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Abstract

We propose a stabilized finite element method based on the Scott-Vogelius element
in combination with either a local projection stabilization or an edge oriented sta-
bilization based on a penalization of the gradient jumps over element edges. We
prove a discrete inf-sup condition leading to optimal a priori error estimates. The
theoretical considerations are illustrated by some numerical examples.

1 Introduction

The approximation of flow at high Reynolds numbers remains a challeng-
ing task. In fact due to the energy conservation properties of the standard
Galerkin method and the fact that the incompressibility condition is satisfied
only weakly the standard Galerkin finite element method fails when the lo-
cal Reynolds number is high even in the linearized case. The reason for this
is essentially the fact that the viscous dissipation is too small compared to
the convection term or the term imposing incompressibility. When these non-
symmetric terms are big the solution may be polluted by spurious oscillations.
In order to counter these effects stabilized finite element methods have been
proposed, taking its origin in the SUPG method. One can distinguish two
cases:

(1) use of equal order interpolation for velocities and pressure
(2) use of an LBB-stable velocity-pressure pair.

In the first case the inf-sup condition on discrete level is satisfied thanks to
some pressure stabilization technique. However, for both cases effects due to
dominating convection and effects due to insufficient control of the incom-
pressibility condition must be stabilized. For stabilized methods applied to
the incompressible Navier-Stokes’” equation or Oseen’s problem we refer to the
work of Johnson and Saranen [19], Hansbo and Szepessy [17], Tobiska and Ver-
firth [26], and Franca and Frey [12] in the case of SUPG type stabilizations
and Braack and Burman [3| and Burman et al. [5] in the case of more recent
advances using local projection or interior penalty stabilization with equal or-
der interpolation. For work on inf-sup stable elements with stabilization we
refer to Lube et al. [15] for SUPG type stabilization and Burman and Hansbo
[8] or Burman and Fernandez [6] for interior penalty type stabilizations.

In numerical experiments it has been observed that when using equal order
interpolation the stabilization of the divergence only introduces additional
damping and it is unclear if it is necessary in practice. The situation is different
in the case of LBB-stable velocity-pressure pairs, here additional stabilization

Preprint submitted to Elsevier Science 11 October 2006



of the divergence turns out to be of importance both from a theoretical and
numerical point of view, see [15,21]. This is awkward since the term stabiliz-
ing the divergence is ill-conditioned, and may introduce additional couplings
in the system matrix. In this paper we propose to use the lowest order Scott-
Vogelius element [25,27| for the computation of incompressible flows. In two
space dimensions this element corresponds to piecewise quadratic continuous
interpolation for the velocities and piecewise affine discontinuous interpolation
for the pressure. Satisfaction of the inf-sup condition is obtained thanks to a
macro element structure of the computational mesh. It follows that the di-
vergence of the velocity space is included in the pressure space and hence the
discrete inf-sup condition gives control also of the divergence of the velocities
in norm L2 In fact, if we consider incompressible flow, the discrete solution
will be pointwise divergence free. Thanks to this fact we do not need to con-
sider any stabilization of the divergence. The only stabilization term added is
a term needed to control spurious oscillations due to dominating convection.
In the first part of the paper we consider an abstract form of the stabilization
operator, specifying what conditions have to be satisfied for the error analy-
sis to hold. We then give two examples of stabilization operators that satisfy
the conditions: the local projection stabilization of Becker and Braack and
the interior penalty stabilization proposed by Burman and Hansbo. It should
be noted that one might just as well consider a turbulence model based on
physical considerations. The error analysis below (valid for smooth solutions)
will then be conditioned by the weak-consistency properties of the turbulence
model.

An outline of the paper is as follows: in the Section 2 we introduce the Oseen’s
equation which will serve as linear model problem, in Section 3 we propose a
finite element discretization of the model problem based on the Scott-Vogelius
element and a stabilization operator for the convective terms. Then in Section
4 we prove an inf-sup condition giving control both of the L?-norm of the
pressure and the L2-norm of the divergence of the velocities. Using the inf-sup
condition we then prove an error estimate in a norm that is dominated by
the H' norm of the velocities in the low Reynolds number regime and by the
H(div) norm of the velocities in the high Reynolds number regime. In Sec-
tion 5 we show how two different stabilization operators enter the framework
proposed in the previous section. Finally in Section 6 we give some numerical
illustrations using the Scott-Vogelius element in combination with the interior
penalty stabilization on gradient jumps.



2 Continuous Oseen equation

We consider the generalized Oseen equation for (u, p) in a polyhedral domain

QCR? de {23},

—vAu+a-Vu+au+Vp=f~f in
u=20 on 0f2,

where u,a € [H3(Q)]? =: V4, a € WH>(Q)PNH(Q), p,g € LA(Q) =: Q,
f € [L2(Q)]4. By H(Q) we denote the functions u € [L?(Q2)] such that V-u = 0
and u-n = 0 on 9. LE(Q) is the subset of L?*(Q) with zero average. v and
a are positive scalars, f and ¢ are given source terms. Usually, the Oseen
problem is a result of linearization of the Navier-Stokes problem. Then a is a
finite element velocity field. In the following we will use the notation a < b
for a < Cb, where the constant C' is independent of the mesh size and the
parameters v and «, but not of the local mesh geometry.

The variational formulation of this problem is to find (u,p) € X := V¢ x Q
such that

Al(u,p), (v,q)] = (£,v) + (9,9), (2)
for all (v,q) € X, where

Al(u, p), (v, @)] == a(u, v) + b(p, v) + b(g, v)
a(u,v) :=v(Vu,Vv) + (a- Vu,v) + a(u, v) (3)

b(p,v) :==—(p,V-v)).

Here, (-, ) denotes the Ls-scalar product and |[|-||o ¢ is the corresponding norm.
The standard Sobolev norm of the Hilbert space [H*(Q)]¢ is abbreviated by

Ills.0-

3 Finite element discretization

Let now 7;, denote a simplicial triangulation of the domain 2 without hanging
nodes. For each T € 7},, we define

hr = }2%’% hy,

with hy the diameter of the face f. Moreover, we assume that the mesh is
regular in the sense that



e (local shape regularity) for all simplices T" € 7}, there holds

hr
— < (|
diam(7)
where diam(7") means the diameter of the largest inscribed ball in 7" and C
is a fixed constant;
e (local quasi uniformity) for any two elements 7', 7" € 7}, having at least one
common node there holds hy < phy/, with p > 0.

The mesh 7, will be called a macro triangulation and we derive a second
triangulation 7, from 7;,. For each macro simplex T € 7;, we connect its
barycenter with its vertices, in order to construct a new triangulation. In
two space dimensions we get three triangles from each macro triangle and in
three space dimensions we get, four tetrahedra from each macro tetrahedron.
This new triangulation 7y, is locally shape regular and locally quasi uniform,
although the constants for interpolation estimates are worse, because we get
larger angles.

For the finite element discretization we define V¥ as the space of continuous
functions of piecewise polynomials of order k£ > 1

Vi = {v € Hy(Q) s v € P(T) forall T € Ty, }.

By Q! we refer to the space of discontinuous functions of piecewise polynomials
of order [ >1

QL(Th) = {q € L*(Q) : qir € P(T),for all T € 7, } .

For k > d velocities are approximated in the space [V}¥]¢, and pressures are
approximated in Qﬁ’l.

We assume, that there exist projection operators 7; V¢ — [ViF]4, and m,: Q —
k—1

» , with optimal approximation properties
IV = 7)o S A |V |l mingr a1y

IV(v = @@)llog £ A"V lingriy

(4)

for all v e V4N [H"(Q)]¢, r € N and

lg = (@ llog < B [l qlmingsny (5)

for all ¢ € Q N H*(Q2) and s € Ny. We let m, be defined by the standard
L2-projection, whereas the properties of 7, depend on the stabilization op-
erator under investigation. The projection m, will be required to satisfy an
orthogonality condition (v — 7,(v), zs) = 0 for all z;, € [Z,]? where [Z,]¢ is a



discrete space that will be specified for each of the two stabilization methods
in Section 5.

In the following we denote by a;, € [V}¥]? some piecewise linear interpolant of
a satisfying ||a — ap||cor < hr||allwie(r) for all T € 7. Usually, we will have
ay ¢ H. For the error analysis, we will use the following inverse estimate,
which is valid for all v € Py(T), T € 7,

hr||Vvillor S llvallor- (6)

The presented mixed finite element is the well-known Scott-Vogelius element.
Since the triangulation is derived from a regular macro triangulation and since
we assume k > d, this discretization is LBB-stable for a standard Galerkin
discretization of the Stokes problem [1,27]. Discrete LBB-stability is equivalent
to the existence of the Fortin interpolant [10], i.e. for all v € V? there is a
mr(v) € [ViF]? such that

Van € Q" b(an, v) = blan. e (v)) A lme(W) e S IVie.  (7)
Moreover, Scott-Vogelius elements have the important property
Ve (8)

In the case g = 0 this enforces pointwise mass conservation for the standard
Galerkin discretization of the Stokes problem. This can easily be derived, since

standard weak mass conservation for the discrete Stokes solution u; means
that for all ¢, € Q" holds

(=V -up,q,) =0.

Due to (8) we can choose the special test function ¢ := —V - u; and we have
exact mass conservation in the L, sense. But since discrete solutions uy, are
piecewise polynomial, we also get V - u;, = 0 pointwise inside each simplex of
the triangulation. As we shall see, this result holds also for the discrete Oseen
problem.

In the following, we are especially interested in the lowest order case k = d,
but of course we are not restricted to it. Denoting the product space XF :=
[ViF]x Q5" we propose the following finite element method: find (uy,, p,) € XF
such that

Apl(an; pr)s (Vi qn)l = (f, ve) + (9, an),

with Ap[(an, pr), (Vi, qn)] == Al(an, pn), (Vi qn)] (9)
+ Sh<uh7 Vh)

for all (vi,qn) € XF.



Here, Sy(+, ) is an abstract stabilization operator that is needed in the case of
dominant convection. For the abstract stabilization operator we postulate the
following properties

e (linearity) for all uy,, vy, wy, € [ViF]¢ and A\, u € R we have
Sn(Awy, + pvi, wi) = XSy (up, wi) + pSu(vi, wi); (10)
e (symmetry) for all uy, v, € [V;F]¢ we have
Su(Un, Vi) = Su(va, up); (11)

e (non-negativity) for all u;, € [V}¥]? we have

Sh(uh, uh) > O; (12)
e (boundedness) for all u;, € [V;*]? we have
1 1
[Sn(un, wp)[2 S A2 |upf1e; (13)

e (weak consistency) for all u € V4N [H"(2)]¢ with r > 2 we have
~ ~ 1 min(rfl k+l)
[Sw(fwu, mu)2 S A 272 HuHmin(r,k+1)3 (14)

(stability) there exists a quasi interpolation operator 7y : [QF~(T,)]¢ —
[Z4]? such that for all v;, € [V¥]?, w € V¥ there holds

(W — T (w), %;(ah -Vvyp)) =0,

1 . 1 (15)
|h2(an - Vv — T, (an - Vva))llog S ISV, vi) 2.

Lemma 1 (Cauchy-Schwarz for the stabilization operator) For the sta-
bilization operator holds for all u,v € V¢

N [—=
N[

|Sh(an, vi)| < [Su(an, wn)]2 [Su(va, vi)]2 . (16)

PROOF. See the classical proof for scalar products. There, the properties
(10), (11) and (12) are needed.

4 A priori error analysis

In the following a priori convergence analysis we investigate the convergence
behavior of the proposed method depending on higher regularity assumptions
and the parameters {v, o, a}.



For the analysis we introduce the following energy scalar product for all u, v €
Vd
(0, v)e :=v(Vu,Vv) + a(u,v)
The corresponding energy norm is denoted by ||||.. Further, we introduce the
following triple norm for all (u,p) € X
I(w, p)II” = [[ullZ + [V - ullgq + [lpl5 -

and a mesh-dependent discrete counterpart for all (u,,pn) € XF accounting
also for the size of the stabilization term

llCan, o)l = lfanlle + IV - unllg o + [Su(un, wn)] + [Ipall6 o

Lemma 2 (coercivity) For allu € V2 p € Q we have the following coer-
civity property

An[(u,p), (w, =p = V- w)] = [|(u, 0) ;.

PROOF. The proof follows from the anti-symmetry of the convective term,
since V - a = 0 holds.

Lemma 3 (weak consistency) Let (u,p) be the solution of (2) and let (up, pp)
be the solution of (9) then

A[(u —Uup,p— ph)v (Vh, Qh)] = Sh(uha Vh)-

PROOF. The lemma is obtained by subtracting (9) from (2).
Lemma 4 (Young) for all a,b> 0 and € > 0 we have

1 €
b< —a%+ —b2.
W= g0ty

Lemma 5 Suppose u € VIN H™(Q), r > 2 and suppose that [ViF]? is a
piecewise polynomial space with k > d, then there holds

1 1 1 1 .
I = Fu(1w), )+ S (), Fu(w)2 S (v2 + a2ho+ B0+ b2 ) =1

X ||u||min(r,k+1)~
(17)

PROOF. The lemma is proven by applying (4) and (14).



Lemma 6 Supposeu € VINH"(Q),r > 2, p € QNH*(Q), s > 0 and suppose
that [VF]4 is a piecewise polynomial velocity space with k > d and QF" is the
corresponding pressure space , then there holds

(1 — 7). p — mu ()]l + S (F (), ()2 < ((V% Fath4 k0 + h%)

% hmin(?ﬂiLk)HuHmin(r,kJrl)

pmin(h) | pHmin(S,k)) ’
(18)

PROOF. See lemma 5 and (5).

Theorem 7 (stability) The stabilized finite element method in (9) satisfies
the following stability property. For all (uy,,py) € XF with k > d there holds

Apl(an, pn), (Vh,
csll(un, pu)lln < sup n[(wh, pr), (Vi, qn)]

(Vh,an)EXF, l(vr, an)lln
Il (vh,an) 10

(19)

Here, the constant cg is independent of the mesh size and does not degenerate
as v — 0.

PROOF. By the discrete LBB-stability we find v,, € V¥ such that V-v,, =
P, V- (10 (V) = Dy [1Vpnllne S lIpalloe and [[me(vp,)ll1e S [lpallog-

Taking (vp,qn) = (— mr(vy,), Pr), We compute
Anl(n; pr), (= 78 (vp, ) )] = [Ipall5 0

—v|[[VuglloollV me(vy, ) llo.e — af[uslloellme (v, ) lloo
— [[wlloellall @IV me(vp )l = IV - unlloqllpnlloe

— S (w2 [Su (T (v, ), T (V)]

N[ —

We conclude using the stability properties of v,, and mp(v,,) and by the
boundedness of the stabilization operator (13)

17e (Ve ) o S lloallo.e;
IV 7e(vp)lloo S llpnllogo (20)

1 1
Su(me (Vi) 0 (V)2 S A2 [pallo.g-

For each of the five negative terms in the right hand side of the inequality we



use Lemma 4 with some € > 0, which is to be determined. We get

Anl(wn, pn), (= 70 (V) o)) 2 llpnllg 0
1
5. VIVunlga + alunlse + IV - willse

+ Sn(un, up) + [l = [[unl§ o)

€
— s+ a+1+allie + 1) llpaloe-

Now we set
el =24+v+a+t]al-

and have

Apl(up, pn), (— WF(Vph),ph)] 2 %thH%n

1
- Q—E(VHVuhHé,Q + (o + [Jal| o) [[unll§ o
+ [V uhH?),Q + Su(up, up))
1 lall 2
2 SnlBe = 5o+ ) O,
Setting
al| 7, al| 7,0
M:=e M1+ H |(|); )=2+v+a+|al-)(1+ 2]l )
we finally have
A - > 1 2 _% WNE
nl(n, p), (=70 (Vi ), Pa)l 2 5llPellog — - (an, O)[fi-
Now we choose
2 1-—M
(Vi an) == (u, — 1+ M T (Vpy ), mph —V-u,)
2

= (up, —pr — V-up) + (= mr(Vp,), Pn)

1+M

and get immediately by lemma 2 and the previous calculation

1
Apl(an,pn), Vi, an)] 2 1+M|||(Uh,ph)|||i-

We end the proof by showing that |[(vn, qn)lln < |[(upn, pr)|ln. Therefore, we
use the triangle inequality for the triple norm and apply the three estimates



in (20)

2
14+ M

11
(32 +v2 +a2)|pallo

Ivas an)lln < llCan, —pr)lln + 100, =V - wp) [l + (=76 (V) 2n)ln

<2
< 2[l(un, pr)lln + ]

11
S (L+v2 +a2)f[(an, pr)lln-

We conclude

Apl(an, pr)s (Vi qn)] S5 1 1
Il Can, o)l ll (Vs gu)ll, ™~ L+ M 3 + a%

3
If we assume that v < 1 and ||a||p~ = O(1), we get cg & O(min{a,a”2}).
In particular, the estimate is independent from the mesh size.

Remark 8 The estimate on cg indicates instability for « — 0. This behavior
cannot be seen in numerical experiments. On the other hand it is known also in
the case of scalar advection-diffusion-reaction equations. In that case one may
improve the analysis using erponentially weighted test functions as proposed
in [20]. Such an analysis is beyond the scope of the present paper.

Theorem 9 (a priori error estimate) Let (u,p) be the solution of (2) and
(up,pr) be the solution of (9) then, under the same assumptions on the requ-
larity of u and p as for Lemma 6, there holds

Il(a = s, p = p) | S A9 in s )

min(s (21)
+ RO | ino -
In addition, for the velocities alone we have the result
1 .
ll(w = wp, O) ] + Sn(un, wn)2 <A™ 9 ingr ) (22)

where the approximation order of the discrete velocities is independent from
the pressure reqularity.

PROOF. In the general case we start using the triangle inequality for the
triple norm

(0 —wn,p—pu)ll < (a0 —Fu(a),p — m(p)|l
+ [(un — 7 (), pr — mu(p)) [ln-

The first term in the second line can be estimated immediately by lemma 6.

10



In order to obtain the estimate (22) we simply start the analysis with

[l(w =, O < [l (w = v, mu(p) — pa)l

< = Fu(w), O + [ — Fuw) g — @

Similar to the previous case we can estimate the first term of the second line
by lemma 5. We then apply theorem 7 to the second term, which is identical in
both cases. Introducing the discrete errors ' := u,—7,(u) and &}, := pp—m(p)

we have
Ap[(gn, €P
sl ey < sup A& &) (Vi an)]

(vh.an)EXF, (v ) lln
N(vr,ar) IR 70

Now we investigate the numerator of the fraction on the right hand side. By
weak consistency in lemma 3 and the Cauchy-Schwarz inequality we get

| A& €R)s (Vi an)]| = [A[(a = 7w (w), p — T (p)), (Vh, @n)] — Su(7n(w), vi)|

< [[(u = 7n(u), )|l (vs, 0)|
+ [(u—Tp(u),a- Vvy)|

+ (o =m(P), V- va)l + (g, V

(24)
First note that by the orthogonality of the L?-projection we have

[(p— mu(p), V- vi)| =0

so the only term involving the projection error of the pressure vanishes. Since
the L2-norm of the pressure and the divergence are included in the triple norm,
we can conclude

|AR[(ER5 €R)s (Vas an)]] S (a0 = (), O) Il (v, gn) I
+[(u—7u(u),a- VVh)l

S (), A ()] (vi 0.

The second term on the right hand side is estimated as follows. We use the
triangle inequality, the stability property of the stabilization operator (15) and
the inverse estimate (6).

[(u—Tn(u),a- Vvy)| < [(u—m(u), (a—ay) Vv
+|(u = Fn(w), a, - Vvy, — T (an - Vva))|
T
S llallwiea™2([u = 7 (u)llo.q Su(va, va)

12 (0= Fu () ol (v, 0)

11



Altogether, with lemma 6 we have the following estimate
u ¢p 1 1 1 1 0 1 min(r—1,k)
(R, Dl < g{(v2 +(a 24+ a2)h+h"+h2)h allmingre1)

‘ 11
+ hmln(s,k)HpHmin(S’k) + hmln(r_27k+2)||u||min(’r‘,k+1)}'

3
2

)}

In the special case g = 0 the discrete solution uy, lies in the space H and is
completely decoupled from the pressure.

The first error estimate is now derived with a constant ¢ ~ max{O(a™!, «

Remark 10 The a priori error estimate does not allow us to conclude that
convergence improves in the L>-norm thanks to the stabilization operator. This
s due to the fact that the contribution of the divergence of the solution domi-
nates the error estimate in the case of high Reynolds numbers. Also note that
even in case g = 0 it does not seem possible to prove oplimal estimates thanks
to the stabilization. In the numerical section we show in a linear example that
the stabilized method can lead to smaller error in both L*- and H'-norms.
Then in a non-linear example we show that the stabilization damps spurious
oscillations on coarse meshes.

5 Two stabilization operators

In the following we present two different stabilization operators, that enter the
abstract framework proposed above. Other methods such as the orthogonal
subscales proposed by Codina, [9] or the subgrid viscosity method proposed
by John and Kaya [18] could also be considered. An overview of some recent
stabilization methods for the Oseen’s equation is given in [4].

5.1 Edge/face stabilization

The edge/face stabilization was analyzed for the first time in [7] for finite
element discretizations of convection-diffusion-reaction equations. Later, the
method was extended to incompressible flow problems [5]. The stabilization
operator reads as

Su(u,v) = Y /d b3V - [V] ds. (25)
TeT,

Here, hgr is the size of 9T, [q] denotes the jump of g across OT for 9T NI = 0,
[q] =0 on T NI # P and 7 is a tuning parameter.

12



For this operator we see (10)-(13) at once. Also (14) is easily verified, since
for functions u € [H?(2)]¢ the trace of Vu is well defined and the stabiliza-
tion vanishes. Therefore, face stabilization is H2-consistent. For the remaining
features of the stabilization we refer the reader to [7,5|. Here, the operator
7, is defined by the standard L2-projection onto the space [Z;,]¢ := [V/F]¢ and
~%

T [QEN(T3)]? — [Z4])¢ is defined by the Oswald-quasi interpolation operator
defined in each node z; as the straight average

Fue) =~ 3 (e

n {K:z;eK}

where n; denotes the number of triangles sharing node x;. One may then show
that the stabilization term (25) satisfies also the condition (15). A streamline-
diffusion type operator is obtained by choosing v = ygla - ngr|. For details see

[5]-
5.2 Local projection stabilization

The local projection method was introduced in [2] and was analyzed for the
Oseen’s problem in [3]. In order to define the method we define the space of
discontinuous functions on the macroelement mesh and set Z, := [QF ! (7;,)]%.
It is a discontinuous finite element space of order £ — 1, which is continuous
over the macro simplices of the macro triangulation 7. With the (local) Lo-
projection @ _1 : [QFH(7n)]* — [Zn]* we define the following fluctuation
operator

/_’ih =1 — ﬁh,k*h (26)
where [ stands for the identity mapping. Now the convection is stabilized by

Su(u,v) = (v|lalhrEVu, EVv). (27)

Again, we can directly see that (10), (11), and (12) are valid for this operator.
In the abstract setting above 7, is given by the operator Thk—1. The corre-
sponding projector 7, is defined as a variant of the Scott-Zhang interpolation
as defined in [24] modified to satisfy the orthogonality constraint of (15). For
details on the analysis we refer to [3].

6 Numerical examples

In this section we illustrate the theoretical results obtained above with two
computational experiments. All numerical computations are performed using
the finite element toolbox ALBERTA [23]. The evolving sparse linear systems
are solved by the efficient direct solver PARDISO [14,22].

13



6.1 A linear example

First, we consider the linear problem (1) in the two dimensional case. We
approximate the following continuous solution u = (u,v) in the domain Q =
[0,1] x [0, 1]. The example was taken from [13] and slightly modified.

(z,y) = ax’(z— 1% (y — 1)
u(z,y) = Oy

U(I,y) - - acqu)
p(z,y) = ca2® +y° — 3).

We choose v = 1074, o = 100-27%v =~ 0.197392, a = u, ¢; = 256, ¢ = 21.03485
and compute the resulting right hand side f. Here, the parameter a corre-
sponds to a rough estimate for the time step in an instationary scheme for
computing the asymptotic limit ¢ — oo in a fictitious time-dependent Oseen
problem. The chosen parameter is related to the smallest eigenvalue of the
Laplace operator and therefore allows to resolve the dissipation of energy in
the equation. By the choice of the parameter ¢, the rotation and the diver-
gence part of the (smooth) right hand side f are balanced. Therefore, quite
a big pressure gradient is guaranteed and non-solenoidal discretizations will
produce velocity approximations, which are polluted by bad approximation of
the continous pressure.

For this numerical test problem we compare three different discretizations: the
Galerkin Taylor-Hood element P, — P; (GTH), the Galerkin Scott-Vogelius

element P, — P_; (GSV) and the stabilized Scott-Vogelius element with sta-
bilization parameter

7= 0llalls.q (28)
and stabilization parameter vy = 3.085 - 1073, The parameter is tuned by
minimizing the error on the coarsest mesh. All the computations are performed
on macro element meshes as described above, which are derived from a uniform
triangulation of the unit square, see figure 1. For the first numerical example
we used 4 consecutive meshes, with N = 16,32, ..., 128 elements on each side
of the unit square. We present the velocity errors in the Ly and the H; norm.
The pressure error is presented in the L, norm. For the first test case we note
the following approximate convergence orders for the stabilized Scott-Vogelius
element:

[u =y floq S A7
IV (a = up)lloo S h**

||P - thO,Q 5 h?*05
la —upfln < A*4

The corresponding convergence behavior is shown in figures 2 and 3.
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Fig. 1. Macro Element Triangulation of the Unit Square. N =2

We recognize that the error of the stabilized Scott-Vogelius solution is smaller

L,~error(uy)

Hl—error(uh)
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Fig. 2. Comparison between Galerkin Taylor-Hood (GTH), Galerkin Scott-Vogelius

(GSV) and stabilized Scott-Vogelius (SSV), velocities
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Fig. 3. Comparison between Galerkin Taylor-Hood (GTH), Galerkin Scott-Vogelius
(GSV) and stabilized Scott-Vogelius (SSV), velocities and pressure

than that of its Galerkin counterpart on the computational meshes considered,
about one half refinement step in the L, norm and one refinement step in the
H norm. The superior performance of the Scott-Vogelius element compared to
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the standard Taylor-Hood elements for the velocity approximations is clearly
visible in figure 2.

6.2 A nonlinear example - driven cavity in two dimensions

As a second example, we present numerical computations for the Navier-Stokes
equation. We choose the well-known driven cavity problem in two space di-
mensions at Reynolds number 5000 and prescribe the velocity u = (1,0) at the
top of the cavity and no-slip boundary conditions elsewhere. At this Reynolds
number the steady state solution is stable and reference solutions for compar-
ison are available in the literature (see [16,11]).

By computing the asymptotic limit for ¢ — oo, we have approximated numer-
ically this stable steady solution. In this situation, the fully implicit backward
Euler method is sufficient as time discretization scheme. We start from Stokes
solutions and increase the time step manually during the computation. The
nonlinear system is solved by a simple, undamped fixed point iteration.

Discretization in space is performed by the quadratic Scott-Vogelius element,
similar to the linear example above. We compare the corresponding Galerkin
discretization (GSV-N) to a stabilized formulation with the classical linear
edge stabilization (SSV-N) on a sequence of four uniform macro element
meshes. On the coarsest grid (N = 8) we get 2 -8 -8 = 128 macro ele-
ments and about 450 divergence-free ansatz functions in the approximation
space. For the stabilized method we here choose v = 4.0- 1072 as stabilization
parameter.

In figure 4 we show the stabilized solution on the finest grid with N = 64.
Here, we can see the typical picture of the continuous solution quite well.
There are two secondary vortices in the bottom corner and a third one in the
upper left corner. In addition, also the small tertiary vortex in the lower right
corner is resolved. The numerical results compare well to the data given e.g.
in [16].

While the Galerkin discretization seems to be quite stable on the finest grid
and hardly differs there from the stabilized solution, we expect pronounced
spurious oscillations in the Galerkin solution on coarse grids due to the non-
dissipative approximation of the first-order derivate. Such oscillations can eas-
ily made visible by plotting the velocity-components of the Galerkin solution
on straight lines through the cavity.

First, we demonstrate in figure 5 that the Galerkin (GSV-64) and the stabilized
discretization (SSV-64) do not differ much on the finest grid. Even on this fine
grid the standard Galerkin method presents spurious oscillations although
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Fig. 4. Driven cavity at Reynolds number 5000 using the SSV-64 discretization.
First picture: Velocity field. Second picture: Five numerical trajectories in the veloc-
ity field beginning at the following points: (0.1,0.9), (0.1,0.1), (0.9,0.1), (0.5,0.5),
(0.978,0.022)

their amplitude is very small. The influence of the grid resolution on the
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Fig. 5. Absolute Values of the Difference between GSV-64 and SSV-64 discretiza-
tions on the straight line y = 0.9. First picture: difference of u-components. Second
picture: difference of v-components

Galerkin and the stabilized discretization can be studied in figures 6 and 7.
As expected, in the stabilized discretization spurious oscillations are reduced in
comparison to the Galerkin discretization. However, it is not clear from these
graphics that the solution quality actually improves in the L?-norm when
adding the stabilization terms. For the straight lines z = 0.5 and y = 0.5 we
can find some reference values for the v and v components in the literature.
In figures 8 and 9, the results are compared to a reference solution presented
in [11]. The reference values are visualized by points.
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Fig. 6. u and v components of GSV-16 and GSV-64 discretizations on the straight
line y = 0.9
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Fig. 7. u and v components of SSV-16 and SSV-64 discretizations on the straight
line y = 0.9
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Fig. 8. u resp. v components of GSV-16 and GSV-64 discretizations on the straight
line x = 0.5 resp. y = 0.5
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Fig. 9. u resp. v components of SSV-16 and SSV-64 discretizations on the straight
line x = 0.5 resp. y = 0.5
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