≤ g(x) ≤ 1 for π∞–a. e. x ∈ Ω.
On the other hand, by means of Lemma 5.4 (v) we get

∫

Ω×Sn−1

σ(x, s, y) dΘ∞(x, y) ≤ lim inf
j→∞

∫

Ω×Sn−1

σ(x, s, y) d Θkj
(x, y)

= lim inf
j→∞

∫

Ω
σ(x, s, νs,kj

(x))|∇χs,kj
(x)|

=

∫

Ω
σ(x, s, ν−(x))|∇χ−(x)|.

Consequently, as
∫

Sn−1 σ(x, s, y) dλ∞
x (y) > 0 for π∞–a. e. x ∈ Ω we deduce

g ≡ 1 and |∇χ−| = π∞ for π∞–a. e. x ∈ Ω.

Moreover, Θkj
(Ω × S

n−1) = |∇χs,kj
|(Ω) converges to |∇χ−|(Ω) = Θ∞(Ω × S

n−1) for a. e. s ∈
[c−, c+].
Next we take advantage from the property that limj→∞ Θkj

(Ω × S
n−1) = Θ∞(Ω × S

n−1) and
Θkj

→ Θ∞ weakly∗ implies

lim
j→∞

∫

Ω×Sn−1

u(x, y) dΘkj
(x, y) =

∫

Ω×Sn−1

u(x, y)Θ∞(x, y)

for every continuous and bounded function u : Ω × R
n → R. We conclude

lim
j→∞

∫

Ω
f(x, s, νs,kj

)|∇χs,kj
| = lim

j→∞

∫

Ω×Sn−1

f(x, s, y) dΘkj
(x, y)

=

∫

Ω×Sn−1

f(x, s, y)Θ∞(x, y) =

∫

Ω
f(x, s, ν−)|∇χ−|

for every continuous and bounded function f : Ω × [c−, c+] × R
n → R and a. e. s ∈ [c−, c+] as

required. ¥
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5.4 Proof of the main result

Now we are in a position to prove the main result of this paper.

Theorem 5.6
Let Ω ⊂ R

n be a domain with C1–boundary and let assumptions A 2.1 – A 2.4 be satisfied.

Further, let (cε, uε), ε > 0, be a minimizer of Êε with mass constraint −
∫

Ω cεdx = m. Then for
each sequence {εk}k∈N, limk→∞ εk = 0, with

cεk
→ c in L1(Ω) (5.4)

and

uεk
→ u in L2(Ω, Rn) (5.5)

the corresponding sequence of Lagrange multipliers {λεk
}k∈N (associated to the mass constraint)

converges, i. e.
λεk

→ λ,

where λ is a Lagrange multiplier of the minimum problem for E0 with −
∫

Ω c dx = m, i. e.

∫

I

(

σ0(x, ν−)∇·ξ + σ0,x(x, ν−) · ξ − ν− · ∇ξσ0, p(x, ν−)
)

dHn−1

+

∫

Ω

(

W
(

c, E(u)
)

Id −
(

∇u
)T

W,E

(

c, E(u)
)

)

: ∇ξ dx = λ

∫

Ω
c∇·ξdx

for all ξ ∈ C1(Ω, Rn) with ξ · νΩ = 0 on ∂Ω, where νΩ is the outer unit normal of ∂Ω.

Proof:
The goal is to pass to the limit in the first variation formula (4.6) for the phase field energy.
First we notice that as in the proof of Theorem 3.2, cf. [17, 18], we can extract even stronger
convergence properties than in (5.4) and (5.5). More precisely, we have

cεk
→ c in L2(Ω),

uεk
→ u in H1(Ω, Rn),

Eεk
(cεk

, uεk
) → E0(c0, u0).

In addition, (c, u) is a global minimizer of E0 and c ∈ {c−, c+} a. e.. We divide the proof into
several steps.
Claim 1

∫

Ω

(

W (cεk
, E(uεk

))Id − (∇uεk
)T W, E(cεk

, E(uεk
))

)

: ∇ξ →
∫

Ω

(

W (c, E(u))Id − (∇u)T W, E(c, E(u))
)

: ∇ξ.

Proof of Claim 1:
The proof of the claim can be found in [17, 18]. The key for this convergence result is the strong
convergence of {∇uεk

}k∈N in L2(Ω, Rn × R
n). With this property, the convergence of {cεk

}k∈N

in L2(Ω), the growth conditions on W and W,E one can pass to the limit.
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In the following step we show
Claim 2

∫

Ω

(

εkσ
2(x, cεk

,∇cεk
) +

1

εk

ψ(cεk
)
)

∇·ξdx →
∫

Ω
σ0(x, ν−)∇·ξ |∇χ−|.

Proof of Claim 2:
Here, the first aim is to prove that

µk := 2
√

ψ(cεk
)σ(x, cεk

,∇cεk
) → σ0(x, ν−)|∇χ−| weakly∗ in Ω.

In order to verify this assertion we show that µk is lower semicontinuous on each open set U ⊆ Ω
and upper semicontinuous on each compact set K ⊂ Ω.
Applying the coarea formula, Fatou’s lemma and (ii) of Lemma 5.4 shows that µk is lower
semicontinuous on each open set U ⊆ Ω, i. e.

lim inf
k→∞

∫

U

2
√

ψ(cεk
)σ(x, cεk

,∇cεk
)dx

= lim inf
k→∞

∫ ∞

−∞
2
√

ψ(s)

∫

U

σ(x, s, νs,k)|∇χs,k|ds

≥ 2

∫ c+

c−

√

ψ(s) lim inf
k→∞

∫

U

σ(x, s, νs,k)|∇χs,k|ds

≥ 2

∫ c+

c−

√

ψ(s)

∫

U

σ(x, s, ν−)|∇χ−|ds =

∫

U

σ0(x, ν−) |∇χ−|.

(5.6)

Note, by Theorem 3.2 we have

lim
k→∞

∫

Ω

(

εk σ2(x, cεk
,∇cεk

) +
1

εk

ψ(cεk
)
)

dx = lim
k→∞

∫

Ω
2
√

ψ(cεk
)σ(x, cεk

,∇cεk
)dx

=

∫

Ω
σ0(x, ν−) |∇χ−|.

(5.7)

Hence the upper semicontinuity for compact sets K ⊂ Ω follows from equation (5.7) and the
lower semicontinuity property on open sets:

lim sup
k→∞

∫

K

2
√

ψ(cεk
) σ(x, cεk

,∇cεk
) dx

≤ lim sup
k→∞

∫

Ω
2
√

ψ(cεk
) σ(x, cεk

,∇cεk
) dx − lim inf

k→∞

∫

Ω\K
2
√

ψ(cεk
) σ(x, cεk

,∇cεk
) dx

≤
∫

Ω
σ0(x, ν−) |∇χ−| −

∫

Ω\K
σ0(x, ν−) |∇χ−|

=

∫

K

σ0(x, ν−) |∇χ−|.

Thus µk → σ0(x, ν−)|∇χ−| weakly∗ in Ω. Due to (5.7) and Young’s inequality we obtain

lim
k→∞

∫

Ω

∣

∣

∣
εk σ2(x, c,∇cεk

) +
1

εk

ψ(cεk
) − 2

√

ψ(cεk
) σ(x, c,∇cεk

)
∣

∣

∣
dx = 0. (5.8)
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Consequently, by the Reshetnyak continuity theorem, see [5] Theorem 2.39,

lim
k→∞

∫

Ω

(

εk σ2(x, cεk
,∇cεk

) +
1

εk

ψ(cεk
)
)

∇·ξ dx

= lim
k→∞

∫

Ω
2
√

ψ(cεk
)σ(x, cεk

,∇cεk
)∇·ξ dx =

∫

Ω
σ0(x, ν−)∇·ξ |∇χ−|

and the claim follows.

In the next step we verify
Claim 3

lim
k→∞

∫

Ω
2εkσ(x, cεk

,∇cεk
)∇cεk

· ∇ξ σ, p(x, cεk
,∇cεk

) dx =

∫

I

ν− · ∇ξ σ0, p

(

x, ν−
)

,

Proof of Claim 3:
From equation (5.8) we deduce

0 = lim
k→∞

∫

Ω

∣

∣

∣
εk σ2(x, cεk

,∇cεk
) +

1

εk

ψ(cεk
) − 2

√

ψ(cεk
)σ(x, cεk

,∇cεk
)
∣

∣

∣
dx

= lim
k→∞

∫

Ω

(
√

1

εk

ψ(cεk
) −√

εkσ (x, cεk
,∇cεk

)

)2

dx.

This leads to

lim
k→∞

∫

Ω

∣

∣

∣

1

εk

ψ(cεk
) − εk σ2(x, cεk

,∇cεk
)
∣

∣

∣
dx

= lim
k→∞

∫

Ω

(
√

1

εk

ψ(cεk
) −√

εk σ(x, cεk
,∇cεk

)

)(
√

1

εk

ψ(cεk
) +

√
εk σ(x, cεk

,∇cεk
)

)

dx

= 0

since
∫

Ω

(

1
εk

ψ(cεk
)+εk σ2 (x, cεk

,∇cεk
)
)

dx is uniformly bounded. Further, by the uniform bound-

edness of σ on Ω × R × S
n−1 we derive

lim
k→∞

∫

Ω

∣

∣

∣

√

ψ(cεk
) − εk σ(x, cεk

,∇cεk
)
∣

∣

∣
|∇cεk

|dx = 0. (5.9)

Due to (5.9) and the coarea formula we obtain

lim
k→∞

∫

Ω
εkσ(x, cεk

,∇cεk
)∇cεk

· ∇ξσ, p(x, cεk
,∇cεk

)dx

= lim
k→∞

∫

Ω

√

ψ(cεk
)
∇cεk

|∇cεk
| · ∇ξσ,p(x, cεk

,∇cεk
)|∇cεk

| dx

= lim
k→∞

∫

R

√

ψ(s)

(
∫

Ω
νs,k · ∇ξσ, p(x, s, νs,k)|∇χs,k|

)

ds.

According to Theorem 5.5 there exists a subsequence with

lim
j→∞

∫

Ω
νs,kj

· ∇ξσ, p(x, s, νs,kj
)|∇χs,kj

| =

∫

Ω
ν− · ∇ξσ, p(x, s, ν−)|∇χ−|
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for a. e. s ∈ [c−, c+]. Therefore, we finally derive from Lemma 5.4 (iii), (iv) and the generalized
Lebesgue convergence theorem

lim
k→∞

∫

Ω
2εkσ(x, cεk

,∇cεk
)∇cεk

· ∇ξ σ, p(x, cεk
,∇cεk

) dx =

∫

I

ν− · ∇ξ σ0, p(x, ν−) dHn−1

as required.

Claim 4

lim
k→∞

∫

Ω
2εkσ(x, cεk

,∇cεk
) ξ · σ, x(x, cεk

,∇cεk
) dx =

∫

I

ξ · σ0, x

(

x, ν−
)

dx .

Proof of Claim 4:
Using equation (5.9), the coarea formula and the fact that σ,x is one-homogeneous with respect
to the third argument we obtain

lim
k→∞

∫

Ω
εkσ(x, cεk

,∇cεk
) ξ · σ, x(x, cεk

,∇cεk
) dx

= lim
k→∞

∫

Ω

√

ψ(cεk
) ξ · σ,x(x, cεk

, νcεk
)|∇cεk

| dx

= lim
k→∞

∫

R

√

ψ(s)

(
∫

Ω
ξ · σ, x(x, s, νs,k)|∇χs,k|

)

ds.

From Theorem 5.5 we conclude that there exists a subsequence with

lim
j→∞

∫

Ω
ξ · σ, x(x, s, νs,kj

)|∇χs,kj
| =

∫

Ω
ξ · σ, x(x, s, ν−)|∇χ−|

for a. e. s ∈ [c−, c+]. Hence, due to Lemma 5.4 (iii), (iv) and the generalized Lebesgue conver-
gence theorem,

lim
k→∞

∫

Ω
2εkσ(x, cεk

,∇cεk
) ξ · σ, x(x, cεk

,∇cεk
) dx =

∫

I

ξ · σ0, x(x, ν−) dHn−1.

We still have to prove convergence of the Lagrange multipliers λεk
. Here, we take ξ ∈ C1(Ω, Rn)

with ξ · νΩ = 0 on ∂Ω such that
∫

Ω
c∇·ξ dx > 0.

This is possible since c ∈ {c−, c+} a. e. and −
∫

Ω c dx ∈ (c−, c+). Now the convergence of the
Lagrange multipliers follows from the convergence of the left hand side in (4.6) and the fact that

lim
εk→0

∫

Ω
cεk

∇·ξ dx =

∫

Ω
c∇·ξ dx > 0.

¥
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6 Strong formulation of the Euler–Lagrange equation for EEE0

In this section we determine necessary conditions in the bulk, on the interface and on the
boundary of the interface for minimizers of E0 which satisfy certain regularity properties. These
properties are chosen in order to apply the divergence theorem on manifolds and to ensure the
existence of traces of ∇u on ∂∗Ωl that lie in L2(∂∗Ωl, R

n), l ∈ {−, +}.

Theorem 6.1
Let Ω be a domain with C1–boundary and let W ∈ C2. Assume (c, u) ∈ BV (Ω, {c−, c+})×X⊥

ird

is a minimizer of E0 such that

(i) I = ∂∗Ω− is a C2–hypersurface.

(ii) ∂I consists of a finite number of C1–(n–2)–dimensional surfaces.

(iii) u |Ω−
∈ H2(Ω−, Rn) and u |Ω+

∈ H2(Ω+, Rn).

Then the following conditions are satisfied:

(i) In Ω:

∇ · W,E(c−, E(u)) = 0 in Ω− a. e. and ∇ · W,E(c+, E(u)) = 0 in Ω+ a. e. .

(ii) On ∂Ω:

W,EνΩ = 0 on ∂Ω H(n−1)–a. e. .

(iii) On the interface I:

• [W,Eν−]+− = 0 on I H(n−1)–a. e. , [u]+− = 0 on I H(n−1)–a. e. .

• anisotropic, inhomogeneous Gibbs–Thomson law:

−σ0,x · ν−−∇I · σ0,p(x, ν−)+ ν−[WId− (∇u)T W,E ]+−ν− = λ[c]+− on I H(n−1)–a. e.,

where ∇I denotes the tangential gradient of I and λ is the constant Lagrange multi-
plier of equation (4.2).

(iv) On ∂I ∩ ∂Ω the boundary condition σ0,p · νΩ = 0 holds.

Proof:
To (i), (ii) and (iii): The first variation with respect to u gives

∫

Ω
W,E

(

c, E(u)
)

: ∇θ dx = −
∫

Ω−

∇·W,E

(

c, E(u)
)

· θdx −
∫

Ω+

∇·W,E

(

c, E(u)
)

· θ dx

+

∫

∂Ω
θ · W,E

(

c, E(u)
)

νΩ dHn−1 −
∫

I

θ ·
[

W,E

(

c, E(u)
)

]+

−
ν− dHn−1 = 0

for all θ ∈ H1(Ω, Rn). This implies

∇ · W,E

(

c, E(u)
)

= 0 in Ωl a. e., l ∈ {−, +},

and
[

W,E

(

c, E(u)
)

]+

−
ν− = 0 on I Hn−1–a. e. and W,E

(

c, E(u)
)

νΩ = 0 on ∂Ω Hn−1–a. e..
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The condition [u]+− = 0 on I Hn−1–a. e. follows since u ∈ H1(Ω, Rn).
Next we deduce the Gibbs–Thomson equation. We consider equation (4.2) and choose test
functions which are of the form ξ = ην− on I, where η is an arbitrary function of C1

c (Ω, R). For
the first and third summand of the area part of equation (4.2) we compute

∫

I

ν− · ∇ξ σ0,p(x, ν−) dHn−1 =

∫

I

∇η · σ0,p(x, ν−) dHn−1

and
∫

I

σ0(x, ν−)∇·ξ dHn−1 =

∫

I

ν− ·
(

∇η · ν− + η∇·ν−
)

σ0,p(x, ν−) dHn−1

=

∫

I

(

∇η −∇Iη
)

· σ0,p(x, ν−) dHn−1 +

∫

I

η κ
(

σ0,p(x, ν−) · ν−
)

dHn−1,

where κ = ∇I ·ν− is the mean curvature. The divergence theorem on manifolds gives
∫

I

∇Iη · σ0,p(x, ν−) dHn−1 +

∫

I

η ∇I ·σ0,p(x, ν−) dHn−1 =

∫

I

∇I ·
(

η σ0,p(x, ν−)
)

dHn−1

=

∫

I

κ η
(

σ0,p(x, ν−) · ν−
)

dHn−1.

In consequence,
∫

I

(

σ0

(

x, ν−
)

∇·ξ − ν− · ∇ ξσ0,p

(

x, ν−
)

)

dHn−1 =

∫

I

η ∇I ·σ0,p(x, ν−) dHn−1.

Now we evaluate the elastic part of equation (4.2). Since W,E is symmetric in the second variable
we obtain

∇ ·
(

WId − (∇u)T W,E

)

= ∇W −
(

∂i∇u : W,E

)

i=1,...,n
−

(

∇u
)T ∇·W,E = 0

in Ωl a. e., l ∈ {−, +}. Hence
∫

Ωl

(

W Id − (∇u)T W,E

)

: ∇ξ dx = −
∫

Ωl

(

∇ ·
(

WId − (∇u)T W,E

)

)

· ξ dx

+

∫

∂Ωl

ξ ·
(

W Id − (∇u)T W,E

)

νl dx

=

∫

∂Ωl

ξ ·
(

W Id − (∇u)T W,E

)

νl dx

(6.1)

for l ∈ {+,−}, where νl is the outer normal of ∂Ωl. In consequence, equation (4.2) takes the
form

∫

I

η
(

σ0,x(x, ν−) ·ν− +∇I ·σ0,p(x, ν−)−ν− ·
[

W
(

c, E(u)
)

Id−
(

∇u
)T

W,E

(

c, E(u)
)

]+

−
ν−

)

dHn−1

= −λ(c+ − c−)

∫

I

η dHn−1.

Since η ∈ C1
c (Ω) was arbitrary we end up with

−σ0,x

(

x, ν−
)

· ν− −∇I ·σ0,p(x, ν−) + ν−[WId − (∇u)T W,E ]+−ν− = λ[c]+− on I H(n−1)–a. e..
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To (iv): We take arbitrary functions ξ ∈ C1(Ω, Rn) with ξ · νΩ = 0 on ∂Ω and choose an
orthonormal basis τ1 = τI , τ2, . . . , τn−1 of the tangent space T I, where τI is the outer unit normal
of ∂I. Then, using the Einstein sum convention, ξ can be written in the form ξ = ηνν− + ητj

τj .
We compute

∫

I

σ0(x, ν−)∇·
(

ητj
τj

)

dHn−1 =

∫

∂I

σ0(x, ν−)ητI
dHn−2 −

∫

I

∇Iσ0(x, ν−) · ητj
τj dHn−1

+

∫

I

σ0(x, ν−)ητj
ν−∇τjν− dHn−1.

Since
(

∇(ητj
τj)

)T
ν− = −(∇ν−)T

(

ητj
τj

)

we obtain
∫

I

ν− · ∇
(

ητj
τj

)

σ0,p(x, ν−) dHn−1 = −
∫

I

(

ητj
τj

)

· ∇ν−σ0,p(x, ν−) dHn−1.

Note, equation (6.1) is valid for arbitrary test functions ξ ∈ C1(Ω, Rn) with ξ · νΩ = 0 on ∂Ω.
Thus we get for (4.2) the following representation
∫

I

(

σ0

(

x, ν−
)

∇·ξ + σ0,x

(

x, ν−
)

· ξ − ν− · ∇ξ σ0,p

(

x, ν−
)

)

dHn−1

+

∫

Ω

(

W
(

c, E(u)
)

Id −
(

∇u
)T

W,E

(

c, E(u)
)

)

: ∇ξ dx

=

∫

∂I

(

− ηνσ0,p(x, ν−) · τI + σ0(x, ν−) ητI

)

dHn−2 +

∫

I

ην∇I ·σ0,p(x, ν−) dHn−1

−
∫

I

(

(

∇Iσ0(x, ν−) −∇ν−σ0,p(x, ν−)
)

·
(

ητj
τj

)

+ σ0(x, ν−)ητj
ν−∇τjν−

)

dHn−1

+

∫

I

σ0,x

(

x, ν−
)

· ξ dHn−1 −
∫

I

ξ ·
[

W
(

c, E(u)
)

Id −
(

∇u
)T

W,E

(

c, E(u)
)

]+

−
ν− dHn−1

= −λ(c+ − c−)

∫

I

ην dHn−1.

Since
∫

∂I

(

σ0(x, ν−) ητI
− ηνσ0,p(x, ν−) · τI

)

dHn−2

=

∫

∂I

ξ
(

(

σ0,p(x, ν−) · ν−
)

τI −
(

σ0,p(x, ν−) · τI

)

ν−

)

dHn−2

we derive by choosing suitable variations in the neighborhood of points of ∂I

(σ0,p(x, ν−) · ν−)τI − (σ0,p(x, ν−) · τI) ν− = l νΩ

with l = |(σ0,p(x, ν−) · ν−)τI − (σ0,p(x, ν−) · τI) ν−|. In consequence,

l νΩ ·τI = σ0,p(x, ν−) ·ν−, l νΩ ·ν− = −σ0,p(x, ν−) ·τI , νΩ ·τj = 0 for j ∈ {2, . . . , n−1}.

This yields

σ0,p(x, ν−) · νΩ = (σ0,p(x, ν−) · ν−)(ν− · νΩ) + (σ0,p(x, ν−) · τj) (τj · νΩ)

=
(

− (σ0,p(x, ν−) · ν−)(σ0,p(x, ν−) · τI) + (σ0,p(x, ν−) · τI) (σ0,p(x, ν−) · ν−)
)

/l

= 0.
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We like to mention that the dependence of σ on x has no influence on the boundary condition
at intersections of the interface with the outer boundary.
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