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AbstratThe report investigates the relation between global attrators of hyperboli balane lawsand visous balane laws on the irle. Hene it is thematially loated at the rossroads ofhyperboli and paraboli partial di�erential equations with one-dimensional spae variableand periodi boundary onditions. The two equations are given by:
ut + f(u)x = g(u). (H)and

ut + f(u)x = εuxx + g(u) (P)where x ∈ S1. The results of the work an be split into two areas: The desription of theglobal attrator of equation (H) and the question regarding persistene of solutions on theglobal attrator of (P) when ε vanishes.The key idea of the work is the introdution of �nite dimensional sub-attrators. This toolallows to overome several di�ulties in the desription of the global attrator of equation(H) and loses one of the last remaining gaps in its omplete desription: Theorem 2.6.1yields a omplete parameterization of all �nite dimensional sub-attrators in the hyperbolisetting.The seond main result orrets a result on the persistene of heterolini onnetions byFan and Hale [FH95℄ for the ase ε→ 0 (Connetion Lemma 3.2.8). The Casading Theo-rem 3.2.9 then yields onvergene of heterolini onnetions to a asade of heterolinisin ase of non-persistene.The report onludes with geometri investigations of the low dimensional sub-attrators.
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Chapter 1IntrodutionParaboli di�erential equations with salar spatial variable have been studied for a longtime. In partiular visous balane laws an be desribed as exeptionally well understood:existene, uniqueness of solutions, long time behaviour, global attrators, heterolini orbitset. have been analysed in detail for a range of boundary onditions.The same is true for salar hyperboli partial di�erential equations. In partiular for hyper-boli balane laws, where again questions of existene, uniqueness, the long time behaviour,global attrators and heterolinis have been studied thoroughly.However, when the two �elds, visous balane laws and hyperboli balane laws ometogether many question marks appear.This thesis is devoted to the study of solutions on the global attrators of visous balanelaws and their relation to solutions of hyperboli balane laws when the visosity is small orvanishes. Before going into further details we set the formal stage that lari�es the settingin whih we will be working.The hyperboli balane law is given by
ut(x, t) + [f(u(x, t))]x = g(u(x, t)). (H)The visous balane law is then given by

ut(x, t) + [f(u(x, t))]x = εuxx(x, t) + g(u(x, t)). (P)The subindex denotes the partial derivative with respet to the index. We solve for x ∈ S1with S1 := R/(2πZ). This is equivalent to imposing periodi boundary onditions on adomain of length 2π. By an easy saling argument all our results remain true for thesituation of periodi boundary onditions in a domain of size L for any bounded and �xed
L ∈ R. u is a funtion mapping from S1 × R→ R.The non-linearities f, g map from R → R. Furthermore we make additional hypothesesthat are assumed to hold throughout the whole work exept if expliitly stated otherwise.We impose:(H1) f is C2 and stritly onvex (∃α ∈ R s.t. f ′′ > α > 0) and f ′(0) = 0.(H2) g is C1 and dissipative, i.e. there exists a onstant M > 0 suh that

ug(u) < M (1.1)5



for all |u| > M .(H3) g has three simple zeros at u− < u0 < u+, where we assume u0 = 0.A disussion of the assumptions will follow in the next hapter. They guarantee the exis-tene and uniqueness of solutions and the existene of a global attrator in both equations.Roughly, (H1) is required in order to obtain unique admissible solutions for the hyperboliequation, (H2) will guarantee the existene of global attrators for (H) and (P).Visous balane laws an be understood as a paraboli regularisation of hyperboli balanelaws. The latter are generalisations of onservation laws whih do not possess a soure term.The hyperboli equation (H) is the limiting equation of the paraboli equation (P) whenthe visosity vanishes.Small or vanishing visosity means that the visosity parameter denoted by ε goes to zero.In terms of solutions there are two ways to look at this problem. From the perspetive ofthe balane law, by asking what happens to solutions when visosity is added. This is thetransition form ε = 0 to ε > 0.Or from the perspetive of the visous balane law, by asking what happens to visoussolutions when visosity tends to zero, i.e. ε→ 0.The answers to both questions are di�erent in some ases but ertainly there is a relationbetween these.Both equations possess global attrators (see Chapter 2), denoted by Aε and A0, whihattrat solutions in forward time. Thus the question about the relation between solutionsan be understood as a question about the global attrators.It is unknown whether
lim
ε→0
Aε = A0 (1.2)in the ase of periodi boundary onditions. There are many ways how to understandequation (1.2):

• In the sense of sequenes: all u0 ∈ A0 are a limit of a sequene of uε ∈ Aε and allonverging sequenes uε ∈ Aε have a limit that is ontained in A0.
• In the sense of sets: Aε onverges in the Hausdor� metri for sets in L1, L∞ or L2to A0.
• In the sense of solutions: all onverging sequenes of solutions uε(·, t) ∈ Aε onvergeto a solution u0 ∈ A0, and all solutions u0 ∈ A0 are a limit of a onverging sequeneof solutions uε ∈ Aε.
• In the sense of C0-orbit equivalene: this would mean that the orbit struture on Aεand A0 is the same, hene there exists a C0 bijetive map mapping orbits of Aε toorbits of A0.For Neumann boundary onditions Härterih [Haer97℄ ould prove a very interesting result.He proved under mild assumptions (i.e. f ′ does not vanish at zeros of g) that the dimensionof the paraboli attrator Aε stays �nite even for ε → 0 whereas the global attrator for

ε = 0 is in�nite dimensional. However, the problem here is that for Neumann boundaryonditions the limiting equation is not well posed and the right hand side of equation (1.2)6



has no interpretation. In Setion 2.2 we will see that the �nite dimensionality of the limitdoes not hold for the S1 ase.If we assume onvergene of the limit in (1.2) in the sense of sub-sets of L∞ or L1 then itis a diret onsequene of our Theorem 3.2.1 that
lim
ε→0
Aε ⊂ A0.However this still does not answer the question about the relations of solutions. It is one ofthe main results of this work that heterolini solutions in Aε do in general not persist for

ε→ 0. This orrets an outstanding result of Fan and Hale [FH95℄ that states otherwise.The Connetion Lemma 3.2.8 states a purely algebrai neessary ondition for the per-sistene of heterolinis: if a heterolini onnetion between a soure u2 and a target u1persists, then the zero-number of the soure is a multiple of the zero-number of the target.This exludes persistene for a lot of onnetions!If a heterolini onnetion does not persist, the Casading Theorem 3.2.9 yields onver-gene to a asade of heterolinis. This means the limit onsists of heterolini onnetionsof (H) separated by setions of equilibria. Beause we have pointwise onvergene of solu-tions, this implies that for small ε the heterolini arries a fast-slow dynami struture.This dynamial struture is the fous of Chapter 4 where we explore the geometry of themanifolds that form the global attrators. The tool of �nite sub-attrators, introduedin Setions 2.4 and 2.5 proves extremely useful here, espeially in ombination with themain result of Chapter 2, Theorem 2.6.1, that provides an expliit parameterisation of allsub-attrators of equation (H).This haraterises the general ideas behind the main results of this work: the ConnetionLemma, the Casading Theorem and Theorem 2.6.1 on the sub-attrators of (H). Thestruture of the dissertation is as follows:Chapter 2 will present a detailed review of what is known about the global attrators ofequations (H) and (P), and will provide the neessary tehnial bakground. We begin withde�nitions of global attrators in Setion 2.1 followed by three setions on the paraboliequation: after the existene of a global attrator is settled in Setion 2.2, we apply thedeveloped theory to our equation to lassify all rotating waves of the paraboli equation inSetion 2.3. This is possible by virtue of geometri singular perturbation theory, developedby Fenihel in the 70s [Fen79℄, in ombination with rotated vetor �elds for ODEs.Setion 2.4 then solves the onnetion problem and allows us to fully lassify the globalattrator of the paraboli equation. This goes bak to results of Fiedler, Roha andWolfrum[FRW04℄. At the end of this setion we introdue our new tool, the �nite dimensional sub-attrators of order n in the paraboli setting.Two setions on the hyperboli equation then follow: Setion 2.5 reviews questions on theexistene and uniqueness of solutions, the existene of a global attrator and the onnetionproblem. Many people have ontributed to these results, the latest referene is [Haer99℄.In the last part of Setion 2.5 we introdue the sub-attrators of order n for the hyperbolibalane law.Setion 2.6 ontains the main result of Chapter 2: Theorem 2.6.1. It yields an expliitparameterisation of and the �ow on all sub-attrators of �nite order and proves their �nitedimensionality. It yields uniqueness of heterolini onnetions when the zero-numbers of7



soure and target only di�er by two. The zero-number limitation is unsatisfatory, beauseI believe it to be a purely tehnial onstrain, however even this result will provide us withan important tool in the analysis of the geometri struture of heterolini onnetions ofthe paraboli equation.Chapter 3 is devoted to the main theoretial results of this work on persitene of solutions:the Casading Theorem and the Connetion Lemma already desribed above.Chapter 4 explores the impliations of these theorems. The hapter proeeds by slowlyinreasing the dimension of the sub-attrators i.e. the number of zeros in the rotatingwaves that are involved. Setion 4.1 deals with the paraboli sub-attrator of order 2: Aε
2.By virtue of the uniqueness for heterolinis in the hyperboli equation to homogeneousequilibria (Theorem 2.6.1 (e)), the result of this setion yields onvergene of sub-attratorsfor ε→ 0. Hene we an desribe the solution manifolds of the paraboli equation on thissubattrator and their geometry whih has not been done rigorously before.Setion 4.2 investigates the relation of solutions between Aε

4 and A0
4. Here we use anadditional assumption that the dimensionality of Aε is preserved when performing thelimit ε→ 0.The setion on geometry �nishes with a proposition on how to onstrut the asadesof heterolinis in Setion 4.3. The suggested onstrution is a generalisation from theprevious setion's result, but it is not rigorous. It gives interesting insights on how thelimits of heterolinis might look.We onlude in Chapter 5 with a disussion on the unanswered questions of this work anda disussion on the possibilities of �nding answers to some of them.
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Chapter 2Global AttratorsThe aim of this hapter is to introdue global attrators and to present an overview aboutwhat is known about attrators and their struture in the hyperboli and paraboli ases. Inthe paraboli setting we will apply these known results and adapt them to our equation; inthe hyperboli setting we will push the limits a little further and obtain some new �ndingson the geometri representation of �nite dimensional parts of the global attrator. We willombine the results of both equations to obtain our main result on the non-persistene ofheterolini onnetions in Chapter 3.This hapter is organised as follows: in the �rst setion we give a de�nition of globalattrators. The following two Setions 2.2 and 2.3 will present the general properties ofglobal attrators for the paraboli equation and use them in the following Setion 2.4 tosolve the full onnetion problem. At the end of this setion we introdue a new tool:sub-attrators of order n.The �fth and sixth setions are devoted to the study of the attrator of the hyperboliequation. In 2.5 we present the general properties of the global attrator and additionallyde�ne � in analogy to the paraboli setting � the sub-attrators for the hyperboli equation.Theorem 2.6.1 in Setion 2.6 proves a omplete expliit parameterisation of all �nite di-mensional sub-attrators and yields uniqueness of ertain heterolini onnetions. Thistheorem thus loses one of the last remaining gaps of a full geometri desription of theglobal attrator of equation (H) and is one of the main results of this work.It will help us to better ompare the attrators of the hyperboli and paraboli setting forsmall ε and will bring us a step further towards understanding the question of whether theattrator of the paraboli equation onverges to that of the hyperboli equation for ε→ 0.2.1 Preliminaries and De�nitionsAlthough the attrators for the two equations show many similarities, we will present theresults separately. The tools and methods involved in the two settings are quite di�erent.Even the underlying spaes di�er. We will see later that the paraboli equation �lives� in
H2, whereas the hyperboli balane law �lives� in BV , thus the two equations have to betreated in di�erent frameworks.The funtional analysis setup onerning existene, uniqueness, regularity et. is standard9



material and has entered text books. I will not show proofs for most of the results, as theyan be found in the works quoted. I do inlude these results for a better readability of thisdissertation. Moreover the basi theory in eah setion will help us to understand fromwhere the assumptions (H1)-(H3) we have made originally ome.Let us now address the de�nition of global attrators. In general there are several di�erentways to do this; some de�nitions are more suitable for the one or the other equation. Thefollowing de�nition, however, will serve us well as a starting point:De�nition 2.1.1 Let
ut = F(u, ux, uxx) (2.1)for x ∈ S1 de�ne a semi�ow denoted by Φ on a funtion spae X. Then the global attratorof the above PDE (2.1) is de�ned - if it exists - as the subset A of the phase spae X thatonsists of all global orbits of the equation.A global solution here is de�ned as a solution that exists for all times t ∈ R and staysbounded. It is far from obvious that suh solutions exist, espeially in bakward time,beause the PDE (2.1) only de�nes a semi�ow. Hene it annot be solved in bakwardtime in general.Thus we have to larify what �exists for all times� means. We use the following (standard)de�nition:De�nition 2.1.2 Let t ∈ R

+ be a positive time and u0(x) be an initial ondition. We say
Φ(u0,−t) exists if there is a ũ ∈ X suh that Φ(ũ, t) = u0. We all a solution u(x, t) thatexists for all t ∈ R a global solution.In other words, Φ(u0, t) exists for negative times if u0 lies on a forward orbit for someinitial ondition ũ. This does not imply that we solve the equation bakwards beause ingeneral ũ is not unique.An alternative desription of a global attrator yields the following de�nition:De�nition 2.1.3 The global attrator of equation (2.1) is de�ned - if it exists - as themaximal ompat invariant subset A of the phase spae X of equation (2.1), that attratsall bounded subsets B ⊂ X.Both de�nitions are equivalent for the paraboli equation (P) and the hyperboli equation(H) if we impose (H1)-(H3). However, this is far from obvious. The next setions willprovide for referenes.The di�erene between De�nition 2.1.1 and De�nition 2.1.3 learly lies in the starting pointof the de�nition. The �rst one uses global orbits that are olleted to sets, the seond fouseson attrating sets in phase spae. The seond makes it lear where the term �attrator�omes from.2.2 The paraboli equationIn this setion we will present general results on the solution theory of paraboli equationsand the properties of the global attrator. The results are true for more general equationsthan equation (P). 10



We therefore introdue a more general form of a paraboli equation than equation (P),whih we will use throughout this setion:
ut = εuxx + h(u, ux) (2.2)where h ∈ C2 and again x ∈ S1. Obviously, if we set

h(u, ux) = g(u) − f ′(u)uxour equation (P) is of the above form.For a more extensive overview than the one presented here of global attrators and patternsin general reation di�usion equations, I refer to the artile of Fiedler and Sheel [FS03℄ orthe book of Chepyzhov and Vishik [CV02℄. The latter even treats the non-autonomous ase.The �rst half of the �rst artile is exlusively devoted to one dimensional reation di�usionequations under several boundary onditions inluding periodi boundary onditions.It is known that the initial value problem (Cauhy problem) of PDE (2.2) together withNeumann, Dirihlet or periodi boundary onditions is well posed and has unique solutionsfor su�iently regular initial onditions.On the Sobolev spae of twie weakly di�erentiable L2-funtions
X = W 2,2([0, 2π],R) = H2([0, 2π],R)that satisfy the boundary onditions, the PDE generates a C1 semi�ow with the assoiatedsemigroup

Φε : X × R
+ −→ Xwhih assigns eah pair (u0(x), t) ∈ X × R

+ the solution u(·, t) at time t with initialondition u0:
Φε(uε(·, t0), t) := uε(·, t0 + t).The books of Henry [Hen81℄ or Pazy [Pazy83℄ whih give a more detailed desription arethe standard referenes for the semigroup theory related to paraboli PDEs.The existene and struture of global attrators for (2.2) were �rst desribed for separatedboundary onditions suh as Neumann or Dirihlet. In fat many publiations fous up tothis day on these two ases.Dissipativity of the non-linearity is the key for the existene of global attrators. Dissi-pativity here is understood in the sense of Hale [Hale88℄ or Babin and Vishik [BV92℄. Asu�ient ondition for dissipativity of h in the Neumann or Dirihlet ase is:
uh(u, 0) < 0 for |u| > Mfor su�iently large M ∈ R.In 1968 Zeleniak [Zel68℄ and later in 1978 Matano [Ma78℄ ould ahieve results not onlyregarding existene but also giving an e�ient desription of the attrator in the ase ofNeumann boundary onditions. They proved that any bounded solution tends to a singleequilibrium for t → ∞. This is due to the existene of a Lyapunov funtional on thephase spae X. In fat, this holds true in negative time diretion as well, if the solutionexists in negative time diretion and stays bounded. This leads to the desription of global11



attrators for the Neumann ase as the set of equilibria and their onneting heteroliniorbits (for a preise de�nition of heterolini orbit see equation (2.5)).In the 90s Fiedler and Roha proved in [FR96℄ that the onnetion problem an be solvedexlusively with information about the stationary solutions of the PDE. In other words,one all equilibria are desribed, it is possible to deide whih of the stationary solutionsare onneted. We do not go into further detail here for Neumann b.. as we are onlyinterested in the S1 ase.In the S1 ase again dissipativity of h is su�ient for the existene of a global attrator on
X = H2. We quote the ondition given by Matano and Nakamura in [MN97℄ that ensuresexistene:(A) For eah K > 0 there exists C > 0 suh that |h(p, q)| ≤ C(1 + q2) for |p| ≤ K.(B) There exists M > 0 suh that h(p, 0)p < 0 for all |p| > M .In other words, the non-linearity has to be positive for negative �rst argument and negativefor positive �rst argument. In addition it has to grow sub-quadratially in the seondvariable.It is easy to see that our PDE (P) is dissipative in this sense. The above ondition (B) isthe same as our ondition (H2). Furthermore our non-linearity only grows linearly in theseond variable ux by de�nition. Hene we have existene of a global attrator.In terms of the struture of the global attrator periodi boundary onditions are muhmore ompliated to deal with than separated boundary onditions. This is due to theexistene of rotating waves whih annot exist for separated boundary onditions.If h depends in addition expliitly on x, the situation is even more ompliated and fewresults are known. The problem is that the Morse-Smale property of the attrator is de-stroyed in this ase. This is the main reason for not onsidering the x-dependent ase.For the homogenous ase Angenent and Fielder [AF88℄ and Matano [Ma88℄ ould showthat, similar to the Neumann ase, any solution of (2.2) tends to a set of funtions Γ(v) :=
{v(·+θ) : θ ∈ S1} for t→ +∞. Here v(x) is given by a solution of the ordinary di�erentialequation

vxx + cvx + h(v, vx) = 0 (2.3)for some value of c ∈ R and x ∈ S1. This equation is usually alled travelling or, in the
S1 ase, rotating wave equation. Any non-homogenous solution v of (2.3) with non-zero cis a time periodi solution u(x, t) of (2.2) if we de�ne u(x, t) := v(x− ct). This solution isalled a rotating wave with wave-speed c. The orbit of this rotating wave is given by Γ(v).The above equation an be obtained by plugging a travelling wave ansatz u(x, t) := v(x−ct)into the PDE (2.2) and then requiring the time-derivative to vanish. In fat, if u(x, t) is atravelling wave, i.e. there is some v(·) and c 6= 0 suh that

u(x, t) = v(x− ct), (2.4)then v solves the rotating wave equation (2.3) and vie versa. This is an �if and only if�relation. The above equation is ommonly used to de�ne the notion of rotating waves.For c = 0 equation (2.3) turns into the stationary problem of (2.2). The non-homogenousequilibria then will be alled frozen waves. For these Γ(v) is an embedded irle of equilibria.12



Finally the zeros ui of h(p, 0) solve equation (2.3) for v(x) ≡ ui and de�ne the homogenousequilibria.This leads to de�nition the following sets. Let
• Eε denote the set of homogenous equilibria;
• Fε denote the set of frozen waves;
• Rε denote the set of rotating waves and
• Hε denote the set of heterolini onnetions.We de�ne a heterolini onnetion as a solution u(x, t) of (2.2) that has the property that

lim
t→+∞

u(x, t) ∈ Eε ∪ Fε ∪Rε

lim
t→−∞

u(x, t) ∈ Eε ∪ Fε ∪Rε.
(2.5)The result of Angenent and Fiedler or Matano quoted above means that any boundedsolution of (2.2) onverges towards either a rotating wave, a frozen wave or a homogenousequilibria in forward time diretion. The same is true in bakward time diretion if thesolution stays bounded. Thus, they have obtained the following theorem:Theorem 2.2.1 Let the non-linearity of equation (2.2) be dissipative and C2. Then theglobal attrator Aεof the PDE an be desribed as follows:

Aε = Eε ∪ Fε ∪Rε ∪Hε. (2.6)In partiular, any time periodi orbit is a rotating wave and any orbit in Aε\(Eε∪Fε∪Rε)is a heterolini onnetion onneting u1, u2 ∈ Eε ∪ Fε ∪Rε with u1 6= u2.In [FRW04℄ Fiedler, Roha and Wolfrum were able to resolve the onnetion problem forthe periodi ase as well. Their idea was to use homotopies, suh that every solution ofthe S1 ase solves a Neumann problem and vie versa. Then they ould use their earlierresults on the Neumann ase and extend it to the periodi ase.The key ingredient is the onept of k− (P)-adjaeny (see De�nition 2.4.1 in Setion 2.4),that was developed and used for the Neumann ase in [FR96℄ and later in [Wol02a℄ and[Wol02b℄. The whole approah relies heavily on nodal properties that have their origin inthe fat that the linearisation of the PDE (2.2) is a Sturm-Liouville type problem. This goesbak to Sturm [Stu1836℄. A key observation is that the number of strit sign hanges in asolution an only drop along trajetories, hene an be onsidered as a disrete Lyapunovfuntion. This remains true for the di�erene of two solutions.Information on the equilibria, the frozen and rotating waves is su�ient to determine whihobjets are onneted to eah other by heterolini orbits. The relation of the maxima ofthe rotating and frozen waves plays a key role in this analysis. Moreover, the diretion ofthe onnetion is given by the Morse indies; the target always has smaller Morse indexthan the soure. We will over this in detail in Setion 2.4 on the onnetion problem.Let us onlude this setion about the general properties of the global attrator by some ad-ditional remarks. We have seen that the attrator both for Neumann and periodi boundary13



onditions an be desribed in terms of stationary and periodi solutions and heterolinionnetions between these solutions. Moreover the existene of onnetions an in prini-ple be omputed if the travelling wave ODE (that turns into the stationary problem for
c = 0) is well understood. However the problem still remains to desribe the heterolinisolutions in terms of their geometry in the phase spae. So a proof about how solutionshange in time within a heterolini onnetion is in general not known. In Chapter 4 wewill prove some results in that diretion for some low dimensional ases. At this point theworks of Carr and Pego should be mentioned. In two long and very tehnial papers [CP89℄and [CP90℄, using invariant manifold tehniques, they proved that the dynamis on theheterolini onnetions in the simplest ase (f = 0, g a ubi funtion) are exponentiallyslow for ε→ 0.Their proof strongly relies on the the fat that the visosity parameter ε is small andtheir approah is not suitable to desribe the full heterolini onnetion via the manifoldapproah. The reason for this is that their desription breaks down in neighbourhoods ofpoints, where the onneting orbit (viewed as a manifold in the extended phase spae) is notnormally hyperboli. In other words the linearisation in transverse diretion annot haveeigenvalues with zero real part. But the Morse index (for a preise de�nition see 2.3.10)neessarily dereases along the heterolini onnetion (see Theorem C in [MN97℄). At thepoint where it atually gets smaller at least one eigenvalue has to ross the imaginary line,hene this is a point on the heterolini onnetion where normal hyperboliity breaksdown.Another important question relates to the dimension of the global attrator. A generalresult of Mallet-Paret [MP76℄ already shows that the Hausdor� dimension of the globalattrator of (2.2) is �nite if ε > 0.However it might not stay �nite for ε → 0. Even in the simpler Neumann ase there areexamples where the dimension of the attrator approahes ∞ for ε→ 0. The most famousresult is probably that of Cha�ee and Infante [CI74℄, where already the number of isolatedequilibria goes to in�nity for ε→ 0, and so does the number of heterolini onnetions.Härterih [Haer97℄ ould prove under mild assumptions, that in the Neumann ase thedimension of the attrator stays generially �nite for visous balane laws suh as ourequation (P). In fat if the zero of f ′ does not oinide with the middle zero of g in (P)then this is the ase. However, the example stays arti�ial, beause the limiting equationis not well posed for Neuman boundary onditions.If the assumption of Härterih is violated and the middle zero of g and the zero of f ′oinide then a Cha�ee Infante type mehanism leads to a blow up of the dimension: moreand more stationary solutions with inreasing zero-number appear when ε approahes 0.Any Neumann solution an be extended by an easy re�etion to a periodi solution on thedoubled domain. One might expet that the result of Härterih ould be generalised to theperiodi ase, where there is a well posed limiting equation. However, this is not possible,beause as we will see in Setion 2.3 there is always a wave speed c, suh that the zero of
(f ′ − c) and the middle zero of g oinide. This again leads for ε→ 0 to the generation ofin�nitely many rotating waves with that partiular wave speed. The waves have inreasingzero-numbers, similar to the Cha�ee-Infante example. A onsequene is a divergene of theattrator's dimension.This is not as surprising as it might at �rst seem in this ontext. In the setion on global14



attrators in the hyperboli equation 2.5 we will see that for the hyperboli equation where
ε = 0, ontinua of linearly independent stationary solutions exist and the global attratorof the hyperboli equation thus is in�nite dimensional.It has beome lear that the rotating waves in the paraboli equation are important for theanalysis of the attrator. The following setion is devoted to the study and lassi�ationof these waves.2.3 Rotating waves for the paraboli equationIn the desription of the global attrator of the paraboli equation rotating waves play akey role.We �rst state our version of the rotating wave equation. If we set

h(u, ux) = g(u) − f ′(u)uxin equation (2.3) then all rotating waves of the PDE (P) are solutions of the ODE
εvxx = (f(v)− c(ε)v)x − g(v) (2.7)with boundary onditions

v(0) =v(2π) (2.8)
vx(0) =vx(2π). (2.9)Hene they are periodi solutions of equation (2.7) with minimal x-period 2π

n for some
n ∈ N.In the following we will desribe all periodi solutions of (2.7), inluding those satisfying(2.8) and (2.9). This analysis makes use of three aspets of the equation. The �rst is itssingular perturbed nature; the seond is the fat, that (2.7) an be transformed to a planarrotated vetor �eld and the third is the fat, that one of the equilibria of the ODE (2.7)undergoes a Hopf bifuration for c = 0.We begin by rewriting equation (2.7) as a �rst order system in Lienard oordinates. Theequation then reads

εvx = f(v)− c(ε)v + p
px = −g(v). (2.10)These oordinates are adapted to the geometry of the problem. However, sometimes it ismore onvenient to work with standard phase plane oordinates:

εwx = q

qx = (f ′(w)−c(ε))q
ε − g(w)

(2.11)We will use both sets of oordinates as eah one has its own advantages. We will alwaysuse (v, p) when referring to the Lienard version and (w, q) when utilising phase planeoordinates.The oordinates an be transformed into eah other by the transformation:
w(v, p) = v v(w, q) = w (2.12)

q(v, p) = f(v)− p p(w, q) = f(w)− q. (2.13)15



To not beome onfused by the rotating wave as a solution of the ODEs (2.10) or (2.11),and the (time) dependent rotating wave solution of the PDE (P) we will use the letters
v(x) or w(x) when referring to the solution of the ODE, and we will use u(x, t) when werefer to the solution of the PDE. Both solutions will be alled �rotating wave�. Sometimeswe will drop the arguments for a better readability.The ODEs are singularly perturbed in both oordinates. We use the theory developed byFenihel in the '70s and '80s [Fen79℄ to analyse the properties of the two systems. Fenihel'sidea was to split the dynamis into a slow part whih is given by just putting ε = 0 and afast part whih is obtained by resaling ξ = x

ε and again putting ε = 0.The slow dynamis then are on�ned to a manifold that onsists of stationary solutions ofthe fast equation. Fenihel ould prove that the manifold persists for ε > 0 if the manifoldis normally hyperboli i.e. the linearisation of the fast �eld on the slow manifold has nopurely imaginary eigenvalues in the transverse diretion.In the Lienard ase we obtain for the slow part after putting ε = 0,
0 = f(v)− c(0)v + p
px = −g(v).Therefore the slow dynami is on�ned in the manifold given by

Fl := {(v, p); p = cv − f(v), v ∈ R}, whih is just the graph of cv− f . The dynamis an be obtained by di�erentiation of the�rst equation 0 = (f ′(v)− c)vx + px, whih leads together with px = −g(v) to:
vx =

g(v)

f ′(v)− c. (2.14)This equation has in general one singularity depending on c, but for the appropriate hoieof c this singularity an be removed.For the fast dynamis we obtain upon resaling and again putting ε = 0 the equations
vξ = f(v)− c(0)v + p
pξ = 0.This means that the fast vetor �eld is given by horizontal lines and vanishes on theslow manifold. Every point on the slow manifold has at least one zero eigenvalue with aneigenvetor that is tangential to the manifold.An easy alulation yields that the seond eigenvalue is non-zero exept at a point (v0, cv0−

f(v0)) depending on c, where f ′(v0) − c = 0. Due to the onvexity of f the point v0 isunique. At (v0, cv0 − f(v0)) the fast vetor �eld is tangential to the slow manifold.This means Fl is normally hyperboli exept at the point (v0, cv0 − f(v0). The manifoldpersists outside a neighbourhood of this point. It is therefore not lear if the persistingunstable manifold Wu(u−, cu− − f(u−)) and the stable manifold Ws(u+, cu+ − f(u+))oinide and form a heterolini onnetion for ε > 0. Later we will see that there is aunique wave-speed c suh that they do in fat onnet. Figure 2.1 shows a shemati plotof the vetor �eld in Lienard oordinates for c = 0.16
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Figure 2.1: Phaseportrait of equation (2.10) in Lienard oordinates for c = 0. The dottedbox is the area where the slow manifold does not neessarily persist . The unstable andstable manifolds of (u±, f(u±)) might not oinide.For phase plane oordinates the situation is a little di�erent. Here the slow manifold Fp isjust given by the line with q ≡ 0. The fast vetor �eld reads after resaling
wξ = q
qξ = (f ′(w)− c)q − εg(w).

(2.15)Again the slow manifold is normally hyperboli exept in the unique point w0 where
f ′(w0)− c = 0. The phase portrait in phase plane oordinates is given in Figure 2.2.Again the �ow on the slow manifold is given by

wx =
g(w)

f ′(w) − c. (2.16)To see this, we observe that qx = 0 in the slow manifold. We use this in the seond equationof (2.11) and plug in εwx = q from the �rst equation to obtain the above expression.The reason why we introdued phase plane oordinates at all, is that the system (2.11) isa rotated vetor �eld (mod q = 0) with respet to the parameter c.The notion of rotated vetor �elds was introdued by Du� [Duf53℄ and re�ned by Perko[Per75, Per93℄. For exat de�nitions I refer to their papers or to De�nition 4.1 in [Haer03℄.The geometri interpretation of this is that the whole vetor �eld rotates in the samediretion when hanging the parameter c exept on the urve q = 0. A onsequene of thisis the following result:Lemma 2.3.1 (Du�,Perko) Consider a family of rotated vetor �elds. Suppose there isan equilibrium whih for all values of c possesses a one-dimensional unstable manifold. Then17
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Figure 2.2: Phaseportrait of equation (2.11) when c = 0. The dotted box is the area wherethe slow manifold does not neessarily persist.this manifold moves either lokwise or anti-lokwise as the parameter c is inreased. Thestable manifold moves in the same diretion. Moreover, these diretions are the same forall saddle equilibria of the system.Before we state the main proposition of this setion onerning the struture and existeneof all periodi orbits of (2.7), we introdue the yliity set C. This set was used already in[FRW04℄ in this form, but the idea was introdued earlier in similar problems, for examplein [MN97℄.De�nition 2.3.2 The yliity set Cp onsists of all points (w, q) ∈ R
2 that lie on aperiodi orbit of equation (2.11) for some value of c or orrespond to homogenous equilibria

(e, 0) of (P) that undergo a Hopf bifuration for some value of c.We immediately observe that in our situation Cp is non-empty beause the homogenoussolution assoiated with the middle equilibrium w ≡ 0 undergoes a Hopf bifuration at
c = 0:There are three homogenous equilibria of equation (P) that orrespond to (w0, 0) =
{(u−, 0), (0, 0), (u+ , 0)}. The harateristi polynomial of the linearisation of (2.11) in theseequilibria is given by

λ1/2 = −f
′(w0)− c

2ε
±

√(
f ′(w0)− c

2ε

)2

− g′(w0)

ε
. (2.17)For w0 = u± both eigenvalues are real. For w0 = 0 the eigenvalues are imaginary with theproperty that

sign(c) = sign(Re(λ))18



and therefore undergo a Hopf bifuration at c = 0.Aording to Lemma 4.2 in [FRW04℄ the yliity set has in the ase that it is not emptythe following propertiesLemma 2.3.3 The yliity set Cp is bounded and open. There exist C2-funtions
c,T : Cp → R (2.18)with the properties:(i) For eah non-stationary point (w, q) ∈ Cp the value c(w, q) de�nes the unique wavespeed for whih (w, q) lies on a periodi orbit of (2.11). Similarly, T (w, q) de�nesthe minimal period of this orbit.(ii) The wave speeds c are uniformally bounded.(iii) The minimal periods T tend to in�nity at the boundary ∂Cp of Cp.(iv) ∂Cp onsists of saddles and of points whih are homolini or heterolini to saddlesfor some parameter value of c.We do not give a proof here but refer the reader to the paper quoted above. We now provethree Lemmata that will allow us to lassify all periodi orbits of our system (2.11) andtherefore all rotating waves.Lemma 2.3.4 Let ε > 0 be arbitrary. Then the following is true:a) The yliity set Cp is homeomorphi to a dis, i.e. it onsists of one onnetedomponent and has no holes.b) All periodi orbits (w(x), q(x)) have the property that w(x) 6= 0 exept at exatly twopoints x1, x2 where w(x1) = w(x2) = 0.) All periodi orbits an be uniquely parameterised by their maxima (α, 0), with α > 0.Proof.We �rst prove ): we assume that v1 6= v2 are two rotating waves with wave speeds

c1 and c2 and idential maximum
α = max

x∈S1
{v1(x)} = max

x∈S1
{v2(x)}. (2.19)We observe that the origin (0, 0) has to lie in the interior of the area enirled by v1 and v2respetively. This is a diret onsequene of the Poinare-Bendixson Theorem for planar�ows.If the urves do not interset or touh eah other, then neessarily either

v1(x) < max
x∈S1
{v2(x)}or vie versa. This ontradits (2.19). See Panel ) in Figure 2.3 for illustration. The urvestherefore have to touh or interset.We now distinguish two ases: 19
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Figure 2.3: Illustration for the proof of Lemma 2.3.4.(i) Assume c1 = c2. In this ase the two urves have at least one point in ommon.Beause trajetories of the same equation annot interset, we obtain v1 = v2.(ii) Assume c1 6= c2. We investigate the vetor �eld of (2.11) for c = c2 on the urvede�ned by v1. Due to the fat that (2.11) is a rotated vetor �eld with respet to cwe obtain, that the vetor �eld has to either point stritly to the outside or stritlyto the inside of the area enirled by v1. This exludes touhing points. Assume thevetor �eld points inwards, then the area enirled by v1 is positive invariant. Seeagain Panel ) for illustration.Therefore v1 enters at the intersetion point but annot interset twie due to thepositive invariane of the area enirled by v1 � and thus annot be losed. Thisontradits that v1 is a periodi orbit.If the vetor �eld points to the outside, the same argument holds (just reverse the"time diretion" x).This proves ).For b) we observe that the number of zeros is neessarily even. The fat that (0, 0) liesin the area enirled by the periodi orbit exludes the no-zero ase. The fat that theperiodi orbit annot interset itself exludes the ase of more than two zeros (see Panelb) in Figure 2.3). This proves b). 20



For a) we assume that Cp is not homeomorphi to a dis. The nesting property of theperiodi orbits in ) exludes holes in Cp. Hene ∂Cp must onsists of nested losed urves.Due to the boundedness of Cp and the fat that (0, 0) ∈ Cp, there must be a minimum ofthree urves. See Panel a) for suh a situation.Aording to 2.3.3 (iv) these urves must onsist of saddles, homolini and heterolinionnetions. There are only three equilibria
(u−, 0), (0, 0), (u+ , 0).The seond one (0, 0) is ontained in the interior of the open set C̊p. Therefore it is enoughto analyse homolini orbits of and heterolini orbits between (u−, 0), (u+, 0).Due to Lemma 2.3.1 there an at most be one wave-speed c+ suh that (u+, 0) has ahomolini orbit. The same is true for at most one c− and (u−, 0).Moreover, Theorem 1.2 in [Haer03℄ states that there is a unique value

c∗(ε) = −1

2

d

dw

(
g′(w)

f ′′(w)

)∣∣∣∣
w=0

ε+O(ε3/2) (2.20)for whih there exists a heterolini onnetion that onnets (u−, 0) with (u+, 0). Againthe rotated vetor �eld property is the key to the proof. Using the same argument therean be at most one value of c suh that there is a heterolini onnetion from (u+, 0) to
(u−, 0). (Note here that the fast orbits are given by urves de�ned through q = f(w)−cw).From this we onlude that ∂Cp onsists of maximal three urves, one given by the twoheterolini onnetions, two by the homolini ones.We now prove that the equilibrium (0, 0) is the only equilibrium inside eah of the ho-molini onnetions, whih ompletes the proof, beause then, the two homolini urvesannot be nested.However this is obvious, beause the slow manifold given by q = 0 persists due to Fenihelfor w > u+ and w < u−. This proves a).

�The next Lemma gives a �rst-order desription of all rotating waves. Here the singularperturbed nature of the problem yields the result.Lemma 2.3.5 Let T > 0 be given. Then there exists ε0 > 0 suh that for all 0 < ε < ε0there exists a rotating wave w with minimal period T .Through a shift we an assume that w(0) = 0 and wx(0) > 0, then w(x) an be written inthe following way:
w(x) = φ(x) + o(ε) for x ∈ [0, x2 − ε log ε] ∪ [x2 + ε log ε, T ] (2.21)
w(x) = ψ(

x

ε
, x2) + o(ε) for x ∈ [x2 − ε log ε, x2 + ε log ε] (2.22)where x2 is the seond zero of w. φ(·) is a solution of

φx =
g(φ)

f ′(φ)
φ(0) = 0and ψ(·, x2) is a solution of

ψx
ε

= f
(
ψ(
x

ε
)
)

+ φ(x2) ψ(0) = 021



Proof. For existene we observe that the entre in the origin (0, 0) undergoes a Hopfbifuration. The two eigenvalues λ1/2 were already given in equation (2.17). The imaginarypart of λ1/2 is given by
ν := Im(λ1/2) =

√
g′(0)√
ε

.Thus, the limiting period at the Hopf bifuration emerging limiting yle is given by
THopf =

2π

ν
=

2π
√
ε√

g(0)
.We already know that T → ∞ when ∂C is approahed. As T is a C2 funtion on C and inpartiular ontinuous we obtain existene if

ε < T 2 g
′(0)

4π2
:= ε0by virtue of the intermediate value theorem.It remains to prove equations (2.21),(2.22). For this we have to assume that

0 < ε0 << T
g′(0)

4π
. (2.23)We need ε to be small to be able to apply Fenihel's his results. From Lemma 2.3.4 ) weknow that the periodi orbits an be parameterised by their maxima.Moreover, Lemma 2.3.4 b) proves that wε has exatly two zeros. Without loss of generalitywe shift the one with positive slope to x1 = 0. We denote the other zero with x2 andnote that w′(x)|x=x2

< 0 neessarily. We assume that the wave-speed c(ε) = 0 and proveequations (2.21,2.22). Then we will argue that the orret wave-speed is in fat small andhene does not destroy the approximation.We start omputing the trajetory of (w(x), wx(x)) in x = x2 and assume that
|wx(x)|x=x2

| >> ε0. (2.24)This is always possible beause we are free in the hoie of ε0. We use phase plane oordi-nates.Due to equation (2.24) and (2.23) we an use the fast vetor �eld to desribe the solutionup to the �rst order. In forward time diretion the solution will onverge exponentiallyto a ε-neighbourhood of the unstable manifold of (u−, 0). In bakward time diretion thesolution will onverge exponentially to a ε-neighbourhood of the stable manifold of (u+, 0).This part an be desribed due to Fenihel [Fen79℄ by the fast equations (2.15). This provesequation in (2.22).The unstable manifold of (u−, 0) is transversally stable in forward time diretion. So is thestable manifold of (u+, 0) in negative time diretion. Thus in both ases the solution isgiven up to the �rst order by the slow equations (2.16) outside a neighbourhood of (0, 0)where the normal hyperboliity of the slow manifold breaks down; but we already knowthat w is periodi, thus the two ends have to meet at (0, 0). This proves equation (2.21).We now argue that this remains true for non-zero wave-speeds c(ε). To do so we quoteLemma 4.3 in [Haer03℄. The lemma states that the wave-speed c∗ for whih the heterolinionnetion between u− and u+ persists obeys
|c∗(ε)| < σε22



for some σ > 0. The same equality holds for the wave-speed c(ε) of the periodi orbit byvirtue of the same argumentation as in [Haer03℄.Härterih argues that W u(u−) lies below the urve
γ(φ) := −f(φ) + ε

g(φ)

f ′(φ)− c(ε)for c(ε) < σε whereas W s(u+) lies above γ. This order reverses for c(ε) > σε. Beauseour periodi solution (w(x), wx(x)) onverges exponentially to W u(u−) and W s(u+) asargued above a intermediate value argument yields the desired inequality. This impliesthat equations (2.21) and(2.22) hold as well for c = c(ε).Remark: I believe that in fat c(ε) is given by equation (2.20). However in order to provethat one would have to go through the whole blow-up onstrution in Chapter 5 of [Haer03℄.
�Remark 2.3.6 A di�erent desription of the periodi orbit that is sometimes usefull isgiven by

w(x) =

{
φ(x− x2) +

[
ψ

(
x2

ε

)
− φ(−x2)

]
+ o(ε) for x ∈ [0, x2]

φ(x− x2) +
[
ψ

(
x2−2π

ε

)
− φ(2π − x2)

]
+ o(ε) for x ∈ [x2, T ]

(2.25)Proof. A simple, straightforward alulation shows that this is true. The reason for thisis the exponential onvergene of ψ to the states φ(x2) and φ(2π − x2).
�The next Lemma uses the above desriptions to prove hyperboliity of all rotating wavesin our equation whih is a diret onsequene of the monotoniity of T (w, q). This resultforms the basis of a relation between the zeros of a solution and the number of its unstableeigenvalues.Lemma 2.3.7 Let T be arbitrary but �xed. Then there exists a ε0 > 0 suh that for all

0 < ε < ε0 the minimal period T (w, q) grows monotone with the maxima of the periodiorbits.Proof. We use the formula of the periodi orbit w(x) obtained in equation (2.21). Let usassume we have two periodi orbits w1 and w2 with period T1 and T2 and the propertythat
max

x∈[0,T1]
w1 =: α1 < α1 + δ1 := α2 := max

x∈[0,T2]
w2for some δ1 > 0. It is su�ient to prove T1 < T2 − δ2 for su�iently small ε and some

δ2 > 0.Due to the fat that the periodi orbits are nested (Lemma 2.3.4 )) α1 < α2 impliesimmediately
0 > min

x∈[0.T1]
w1 =: β1 > β2 := min

x∈[0,T2]
w2.The solution φ(x) is strit monotonially growing beause

φx =
g(φ)

f ′(φ)
> 023



due to the onvexity of f and the fat that the zero of f ′ and the zero of g at u = 0 aresimple. This implies invertibility of φ and monotoniity of φ−1We now have
T1 =φ−1(α1)− φ−1(β1) + o(ε log ε) (2.26)
T2 =φ−1(α2)− φ−1(β2) + o(ε log ε) (2.27)The monotoniity of φ implies

φ−1(α2) = φ−1(α1 + δ1) = φ−1(α1) + (φ−1)′(α1)δ1 + o(δ1) > φ−1(α1) + δ2for some δ2 > 0 and
−φ−1(β1) < −φ−1(β2).For su�iently small 0 < ε we obtain the desired inequality for some δ2 independent of ε.

�Corollary 2.3.8 Let T ∈ R
+ be given. Then there is a unique periodi orbit with minimalperiod T , and it is hyperboli as a rotating wave of (P).Proof. The uniqueness is a diret onsequene of the monotoniity of the T -map. Thehyperboliity is also a diret onsequene of the monotoniity of the T -map. A periodiorbit is non-hyperboli if, and only if, the time T map has a vanishing derivative. See forexample Lemma 4.4 in [FRW04℄. This would ontradit monotoniity.

�We are now set to onstrut rotating waves of the PDE (P) by using the periodi orbitsonstruted earlier in this setion. We introdue the zero-number of a funtion u : S1 → R.Let therefore u : S1 → R then we de�ne
z(u) := ♯{x ∈ S1;u(x) = 0}, (2.28)if the zero set of u is not ountable we de�ne z(u) =∞.Theorem 2.3.9 Let n ∈ 2N be given, then there exists 0 < εn suh that for all 0 < ε < εnthere exists an up to shift unique rotating wave vε

n with the property
z(vε

n) = n.Proof. Every rotating wave with n zeros orresponds to a periodi solution of the rotatingwave equation (2.7) with period Tn = 2π
n .Corollary 2.3.8 provides for the unique existene of a periodi orbit of the rotating waveequation with period
Tn =

2π

n
.This proves the Theorem.A qualitative bifuration diagram of how periodi solutions are generated is given in Figure2.4. The numbers at the branhes indiate the numbers of zeros, the vertial axis showsthe maximum of the rotating wave on the branh.24
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1
εFigure 2.4: Shemati bifuration diagram of the Hopf bifuration generating branhes ofrotating waves (lines) with inreasing zero-number.

�The remainder of this setion is devoted to the Morse index of solutions and the relationbetween the Morse index i(u) and the zero-number z(u) of a rotating or frozen wave u.The Morse index is the lassial and generi tool to desribe properties of solutions onthe global attrator. However, in the hyperboli setting it is rather unommon to evenintrodue a Morse index. There the zero-number is more ommonly used. This is the mainreason why we have already introdued the zero-number here.Let L(u) de�ne the linear operator obtained when the PDE (P) is linearised in the solution
u, and let σ(L(u)) denote the spetrum of L(u). We follow the de�nition given in [MN97℄for the Morse index i(u).De�nition 2.3.10 For eah u ∈ Eε ∪ Fε ∪ Rε we de�ne the Morse index i(u) and thegeneralised Morse index i0(u) by

i(u) := ♯{λ ∈ L(u);Re(λ) > 0}and
i0(u) := ♯{λ ∈ L(u);Re(λ) ≥ 0}.Here ♯ ounts eigenvalues repeatedly aording to their multipliity.In terms of the Morse index we all a homogenous stationary solution u hyperboli, if

i0(u) = i(u).We all a rotating wave u hyperboli, if
i0(u) = i(u) + 1.Note that ux is always an eigenfuntion of L(u) to λ = 0. The wave is alled hyperboli, ifzero is a simple eigenvalue, hene ux is the only eigenvetor to λ = 0.Remark 2.3.11 The Morse index i orresponds the number of strong unstable eigendire-tions of the solution uε ∈ Eε ∪ Fε ∪Rε, hene equals the dimension of the strong unstablemanifold of uε in ase of �xed points. For rotating waves uε the dimension of the strongunstable manifold is given by the Morse index +1.25



There is a one-to-one orrespondene between the Morse index and the number of zeros ina solution.Lemma 2.3.12 Let uε ∈ Rε ∪ Fε then
i(uε) = z(uε)− 1. (2.29)For uε ≡ u± we have
i(uε ≡ u±) = 0. (2.30)To prove this Lemma we �rst quote a result that an be found for example in [FRW04℄Lemma 5.3:Lemma 2.3.13 Let

Ṫ = ∂αTbe the derivative of the minimal period with respet to the maximum of the periodi orbitsjust as in Lemma 2.3.7. Then the Morse index of a rotating or frozen wave u is given bythe following relations:
i(u) = z(u)− 1⇐⇒ Ṫ > 0 (2.31)

i(u) = z(u)⇐⇒ Ṫ < 0. (2.32)Proof of Lemma 2.3.12We obtain from Lemma 2.3.7 Ṫ > 0 whih yields the result together with 2.3.13 for
uε ∈ Rε ∪ Fε.For uε ≡ u± we use the fat that in Sturm-Liouville eigenvalue problems the eigenfuntionto the leading eigenvalue λ0 (eigenvalue with largest real part) has a sign, i.e. has no zeros.This an be found in [CL55℄ in Chapter 8, Theorem 3.1.A small alulation shows that λ0 = g′(u±) < 0 with onstant eigenfuntion. Hene i(u±) =
0.

�The next setion will apply the results on rotating waves to solve the onnetion problemon the attrator. The Morse index will play a key role in this.2.4 The onnetion problemWith the results of the previous setion we are now ready to solve the onnetion problemand to desribe the struture of the global attrator.The remaining question onerning the global attrator is whih of the rotating wavesare onneted. Let therefore uε
a and uε

b be two rotating or frozen waves or homogenousequilibria of equation (P) with Morse indies
i(uε

a) = a− 1 i(uε
b) = b− 1.26



We want to know if there is a heterolini orbit with soure uε
a and target uε

b, i.e. if thereexists a solution uε(x, t) with
lim

t→−∞
uε(·, t) =uε

a(·, t)

lim
t→∞

uε(·, t) =uε
b(·, t)where uε

a and uε
b are appropriately shifted. A key ingredient here is k − (P)-adjaeny ofrotating waves. The onept of k-adjaeny was developed and used in [FR96℄ and later in[Wol02a℄ and [Wol02b℄ for the Neumann ase. Fiedler, Roha and Wolfrum presented in[FRW04℄ a version for the S1 ase whih we will use:De�nition 2.4.1 (k − (P)-adjaeny) Let uε

a, u
ε
b ∈ Eε ∪ Fε ∪ Rε. Then uε

a and uε
b arealled k − (P)-adjaent if the following holds:

z(uε
a − uε

b) = kfor some k ∈ N and there does not exist a solution aε
c ∈ Eε ∪ Fε ∪Rε with the property

z(uε
a − uε

c) = z(uε
b − uε

c) = k and (2.33)
max
x∈S1

uε
c(x) is stritly between max

x∈S1
uε

a(x) and max
x∈S1

uε
b(x). (2.34)This notion of k − (P)-adjaeny is the ritial ingredient in Theorem 1.3 in [FRW04℄answering the onnetion question. This theorem states that uε

a and uε
b are onneted if,and only if, they are k − (P)-adjaent. The authors all a violation of k − (P)-adjaenythe bloking priniple beause in this ase there is another rotating wave uε

c that bloksthe onnetion. If bloking does not our, then the �priniple of liberalism� states thatthe two solutions uε
a and uε

b are onneted. We use these results to prove the followingTheorem 2.4.2 Let uε
a, u

ε
b ∈ Eε ∪ Fε ∪Rε with Morse indies i(uε

a) = a− 1 and i(uε
b) =

b− 1. Then there exists a heterolini orbit onneting uε
a and uε

b, i.e. a heterolini orbitwith soure uε
a and target uε

b if, and only if, a > b.Proof. The �only if� has already been proven by Matano and Nakamura in [MN97℄. Thestatement an be found in Theorem C on page 5. It is a diret onsequene of the fat thatdue to the Sturm property of the problem the zero-number an only drop along trajetoriesand so does the Morse index.For the �if� part we have to prove k − (P)-adjaeny of uε
a and uε

b. The key observationlies in the fat that the number of zeros of the di�erene of two rotating waves is given bythe minimum of the zero-numbers individually. In other words, we have for ũ, û ∈ Fε ∪Rεthe following relation:
z(ũ− û) = min{z(ũ), z(û)}. (2.35)This is not true in general, but a diret onsequene of the fat that in our situation allperiodi orbits of the rotating wave equation are nested.Now assume aε

c ∈ Fε ∪Rε with the property
z(uε

a − uε
c) = z(uε

b − uε
c) = k and (2.36)

max
x∈S1

uε
c(x) is stritly between max

x∈S1
uε

a(x) and max
x∈S1

uε
b(x) (2.37)27
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z = 4 i = 3

z = 2 i = 1

z = 0 i = 0Figure 2.5: Struture of onnetions between rotating and frozen waves and homogenousequilibria of Morse index i ≤ 7.exists.Due to Theorem 2.3.9 there is a unique rotating wave to eah zero-number k ∈ 2N0 for�xed and su�iently small ε > 0. From this we onlude that
a 6= k 6= botherwise uε

c = uε
a or uε

c = uε
b.In ase k > b equation (2.36) is violated. Hene, we have neessarily k < b. Due to thenested property of rotating waves this implies maxuε

c > max uε
a,b, whih violates (2.37).Thus uε

a and uε
b are k-(P)-adjaent and therefore onneted.In ase uε

a ∈ Eε or uε
b ∈ Eε the same argument works, the zero properties are obviousbeause in this ase ua or ub is onstant.

�This yields that all rotating and frozen waves are onneted to rotating and frozen waveswith lower Morse index and to u ≡ u±. A representation of the onnetion struture of theglobal attrator for all rotating and frozen waves and homogeneous equilibria with Morseindex i ≤ 7 an be found in Figure 2.5. In the �gure the arrows indiate the diretion ofthe �ow on the attrator.What might be misleading in the �gure is the fat that the onnetions between rotatingor frozen waves look as if they were one-dimensional. This is not the ase!It is a lassial result by Henry [Hen85℄ and Angenent [Ang86℄ for Neumann boundaryonditions, that the unstable manifoldW u(u1) of an equilibrium u1 and the stable manifold
W s(u2) of another equilibrium u2 interset transversally in our setting:

W u(u1) ∩⊤ W s(u2). (2.38)28



Hene, the intersetion is either empty or has maximal dimension.Fielder, Roha and Wolfrum were able to prove in [FRW04℄ that the same is true in the S1ase, thus, the dimension of an intersetion is given by the di�erene of the Morse indiesof the soure and the target. Note that in the S1 ase equation (2.38) has to be properlyinterpreted. To obtain the full two-dimensional onnetion manifold onneting u1 with u2the target u2 has to be properly shifted. We will disuss this in more detail in Setion 4.1.After we have solved the onnetion problem we introdue a new tool for our analysis:sub-attrators of order n.We have already seen that for positive ε the attrator of the paraboli equation has �nitedimension. However for small ε the dimension beomes very large. The idea of introduingsub-attrators is that we only want to onsider a low dimensional part of the whole attratorwhen we investigate the limit ε → 0. The lear advantage is that we do not have to dealwith di�ulties arising from the divergene of the global attrator's dimension in this limit.For the paraboli attrator we de�ne the sub-attrators of order n as the part of the wholeattrator that onsists of the two stable homogenous equilibria and the rotating waves withzero-number less or equal than n and all heterolini orbits between these objets. Notethat in order to have existene of a rotating or frozen wave solution with zero-number n,
ε has to be su�iently small, aording to Theorem 2.3.9.De�nition 2.4.3 Let n = 2α for α ∈ N and let εn be su�iently small. Then we de�nefor 0 < ε < εn:
• Eε

n := {u ∈ Eε; z(u) ≤ n} = {u ≡ u−, u ≡ u+};
• Fε

n := {u ∈ Fε; z(u) ≤ n};
• Rε

n := {u ∈ Rε; z(u) ≤ n};
• Hε

n := {u ∈ Hε; limt→±∞ u ∈ Eε
n ∪ Fε

n ∪Rε
n}.Then the �nite dimensional subattrator of order n of the paraboli equation (P) is givenby

Aε
n := Eε

n ∪ Fε
n ∪Rε

n ∪Hε
n. (2.39)It is immediately lear that the subattrators are ontained in eah other for inreasing n.In other words we have

Aε
n ⊆ Aε

m ⇔ n ≤ m.Figure 2.5 shows the sub-attrator of order n = 8: Aε
8.From De�nition 2.4.3 and Theorem 2.4.2 it is lear that Aε

n ontains all unstable manifolds
W u(uε) of all waves uε with zero-number z(uε) ≤ n. On the other hand if uε ∈ Aε

n then
uε must be ontained in the losure of some unstable manifold W u(ũε) of an element
ũε ∈ Fε ∪Rε. By onstrution z(ũε) ≤ n must hold. This suggests another desription of

29



the sub-attrators Aε
n:
Aε

n =

n⋃

m=1

{W u(uε);uε ∈ Fε ∪Rε, z(uε) = m} ∪ Eε
n (2.40)

=

n⋃

m=1

{W u(uε);uε ∈ Fε ∪Rε, z(uε) = m}

= {W u(Fε
n ∪Rε

n)} .This desription learly is very useful. Beause i(uε) = z(uε) − 1 for every rotating orfrozen wave we immediately onlude
dimW u(uε) = i(uε) = z(uε)− 1and hene

dimAε
n = nbeause all waves with given zero-number an be parameterised by S1 (see Theorem 2.3.9).It is a theorem that in fat

Aε
n =

{
W u((Fε

n ∪Rε
n)\(Fε

n−1 ∪Rε
n−1))

}
.We do not prove this here, but it is also a onsequene of the Morse-Smale property of theattrator.In the next setion we will give an overview of the relevant results onerning the hyperboliequation. The solution theory is somewhat more ompliated, but the struture of theglobal attrator is very similar.2.5 The hyperboli equationIn the following we will provide the results onerning global attrators of salar hyperbolibalane laws. As in the previous setion on paraboli equations, some of the results pre-sented hold for slightly more general equations. Nevertheless we do not introdue a moregeneral equation suh as ut = h(u, ux) here beause in ontrast to the previous setionson the paraboli equation, the struture of the attrator and questions of the existene ofunique solutions rely on the fat that we are investigating a balane law and not a om-pletely general hyperboli equation. Espeially the onvexity of f is a key feature. Withoutonvexity none of the results presented holds true. Therefore we will state all results forequation (H) together with assumptions (H1),(H2) and (H3).Some of the theorems quoted will be written for the ase that g has n zeros loated at

u1, . . . , un. In this ase we just set n = 3 and u1 = u−, u2 = 0 and u3 = u+.Before we investigate the question of global attrators we have to answer the question ofexistene and uniqueness of solutions. The initial value problem (Cauhy problem) of (H)an be solved by the method of harateristis. The lassial solution u(x, t) to a initialondition u(x, 0) =: u0(x) an be desribed in the following way:
u(χ(t), t) := v(t)30



where v, χ are urves that solve the following ODE:
χ′(t) = f ′(v)v′(t) = g(v)
χ(0) = x0v(0) = u0(x0)for all x0 ∈ S1. Unfortunately lassial solutions in general only exist for �nite time. Thisis even true for the simplest possible ase where g ≡ 0, f = 1

2u
2 and u0(x) ∈ C∞. Tosee this one just has to hoose an initial ondition with su�iently large negative slopesomewhere. In fat, if the negative slope in the initial ondition beomes large the time upto whih a unique lassial solution exists an beome arbitrarily small.Classial solvability breaks down due to the development of shoks. At the developmentpoint of a shok, harateristis meet eah other in a �nite angle. If both harateristiswere to be ontinued they would interset at that point transversally. Due to the onvexityof f the values of v on both harateristis di�er from eah other at the intersetion point.Hene the lassial solution develops a disontinuity at this point so that the solution is inpartiular not di�erentiable at this point as it would have to be in a lassial solution.However, there are weak solutions for times after lassial solvability has reahed its limit.To obtain weak solutions one has to multiply both sides of the di�erential equation (H)with C1 test funtions and integrate the equation over the whole domain. A weak solutionthen is de�ned as a solution that satis�es the resulting equation for all C1 test funtions,see equation (2.41).Unfortunately the uniqueness of solutions is lost in this proess. In general there are manyweak solutions to the same initial ondition. To overome this obstale a additional entropyondition an be imposed, that singles out a unique weak solution. This idea derives fromthe physial entropy in thermodynamis. Entropy onditions for hyperboli balane lawsin a weak framework were �rst onsidered by Volpert [Vol67℄ and Kruzhkov [Kr70℄.We therefore de�ne an entropy or admissible solution of the hyperboli balane law (H) inthe following way:De�nition 2.5.1 We all u ∈ BV ([0,∞) × S1,R) an entropy or admissible solution ofequation (H) to the initial ondition u0(x)

• if u(x, 0) = u0(x);
• if it solves equation (H) in the weak sense:

∫

S1×R+

[uϕt + f(u)ϕx − g(u)ϕ]dxdt = 0 (2.41)for all ϕ ∈ C1
0 (S1 ×R+,R);

• and if the entropy ondition
u(x+, t) ≤ u(x−, t) (2.42)holds for all t > 0. 31



Here u(x+, t) de�nes the right hand, u(x−, t) the left hand limit of u in x at time t and
BV ([0,∞) × S1,R) denotes the spae of funtions with bounded variation mapping from
[0,∞)× S1 to R.Let P be the set of all partitions P = {x1, · · · , xnP

}. Then we de�ne the spae BV in thefollowing way:
BV (S1) :=

{
u ∈ L1(S1) : sup

P∈P

nP−1∑

i=1

|u(xi)− u(xi+1)| <∞
}
. (2.43)Volpert [Vol67℄ and later, and for more general initial onditions (L∞), Kruzhkov [Kr70℄were able to prove the following result on the existene of solutions:Proposition 2.5.2 If (H1) holds, then the Cauhy problem of equation (H) possesses aunique entropy solution u with the property u : (0,∞) → L1 is ontinuous in time and

u(·, t) ∈ BV (S1) for every time t > 0.Therefore (H) together with (2.42) de�nes a semi�ow on BV (S1). We denote that semi�owby
Φh : BV × R

+ → BV
u0, t 7→ Φh(u0, t) := u(·, t)where u is the unique entropy solution to the initial ondition u0.Note that Kruzhkov proved that the initial ondition does not have to ful�l the entropyondition. Where the initial ondition has up-jumps, i.e. u(x+, t) > u(x−, t) for some x,these jumps are immediately smoothened by a rarefation wave.In order to ompute weak solutions pratially the notion of harateristis has to begeneralised. Generalised harateristis were �rst introdued by Dafermos in [Daf77℄:De�nition 2.5.3 A Lipshitz urve x = χ(t), de�ned on the interval [a, b] ⊂ R is alled ageneralised harateristi assoiated with the solution u of (H) if it satis�es the inequality

χ̇ ∈ [f ′(u(χ+, t)), f ′(u(χ−, t))]for almost all t ∈ [a, b].With this de�nition it is lear that generalised harateristis oinide with the lassialharateristis χ(t) de�ned above, when the solution is di�erentiable. At points of non-di�erentiability of u i.e. at shoks, the generalised harateristi is only required to satisfy
χ′(t) ∈ [f ′(u−), f ′(u+)] where u− and u+ are the lower and upper states of the shokat χ(t). Filippov was able to show in [Fi88℄ that there is at least one forward and onebakward harateristi through any point (x, t) ∈ S1 × R

+.It seems that there is a lot of freedom in omputing forward harateristis. That this isin fat not the ase is shown by a proposition to be found in [Fi88℄:Proposition 2.5.4 Let χ : [a, b] → R be a generelized harateristi. Then the followingholds for almost all t ∈ [a, b]:
χ̇(t) =

{
f ′(u(χ(t)±, t)) if u(χ(t)−, t) = u(χ(t)+, t)

f(u(χ(t)+,t))−f(u(χ(t)−,t))
u(χ(t)+,t)−u(χ(t)−,t) if u(χ(t)−, t) > u(χ(t)+, t)

. (2.44)32



Hene, χ̇(t) is uniquely de�ned even at the position of shoks. If the solution u(x, t) pos-sesses a shok at position x0 then the shok speed is given by the Rankine-Hugoniotondition for shok speeds
cshock =

f(u(x0+))− f(u(x0−))

u(x0+)− u(x0−)
. (2.45)To distinguish between generalised harateristis and the harateristis of lassial solu-tions the notion of genuine harateristis is important:De�nition 2.5.5 A harateristi on the interval [a, b] is alled genuine, if

u(χ(t)−, t) = u(χ(t)+, t) for almost all t ∈ [a, b].The set of bakward harateristis through a point (x̄, t̄) spans a funnel between the
• minimal bakward harateristi χ−(t; x̄, t̄) and the
• maximal bakward harateristi χ+(t; x̄, t̄).The properties of harateristis that are of importane for us are summarised in the nextpropositions. For proofs we refer to Dafermos' artile [Daf77℄. We will use these results inthe following setion.Proposition 2.5.6 Let (x̄, t̄) ∈ S1 × R be arbitrary. Then the minimal bakward hara-teristi χ−(t; x̄, t̄) and the maximal bakward harateristi χ+(t; x̄, t̄) are genuine.Proposition 2.5.7 Genuine harateristis interset only at their end points; bakwardharateristis do not interset in partiular.We now diret our attention to the existene of global attrators for equation (H). Fan andHale [FH95℄ were able to settle this question for the hyperboli balane laws in 1995. Asin the paraboli ase, dissipativity of g is the key to the existene of a global attrator. Itessentially guarantees that solutions stay bounded in forward time. (Note that onvexityof f and the linear dependene on ux already guarantee dissipativity of f ′(u)ux.)Proposition 2.5.8 (Fan and Hale) Assume (H1), (H2) and (H3) hold. Then

A0 :=
{
u0 ∈ BV (S1) : Φ0(u0, t) exists for all t ∈ R and is bounded} (2.46)is the global attrator of (H) in Lp(S1), for any p ∈ [1,∞], i.e. it is invariant and attratsbounded sets in Lp(S1).This settles the existene of A0. We turn to the struture of the global attrator. Manypeople have worked on this and for a good overview over the latest results we refer toHärterih [Haer97℄.Several authors proved Poinaré Bendixson type results for the salar balane laws. See forexample Fan and Hale [FH93℄, Sinestrari [Sin97℄ or Lyberopoulos [Lyb94℄:33



Proposition 2.5.9 For t→∞ any solution of (H) tends either to a homogenous solution
u ≡ ui for some i ∈ {1, ...n} or it onverges to a rotating wave solution

u(x, t) = v(x− ct)where the wave-speed c an only take the values c = f ′(u2i) for i ∈ {1, · · · , n−1
2 }.In our ase this implies

c = f ′(u2) = f ′(0) = 0whih means that all waves are frozen waves. However the distintion is somewhat arbitrary,beause a oordinate hange x 7→ x − ct an freeze any wave, or make it rotate again. Inthis sense our assumptions f ′(0) = 0 = g′(0) �x a oordinate system in whih all wavesfreeze.For global solutions a theorem similar to 2.5.9 holds true in bakward time. This leadsto a desription of the global attrator A0 as the uni�ation of the homogenous steadystates, the frozen waves and heterolini onnetions between all these objets similar tothe paraboli ase. Additionally the possible wave-speeds of all rotating waves are given apriori.Following the de�nitions made in the paraboli setion we de�ne
• E0 to be the set of homogenous equilibria of (H);
• F0 to be the set of frozen waves of (H);
• R0 to be the set of rotating waves of (H);
• H0 to be the set of heterolini onnetions between objets in E0, F0 and R0 de�nedin the same way as in Setion 2.2 equation (2.5).Then the global attrator A0 of (H) an be desribed as

A0 = E0 ∪ F0 ∪R0 ∪H0. (2.47)In our ase we have R0 = ∅.In [Sin95℄ Sinestrari was able to settle the desription of all rotating or frozen waves. Heproved that for any possible wave speed c = f ′(a2i) and for any losed set Z ⊂ S1 thereexists a unique rotating wave uZ with the property
Z = {y ∈ S1 : uZ(y) = u2i}.The uniqueness automatially proves that these are all waves. Hene, only the onnetion-question remains.For this it is onvenient to introdue the map Z(·) that assigns eah funtion u : S1 → Rits zero set:

Z(u(·, t)) := {x ∈ S1;u(x, t) = u0 = 0}. (2.48)This set plays a key role in understanding whih rotating waves are onneted to eahother when they have the same wave-speed. Note that
z(u) = ♯Z(u).34



If Z(u) is unountable we de�ne z(u) =∞.In addition we de�ne
uZ := u ∈ F0 suh that Z(uZ) = Zto be the unique rotating wave with zero set Z.Fan and Hale were able to show in Theorem 3.7 in [FH95℄ that if two rotating waves areonneted by heterolini orbits, then the waves must have the same veloity. Moreover,if heterolini orbits onnet a homogenous equilibrium u ≡ uj and a rotating wave withspeed f ′(u2i), then |j − 2i| = 1.On the attrator the zero-number z deays along trajetories, thus is a disrete Lyapunovfuntion, just as in the paraboli setting.In 1997 Sinestrari was able to prove that a neessary ondition for a onnetion from therotating wave uZ1

to the wave uZ2
was

Z2 ⊂ Z1. (2.49)Härterih was able to show that the above ondition was not only neessary but alsosu�ient. This gives the following piture of the struture of the global attrator of equation(H), summarised in the three Theorems A, B and C in [Haer99℄:Theorem 2.5.10 (Theorem A) For any rotating wave u−∞ there exist heterolini or-bits whih onnet u−∞ to the homogenous states u ≡ u− and u ≡ u+.Theorem 2.5.11 (Theorem B) For any rotating wave u+∞ there exist (several) hetero-lini orbits that onnet the spatially homogenous solution u ≡ u0 = 0 to u+∞.Theorem 2.5.12 (Theorem C) Suppose that for two rotating waves u−∞ and u+∞ theondition Z(u∞) ⊂ Z(u−∞) holds. Then there is a heterolini solution that approahes
u±∞ as the time t tends to ±∞.These three Theorems in priniple allow a full desription of the onnetion problem onthe global attrator. Härterih ould even expliitly onstrut heterolini onnetions inthe phase spae, however up to now there has been no result on the uniqueness of theseonnetions. The next setion will provide a �rst result in that diretion. Furthermore, wewill present some examples of how to onstrut expliitly frozen waves and heterolinionnetions.We onlude this setion by de�ning the notion of sub-attrators in a similar way to theparaboli setting.De�nition 2.5.13 Let n = 2α for α ∈ N. Then we de�ne:
• E0

n := {u ≡ u+, u ≡ u−};
• F0

n :=
{
u ∈ F0; z(u) ≤ α

};
• H0

n :=
{
u ∈ H0; limt→±∞ ∈ E0

n ∪ F0
n

}.35



Then we de�ne the sub-attrator of order n of the hyperboli balane law (H) by
A0

n := E0
n ∪ F0

n ∪H0
n. (2.50)Just as in the paraboli setting it is lear that the sub-attrators are ontained in eahother, hene we have

A0
n ⊂ A0

m ⇔ n < m.At a �rst glane it seems strange to denote the hyperboli sub-attrators by A0
n and not

A0
α. However in the next setion and in Chapter 3 we will see that this makes a lot ofsense. Lemma 3.2.5 will yield that

lim
ε→0

(Rε
n ∪ Fε

n) ⊂ F0
nin the sense of solutions.By analogy to the desription of sub-attrators in the paraboli setion we present an alter-native representation of A0

n in terms of unstable manifolds. With the same argumentationas for equation (2.40) we onlude that
A0

n =

α⋃

β=1

{
W u(u0);u0 ∈ F0, z(u0) = β

}
∪ E0

n (2.51)
=

α⋃

β=1

{W u(u0);u0 ∈ F0, z(u0) = β}

= {W u(F0
n)} .One of the results in the following setion will be dimA0

n = n, whih justi�es the notation.De�nition 2.5.13 expliitly exludes frozen waves v where the zero set Z(v) inludes wholeintervals. These solutions do not have a ounterpart in the paraboli equation. A rotatingwave of the paraboli equation that vanishes on a whole interval has to be identially zero.The last setion of this hapter is devoted to the study of the sub-attrators A0
n. Theorem2.6.1 yields results on the parameterisation and the dimension of the A0

n; moreover, itproves uniqueness of some heterolinis in A0
n. Theorem 2.6.1 is the main result of thewhole hapter and one of the main results of this dissertation.2.6 Parameterisations for A0

nBefore we prove the main theorem of this setion, Theorem 2.6.1 we will give two prepara-tional examples: First we onstrut the unique frozen wave uZ for a given Z ⊂ S1, then wewill give an expliit representation of a heterolini onnetion between two frozen waves
v1 and v2.We begin with the single frozen wave: In Sinestrari's result there are no restritions re-garding the zero set Z exept losedness, so it ould be �nite, ountable or unountable.Even if whole intervals are ontained it is still possible to de�ne a rotating wave with thiszero set. 36



As an example of a frozen wave we will onstrut a frozen wave solution for Burgersequation with a symmetri soure term
f(u) :=

1

2
u2 g(u) = u(1− u2)for the zero set Z = [π2 , π] ∪

{
3π
2

}.The rotating wave equation for c = 0 and the above f and g is given by
vx = 1− v2whih has the fundamental solution v(x) := tanh (x− x0).To give a desription of the travelling wave vZ one just has to use appropriately shiftedopies of v(x) on S1 \ Z in a way suh that the resulting shoks are stationary aordingto the Rankine-Hugoniot ondition (2.45).For the above given Z we de�ne

vZ(x) :=






tanh(x− π
2 ) for x ∈ [0, π

2 ]
0 for x ∈ [π2 , π]

tanh(x− π) for x ∈ [π, 5
4π]

tanh(x− 3
2π) for x ∈ [54π, 2π].It is an easy exerise to show that this solution is in fat stationary. The uniqueness resultguarantees that it is the only rotating wave with this zero set. Figure 2.6 shows a plot of

vZ . We remark that this frozen wave has in�nitely many heterolini onnetions to otherfrozen waves. It has heterolini onnetions to every rotating wave
vZ̃with losed Z̃ ∈ P(Z) where P(Z) is the powerset of Z. All diretions are linearly indepen-dent and hene the unstable manifold of this wave is already in�nite dimensional.The seond example onerns heterolini onnetions between two rotating waves. Againwe use Burgers equation together with the soure term g = u(1 − u2). We onstrutthe heterolini onnetion between the frozen waves vZ1

and vZ2
with Z1 = {0, π} and

Z2 = {0}.Härterih ould onstrut in [Haer99℄ a heterolini orbit by a sequene of solutions wherethe shoks travel along the pro�le de�ned by shifted opies of v(x). The shoks traveltowards eah other suh that they form a stationary shok when they ollide. We set theollision time at t = 0 then the solution an be given in the following losed form:
v(x, t) =






tanh(x− π
8 ) for x ∈ [0, 3π

8 + ∆]
tanh(x− 5π

8 ) for x ∈ [3π
8 + ∆, 7π

8 −∆]
tanh(x− 7π

8 ) for x ∈ [7π
8 −∆, 2π]

(2.52)where ∆ solves the following ODE in bakward time
∆̇(t) =

tanh(π/4 + ∆) + tanh(π/4−∆)

tanh(π/4 + ∆)− tanh(π/4−∆)

∆(0) =
π

4
. 37



     
 

 

 

 

 

-1

10.5
-0.50

1

2
π π 2π

3

2
πFigure 2.6: Stationary solution vZ for Z = [π2 , π] ∪

{
3π
2

}.The solution is plotted in Figure 2.6.We have now seen how heterolini onnetions an be onstruted in priniple for Burgersequation. A similar onstrution holds true for the general ase.The rest of this setion is devoted to the preparation and proof of Theorem 2.6.1 on theexpliit parameterisation of the sub-attrators A0
n. We �rst onstrut the manifold thatwill represent the loal unstable manifold of a frozen wave.Let φ(x) be the unique solution of the following equation:

vx =
g(v)

f ′(v)
(2.53)

v(0) = 0.Furthermore φ(x) exists for all x ∈ R and
lim

x→−∞
φ(x) = u− lim

x→∞
φ(x) = u+.Let n = 2α for some α ∈ N be given. Then we hoose a sequene of α zeros 0 < x1 < x2 <

· · · < xα < 2π.Due to Sinestrari there exists a unique frozen wave v0
α(x) with

Z(v0
α) = {x1, · · · , xα}.Without loss of generality we assume x1 = 0. All other ases an be generated by a shiftalong S1.Note that for every solution of equation (H) it is true that between two zeros there mustbe a shok and between two shoks with sign hanging left- and right-hand states theremust be a zero. This is even true in the ase where f depends expliitly on x, see [Ehrt05℄.It is in partiular true for v0

α. Hene there is a unique sequene of shoks ŷ1, . . . , ŷα with
x1 < ŷ1 < x2 < ŷ2 < · · · < ŷα−1, xα < ŷα < x1 + 2π38
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Figure 2.7: Heterolini orbit onneting uZ1
and uZ2

. The left and right states of theshoks are indiated in red.suh that v0
α is given by

v0
α =

{
φ(x− xi) for x ∈ [xi, ŷi]
φ(x− xi+1) for x ∈ [ŷi, xi+1]

(2.54)where we have set xα+1 = x1 + 2π = 2π. In ase that ŷα ≥ 2π we set ŷ0 := ŷα(mod2π).The sequene then reads 0 ≤ ŷ0 < x1 . . . . In the following we will not always makethis distintion but just identify x + 2π with x without expliitly mentioning this. Foronveniene let us de�ne the notation
xα :={x1, · · · , xn}

v0
{xα}

:=v0
α.We now de�ne the solution u{xα,yα} with α shoks loated between the zeros {x1, · · · , xα}that onsists pieewise of shifted opies of φ(x). In general u{xα,yα} is not stationary.Let 0 ≤ x1 ≤ y1 < x2 ≤ · · · < xα ≤ yα < 2π then we de�ne

u{xα,yα} =

{
φ(x− xi) for x ∈ [xi, yi]
φ(x− xi+1) for x ∈ [yi, xi+1]

(2.55)for i = 1, . . . , α and again xα+1 = 2π.Finally let us de�ne the general solution ũ{xα,yα} with α or less shoks that onsists piee-wise of shifted opies of φ(x) where all shoks are ontained in [0, 2π).Let 0 ≤ ỹ1 ≤ ỹ2 ≤ · · · ≤ ỹα < 2π then we de�ne if ỹi < ỹi+1

ũ{xα,yα} =

{
φ(x− xi) for x ∈ [xi, ỹi]
φ(x− xi+1) for x ∈ [ỹi, xi+1]

, (2.56)39



and if ỹi = ỹi+1 = · · · = ỹi+m

ũ{xα,yα} =

{
φ(x− xi) for x ∈ [xi, ỹi]

φ(x− xi+m+1) for x ∈ [ỹi+m, xi+m+1]
(2.57)Then the two sets of all these solutions with �xed {x1, · · · , xα} are given by

A{x1,...,xα} := {u{xα,yα}; 0 ≤ x1 ≤ y1 < x2 ≤ · · · < xα ≤ yα < 2π} (2.58)and
Ã{x1,...,xα} := {ũ{xα,ỹα}; 0 ≤ ỹ1 ≤ · · · ≤ ỹn < 2π}. (2.59)Clearly we have

v0
{xα}

∈ A{x1,...,xα} ⊆ Ã{x1,...,xα}and we have
Ã{x̃1,...,x̃β} ⊆ Ã{x1,...,xα}if x̃j ∈ {x1, . . . , xα} for all 1 ≤ j ≤ β and β ≤ α. Note that there is no solution onsistingpieewise of φ(x − xj) for xj ∈ {x1, . . . , xα} that has more than α shoks. We argue asfollows: We assume that the solution has a zero loated at x1 = 0 and another zero at x2.Now we expliitly onstrut the set of all admissible solutions u(x) that onsist pieewiseof shifted opies of φ(x − xi − 2πkj) for some kj ∈ Z and i ∈ {1, 2}; with the additionalproperty that u(x1 = 0) = 0. Due to the monotoniity of φ it is lear that u possesses atleast one shok.Let us denote all shok positions by 0 < y1 < · · · < yβ ≤ 2π. By onstrution we will seethat β ≤ 2. Figure 2.6 illustrates the onstrution: all shoks are down shoks, therefore umust onsist of sequenes given by

...φ(x + x1), φ(x), φ(x − x1), φ(x− 2π), φ(x − x1 − 2π), φ(x − 4π)... (2.60)Beause u(0) = 0 we start at x = 0 with u(x) = φ(x) loally. At the �rst shok we anonly jump to a solution φ(·) that lies to the right of φ(·) in the sequene in equation (2.60)without violating the entropy ondition (2.42). This applies to all following shoks. In orderto obtain a solution on S1 we have to end at x = 2π with φ(x − 2π). Hene we an jumptwie at most. It is lear that the same argument works for arbitrary α ∈ N. The sameapplies to solutions that do not have a zero at all.Let us now state the main theorem:Theorem 2.6.1 Let n = 2α and α ∈ N. Then the following is true:a) The loal unstable manifold W u
loc(v

0
{xα}

) of v0
{xα}

is given by A{x1,...,xα} de�ned inequation (2.58):
W u

loc(v
0
{xα}

) = A{x1,...,xα} (2.61)where v0
{xα}

is the unique frozen wave of equation (H) with zeros at {x1, . . . , xα}.b) The global unstable manifold W u(v0
{xα}

) of v0
{xα}

is then given by
W u(v0

{xα}
) =

{
Φ0(u, t);u ∈ A{x1,...,xα}, t ∈ R

+
}
. (2.62)40
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Figure 2.8: Shemati plot showing why a onstrution of u{x2,y3} fails.) The semi�ow on Ã{x1,...,xα} de�ned in equation (2.59) an be desribed by the follow-ing equation for the shok parameters yj:
ẏj(t) =

f(φ(yj − xj))− f(φ(yj − xj+1)

φ(yj − xj)− φ(yj − xj+1)
. (2.63)d) The dimension of the sub-attrators A0

n of order n is given by
dimA0

n = n.e) Let v1 be a frozen wave of equation (H) with
z(v1) = 1.Then there exist unique heterolini onnetions ũ(x, t) and û(x, t) with

lim
t→−∞

ũ(·, t) = lim
t→−∞

û(·, t) = v1

lim
t→∞

û(·, t) = u−

lim
t→∞

ũ(·, t) = u+.f) Let 0 ≤ x1 < x2 < · · · , xα < 2π and let v1 and v2 be frozen waves of equation (H)with the property
Z(v1) = {x1, . . . , xα}and
Z(v2) = {xk1

, . . . , xkβ
}where ki+1− ki ∈ {0, 1} for all 1 ≤ i ≤ β− 1. Then there exists a unique heterolinionnetion u(x, t) with the property

lim
t→−∞

u(·, t) = v1(·)

lim
t→∞

u(·, t) = v2(·).41



Before we prove the theorem, we prove a important lemma:Lemma 2.6.2 Let {xα} := {x1, . . . , xα} with 0 ≤ x1 < · · · < xα < 2π be given.(i) The set Ã{x1,...,xα} is over�owing invariant under the semi�ow of equation (H). Over-�owing means that if a solution u{xα,yα} ∈ Ã{x1,...,xα} leaves Ã{x1,...,xα} at time t̃ = 0then either y1 = x1 or yα = x1 + 2π in u{xα,yα}.(ii) The set A{x1,...,xα} is over�owing invariant under the semi�ow of equation (H).Proof. Let u(x, 0) ∈ Ã{x1,...,xα} suh that u(x, 0) = u{xα,yα} with y1 > 0 and yα < 2π.Again we assume x1 = 0.Loal forward invariane of Ã{x1,··· ,xn} follows from the fat that the pro�les φ that de�ne
u{xα,yα} are stationary. Hene u is stationary exept near the points yj, and so we onlyhave to prove invariane loally at the shok points. Without loss of generality we onlyinvestigate the shok loated at y1.Therefore let u(x, 0) be given by

u(x, 0) =

{
φ(x) for x < y1

φ(x− x2) for x > y1
(2.64)At y1 there is a unique forward harateristi χ(t) on whih the shok evolves. It an beobtained by integrating the Rankine-Hugoniot ondition 2.45. The other harateristisneessarily point towards χ(t) for t > 0. So to the left and right of χ the solution u(x, t)must be stationary and is given by φ(x) for x ≤ χ(t) and by φ(x − x2) for x > χ(t). Seethe Figure 2.6 for illustration. χ(t) is uniquely determined by the di�erential equation:

χ̇(t) =
f(φ(χ(t)−))− f(φ((χ(t)− x2)+))

φ(χ(t)−)− φ((χ(t) − x2)+)
(2.65)

χ(0) = y0.The slope of χ(t) is bounded from above and hene, if t is su�iently small we haveobtained loal forward invariane of the shok.For the bakward invariane we observe that a minimal harateristi χ−(t) and a maximalbakward harateristi χ+(t) for t < 0 emanate from y1. For the area between χ− and χ+there are in priniple many possibilities to de�ne the solution suh that we obtain u(x, t)for t ≥ 0. For bakward invariane it is enough if we �nd one u(x, t) ∈ Ã{x1,...,xα} for t < 0with this property.Let therefore χ(t) be the unique shok harateristi emanating from y1 and hene
u(x, t) =

{
φ(x) for x < y1

φ(x− x2) for x > y1for t ≥ 0.Let now t0 < 0 be given. Then we de�ne
ũ(x, t0) :=

{
φ(x) for x ∈ [χ−(t0), χ̃(t0))

φ(x− x2) for x ∈ (χ̃(t0), χ
+(t0)]42
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Figure 2.9: Illustration for the proof of Lemma 2.6.2.for some χ̃(t0) ∈ [χ−(t0), χ
+(t0)]. Loal bakward invariane follows if we an prove thatthere is exatly one χ̃(t0) suh that if we solve equation 2.65 with initial ondition χ̃(t0)we obtain

χ̃(0) = χ(0) = y0.Uniqueness of χ̃(t0) is lear beause the onvexity of f implies together with the monotoni-ity of φ monotoniity of χ̇. Hene, this implies that χ̃(0) depends monotonially on χ̃(t0),whih implies uniqueness of χ̃(t0) due to uniqueness of χ̃(0). Hene bakward invarianefollows.As far as uniqueness is onerned, the bakward solution is not unique in Ã{x1,...,xα} ingeneral, due to the possibility of shok splittings in bakward time diretion. But it islear that if we assume that this does not happen, we obtain uniqueness of the bakwardsolution in Ã{x1,...,xα}.For the over�owing property we assume u(x, 0) ∈ Ã{x1,...,xα} with y1 = 0. Then the forwardharateristi χ(t) in x = y1 = 0 is given by the equation
χ(t) =

−f(φ(yα − 2π)

−φ(yα − 2π)
< 0for t ∈ [0, δ), δ positive and small and χ(0) = 2π. Thus, after identi�ation of 0 and 2π weobtain that the solution to be loally given by

φ(x) for 0 < x < y2

φ(x− 2π) for χ(t) < x < 2π
φ(x− yα) for yα < x < χ(t).In the ase of y1 = y2 = 0 we have to replae y2 by y3 in the �rst line. If there is only oneshok, we an drop the last line and replae y2 with yα in the �rst line.This proves the over�owing property of Ã{x1,...,xα}.43



Due to the fat that A{x1,...,xα} ⊂ Ã{x1,...,xα} we onlude invariane of A{x1,...,xα} byvirtue of the same onstrution immediately. The over�owing property works just as for
Ã{x1,...,xα}, here the boundary is given by the ondition yj = xj or yj = xj+1 for some
j ∈ {1, . . . , α}.

�Corollary 2.6.3 For every u(x, 0) ∈ A{x1,...,xα} there is a unique bakward orbit in A{x1,...,xα}.Proof. From the proof of the previous lemma we dedue that it is su�ient to showthat shoks in u annot split in bakward time. This is lear by onstrution beause anysolution in A{x1,...,xα} has exatly α zeros and α shoks.
�Proof of Theorem 2.6.1In fat, we have already proven part ). Equation (2.65) yields exatly equation (2.63) ifwe replae χ(t)± by the yj. Hene we an integrate solutions along the (invariant) manifold

A{x1,...,xα} by using equation (2.63) for every yj (1 ≤ j ≤ n). Note that yj and yj+1 anmeet. Thus yj is only lipshitz not C1.For a) we prove that all solutions u(·, 0) ∈ A{x1,...,xα} onverge in bakward time to v{xα},this shows
A{x1,...,xα} ⊂W u

loc(v
0
{xα}

). (2.66)Then we show maximality of A{x1,...,xα} in the sense that all solutions u(·, t) onverging to
v0
{xα}

are ontained in A{x1,...,xα} for su�iently small t < 0 whih proves
W u

loc(v
0
{xα}

) ⊂ A{x1,...,xα}. (2.67)The �rst part is a onsequene of Lemma 2.6.2 and the onvexity of f . Now we assume
u(·, 0) ∈ A{x1,...,xα}. Beause of the over�owing invariane and bakward uniqueness weonlude

u(·, t) ∈ A{x1,...,xα}for all t < 0. In addition
lim

t→−∞
u(·, t) ∈ F0 ∪ E0beause this is true for all solutions that are globally bounded in bakward time. Taking intoaount that v0

{xα}
is the only frozen wave in A{x1,...,xα} and hene A{x1,...,xα} ∩ E0 ∪F0 =

{v0
{xα}
} we have obtained equation (2.66).For the other diretion we argue indiretly. Assume that there exists u(x, t) with

u(x, t) /∈ A{x1...xα} for all t < 0 and lim
t→−∞

u(x, t) = v0
{xα}

.Then for su�iently small t̃ < 0 there must be a x̃ ∈ S1 suh that for all 1 ≤ j ≤ α+ 1

u(x̃, t̃) 6= φ(x̃− xj). (2.68)Due to the fat that u onnets to v0
{xα}

we an always hoose (x̃, t̃) suh that ũ(x̃, t̃) issmaller than the maximum and larger than the minimum of the stationary solution withone zero. 44



We now prove that ũ annot onverge to v0
{xα}

in bakward time whih will yield the result:the idea is to use a stationary solution to alulate the bakward harateristi of u thatstarts in (x̃, t̃) and thereby onstrut a ontradition.Assuming equation (2.68) holds, then there is a stationary solution us ∈ F0 with thefollowing properties:
us(x̃) = u(x̃, t̃)

Z(us) = {xs}where xs /∈ {x1, . . . , xα}.We investigate the (genuine!) bakward harateristi (χ(t), v(t)) with
χ(t̃) = x̃ and v(t̃) = us(x̃, t̃) = ũ(x̃, t̃).Beause us is stationary, the harateristi has the property that

lim
t→−∞

χ(t) = xsand
lim

t→−∞
v(t) = 0.Then

lim
t→−∞

u(xs, t) = lim
t→−∞

us(xs, t) = 0.This ontradits limt→−∞ u(·, t) = v0
{xα}

beause v0
{xα}

(xs) 6= 0.This yields the maximality of A{x1,...,xα} (equation (2.67)) and hene a) follows.b) follows from the fat that due to unique forward solvability we obtain the global unstablemanifold by using the semi�ow to forward�solve the loal unstable manifold. Dissipativity,or the fat that A{x1,...,xα} ⊂ A0 ensures boundedness of the forward iteration, heneequation (2.62) follows.For d) we use the fat that
dim

(
W u

loc(v
0
{xα}

)
}

= dim
(
W u(v0

{xα}
)
} (2.69)whih is true due to forward uniqueness of solutions.For n = 2α = 2 the sub-attrator of order n = 2 onsists of all frozen waves with one zeroand heterolini onnetions to u±. In other words

A0
2 = W u

loc(F0
2 ) ∪ E0

nFor �xed x1 we have
dim

(
W u

loc(v
0
{x1}

)
= 1.From the uniqueness of frozen waves with given x1 ∈ S1 we dedue

dimA0
2 = 2For n = 2α > 2 we use

A0
n =

{
W u(u);u ∈ F0

n

}
∪ E0

n. (2.70)45



φ(x)

φ(x− 2π)

φ(x− x2)

x2

u(x, 0)

x1 = 0

y

φ(y − x2)

Figure 2.10: Unique shok-splitting of one shok in bakward time in A{x1,x2}.First we prove
dim

{
W u(u);u ∈ F0, z(u) = α

}
= 2α = n.For eah �xed set of zeros {0 ≤ x1 < · · · < xα < 2π} we have by part a) of this theorem

dim
(
W u

loc(v
0
{xα}

)
)

= dim
(
A{x1,...,xα}

)
= α.Moreover, all frozen waves v with zero-number z(v) ≤ α an be parameterised by (x1, . . . xα) ∈(

S1
)α

= T
α, hene

dimF0
n = dim T

α = α.Putting everything together we obtain by using equation (2.70)
dimA0

n = dimW u
loc({F0

n} = dimW u
loc(v

0
{xα}

) + dim T
α = α+ α = nHene d) is proven.For e) we ount dimensions to obtain uniqueness. For α = 1 the unstable manifold of v1is one dimensional, thus the onnetion must be unique.For f) we argue in the following way: the ondition ki+1− ki ∈ {0, 1} implies that at mostevery seond zero an vanish, hene we an redue the proof to the situation where

Z(v1) = {0, x2}and
Z(v2) = {0}.Let us denote the unique shok position of v2 by y and the two unique shok positions of

v1 by y1, y2.It is a onsequene of ) that in the lass of solutions A{x1,x2} all stationary shoks areunstable. In order to obtain the solution v2 with only one shok, the two shoks emanating46



form y1 and y2 onsequently have to meet at the position y in suh a way that the resultingshok is stationary.We de�ne t = 0 as the time at whih the two shoks ollide. So the question of uniquenessof heterolini onnetions redues to the question of uniqueness of shok ollisions in
A{x1,x2}, or in negative time diretion the questions of uniqueness of the splitting of shoksat a given position; but this is lear.Let u(x, t) be the solution where two shoks meet at time t = 0 at position x = y then thelower state of the left shok and the upper state of the right shok have to have the samevalue. By onstrution of Ã{x1,x2} it must be given by φ(y − x2):

lim
xցy

lim
tր0

u(x, t) = lim
xրy

lim
tր0

u(x, t)
!
= φ(y − x2).See Figure 2.10 for illustration. Note that the two limits in x and t are not interhangeable.Hene uniqueness of the splitting follows by uniqueness of bakward solutions in the aseof u ∈ A{x1,x2} with two shoks. This proves e) and the Theorem is proven.

�Note that for the situation of Theorem 2.6.1 e) we an expliitly parameterise the wholeheterolini onnetion from v1 to u±. The stationary solution v1 with Z(v1) = {x1} hasone unique shok at position y1. Then using Theorem 2.6.1 b) and ) we an parameterisethe whole onnetion manifold W u(v1) as follows: for any k ∈ Z and any y1 ∈ [2kπ, 2(k +
1)π) we de�ne

u{x1,y1}(x) :=

{
φ(x− x1 + 2kπ) for 0 ≤ x ≤ y1 − 2kπ

φ(x− x1 + 2(k − 1)π) for 2π > x > y1 − 2kπ
. (2.71)Then W u(v1) is given by

W u(v1) := {u{x1,y1} ∈ BV ; y1 ∈ R}. (2.72)Corollary 2.6.4 Again let α ∈ N and n = 2α. Then the set of heterolini onnetionsbetween two frozen waves with zero-number z ≤ α is ompletely ontained in
Ãn :=

{
Ã{x1,...,xα}; 0 ≤ x1 < · · · < xα < 2π

}
. (2.73)Proof Let v1, v2 be two frozen waves with

Z(v1) = {x1, . . . , xβ}
Z(v2) ⊂ Z(v1)for some given 0 ≤ x1 < · · · , xβ < 2π and β ≤ α. Let u(x, t) denote a heterolinionnetion between v1 and v2. Then

u(·, t) ∈ A{x1,...,xβ} ⊂ Ã{x1,...,xβ} ⊂ Ã{x1,...,xβ ,...,xα}for some xβ+1, . . . , xα and t su�iently small.Now assume u(·, t̃) /∈ Ã{x1,...,xβ ,...,xα} for some t̃ ∈ R. Then we onlude
u(·, t) /∈ Ã{x1,...,xβ ,...,xα}47



for all t > t̃ due to the over�owing property of Ã{x1,...,xβ ,...,xα}.This ontradits
lim
t→∞

u(·, t) = v2beause
v2 ∈ ˚̃A{x1,...,xβ,...,xα}where ˚̃A denotes the interior of Ã in the topology of the manifold Ã{x1,...,xβ ,...,xα}.

�Theorem 2.6.1 and Corollary 2.6.4 are quite remarkable. They do not only provide a fullparameterisation of the unstable manifolds of the F0
n, they also suggest that in analogy tothe paraboli equation it is possible to de�ne a Morse index ih as the number of unstableeigendiretions of a frozen wave.In the hyperboli setting, too there is the relation between zeros and the index but here itwould be given by

ih(u) = z(u). (2.74)This shows that for our purpose of omparing solutions for ε > 0 and ε = 0 sub-attrators
Aε

n and A0
n are a good tools.However, it is important to note that the onnetion properties of both sub-attrators areremarkably di�erent. An example of how Aε

8 looks like has already been given in Figure2.5. The situation for the A0
n is far more ompliated. Just from the de�nition of A0

n andTheorem 2.6.1 we an onlude that A0
n onsists of a α-torus T

α of frozen waves plusheterolinis. Every point on this torus has heterolinis to a sub-torus T
β and the numberof onnetions in eah point on T

α is given by (
α
β

). In addition there are onnetions to
u±.Surprisingly, Corollary 2.6.4 yields that all the heterolinis that onnet from the α-torusbak to a sub-torus are ontained in the set of all Ã{x1,...,xα} for given α ∈ N, whih wasdenoted by Ãn.We will investigate this in Chapter 4 in greater detail for the low dimensional ases.In the following Chapter 3 we will address the question whether the attrator of theparaboli equation onverges to the attrator of the hyperboli equation or, more preisely,whether every solution in Aε

n has a ounterpart in A0
n. The disussion above suggests thatthis is not the ase, beause although equation (2.74) shows similarities with equation(2.29) in the limiting proess, every seond zero in a rotating or frozen wave uε vanishes(see Remark 3.2.6). Hene for α 6= 1 the number of unstable dimensions of the frozen androtating waves in the paraboli and hyperboli setting do not math.
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Chapter 3Persistene or non-persistene?This hapter is devoted to the question of whether solutions on the global attrator of theparaboli equation (P) persist for ε → 0 or not. In other words, the guiding question ofthis Chapter is whether
lim
ε→0

uε(·, t) = u0(·, t)for uε ∈ Aε and some u0 ∈ A0. We have already determined in the introdution that thisis one of the aspets of the question whetherAε onverges to A0 for vanishing ε.The main persistene results root in a result by Fan and Hale [FH95℄ on the persistene ofheterolini orbits. We will present their theorem in the �rst setion although it is in fatwrong. However, most of the proof is orret and delivers one of our key laims: pointwiseonvergene of solutions.The orreted result will be presented in the beginning of Setion 3.2. It is the startingpoint for the proof of the main results of this Chapter:
• The persistene result for rotating waves (Theorem 3.2.5).
• The Connetion Lemma 3.2.8 that yields that whereas some heterolini onnetionspersist, others do not.
• The Casading Theorem 3.2.9, whih states that in ase a heterolini does notpersist, it onverges to a asade of heterolini solutions and frozen waves.Setion 3.3 then addresses the question of whih onnetions on the paraboli attrator donot persist. We prove the surprising result that persistene of heterolinis and asadingappears for every hoie of f and g as long as (H1)-(H3) are satis�ed.3.1 The result of Fan and HaleThe latest, most important and outstanding result on the question of persistene of het-erolini orbits on the paraboli attrator so far is the result of Fan and Hale from 1995.In [FH95℄ Fan and Hale address the question of visous regularisations of the hyperboliequation. 49



In the �rst part of the paper they investigate the onnetion problem of the global attratorof the hyperboli equation. These results were already presented in Setion 2.5. In theseond part of the publiation Fan and Hale investigate the regularised equation, whih ispreisely our equation (P).In Theorem 4.7 they state a persistene result for heterolini onnetions within thisframework. Their theorem reads:Theorem 3.1.1 If B = {uε(x, t), 0 < ε ≤ ε0} is a set of onneting (heterolini) orbitsof the paraboli equation (P), then there is a sub-sequene {uεn(x, t)} of B onverging to
u0(x, t) as ε → 0 a.e. in S1 × R where u0(x, t) is a onneting orbit of the hyperboliequation (H).Unfortunately this theorem is wrong. The laim that onvergene is a.e. on S1 × R is nottrue. As a result of this the limiting solution u0 is not neessarily a heterolini onnetion.Taking a loser look at the proof of their theorem one realises that it is almost ompletelyorret. Only their onlusion using a diagonalising sequene argument at the very end ofthe proof is wrong. This argument does not work here. And it is not solely the argumentthat is wrong. We will see that in fat the laim is wrong as well!We will see that the limit of a heterolini onnetion is a global solution, however, thisdoes not imply that this global solution is a heterolini onnetion as one might expet.An additional ompliation is the fat that the limiting objet in general depends on howthe heterolini orbits uε(·, t) are parameterised in t and how sub-sequenes are hosen.This means in general ∣∣∣Φ0

(
lim
ε→0

uε(x, t), τ
)
− uε(x, t+ τ)

∣∣∣is not neessarily small for small ε > 0 (see page 59). The reason for this is that the limitis only pointwise on ompat intervals [−T, T ], but not uniform.In general the limit of a heterolini onnetion of the paraboli equation limits to a set ofsolutions of the hyperboli equation. This set in fat is a subset of the global attrator of(H).If we look at the dimensionality of the sub-attrators introdued in the last hapter, wesee that dimA0
n = dimAε

n. However in A0
n half of the dimensions onsist of frozen waveswhereas in Aε

n the set of rotating waves is one dimensional. This already suggests thatpersistene of heterolinis might fail just for dimensional reasons. We will see that thesituation is even worse than that.3.2 Casade of heterolinisLet us state the orreted result of Fan and Hale �rst:Theorem 3.2.1 (Global Solution) Let B := {uε(x, t) ∈ Hε : 0 < ε < ε0} for some ε0 <<
1. Then there exists a subset {uεn(x, t)} of B with the property that

lim
n→∞

uεn(x, t) = u0(x, t)a.e. on S1 for all t ∈ [−T, T ]. Moreover u0(x, t) is a global solution of equation (H).50



For a better readability I inlude a full proof of the theorem. It losely follows the one inthe paper of Fan and Hale [FH95℄, pages 1251-1253; but I have inluded some additionalexplanations and referenes. The theorem is proved by using the method of ompensatedompatness, whih was developed in the 70s by Murat and Tartar see for example [Mu78℄and [Tar79℄ and referenes therein. The theorems of Funtional Analysis quoted in theproof an be found for example in the book of Werner [Wer℄.The proof uses the Div-Curl Lemma by Murat [Mu78℄:Lemma 3.2.2 (Div-Curl-Lemma) Assume that {vk}, {wk} are two bounded sequenesin L2(U,Rn) where U ⊂ R
n, suh that(i) {div vk} is ompat in W−1,2(U ; R),(ii) {curl wk} is ompat in W−1,2(U ; Rn×n).If vk ⇀ v and wk ⇀ w in L2(U,Rn), then vk · wk → v · w in the sense of distributions.Proof of Theorem 3.2.1 (Global Solution):Due to the maximum priniple and hypothesis (H3) all uε ∈ B are globally boundedin L∞. Hene there exists a sub-sequene in B denoted by {uε} again and a funtion

u ∈ L∞(S1 × R,R) suh that
uε w∗
⇀ u(x, t) in L∞(S1 × R,R) (3.1)This is a diret onsequene of the Theorem of Alaoglu-Banah in its sequential form,whih states that the unit ball in the dual spae of a vetor spae X is weak* sequentiallyompat if X is separable.We use X = L1 whih is separable and thus X ′ = L∞ and obtain that there exists asub-sequene {uε} and a funtion u(x, t) as laimed above suh that

∫

S1×R

[uε(x, t)− u(x, t)]ϕdxdt −→ 0 for ε→ 0for all ϕ ∈ C∞(S1 ×R,R). Note that it is su�ient to test with smooth funtions beause
C∞ is dense in L1.Now let g ∈ C(R) be arbitrary. Due to the global boundedness of the solutions in B wehave by virtue of the same argument

g(uε(x, t))
w∗
⇀ g(u(x, t)) := ḡ(x, t) in L∞(S1 × R,R).Then there is a family of Borel probability measures
{νx,t : (x, t) ∈ S1 × R},suh that we have the following representation:

g(uε(x, t))
w∗
⇀ g(u(x, t)) := ḡ(x, t) ≡

∫

R

g(λ)dνx,t(λ) (3.2)51



in L∞(S1×R,R). This is a onsequene of the Theorem of Radon-Nikodym. For a detailedproof see Theorem 5 in [Tar79℄.It is important to note that �probability measure� implies that the νx,t are signed.In the following we will show that νx,t is in fat a point measure at (x, t) with weight
u(x, t). This will yield the pointwise onvergene.Let ϕ ∈ C2(R) be a onvex funtion. Then we de�ne

ψ(u) =

∫ u

ϕ′(s)f ′(s)ds. (3.3)Therefore we an write
ϕ(uε(x, t))

w∗
⇀ = ϕ̄(x, t) ≡

∫

R

ϕ(λ)dνx,t(λ)

ψ(uε(x, t))
w∗
⇀ = ψ̄(x, t) ≡

∫

R

ψ(λ)dνx,t(λ)in L∞(S1 × R,R).Now we look at ∂tϕ(uε) = ϕ′(uε)∂tu
ε and obtain by using (3.1), (3.3) and the PDE (P)

ϕ(uε)t + ψ(uε)x = ε
(
φ(uε)xx − ϕ′′(uε)(uε

x)2
)

+ ϕ′(uε)g(uε). (3.4)We laim that
sup
ε>0

T∫

0

∫

S1

ε(uε
x)2dxdt <∞ (3.5)and therefore √ε∂xϕ(uε) ∈ L2(S1 × [0, T ]).To see (3.5) we use ϕ(u) = u2 in (3.4) and integrate over S1 × [0, T ]. We obtain

∫

S1

(uε(x, T ))2dx =

∫

S1

(uε(x, 0))2dx− 2

∫ T

0

∫

S1

ε(uε
x)2dxdt

+ 2

∫ T

0

∫

S1

uεg(uε)dxdt.The left hand side of this equation and the �rst and last term of the right hand side areglobally bounded for all ε > 0, hene we have obtained (3.5).We onlude εϕx(uε)→ 0 in L2(S1 × [0, T ]) and thus
εϕxx(uε)→ 0 inW−1,2(S1 × [0, T ]).Furthermore εϕ′′(uε)(uε

x)2 and uεϕ(uε) are bounded in the spae of signed Radon measureson S1 × [0, T ] with �nite mass.Now we an apply Corollary 1 of Chapter 1 of Evans [Ev90℄ whih yields that the righthand side of (3.4) is ompat in W−1,2(S1 ×R
+). Note that this remains true if ϕ is onlypieewise C2 and ontinuous. In this ase we obtain a pieewise version of equation (3.4).The argumentation remains the same and we again obtain εϕx(uε)→ 0 in L2(S1× [0, T ]).We now want to apply the Div-Curl-Lemma 3.2.2. We de�ne two sequenes:

vε :=(f(uε), uε) (3.6)
wε :=(ϕ(uε),−ψ(uε)). (3.7)52



Then by (3.2) we have
vε · wε

w∗
⇀

∫

R

[f(λ)ϕ(λ) − λψ(λ)]dνx,t(λ).The Div-Curl-Lemma provides
vε · wε

w∗
⇀ v̄ · w̄ = (f̄ , u) · (ϕ̄,−ψ).Hene we obtain

∫

R

[f(λ)ϕ(λ) − λψ(λ)]dνx,t(λ) = f̄(x, t)

∫

R

ϕ(λ)dνx,t(λ)− u(x, t)
∫

R

ψ(λ)dνx,t(λ)whih is equivalent to
∫

R

[
(f(λ)− f̄(x, t))ϕ(λ) + (u(x, t) − λ)ψ(λ)

] dνx,t(λ) = 0. (3.8)We now hoose ϕ(λ) = |λ− u(x, t)| whih is in fat only C0 (but pieewise C2), then
ψ(λ) =

∫ λ

f ′(s)ϕ′(s)ds = sign(λ− ū(x, t))(f(λ) − f(ū(x, t))).With this equation (3.8) redues to
(
f(ū(x, t)) − f̄(x, t)

) ∫

R

|λ− u(x, t)|dνx,t(λ) = 0.Thus, one of the fators must be zero, this either leads to
f(ū(x, t))− f̄(x, t) = 0 (3.9)or to
supp{νx,t} = {u(x, t)}.Realling the de�nition of f̄ in equation (3.2) we observe that supp{νx,t} = {u(x, t)} againimplies equation (3.9).Now we hoose ϕ(λ) = f(λ) − f(u(x, t)) and therefore ψ(λ) =

∫ λ
(f ′(s))2ds. In this ase(3.8) takes the form

∫

R

[
(f(λ)− f(u(x, t))2 − (λ− ū(x, t))

∫ λ

u
(f ′(s))2ds] dνx,t(λ) = 0. (3.10)We use Hölder's inequality for the �rst term of the integrant and obtain:

(f(λ)− f(u(x, t))2 =

(∫ λ

u
f ′(s) · 1ds)2

≤ (λ− u)
∫ λ

u
(f ′(s))2ds.Hene the integrant of equation (3.10) is either zero or negative, therefore it must be zero.Here we have used the fat that νx,t is a probability measure. From the fat that theintegrant of (3.10) is zero we onlude that either f ′ ≡ const or λ = u(x, t) and therefore

λ = u(x, t)53



beause f ′′ > 0 due to (H1).We now have obtained that νx,t is a point measure at (x, t) with weight u(x, t) but thisimplies that the onvergene of uε to u is pointwise a.e. on S1 for all times t ∈ [0, T ].The same argument works for negative times hene we have pointwise onvergene a.e. on
S1 × [−T, T ].Beause T was arbitrary, u(x, t) is globally bounded for t ∈ R. Otherwise there would exista time t0 and a point x0, suh that u would have to beome large in a neighbourhoodof (t0, x0). That is impossible beause |uε| is globally bounded by max{|u−|, |u+|}. Thisyields that u(x, t) is a global solution of the hyperboli equation (H).Due to the global boundedness of the uε it is lear, that u0 is a solution of the hyperboliequation. One just has to apply the Theorem of Dominated Convergene to the weakformulation of the paraboli equation and let ε→ 0.

�Certainly the question arises why �global solution� does not imply �heterolini onnetion�in this ase. The main obstale for this is the ourrene of additional equilibria. Figure 3.1illustrates why �global solution� does not neessarily imply heterolini onnetion whenadditional frozen waves our in the limiting proess. Both panels show the (ε− t) plane,every point represents a solution pro�le u(·) ∈ L∞. The t-variable is ompati�ed. Bothpanels show the same set of heterolini orbits uε(·, ·) and its limit in ε. Panel a) depitsthe onvergene of a solution for t ∈ [−T, T ]. Beause uε(·, 0) onverges to an equilibriumthe length overed by uε(·, t), t ∈ [−T, T ] gets shorter with smaller ε and vanishes for
ε = 0. This is true for all �nite T .In b) we have shifted u0(·, 0) of Panel a) to the left to a solution û0 where we set t = 0.Again we investigate a sequene of ûε(·, 0) onverging to the û0(·, t) now inluding time.What used to be a one beomes trapezoidal. If we let t go to∞ then the limiting funtions
û0(·, t) for t ∈ [−T, T ] will onverge to the heterolini onnetion of the left and entreequilibrium. This idea will be used in Theorem 3.2.9. Note that the dashed urves in the�gure are in general just urves and do not neessarily have to be straight lines as depited.Note that in both ases we do not have persistene allthough in Panel b) we have onver-gene to a heterolini onnetion, but the heterolini orbit does not onnet the limitsof target and soure of the paraboli onnetion.Let us now state two orollaries to the Global Solution Theorem. The �rst one onernsrotating waves.Corollary 3.2.3 Let B := {uε(x, t) ∈ Fε ∪Rε; 0 < ε < ε0} for some 0 < ε0 << 1. Thenthere exists a subset {uεn(x, t)} of B with the property that

lim
n→∞

uεn(x, t) = u0(x, t)a.e. on S1 × [−T, T ]. Moreover u0(x, t) is a global solution of (H).Seond, we make a statement on all possible limits of solutions in the set B:Corollary 3.2.4 Let B be de�ned as in Theorem 3.2.1 and let all parameterisations in tbe �xed. Let u ∈ BV (S1 × [−T, T ],R) with
u(x, t) := lim

n→0
uεn(·, τn + t)54



a)

b)

ε = 0

ε→
0

−∞ ← t t→∞

u0
α

ûε(·, 0) ûε(·, T )

ε = 0

uε(·, 0)

ε→
0

uε(·,−T ) uε(·, T )

−∞ ← t t→∞
u0(·, 0)

u0
α

ûε(·,−T )

û0(·,−T )

û0(·, T )

û0(·, 0)

ûε(·, 10T ) uε
b

uε
b

uε
a

uε
a

u0
β

u0
β

û0(·, 10T )Figure 3.1: Convergene of a heterolini orbit onneting uε
a and uε

b for ε → 0. The dotssymbolise the frozen waves for ε = 0, the small irles rotating waves for ε > 0. For ε = 0an additional frozen wave appears in the middle. In Panel a) onvergene to the entrefrozen wave is depited. In Panel b) onvergene for ûε(·, ·) is displayed . It is lear whythere is no uniform onvergene for all t ∈ R in this ase.
55



a.e. on S1 × [−T, T ] for sequenes {εn} → 0 and {τn} and all bounded T ∈ R. Then
u(·, t) ∈ A0.Proof. Certainly u must be globally bounded and due to the onvergene of the limit bea solution of the hyperboli equation. Therefore it must be a global solution and hene
u(·, t) ∈ A0.

�In the ase of rotating waves Corollary 3.2.3 an be improved onsiderably. The limitingobjet is not only a global solution but again a frozen wave of the hyperboli equation.This is the ontent of the following Theorem. Note that we use ODE theory here to obtaina muh stronger result regarding onvergene. We prove onvergene for all ε.Theorem 3.2.5 (Rotating Waves) Let a = 2α for α ∈ N and uε
a be the up to shiftunique rotating or frozen wave of (P) with the property

z(uε
a) = a

uε
a(0, 0) = 0Then the limit

lim
ε→0

uε
a(x, t) = u0

α(x, t)exists almost everywhere and u0
α(x, t) is a frozen wave of the hyperboli equation (H) with

z(u0
α) = α. (3.11)Proof. We perform the proof in several steps:(i) For the existene of the limit we assume a = 2, the other ases just work with thesame argument.We observe that, aording to Lemma 2.3.5, the rotating wave vε

a assoiated to uε
a(·, t)and its derivative lie in a o(ε) hannel around φ(x) outside a ε log ε-neighbourhoodof some x2(ε).Beause x2(ε1)− x2(ε2) < C|ε1 − ε2| for some onstant C, the limit of uε for ε→ 0exists outside any open neighbourhood of x2 and is in fat uniform. This proves theexistene.(ii) It remains to prove that u0 is a rotating wave. From Corollary 3.2.3 we obtain that

u0(x, t) is a global solution and therefore lies on the attrator. Beause it onvergesuniformly to φ outside a neighbourhood of x2, the solution u0 neither an be ahomogenous solution, nor a heterolini onnetion. From equation 2.47 follows thatit must be a rotating wave whih is unique up to shifts. This proves the laim.(iii) The relation between the zero-numbers of the paraboli wave and the hyperboli oneis obvious. All frozen waves for ε = 0 have positive derivative in all their zeros (seeSetion 2.6). We have seen that these persist. For ε > 0 all rotating wave pro�lesare ontinuous and thus have alternating signs in the derivative. Together with thealready proved persistene this yields (3.11).56



Remark 3.2.6 The relation of the zero-number between solutions on the paraboli attra-tor uε ∈ Aε and their limits is true for all elements u ∈ Aε. The zero-number drops by onehalf when taking the limit ε→ 0, ounting multipliity in the ase of double zeros.This immediately implies
lim
ε→0
Aε

n ⊂ A0
n (3.12)in the sense of solutions.The zero-number property is true beause all solutions u ∈ A0

n have the property that thederivative in the zero is positive. Assume u has a zero at x0 with negative slope, then usingthe bakward harateristi emanating from x0 we onlude that the limit in bakwardtime u−∞ has also a zero at x0. The sign of the derivative annot hange, hene it isnegative. This ontradits the fat that u−∞ must be a frozen wave. Beause the sign ofthe derivative in the zeros of all uε alternates, the zero-number drops by one half. Moreoverit must be �nite for ε 6= 0.Coming bak to rotating waves, we summarise that all rotating waves persist for ε → 0.Moreover there is the relation between the zero-number of the rotating wave for ε > 0 andthe number of zeros of the limiting frozen wave.De�nition 3.2.7 Let a := 2α for some α ∈ N be given and let ε0 be su�iently small.Then uε
a(·, ·) denotes the up to rotation unique rotating wave with zero-numbers z = a forall 0 < ε < ε0.The set of rotating and frozen waves uε

a with a given zero-number z(uε
a) = a shall be denotedby

Ba := {uε
a ∈ Fε ∪Rε : 0 < ε < ε0} .Moreover we �x the notation of Theorem 3.2.5 by de�ning

u0
α(·, t) := lim

ε→0
uε

a(·, t).As mentioned above, the persistene result that is valid for rotating waves, is not true forheterolini orbits although Theorem 3.2.1 yields onvergene to a global solution. Thenext Lemma will provide a riterion when heterolini orbits annot persist. In order toprove this riterion we de�ne the set of heterolini orbits onneting two rotating waves
uε

a and uε
b with zero-number a and b by

Bab :=

{
uε ∈ Hε : lim

t→−∞
uε(·, t) = uε

a, lim
t→∞

uε(·, t) = uε
b, 0 < ε < ε0

}
. (3.13)The rotating wave uε

a is alled the soure and uε
b the target.Lemma 3.2.8 (Connetion Lemma) Let Ba, Bb and Bab be de�ned as above with a =

2α and b = 2β for α, β ∈ N and let uε ∈ Bab with
u0(x, t) := lim

n→∞
uεn(x, t) (3.14)a.e., where εn is a sequene for whih the uεn onverge due to Theorem 3.2.1.If

lim
t→−∞

u0(·, t) = u0
α(·) and lim

t→∞
u0(·, t) = u0

β(·)57



for all �xed time parameterisations of u(·, t). Then there exists a k ∈ N suh that
a = kb. (3.15)In other words, if a 6= kb for all k ∈ N then the limit of the heterolini orbits onnetingthe rotating waves uε

a and uε
b does not onnet the limits of the rotating waves given by u0

αand u0
β, thus the heterolini onnetion annot persist.Proof. For all 0 < ε < ε0 the rotating waves uε

a and uε
b are periodi solutions of therotating wave equation. Their period is given by Ta = 2π

α and Tb = 2π
β .If the heterolini onnetion uε(·, t) persits, u0

α and u0
β have to be onneted by a hetero-lini orbit. Aording to Theorem 2.5.12 this implies

Z(u0
β) ⊂ Z(u0

α). (3.16)Taking the limit ε→ 0 for the rotating waves, we obtain that the zeros of u0
α and u0

β mustbe periodi in x and the distane of neighbouring zeros is given by Ta and Tb respetively.Then equation 3.16 implies
Tb = kTafor some k ∈ N.Hene
α = kβwhih implies
a = kbjust as desired.

�The fat that on the global attrator of the paraboli equation all rotating waves areonneted to all waves with stritly lower Morse index, implies that the ondition in theonnetion Lemma 3.2.8 is non-empty.In ase of non-persistene there is muh more to say. In fat in the next theorem we willprove that the limit of the heterolini onnetions onsists of a �nite asade of heterolinionnetions.In order to prove this statement we have to irumvent the problem that the parameteri-sation in t gets �stuk� in an emerging stationary state. We have heuristially argued thatthis an happen (see Figure 3.1). We will make this argument rigorously here.For this purpose we again use the set Bab and assume that
lim
ε→0

uε(x, t) = u0(x, t) a.e. on S1 × [−T, T ]but
lim
t→∞

u0(·, t) 6= u0
β(·).Without loss of generality we an assume u0(·, t) ∈ F0 otherwise we ould use limt→∞ u0(·, t)for the argument. Additionally u0(x, t) shall not orrespond to the target frozen wave u0

β .58



Then the following is true: there is a δ > 0 suh that for every su�iently small ε > 0there exists a T̃ > 0 suh that
||uε(·, T̃ )− u0(·, T̃ )|| > δ. (3.17)It is obvious that on the one hand

u0(·, T̃ ) = u0(·, 0).On the other
uε(·, T̃ )→ uε

β(·)for T̃ →∞.Hene
||uε(·, T̃ )− u0(·, T̃ )|| = ||uε(·, T̃ )− u0(·, 0)|| → ||uε

b(·)− u0(·)||for T̃ →∞.But ||uε
b(·) − u0(·)|| > δ. If this was false then u0(·, T ) would onverge to the targetequilibrium whih was exluded. In fat we an hoose any 0 < δ < ||u0

β(·)− u0(·)||.We have not spei�ed any norms here. This was not neessary as the argument holds forthe L1, the L2 or the L∞ norm.This means nothing else than that, no matter how large T is hosen, for all ε > 0 there isalways a part of the heterolini orbit u(·, t) for t > T that lies outside the one of onver-gene (see Figure 3.1). We therefore introdue a di�erent parameterisation to irumventthis problem.In order to do this we have to use the onept that all heterolini onnetions are embeddedmanifolds in the extended phase spae. In other words, the graph of the map
uε : R→ L2

t 7→ uε(·, t)given by (uε(·, t), t) de�nes an embedded manifold in L2×R. Due to the global boundednessof all uε , this graph is also a manifold in L∞ × R.We now introdue a di�erent parameterisation by the transformation
τ :=

t

||uε
t (·, t)||L2and de�ne:

U ε(τ) := uε(·, t).In ase there are τ± with U ε(τ±) = uε
a,b then we de�ne

U ε(τ) := U ε(τ−) for τ < τ−

U ε(τ) := U ε(τ+) for τ > τ+.This ompensates for the fat that in the ase uε
a and uε

b are frozen waves U(·) an have�nite length.We now have U ε : R → L2 and graph(U ε(·)) = graph(uε(·)) but graph(U(·)) is parame-terised by ar length. 59



The map U ε(·) : R→ L2 is di�erentiable and we have
||∂τU(τ)|| =

∣∣∣∣

∣∣∣∣
uε

t

||uε
t ||

∣∣∣∣

∣∣∣∣ = 1,hene the U ε are a bounded sequene of equiontinuous funtions and therefore have, afterpossibly taking a sub-sequene, a ontinuous limit U0 for all τ ∈ [−τ−, τ+] for arbitrarybut �nite τ±. Hene U0(·) is again a manifold that an be parameterised by τ and is loallyonneted.The new parameterisation has the important property that it annot get �stuk� as theparameterisation over the t ould.Before stating the Theorem, we add the following notion: we say that U ε̃(τ2) lies to theright of U ε̃(τ1) on U if and only if τ2 > τ1 for �xed ε̃.Theorem 3.2.9 (Casading) Let again
Bab :=

{
uε ∈ Hε : lim

t→−∞
uε = uε

a, lim
t→∞

uε = uε
b 0 < ε < ε0

}
,where a = 2α and b = 2β.Then there exists a sub-sequene {εn} → 0 of {ε} suh that the limit in n of the uεn ∈ Babonsists entirely of frozen waves or of a asade of heterolini onnetions interrupted bysetions of frozen waves.There are at most α−β di�erent heterolini orbits and α−β+1 setions of frozen waves.Proof. We begin the proof by de�ning the set of all possible limits of Bab denoted by U1.Let therefore Γ1 be the set of all sub-sequenes {εn} and {τn} for whih

lim
n→∞

U εn(τn + τ)onverges to a BV-funtion U0
{εn},{τn}

(τ) suh that, if we de�ne
uεn(·, 0) = U εn(τn)then uεn(·, t) → u0(·, t) a.e. on S1 × [−T, T ] for all �nite T ∈ R. The set of all thesefuntions shall be denoted by

U1 :=
{
u{εn},{τn} ∈ BV ; ({εn}, {τn}) ∈ Γ1

} (3.18)then Corollary 3.2.4 yields U1 ⊂ A0.The following proof is a �nite indution with respet to the number of heterolini orbitsin U1.If U1 ∩ H0 = ∅ then the limit of the heterolini onnetions in Bab does not ontain aheterolini onnetion of equation (H). Hene the Theorem is true.Therefore assume ∃({εn}, {τn}) ∈ Γ1 suh that
u0

1(x, 0) := lim
n→∞

U εn(τn)60
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Figure 3.2: Shemati plot to illustrate the onstrution in the proof.is not a frozen wave or equilibrium of equation (H) and thus lies on a heterolini onne-tion. Without loss of generality we assume that
lim

t→−∞
u0

1(·, t) 6= u0
α(·) or lim

t→∞
u0

1(·, t) 6= u0
β(·)otherwise the heterolini orbit persists and we are �nished.Let us assume

lim
t→∞

u0
1(·, t) = u0

γ1
(·) 6= u0

βDue to the Sturm property the number of zeros an only drop along heterolinis for ε > 0,the same is true for ε = 0 (see as well equation (2.49)). We onlude that
z(u0

γ1
) ≤ α− 1beause the soure of the heterolini an have at most α zeros. Here we have used thefat that the number of zeros in any u0(·, t) has at most α many zeros, by Remark 3.2.6.We go bak to ar length parameterisation. Beause u0

γ1
6= u0

β there must be a sequene τ̃nsuh that
lim

n→∞
U εn(τ̃n) = u0

γ1
.We now de�ne

Γ2 ⊂ Γ1to be the subset of sub-sequenes ({εm}, {τm}) ∈ Γ1 with the property that they lie rightof τ̃n:
• ({εm}, {τm}) ∈ Γ1

({εm}, {τm}) ∈ Γ1 ⇔ • {εm} sub-sequene of {εn} and
• τm > τ̃mIn analogy to U1 we de�ne

U2 :=
{
u{em},{τm} ∈ BV ; ({em}, {τm}) ∈ Γ2

}
.61



Due to the fat that z(u0
γ) ≤ α− 1, we have the property that

z(u0(·, t)) ≤ α− 1holds for all u0(·, t) ∈ U2. Again we use the fat that the zero-number dereases in bothequations (P) and (H).There are two ases:
• Either U2 ∩ H0 = ∅. Then all parts of the heterolini onnetions that lie to theright of the U εm(0) onverge to frozen waves.
• Or there are other heterolini onnetions in U2. Let u0

2(x, t) ∈ U2 have the propertythat z(limt→−∞ u0
2(·, t)) is maximal among all heterolini onnetions. Then we have

z( lim
t→∞

u0
2(·, t)) ≤ α− 2.We now repeat the above onstrution until the set Uk ∩H0 = ∅. Beause α is �nite,

k must be �nite as well.The same onstrution works in negative time diretion with �nitely many steps. Henewe have found a sub-sequene again denoted by {εn} for whih the set of heterolinionnetions U εn(·) onverges to a sequene of heterolini orbits interepted by setionsof frozen waves. There an be at most α − β heterolinis, and onsequently α − β + 1setions of stationary solutions in the limit, beause the number of zeros has to drop atleast by one in every heterolini onnetion.Thus the theorem is proven.
�Remark 3.2.10 F0

α an be parameterised ompletely by its zeros and therefore is a αdimensional torus T
α embedded in BV (S1,R); see Setion 2.6. All setions of frozen wavesof a asade of heterolinis in the above Theorem 3.2.9 are ontained in this manifold.As a Corollary to Theorem 3.2.9 we obtain two neessary onditions on the persistene ofa heterolini orbits.Corollary 3.2.11 (Persistene) Let uε(x, t) be a heterolini orbit onneting uε

a with
uε

b. Then the following statements are true:(i) Let the set U1 de�ned in (3.18) ontain at least one solution u0(x, t) that is notstationary. If
lim

t→−∞
u0(·, t) = u0

α(·)and
lim
t→∞

u0(·, t) = u0
β(·)then the heterolini onnetion uε(x, t) persists.(ii) Let U1 ∩ F0 = {u0

α, u
0
β} then the heterolini orbit persists.62



Now we have settled the question of persistene. The Connetion Lemma 3.2.8 provides aneessary ondition for the persistene of heterolini onnetions between given rotatingor frozen waves. Corollary 3.2.11 yields two independent su�ient onditions for the per-sistene of a heterolini orbit.In addition Theorem 3.2.9 gives a result on the struture of the limit of heterolini on-netions in ase of non-persistene: a asade of heterolini onnetions in A0.In the following and last setion of this hapter we will ombine the results on persistenewith the result from Setion 2.4 on the onnetion problem of the global attrator ofequation (P). A more detailed analysis of the geometrial properties of the global attratorswill follow in Chapter 4.3.3 Persistene and non-persistene!In this setion we will show that for all hoies of f and g satisfying the assumptions(H1)-(H3) there exist heterolini onnetions in Hε that do not persist for ε → 0. Thenext hapter will yield that there are always onnetions that do persist, however theseresults of persistene are so far limited to low dimensional ases.We have seen in Setion 2.4 that on the global attrator of the paraboli equation a solution
u1 ∈ Eε ∪ Fε ∪Rε is onneted to another solution u2 ∈ Eε ∪ Fε ∪Rε if and only if

i(u1) > i(u2). (3.19)Figure 3.3 shows the sub-attrators Aε
4, Aε

6,and Aε
8 in the upper part and Aε

10 and Aε
14 inthe lower part. In the �rst three illustrations the onnetions to the onstant states u ≡ u±are also inluded, whereas we have omitted these onnetions in the two lower pitures.Equation (3.19) yields that the attrator possesses a gradient-like struture, hene the �owon all onnetions points downwards (see Figure 2.5).Our main onern regards the question whih of the onnetions do not persist. Lemma3.2.8 yields a purely algebrai relation on the zeros to deide this. The only heterolinionnetions that possibly persist are the ones where the zero-number of the target wave isa natural fration of the zero-number of the soure. Hene the heterolinis in the set Babde�ned in 3.13 possibly persist if there exists a k ∈ N suh that

a = kb. (3.20)In Figure 3.3 the onnetions that satisfy equation (3.20) are drawn as solid lines, theonnetions that violate equation (3.20) are drawn with dashed lines. These onnetionsare the ones where we know a priori that they do not persist. So all sub-attrators largerthan Aε
4 ontain onnetions that do not persist. All �gures are independent of the hoieof f and g.The next Chapter will yield persistene of some onnetions, but only for limited lowdimensional examples. The general question or whether onnetions that ful�l equation(3.20) persist or not, annot be answered yet, but will be disussed in some detail in theConlusion in Chapter 5. 63
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Figure 3.3: Depited are the sub-attrators of order n = 4, 6, 8, 10 and 14. Heterolinisthat do not persist are drawn with dashed lines.
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Chapter 4The geometry of sub-attratorsIn this hapter we will investigate the impliations of our main results of the last hapterson the geometry of sub-attrators and the relation of solutions in A0
n and Aε

n. We willinvestigate topologial aspets of the manifold Ãn and use this knowledge to desribethe geometry of the heterolini onnetions of the paraboli equation. Here, �geometridesription� does not mean to draw further images on onnetion properties but to desribethese onnetions as manifolds in L2×R and, by doing so, shed some light on the topologyof the Aε
n. Not all of the results presented are rigorous.The main obstale in making all results on the geometry and topology of the Aε

n rigorousis that we have not addressed the spetral problem of the paraboli or hyperboli equation.The problem is that the pointwise onvergene of solutions (Theorem 3.2.1), the result onthe dimensions of sub-attrators dimA0
n = dimAε

n (Theorem 2.6.1) and the zero propertiesof solutions (Remark 3.2.6) only imply
lim
ε→0
Aε

n ⊂ A0
nin the sense of sequenes and solutions, but not

lim
ε→0
Aε

n = A0
n.In other words we do not know whether the limiting proedure is surjetive. In orderto prove surjetivity we would need results on the onvergene and persistene of thetangent vetors of the manifolds. If we restrit ourselves to neighbourhoods of the rotatingand frozen waves (whih would be su�ient in our ase) we would need a result on theonvergene of eigenvetors assoiated to the eigenvalue problem

εϕxx − f ′′(uε)(uε
x)2ϕ− f ′(uε)ϕx + g′(uε)ϕ = λϕ (4.1)for waves uε ∈ Fε ∪ Rε to the eigenvetors of the hyperboli problem and ertain εindependent bounds on the assoiated spetral projetions. The di�ulties are manifoldhere:

• There is no generi way to expliitly ompute the eigenvetors of (4.1)
• Equation (4.1) is only self-adjoint with respet to a salar produt that expliitlydepends on ε, hene the spetral projetions assoiated with these eigenvetors alsodepend expliitly on ε. 65



• The target manifold W u(u0
α) for u0

α ∈ F0 given by A{x1,...,xα} is not C1 on BV × Ror L∞ × R but only Lipshitz.
• The dimensions of the unstable manifolds for ε = 0 and ε > 0 do not math:

lim
ε→0

(dimW u(uε)) 6= dimW u(u0)for uε → u0.We have seen already that in the ase z(uε) > 2, uε a frozen wave
dim (W u(uε)) = i(uε) = z(uε)− 1 6= dimW u(u0)) = z(uε)/2We do not attempt to overome all these di�ulties here, but we will sometimes make thefollowing assumption:Assumption (D) Let uε

a ∈ Fε ∪Rε with z(uε
a) = a and limε→0 u

ε
a = u0

α. Then there existfor all ε0 > ε > 0 neighbourhoods N ε of uε
a in Aε

n and a neighbourhood N0 of u0
α in A0

nsuh that
lim
ε→0

N ε = N0i.e. for all u0 ∈ N0 there exists a sequene uε ∈ N ε suh that limε→0 u
ε = u0 and all

u0 ∈ N0 are limits of a sequene of uε ∈ N ε.Geometrially Assumption (D) states in partiular, that the dimension of a neighbourhood
N ε of a rotating or frozen wave in Aε

n does not hange in the limiting proess.Now let us investigate the sub-attrators of the lower dimensions. We will do this forgeneral f and g, but if expliit representations of solutions are plotted we use the speialase where the soure term g is odd and the transport term f is even and given by
f(u) :=

1

2
u2 g(u) := u(1− u2). (4.2)In priniple expliit representations of solutions an be given for all f and g one thestationary problem of the hyperboli equation given in equation (2.53) is solved.Let me inlude a tehnial note: In the following we will ompare the solutions of thehyperboli and paraboli equations. Although the solution of the paraboli equation doesnot possess shoks in the sense of disontinuities, we will refer to the zeros that develop inthe limit ε → 0 disontinuities as well as shoks. In addition when we refer to a drift ofzeros in the hyperboli setting, we mean a drift with respet to the parameterisation onthe respetive manifold.4.1 The sub-attrators A0
2 and Aε2Aording to the de�nition of A0

2 given in equation (2.50) in Chapter 2, the sub-attrator
A0

2 onsists of all frozen waves with zero-number z = 1, the two stable homogeneousequilibria u ≡ u± and all heterolini onnetions between these objets.The frozen waves form a sub-manifold of A0
2 that an be represented as an S1.66
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Figure 4.1: Geometri representation of the sub attrator A0
2.
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Figure 4.2: Stereographi projetion for the ase x1 = 0.Due to Theorem A (2.5.10) in Chapter 2 all frozen waves are onneted to u(x) ≡ u±.Theorem C (2.5.10) states that these are all heterolini onnetions in A0
2 and Theorem2.6.1 e) yields uniqueness of these heterolinis. Equation (2.71) provides together withequation (2.72) an expliit parameterisation of these onnetions W u(F0

2 ). Hene we an67



de�ne an expliit embedding
Σ2 : S1 ×R→BV (S1,R)

(x1, y1) 7→Σ2(x1, y1) := u{x1,y1}where u{x1,y1} is de�ned in equation (2.71). The �ow on graph(Σ2) an be omputedexpliitly and is given by equation (2.63) in Theorem 2.6.1 ).By a stereographi projetion S we an map the whole objet onto the surfae of a ball,thus obtaining a representation of A0
2 as an S2, shown in Figure 4.1.The stereographi projetion S is outlined in Figure 4.2 where we have set x1 = 0. Inthe �gure the heterolini onnetion on the S2 is depited in blak, the frozen wave isdepited in red. The expliit parameterisation of the heterolini by the shok position

y1 ∈ R is represented by the blue line. If we see Figure 4.2 as one slie of Figure 4.1 we anunderstand how solutions evolve along the heterolinis on the S2. The three diagrams onthe right in Figure 4.1 show shematially how the shape of these solutions evolves.Can we use this desription to desribe the paraboli sub-attrator Aε
2? There all rotatingwaves with Morse index i = 1 are given by

uε(x− c(ε)t) = uε
1(x+ θ)with θ ∈ S1. In a o-moving oordinate system every rotating wave an be frozen. Everynow frozen wave is onneted by a heterolini orbit to u+ and u−. Due to Theorem 3.2.5all rotating waves persist, hene we have onverge to the red S1 in Figure 4.1 for ε→ 0.Due to Corollary 3.2.11 all heterolini onnetions persist as well. By uniqueness of theheterolini onnetions in A0

2 we obtain that
lim
ε→0
Aε

2 = A0
2,where this limit is understood as a limit of sequenes and solutions. Furthermore there isa one-to-one orrespondene between orbits on the sub-attrators, hene A0

2 and Aε
2 are

C0-orbit equivalent. Thus the above expliit desription of A0
2 is a leading order desriptionof Aε

2 in the appropriately o-rotating oordinate system.This desribes the geometry of these heterolini onnetions of the paraboli equation in�rst order in a ompletely rigorous way, beause we have not used Assumption (D) here.4.2 The sub-attrators A0
4 and Aε4We begin with the analysis of the sub-attrator of the hyperboli equation. Theorem 2.6.1yields dimA0

4 = 4 and Corollary 2.6.4 states that all onnetions between rotating wavesare ontained in Ã4 de�ned in equation (2.73). However, this does not yet explain thetopology of the sub-attrator A0
4.Following the de�nition of A0

4 := E0
4 ∪ F0

4 ∪ H0
4 we will �rst lassify all homogeneousequilibria and frozen waves. It is lear that E0

4 = {u−, u+}. Due to Sinestrati the frozenwaves an be uniquely parameterised by the position of their zeros x1, x2, so they form atwo-torus:
F0

4 = T
2 := S1 × S168
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Figure 4.3: Heterolini onnetions in A0
4 with targets u ≡ u±.The torus also ontains the frozen waves F0

2 =̂S1 that possess only one zero.Eah element of this torus has a heterolini onnetion to the homogeneous equilibria
u ≡ u±. This an be depited by a spindle with a quadrati horizontal setion and u±loated at the top and bottom. See Panel a) in Figure 4.3. The heterolini onnetionsare plotted in blak or green and the frozen waves in red. The edges of the red quadratihorizontal setion have to be identi�ed in order to obtain the torus. The sub-attrator
A0

2 is ontained in this piture as well and is depited in green. Figure 4.1 is obtainedafter identi�ation of the two orners involved that lie on the torus F0
4 . Note that we havenot plotted all heterolinis in Figure 4.3. The omplete spindle is �lled with heterolinisstarting in F0

4 and ending at u ≡ u±.The more interesting part of A0
4 is the part of the attrator that onsists of all frozen waves

F0
4 and the heterolini onnetion between these waves. Theorem C (2.5.12) at the endof Setion 2.5 yields that every frozen wave ũ with zero-number z(ũ) = 2 is onneted totwo waves ũa, ũb with zero-numbers z(ũa,b) = 1.If we look at Panel a) in Figure 4.3, this means nothing else than that every point on thetorus of frozen waves that is oloured in red has two heterolini onnetions to two pointson the green urve on that torus. This is shown in Panel b) where we have parameterisedthe torus by the zeros (x1, x2) given as the horizontal and vertial axes. Some (but notall) heterolinis are shown in blak for illustration. The lines are vertial if the zero x1persists, horizontal if the zero x2 persists. In priniple there should be two heterolinisemerging at every point. The one arrow oloured in blue represents the heterolini orbitshown in Figure 2.6 in Chapter 2 for Burgers equation.The uniqueness result in Theorem 2.6.1 f) guarantees the uniqueness of these onnetionsand equations (2.56) and (2.56) provide an expliit parameterisation of these onnetions.69



To show the omplete onnetion piture it is onvenient to use another representation thatdivides out the S1 symmetry. This representation is shown in Figure 4.4 and will proveuseful for the omparison with the global attrator of the paraboli equation.To understand the Figure it is best to start with the red vertial line. This line represents
F0

4/S
1: the manifold that ontains all frozen waves with zero-number z = 2 after havingdivided out the S1 symmetry. The entre point (in blue) on this line is the π-periodifrozen wave with equidistant zeros. This is the only wave on the red line that is a limit ofwaves of the paraboli equation. No other waves on the red line an be obtained as limitsof waves for ε → 0. If they were, the rotating wave equation (2.7) would have to haveself-interseting solutions, whih is impossible (ompare with Figure 2.3 Panel b)).The oordinates on the red manifold are given by the distane between the two zeros x1and x2. On the bottom the distane is zero, in the middle at the blue dot it is π andthen it goes to zero again towards the top. x1 and x2 hange in suh a way that the twoshoks always remain in the same position (for Burgers equation (4.2) this means due tosymmetries that x1+x2

2 = π along the red manifold). The three solution pro�les drawn inred show how the solutions evolve along the manifold. The red manifold is also inludedin Panels a) and b) of Figure 4.3 as a red dashed line with a blue dot on the torus T
2 inase of Burgers equation.Eah of the frozen waves has two onnetions to frozen waves with z = 1, one onnetionwhere the zero x1 persists and one where x2 persists. These are represented by the blakarrows onneting to the green irle representing F0

2 . To the left x1 persists and to theright x2 persist, this indues oordinates on the irle of frozen waves with zero-number
z = 1. The green solution pro�les in Figure 4.4 indiate how solutions evolve along theirle. A lokwise rotation along the S1 in the �gure orresponds to a shift of the solutionto the right.Now we are ready to inlude the S1 symmetry in the �gure that was divided out before.To do this we just have to rotate the whole �gure along a irle in transverse diretionattahed to the blue dot representing the wave with two equidistant zeros. We obtain a�lled torus where we have a �gure similar to the one in Figure 4.4 in every slie.Inside the torus the red line and the heterolini onnetions rotate one around the entrepoint with higher symmetry (blue point) and therefore form a spiral. Figure 4.5 shows ageometri representation of this. We have plotted half of the torus. The blue line orre-sponds to the frozen waves in A0

4 that are limits of waves of the paraboli equation withzero-number z = 4. The heterolinis are shown only in the beginning and the end . Theyrotate with the red manifold and are always perpendiular to that manifold. There is aolour gradient inluded to illustrate the rotation of the heterolinis. Note that the green
S1 does not rotate. Heterolinis in the same olours orrespond to eah other. The greenirle orresponds to the green irle in Figure 4.4. To obtain the full piture we have toidentify all points on the surfae of the torus with the green S1, hene retrat the torussurfae to the S1!The result on uniqueness of the heterolini in Theorem 2.6.1 yields uniqueness of allheterolini onnetions desribed above. In partiular all onnetions are one-dimensional.It follows that A0

4\W s(u±) is in fat a three-dimensional manifold that an be representedas desribed.Let us turn to the paraboli equation. We will fous on the part of rotating and frozen70
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Figure 4.4: Heterolini onnetions in A0
4 from frozen waves with zero-number z = 2 towaves with zero-number z = 1. The S1 symmetry is divided out.
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lim
ε→0

(F ε
4\F ε

2)=̂S1

Figure 4.5: Torus representing W u(F0
4 ) ∩⊤ W s(F0

2 ) after identi�ation of the two ends ofthe ylinder and identi�ation of the surfae with the S1 drawn in green.waves with z = 4 to waves with z = 2. The onnetion between two individual waves uε
4with z(uε

4) = 4 and uε
2 with z(uε

2) = 2 is due to the transversality result of stable andunstable manifolds in equation (2.38)
W u(uε

4) ∩⊤ W s(uε
2)two-dimensional. This has to be properly interpreted. In the time dependent frameworkthe above means that there exist two heterolini onnetions û and ũ with

lim
t→−∞

ûε(x, t) = uε
4(x, t)

lim
t→−∞

ũε(x, t) = uε
4(x, t)that onverge in forward time to appropriately shifted opies of vε

2(·) where we set uε
2(0, 0) =

vε
2(0), i.e. there exist θ̂, θ̃ ∈ S1 suh that

lim
t→∞

ûε(x, t) = uε
2(x+ θ̂, t) (4.3)

lim
t→∞

ũε(x, t) = uε
2(x+ θ̃, t). (4.4)

θ̂, θ̃ ∈ S1 are alled the asymptoti phase. The transversality ondition does not make anypreditions on the phases, it only says that the onnetion is two-dimensional.If we inlude the shift symmetry we obtain that
dim (Aε

4\W s(u±)) = dim
(
W u(Rε

4) ∩⊤ W s(Rε
2)

)
= 3. (4.5)72



z(u) = 2

F ε
2W u(uε

4) ∩⊤ W s(Fε
2 )

Figure 4.6: Heterolini onnetions in Aε
4 from frozen waves with zero-number z = 2 towaves with zero-number z = 1. The S1 symmetry is divided out.or the equivalent result in the ase where the waves uε

4,2 are frozen.Here we see already that the two-dimensional manifold W u(uε
4) ∩⊤ W s(uε

2) annot persistompletely, beause
dim (W u(u0

2)) ∩⊤ W s(u0
1)) = 1due to uniqueness!From Remark 3.2.6 and Theorem 3.2.1 we obtain that

lim
ε→0
Aε

4\W s(u±) ⊂ A0
4\W s(u±). (4.6)In addition we know that

dimAε
4\W s(uε

±) = dimA0
4\W s(u0

±) = 3due to equation (4.5) and Theorem 2.6.1, but this does not imply equality in equation(4.6). Here we use Assumption (D) in a neighbourhood N ε(uε
4) and N0(u0

2). The loalsurjetivity of the limit in N0(u0
2) translates to the existene of heterolinis in W u(uε

4)that onverge in a neighbourhood of uε
4.Hene there is a heterolini onnetion in

W u(uε
4) ∩⊤ W s(uε

2)that loally persists to the onnetion drawn in blue in Figure 4.4. Corollary 3.2.11 thenyields persistene of the full heterolini to the blue onnetion.73



Beause
dim(W u(uε

4) ∩⊤ W s(uε
2)) = 2but

dim(W u(u0
2) ∩⊤ W s(u0

1)) = 1the heterolini orbit assoiated to the other linear independent diretion W u(uε
4) ∩⊤

W s(uε
2) annot persist.This is remarkable beause it shows that not only omplete onnetion manifolds betweenrotating waves of the paraboli equation do not persist. Even within a onnetion manifoldwhere target and soure obey the onnetion ondition (3.15) there are onnetions thatdo not persists. This is a result of our dimensional argument.Can we dedue onvergene of W u(uε

2) ∩⊤ W s(uε
1) to the manifold depited in Figure 4.4?Unfortunately the transversality ondition of the stable and unstable manifolds in equation(2.38) does not neessarily imply that

W u(uε
4) ∩ Fε

2 = Fε
2 =̂ S1.As far as I am aware there is no result on the asymptoti phase of the heterolini on-netions already mentioned in equations (4.3) and (4.4). However if we assume this to betrue (whih would be a onsequene of Assumption (D)), then we ould dedue that theheterolini orbit assoiated to the diretion other than the persisting one would onvergeloally to the line of frozen waves with zero-number z = 2 depited in red in Figure 4.4.In order to dedue global onvergene to the red line we would have to hoose the orretparameterisation of the red manifold. In other words we would have to hoose the orretslie in the full three-dimensional manifold represented by the torus in Figure 4.5. Ourparameterisation is suh that the shoks have �xed positions on the whole (red) manifoldin Figure 4.4. It thus represents the separatrix of the shok movement to the left and theright respetively.Assuming that this is orretly hosen, then the unstable manifold in the ase ε > 0 givenby

W u(uε
4) ∩⊤ W s(uε

2)would onverge pointwise to that depited in Figure 4.4 and hene visosity would induea slow drift on the red manifold of waves with two zeros. This is shown in Figure 4.6. Inthis light it is plausible that our partiular parameterisation of the frozen waves with twozeros is orret. The drift that is indued by the ε > 0 is suh that the shoks remain intheir position and remain stationary by onstrution. In all other parameterisations theshoks would have to adiabatially follow the drift of the zeros. There is no reason why thisshould be happening beause the shoks are unstable in the hyperboli framework and itis to be expeted that they are unstable in the paraboli framework also. Note in additionthat even if W u(uε
4) ∩⊤ W s(uε

2) would be represented by another parameterisation, henewe would have to hoose another setion of the torus in Figure 4.5 to obtain the orretillustration, qualitatively Figure 4.6 would remain the same.If we summarise the results, we observe that the (two-dimensional) part of the unstablemanifold of uε
4 that onnets to Fε

2 arries a dynamial slow-fast struture. This is aonsequene of Assumption (D) together with the dimensional argument stating that notall heterolinis in W u(uε
4) ∩⊤ W s(uε

2) an persist.74



In addition we were able to argue that Figure 4.6 represents qualitatively W u(uε
4) ∩⊤

W s(uε
2).At this moment, however, I would all the part on the paraboli setting a good eduatedguess or a onjeture that still needs a rigorous proof. Here I refer to disussion in theConlusions in Chapter 5.4.3 Heterolini CasadesTo get a parameterisation of a heterolini asade we have to make Assumption (D).However, I would like to mention that the existene of heterolini asades is already aonsequene of the Connetion Lemma, the Casading Theorem and the solved onnetionproblem on the paraboli attrator.To �nd a heterolini asade one has to at least onsider Aε

6 and A0
6 respetively. The set offrozen waves for A0

6 is then a three torus T
3 = T

2×S1. Even if we fator out the rotationalsymmetry and onsider only onnetions between waves with z = 3 and z = 2 we have toonsider a torus T
2 where eah element on the torus has three heterolini onnetions tothe one-dimensional sub-torus given by a S1. This objet is four-dimensional.We will therefore not try to iterate the proedure of the last two setions but only attemptto determine how solutions evolve along a spei� onnetion. Here we only onsider Burg-ers equation (4.2), but the same approah works for any equation.Let us start this time with the paraboli equation and onsider uε

6 ∈ Fε
6 with z(uε

6) = 6that onnets to uε
4 ∈ Fε

4 with z(uε
4) = 4.The two waves onverge for ε → 0 to u0

3, u
0
2 ∈ F0 with z(u0

3) = 3 and z(u0
2) = 2. Lemma3.2.8 states that u0

3 and u0
2 are not onneted. Hene, onnetions between uε

6 and uε
4onverge for ε → 0 either to a line of equilibria or to a heterolini asade. In the latterase following the result of the previous setion it is lear that the onnetion itself thenarries a slow-fast struture for ε > 0.Panel a) in Figure 4.7 shows the possible targets of u0

3 labeled u0
2a, u0

2b and u0
2c. None ofthe targets is a limit of a frozen wave of the paraboli equation.We onstrut a onnetion between u0

3 and u0
2 onsisting of heterolinis and frozen wavesin A0

6, based on the assumption that the development of solutions along the manifold offrozen waves is suh that either shoks do not move or they move in the same way asthe neighbouring zeros. This implies due to symmetry that neighbouring zeros drift at thesame speed. In the ase where the sign of their movements di�ers, the shok stays at itsposition, whereas in the other ase the pro�le between the zeros stays unhanged.Following the onstrution of the last setion this assumption makes sense, however, Iannot prove that it must be like this.Panel b) in Figure 4.7 shows possible ways how to onstrut onnetions between u0
3 and

u0
2 based on the above assumptions. The smaller diagrams show the soure and targetof the desired onnetion and two intermediate steps ũ, û whih are a target (û) or asoure (ũ) of a heterolini onnetion of the hyperboli equation. Red arrows in the smalldiagrams orrespond to the movement of zeros along the manifold, blue arrows indiateshok movements. 75
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3ũ

Figure 4.7: Heterolini onnetions in A0
6 from frozen waves with zero-number z = 3 towaves with zero-number z = 2.We start the explanation of Panel b) with the onnetion to the right. We �rst use theheterolini onneting to u0

2b. Then we let the zeros drift towards eah other until theyhave reahed the positions of the zeros in the target u0
2.The onnetion to the left starts with a line of frozen waves until two of the zeros are atthe position of the target u0

2. Both onnetions onsist of a heterolini already desribedin Panel a) and a line of equilibria that is ontained in F0
6 .I believe there exist heterolini onnetions from uε

6 to uε
4 that onverge to the aboveonstruted heterolinis and lines of equilibria, but again a rigorous proof is laking.This approah an be adapted to waves with more and more zeros. Figure 4.8 shows theonstrution for a situation where the soure uε

12 has twelve zeros and the target uε
2 has two.Hene there an be at most three heterolini onnetions in the asade. The dynamialslow-fast struture of the heterolini is shown on the right. The respetive limiting objetsfor ε = 0 are shown in the large square on the left. The blue rosses symbolise shoks, the76
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Figure 4.8: Heterolini onnetion between a wave with zero-number z = 12 and a wavewith zero-number z = 2.red dots zeros. As in Figure 4.7 the red arrows represent slow drifts of the zeros and bluearrows represent fast movements of shoks. Every seond pro�le is plotted for illustration.
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Chapter 5ConlusionsThe starting point of this dissertation was the question of the relation between solutionson the global attrator of the visous balane law (P) and its hyperboli limit (H). Bothequations possess a global attrator that an be desribed by the set of equilibria, rotatingwaves and heterolini onnetions. Despite the fat that all equilibria and rotating orfrozen waves of the paraboli equation persist to equilibria and frozen waves of the hyper-boli equation and the additional pointwise onvergene of all solutions on the attrator,heterolini onnetions do in general not persist.Even in the ase of the �nite dimensional sub-attrators this implies that the sub-attratorsdo not persist in the sense of solutions, i.e. Aε
n is not C0-orbit equivalent to A0

n. The onlyexeption seems to be the sub-attrator of order two where we ould prove rigorously
lim
ε→0
Aε

2 = A0
2 (5.1)in the sense of solutions and sequenes whih implies C0-orbit equivalene. For the higherdimensional ases the result on the dimensions of subattrators

dimA0
n = dimAε

n = nand the onsequene of the persistene theorem
lim
ε→0
Aε

n ⊂ A0
nsuggests that equality holds in the last equation in the sense of sequenes. However we donot yet have a proof for this.An important tool in the low dimensional ase was the result of the expliit parameteri-sation of all sub-attrators A0

n by An in the hyperboli setting. This loses one of the lastgaps in the full geometri desription of the global attrator of equation (H). The miss-ing link here lies in the geometri desription of heterolinis between frozen waves withunountable zero set. However I believe our approah to be appliable in this ase as well.This would still not be su�ient to prove the onvergene of the full paraboli attrator
Aε to the hyperboli attrator A0 so this remains an open question.Moreover it is unlear to me how we an prove the limiting asade of heterolinis for aonnetion between given target and soure in the paraboli setting for large zero-numbers.78



A rigorous proof of Assumption (D) would be a start in this diretion. This would yieldloal persistene of manifolds and as a onsequene prove global persistene of the fastonnetions on the paraboli attrator. It would also imply that ondition (3.15) in theConnetion Lemma was not only neessary but su�ient for the persistene of at leastone heterolini onnetion between the respetive target and soure. For the slow partsonverging to frozen waves the result would remain loal.In this sense the Casading Theorem re-opens Pandora's box of possible limits of hetero-linis in equation (P), whih Fan and Hale had seemingly losed in the mid '90s by theirpersistene result.Although the slow manifolds on the paraboli attrator onverge to frozen waves of thehyperboli equation, these manifolds have to be onsidered as being far from equilibria. Aloal persistene result of stable or unstable manifolds of rotating or frozen waves wouldnot be appliable. An approah that ould yield a way out of this impasse towards thedesription of the slow parts of suh asades might be the desription of heterolinis byvirtue of invariant manifold theory.Carr and Pego already ahieved this in a very expliit approah in the '90s (see [CP89℄,[CP90℄)for the ase of the dynami Allan-Chan equation where
f(u) = 0with Neumann boundary onditions. Their work has never been generalised to visous bal-ane laws. The transport term f(u) here introdues several tehnial di�ulties, some ofwhih have been already mentioned in the beginning of Chapter 4. Espeially the eigen-value problem (4.1) beomes a lot more hallenging. However, our results suggest strongsimilarities to the results of Carr and Pego.Hene, there still remains muh sope for exploration!
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Chapter 6Appendix: NotationHere you will �nd a list of expressions and notation. Constants are only listed if they areof relevane throughout the doument.
ε visosity parameter in the balane law
a,b zero-number for rotating waves of the paraboli equation
α,β zero-number for frozen waves of the hyperboli equation
t time variable
T �xed time
x spatial variable, large sale
xα set of zeros {x1, . . . , xα}
ξ spatial variable on the small sale (ξ = x

ε )
∂x, ∂t, ∂ξ partial derivative w. respet to x,t,ξ
∂xx seond partial derivative with respet to x (t, ξ respetively)
f(u) transport term
g(u) soure term
uε(x, t) general notation of a solution of the PDE (P)
u0(x, t) general notation of a solution of the PDE (H)
c wave speed
uZ rotating wave with zero set Z
uε

a(·, t) time-dependent rotating wave for ε > 0 with zero-number a, b
u0

α,β(·, t) rotating wave for ε = 0 with zero-number α,β
vε(·), v0(·) solutions of the rotating wave equation
v, p rotating wave of (P) in Lienard oordinates
w, q rotating wave of (P) in phase plane oordinates
φ solution of the stationary problem of (H)
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χ(t) harateristi
χ±(t) maximal and minimal bakward harateristiv value of a solution on a harateristi χ
u(x±, ·) right and left hand limit of u in x
ϕ test funtion
νx,t family of borel probability measures
X, X ′ phase spae and dual spae
L1, L2, L∞ spae of integrable, squareintegrable and bounded funtions
H2 spae of twie weakly di�erentiable L2 funtions
BV spae of funtions with bounded variation
L(u) linear operator representing the linearisation of (P) un u
σ(L) spetrum of L
A{x1,...,xα} set of funtions onsisting pieewise of φ(x − xj) and α shoksseparated by the xj

Ã{x1,...,xα} set of funtions onsisting pieewise of φ(x− xj)

Aα set of all A{x1,...,xα} for �xed α
Ba set of rotating or frozen waves for 0 < ε < ε0 with z = a
Bab set of heterolinis for 0 < ε < ε0 between rotating or frozen waveswith z = a and z = b
U ε(τ) parameterisation of heterolini orbit by ar length
U1,U2 set of limits of U εn(τn)
W u(v) unstable manifold of v
W s(v) stable manifold of v
Fl slow manifold in Lienard oordinates
Fp slow manifold in phase plane oordinates
Cl yliity set in Lienard oordinates
Cp yliity set in phase plane oordinates
c map assigning eah periodi wave in the yliity set its wave speed
T map assigning eah periodi wave in the yliity set its minimalperiod
Sn n-sphere
T

n n-torus
Γ1,Γ2 sets of sequenes {εn}{τn}
P set of partitions P = {x1, . . . xn}
P(Z) powerset of Z
i(u),i0(u) Morse index and generalised Morse index of u
z(u) zero-number of u
Z(u) zeroset of u
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Eε,E0 set of homogenous equilibria of (P) and (H)
Fε,F0 set of frozen waves of (P) and (H)
Rε,R0 set of rotating waves of (P) and (H)
Hε,H0 set of heterolini orbits of (P) and (H)
Aε,A0 global attrator of (P) and (H)
Eε

n,E0
n subset of homogenous equilibria of order n (P) and (H)

Fε
n,F0

n set of frozen waves of of order n (P) and (H)
Rε

n,R0
n set of rotating waves of of order n (P) and (H)

Hε
n,H0

n subset of heterolini orbits of order n (P) and (H)
Aε

n,A0
n sub-attrator of order n for (P) and (H)
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