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Abstra
tWe propose a stabilized �nite element method based on the S
ott-Vogelius elementin 
ombination with either a lo
al proje
tion stabilization or an edge oriented sta-bilization based on a penalization of the gradient jumps over element edges. Weprove a dis
rete inf-sup 
ondition leading to optimal a priori error estimates. Thetheoreti
al 
onsiderations are illustrated by some numeri
al examples.1 Introdu
tionThe approximation of �ow at high Reynolds numbers remains a 
halleng-ing task. In fa
t due to the energy 
onservation properties of the standardGalerkin method and the fa
t that the in
ompressibility 
ondition is satis�edonly weakly the standard Galerkin �nite element method fails when the lo-
al Reynolds number is high even in the linearized 
ase. The reason for thisis essentially the fa
t that the vis
ous dissipation is too small 
ompared tothe 
onve
tion term or the term imposing in
ompressibility. When these non-symmetri
 terms are big the solution may be polluted by spurious os
illations.In order to 
ounter these e�e
ts stabilized �nite element methods have beenproposed, taking its origin in the SUPG method. One 
an distinguish two
ases:(1) use of equal order interpolation for velo
ities and pressure(2) use of an LBB-stable velo
ity-pressure pair.In the �rst 
ase the inf-sup 
ondition on dis
rete level is satis�ed thanks tosome pressure stabilization te
hnique. However, for both 
ases e�e
ts due todominating 
onve
tion and e�e
ts due to insu�
ient 
ontrol of the in
om-pressibility 
ondition must be stabilized. For stabilized methods applied tothe in
ompressible Navier-Stokes' equation or Oseen's problem we refer to thework of Johnson and Saranen [19℄, Hansbo and Szepessy [17℄, Tobiska and Ver-fürth [26℄, and Fran
a and Frey [12℄ in the 
ase of SUPG type stabilizationsand Braa
k and Burman [3℄ and Burman et al. [5℄ in the 
ase of more re
entadvan
es using lo
al proje
tion or interior penalty stabilization with equal or-der interpolation. For work on inf-sup stable elements with stabilization werefer to Lube et al. [15℄ for SUPG type stabilization and Burman and Hansbo[8℄ or Burman and Fernàndez [6℄ for interior penalty type stabilizations.In numeri
al experiments it has been observed that when using equal orderinterpolation the stabilization of the divergen
e only introdu
es additionaldamping and it is un
lear if it is ne
essary in pra
ti
e. The situation is di�erentin the 
ase of LBB-stable velo
ity-pressure pairs, here additional stabilizationPreprint submitted to Elsevier S
ien
e 11 O
tober 2006



of the divergen
e turns out to be of importan
e both from a theoreti
al andnumeri
al point of view, see [15,21℄. This is awkward sin
e the term stabiliz-ing the divergen
e is ill-
onditioned, and may introdu
e additional 
ouplingsin the system matrix. In this paper we propose to use the lowest order S
ott-Vogelius element [25,27℄ for the 
omputation of in
ompressible �ows. In twospa
e dimensions this element 
orresponds to pie
ewise quadrati
 
ontinuousinterpolation for the velo
ities and pie
ewise a�ne dis
ontinuous interpolationfor the pressure. Satisfa
tion of the inf-sup 
ondition is obtained thanks to ama
ro element stru
ture of the 
omputational mesh. It follows that the di-vergen
e of the velo
ity spa
e is in
luded in the pressure spa
e and hen
e thedis
rete inf-sup 
ondition gives 
ontrol also of the divergen
e of the velo
itiesin norm L2. In fa
t, if we 
onsider in
ompressible �ow, the dis
rete solutionwill be pointwise divergen
e free. Thanks to this fa
t we do not need to 
on-sider any stabilization of the divergen
e. The only stabilization term added isa term needed to 
ontrol spurious os
illations due to dominating 
onve
tion.In the �rst part of the paper we 
onsider an abstra
t form of the stabilizationoperator, spe
ifying what 
onditions have to be satis�ed for the error analy-sis to hold. We then give two examples of stabilization operators that satisfythe 
onditions: the lo
al proje
tion stabilization of Be
ker and Braa
k andthe interior penalty stabilization proposed by Burman and Hansbo. It shouldbe noted that one might just as well 
onsider a turbulen
e model based onphysi
al 
onsiderations. The error analysis below (valid for smooth solutions)will then be 
onditioned by the weak-
onsisten
y properties of the turbulen
emodel.An outline of the paper is as follows: in the Se
tion 2 we introdu
e the Oseen'sequation whi
h will serve as linear model problem, in Se
tion 3 we propose a�nite element dis
retization of the model problem based on the S
ott-Vogeliuselement and a stabilization operator for the 
onve
tive terms. Then in Se
tion4 we prove an inf-sup 
ondition giving 
ontrol both of the L2-norm of thepressure and the L2-norm of the divergen
e of the velo
ities. Using the inf-sup
ondition we then prove an error estimate in a norm that is dominated bythe H1 norm of the velo
ities in the low Reynolds number regime and by the
H(div) norm of the velo
ities in the high Reynolds number regime. In Se
-tion 5 we show how two di�erent stabilization operators enter the frameworkproposed in the previous se
tion. Finally in Se
tion 6 we give some numeri
alillustrations using the S
ott-Vogelius element in 
ombination with the interiorpenalty stabilization on gradient jumps.
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2 Continuous Oseen equationWe 
onsider the generalized Oseen equation for (u, p) in a polyhedral domain
Ω ⊂ R

d, d ∈ {2, 3},
−ν∆u + a · ∇u + αu +∇p = f in Ω

−∇ · u = g in Ω (1)
u = 0 on ∂Ω,where u, a ∈ [H1

0 (Ω)]d =: V d, a ∈ [W 1,∞(Ω)]d ∩ H(Ω), p, g ∈ L2
0(Ω) =: Q,f ∈ [L2(Ω)]d. By H(Ω) we denote the fun
tions u ∈ [L2(Ω)]d su
h that∇·u = 0and u · n = 0 on ∂Ω. L2

0(Ω) is the subset of L2(Ω) with zero average. ν and
α are positive s
alars, f and g are given sour
e terms. Usually, the Oseenproblem is a result of linearization of the Navier-Stokes problem. Then a is a�nite element velo
ity �eld. In the following we will use the notation a . bfor a ≤ Cb, where the 
onstant C is independent of the mesh size and theparameters ν and α, but not of the lo
al mesh geometry.The variational formulation of this problem is to �nd (u, p) ∈ X := V d × Qsu
h that

A[(u, p), (v, q)] = (f ,v) + (g, q), (2)for all (v, q) ∈ X, where
A[(u, p), (v, q)] := a(u,v) + b(p,v) + b(q,u)

a(u,v) := ν(∇u,∇v) + (a · ∇u,v) + α(u,v) (3)
b(p,v) := −(p,∇ · v)).Here, (·, ·) denotes the L2-s
alar produ
t and ‖·‖0,Ω is the 
orresponding norm.The standard Sobolev norm of the Hilbert spa
e [Hs(Ω)]d is abbreviated by

‖·‖s,Ω.3 Finite element dis
retizationLet now Th denote a simpli
ial triangulation of the domain Ω without hangingnodes. For ea
h T ∈ Th, we de�ne
hT := max

f⊂∂T
hf ,with hf the diameter of the fa
e f . Moreover, we assume that the mesh isregular in the sense that 3



• (lo
al shape regularity) for all simpli
es T ∈ Th there holds
hT

diam(T )
< C,where diam(T ) means the diameter of the largest ins
ribed ball in T and Cis a �xed 
onstant;

• (lo
al quasi uniformity) for any two elements T, T ′ ∈ Th having at least one
ommon node there holds hT < ρhT ′ , with ρ > 0.The mesh Th will be 
alled a ma
ro triangulation and we derive a se
ondtriangulation T̃h from Th. For ea
h ma
ro simplex T ∈ Th we 
onne
t itsbary
enter with its verti
es, in order to 
onstru
t a new triangulation. Intwo spa
e dimensions we get three triangles from ea
h ma
ro triangle and inthree spa
e dimensions we get four tetrahedra from ea
h ma
ro tetrahedron.This new triangulation T̃h is lo
ally shape regular and lo
ally quasi uniform,although the 
onstants for interpolation estimates are worse, be
ause we getlarger angles.For the �nite element dis
retization we de�ne V k
h as the spa
e of 
ontinuousfun
tions of pie
ewise polynomials of order k ≥ 1

V k
h :=

{

v ∈ H1
0 (Ω) : v|T ∈ Pk(T ), for all T ∈ T̃h

}

.ByQl
h we refer to the spa
e of dis
ontinuous fun
tions of pie
ewise polynomialsof order l ≥ 1

Ql
h(T̃h) :=

{

q ∈ L2(Ω) : q|T ∈ Pl(T ), for all T ∈ T̃h

}

.For k ≥ d velo
ities are approximated in the spa
e [V k
h ]d, and pressures areapproximated in Qk−1

h .We assume, that there exist proje
tion operators π̃h: V
d → [V k

h ]d, and πh: Q→
Qk−1

h , with optimal approximation properties
‖v− π̃h(v)‖0,Ω . hmin{r,k+1}‖v‖min{r,k+1}

‖∇(v− π̃h(v))‖0,Ω . hmin{r−1,k}‖v‖min{r,k+1}

(4)for all v ∈ V d ∩ [Hr(Ω)]d, r ∈ N and
‖q − πh(q)‖0,Ω . hmin{s,k}‖q‖min{s,k} (5)for all q ∈ Q ∩ Hs(Ω) and s ∈ N0. We let πh be de�ned by the standard

L2-proje
tion, whereas the properties of π̃h depend on the stabilization op-erator under investigation. The proje
tion π̃h will be required to satisfy anorthogonality 
ondition (v − π̃h(v), zh) = 0 for all zh ∈ [Zh]
d where [Zh]

d is a4



dis
rete spa
e that will be spe
i�ed for ea
h of the two stabilization methodsin Se
tion 5.In the following we denote by ah ∈ [V k
h ]d some pie
ewise linear interpolant of

a satisfying ‖a− ah‖∞,T ≤ hT‖a‖W 1,∞(T ) for all T ∈ T̃h. Usually, we will have
ah 6⊂ H. For the error analysis, we will use the following inverse estimate,whi
h is valid for all v ∈ Pk(T ), T ∈ T̃h

hT‖∇vh‖0,T . ‖vh‖0,T . (6)The presented mixed �nite element is the well-known S
ott-Vogelius element.Sin
e the triangulation is derived from a regular ma
ro triangulation and sin
ewe assume k ≥ d, this dis
retization is LBB-stable for a standard Galerkindis
retization of the Stokes problem [1,27℄. Dis
rete LBB-stability is equivalentto the existen
e of the Fortin interpolant [10℄, i.e. for all v ∈ V d there is a
πF(v) ∈ [V k

h ]d su
h that
∀qh ∈ Q

k−1
h : b(qh,v) = b(qh, πF(v)) ∧ ‖πF(v)‖1,Ω . ‖v‖1,Ω. (7)Moreover, S
ott-Vogelius elements have the important property

∇ · [V k
h ]d ⊂ Qk−1

h . (8)In the 
ase g = 0 this enfor
es pointwise mass 
onservation for the standardGalerkin dis
retization of the Stokes problem. This 
an easily be derived, sin
estandard weak mass 
onservation for the dis
rete Stokes solution uh meansthat for all qh ∈ Qk−1
h holds

(−∇ · uh, qh) = 0.Due to (8) we 
an 
hoose the spe
ial test fun
tion qh := −∇ ·uh and we haveexa
t mass 
onservation in the L2 sense. But sin
e dis
rete solutions uh arepie
ewise polynomial, we also get ∇ · uh = 0 pointwise inside ea
h simplex ofthe triangulation. As we shall see, this result holds also for the dis
rete Oseenproblem.In the following, we are espe
ially interested in the lowest order 
ase k = d,but of 
ourse we are not restri
ted to it. Denoting the produ
t spa
e Xk
h :=

[V k
h ]d×Qk−1

h we propose the following �nite element method: �nd (uh, ph) ∈ X
k
hsu
h that

Ah[(uh, ph), (vh, qh)] = (f,vh) + (g, qh),with Ah[(uh, ph), (vh, qh)] := A[(uh, ph), (vh, qh)]

+ Sh(uh,vh)

(9)for all (vh, qh) ∈ X
k
h . 5



Here, Sh(·, ·) is an abstra
t stabilization operator that is needed in the 
ase ofdominant 
onve
tion. For the abstra
t stabilization operator we postulate thefollowing properties
• (linearity) for all uh,vh,wh ∈ [V k

h ]d and λ, µ ∈ R we have
Sh(λuh + µvh,wh) = λ Sh(uh,wh) + µ Sh(vh,wh); (10)

• (symmetry) for all uh,vh ∈ [V k
h ]d we have

Sh(uh,vh) = Sh(vh,uh); (11)
• (non-negativity) for all uh ∈ [V k

h ]d we have
Sh(uh,uh) ≥ 0; (12)

• (boundedness) for all uh ∈ [V k
h ]d we have

|Sh(uh,uh)|
1
2 . h

1
2‖uh‖1,Ω; (13)

• (weak 
onsisten
y) for all u ∈ V d ∩ [Hr(Ω)]d with r ≥ 2 we have
|Sh(π̃h u, π̃h u)|

1
2 . hmin(r−

1
2

,k+
1
2
)‖u‖min(r,k+1); (14)

• (stability) there exists a quasi interpolation operator π̃*
h : [Qk−1

h (T̃h)]
d →

[Zh]
d su
h that for all vh ∈ [V k

h ]d, w ∈ V d there holds
(w − π̃h(w), π̃*

h(ah · ∇vh)) = 0,

‖h
1
2 (ah · ∇vh − π̃*

h(ah · ∇vh))‖0,Ω . |Sh(vh,vh)|
1
2 .

(15)Lemma 1 (Cau
hy-S
hwarz for the stabilization operator) For the sta-bilization operator holds for all u,v ∈ V d

|Sh(uh,vh)| ≤ [Sh(uh,uh)]
1
2 [Sh(vh,vh)]

1
2 . (16)PROOF. See the 
lassi
al proof for s
alar produ
ts. There, the properties(10), (11) and (12) are needed.4 A priori error analysisIn the following a priori 
onvergen
e analysis we investigate the 
onvergen
ebehavior of the proposed method depending on higher regularity assumptionsand the parameters {ν, α, a}. 6



For the analysis we introdu
e the following energy s
alar produ
t for all u,v ∈
V d

(u,v)e := ν(∇u,∇v) + α(u,v)The 
orresponding energy norm is denoted by ‖·‖e. Further, we introdu
e thefollowing triple norm for all (u, p) ∈ X

|||(u, p)|||2 := ‖u‖2
e + ‖∇ · u‖2

0,Ω + ‖p‖2
0,Ω.and a mesh-dependent dis
rete 
ounterpart for all (uh, ph) ∈ Xk

h a

ountingalso for the size of the stabilization term
|||(uh, ph)|||

2
h := ‖uh‖

2
e + ‖∇ · uh‖

2
0,Ω + [Sh(uh,uh)] + ‖ph‖

2
0,Ω.Lemma 2 (
oer
ivity) For all u ∈ V d, p ∈ Q we have the following 
oer-
ivity property

Ah[(u, p), (u,−p−∇ · u)] = |||(u, 0)|||2h.PROOF. The proof follows from the anti-symmetry of the 
onve
tive term,sin
e ∇ · a = 0 holds.Lemma 3 (weak 
onsisten
y) Let (u, p) be the solution of (2) and let (uh, ph)be the solution of (9) then
A[(u− uh, p− ph), (vh, qh)] = Sh(uh,vh).PROOF. The lemma is obtained by subtra
ting (9) from (2).Lemma 4 (Young) for all a, b ≥ 0 and ǫ > 0 we have

ab ≤
1

2ǫ
a2 +

ǫ

2
b2.Lemma 5 Suppose u ∈ V d ∩ Hr(Ω), r ≥ 2 and suppose that [V k

h ]d is apie
ewise polynomial spa
e with k ≥ d, then there holds
|||(u− π̃h(u), 0)|||+ Sh(π̃h(u), π̃h(u))

1
2 .

(

ν
1
2 + α

1
2h+ h0 + h

1
2

)

hmin(r−1,k)

×‖u‖min(r,k+1).(17)PROOF. The lemma is proven by applying (4) and (14).7



Lemma 6 Suppose u ∈ V d∩Hr(Ω), r ≥ 2, p ∈ Q∩Hs(Ω), s > 0 and supposethat [V k
h ]d is a pie
ewise polynomial velo
ity spa
e with k ≥ d and Qk−1

h is the
orresponding pressure spa
e , then there holds
|||(u− π̃h(u), p− πh(p))|||+ Sh(π̃h(u), π̃h(u))

1
2 .

((

ν
1
2 + α

1
2h+ h0 + h

1
2

)

× hmin(r−1,k)‖u‖min(r,k+1)

+hmin(s,k)‖p‖min(s,k)

)

,(18)PROOF. See lemma 5 and (5).Theorem 7 (stability) The stabilized �nite element method in (9) satis�esthe following stability property. For all (uh, ph) ∈ X
k
h with k ≥ d there holds

cS|||(uh, ph)|||h ≤ sup
(vh,qh)∈Xk

h
,

|||(vh,qh)|||6=0

Ah[(uh, ph), (vh, qh)]

|||(vh, qh)|||h
. (19)Here, the 
onstant cS is independent of the mesh size and does not degenerateas ν → 0.PROOF. By the dis
rete LBB-stability we �nd vph

∈ V d su
h that ∇·vph
=

ph, ∇ · (πF(vph
)) = ph, ‖vph

‖1,Ω . ‖ph‖0,Ω and ‖πF(vph
)‖1,Ω . ‖ph‖0,Ω.Taking (vh, qh) = (−πF(vph

), ph), we 
ompute
Ah[(uh, ph), (−πF(vph

), ph)] ≥ ‖ph‖
2
0,Ω

− ν‖∇uh‖0,Ω‖∇ πF(vph
)‖0,Ω − α‖uh‖0,Ω‖πF(vph

)‖0,Ω

− ‖uh‖0,Ω‖a‖L∞(Ω)‖∇ πF(vph
)‖ − ‖∇ · uh‖0,Ω‖ph‖0,Ω

− [Sh(uh,uh)]
1
2 [Sh(πF(vph

), πF(vph
))]

1
2 .We 
on
lude using the stability properties of vph

and πF(vph
) and by theboundedness of the stabilization operator (13)

‖πF(vph
)‖0,Ω . ‖ph‖0,Ω,

‖∇ πF(vph
)‖0,Ω . ‖ph‖0,Ω,

[Sh(πF(vph
), πF(vph

))]
1
2 . h

1
2‖ph‖0,Ω.

(20)For ea
h of the �ve negative terms in the right hand side of the inequality we8



use Lemma 4 with some ǫ > 0, whi
h is to be determined. We get
Ah[(uh, ph), (−πF(vph

), ph)] & ‖ph‖
2
0,Ω−

1

2ǫ
(ν‖∇uh‖

2
0,Ω + α‖uh‖

2
0,Ω + ‖∇ · uh‖

2
0,Ω

+ Sh(uh,uh) + ‖a‖L∞‖uh‖
2
0,Ω)

−
ǫ

2
(ν + α + 1 + ‖a‖L∞ + 1) ‖ph‖

2
0,Ω.Now we set

ǫ−1 := 2 + ν + α+ ‖a‖L∞and have
Ah[(uh, ph), (−πF(vph

), ph)] & 1
2
‖ph‖

2
0,Ω

−
1

2ǫ
(ν‖∇uh‖

2
0,Ω + (α + ‖a‖L∞)‖uh‖

2
0,Ω

+ ‖∇ · uh‖
2
0,Ω + Sh(uh,uh))

& 1
2
‖ph‖

2
0,Ω −

1

2ǫ
(1 +

‖a‖L∞

α
)|||(uh, 0)|||2h.Setting

M := ǫ−1(1 +
‖a‖L∞

α
) = (2 + ν + α+ ‖a‖L∞)(1 +

‖a‖L∞

α
)we �nally have

Ah[(uh, ph), (−πF(vph
), ph)] & 1

2
‖ph‖

2
0,Ω −

M

2
|||(uh, 0)|||2h.Now we 
hoose

(vh, qh) := (uh −
2

1 +M
πF(vph

),
1−M

1 +M
ph −∇ · uh)

= (uh,−ph −∇ · uh) +
2

1 +M
(−πF(vph

), ph)and get immediately by lemma 2 and the previous 
al
ulation
Ah[(uh, ph), (vh, qh)] &

1

1 +M
|||(uh, ph)|||

2
h.We end the proof by showing that |||(vh, qh)|||h . |||(uh, ph)|||h. Therefore, weuse the triangle inequality for the triple norm and apply the three estimates9



in (20)
|||(vh, qh)|||h ≤ |||(uh,−ph)|||h + |||(0,−∇ · uh)|||h +

2

1 +M
|||(−πF(vph

), ph)|||h

. 2|||(uh, ph)|||h +
2

1 +M
(3

1
2 + ν

1
2 + α

1
2 )‖ph‖0,Ω

. (1 + ν
1
2 + α

1
2 )|||(uh, ph)|||h.We 
on
lude

Ah[(uh, ph), (vh, qh)]

|||(uh, ph)|||h|||(vh, qh)|||h
&

1

1 +M

1

1 + ν
1
2 + α

1
2If we assume that ν ≪ 1 and ‖a‖L∞ = O(1), we get cS ≈ O(min{α, α−

3
2}).In parti
ular, the estimate is independent from the mesh size.Remark 8 The estimate on cS indi
ates instability for α→ 0. This behavior
annot be seen in numeri
al experiments. On the other hand it is known also inthe 
ase of s
alar adve
tion-di�usion-rea
tion equations. In that 
ase one mayimprove the analysis using exponentially weighted test fun
tions as proposedin [20℄. Su
h an analysis is beyond the s
ope of the present paper.Theorem 9 (a priori error estimate) Let (u, p) be the solution of (2) and

(uh, ph) be the solution of (9) then, under the same assumptions on the regu-larity of u and p as for Lemma 6, there holds
|||(u− uh, p− ph)||| . hmin(r−1,k)‖u‖min(r,k+1)

+ hmin(s,k)‖p‖min(s,k).
(21)In addition, for the velo
ities alone we have the result

|||(u− uh, 0)|||+ Sh(uh,uh)
1
2 . hmin(r−1,k)‖u‖min(r,k+1), (22)where the approximation order of the dis
rete velo
ities is independent fromthe pressure regularity.PROOF. In the general 
ase we start using the triangle inequality for thetriple norm

|||(u− uh, p− ph)||| ≤ |||(u− π̃h(u), p− πh(p)|||

+ |||(uh − π̃h(u), ph − πh(p))|||h.The �rst term in the se
ond line 
an be estimated immediately by lemma 6.10



In order to obtain the estimate (22) we simply start the analysis with
|||(u− uh, 0)||| ≤ |||(u− uh, πh(p)− ph)|||

≤ |||(u− π̃h(u), 0)|||+ |||(uh − π̃h(u), ph − πh(p))|||h.
(23)Similar to the previous 
ase we 
an estimate the �rst term of the se
ond lineby lemma 5. We then apply theorem 7 to the se
ond term, whi
h is identi
al inboth 
ases. Introdu
ing the dis
rete errors ξuh := uh−π̃h(u) and ξp

h := ph−πh(p)we have
cS|||(ξ

u

h , ξ
p
h)|||h ≤ sup

(vh,qh)∈Xk
h
,

|||(vh,qh)|||h 6=0

Ah[(ξ
u

h , ξ
p
h), (vh, qh)]

|||(vh, qh)|||h
.Now we investigate the numerator of the fra
tion on the right hand side. Byweak 
onsisten
y in lemma 3 and the Cau
hy-S
hwarz inequality we get

|Ah[(ξ
u

h , ξ
p
h), (vh, qh)]| = |A[(u− π̃h(u), p− πh(p)), (vh, qh)]− Sh(π̃h(u),vh)|

≤ |||(u− π̃h(u), 0)||||||(vh, 0)|||

+ |(u− π̃h(u), a · ∇vh)|

+ |(p− πh(p),∇ · vh)|+ |(qh,∇ · (u− π̃h(u)))|

+ [Sh(π̃h(u), π̃h(u))]
1
2 [Sh(vh,vh)]

1
2 . (24)First note that by the orthogonality of the L2-proje
tion we have

|(p− πh(p),∇ · vh)| = 0so the only term involving the proje
tion error of the pressure vanishes. Sin
ethe L2-norm of the pressure and the divergen
e are in
luded in the triple norm,we 
an 
on
lude
|Ah[(ξ

u

h , ξ
p
h), (vh, qh)]| . |||(u− π̃h(u), 0)||||||(vh, qh)|||

+ |(u− π̃h(u), a · ∇vh)|

+ [Sh(π̃h(u), π̃h(u))]
1
2 |||(vh, 0)|||h.The se
ond term on the right hand side is estimated as follows. We use thetriangle inequality, the stability property of the stabilization operator (15) andthe inverse estimate (6).

|(u− π̃h(u), a · ∇vh)| ≤ |(u− π̃h(u), (a− ah) · ∇vh)|

+ |(u− π̃h(u), ah · ∇vh − π̃*
h(ah · ∇vh))|

. ‖a‖W 1,∞α−
1
2‖u− π̃h(u)‖0,Ω Sh(vh,vh)

+ ‖h−
1
2 (u− π̃h(u))‖0,Ω|||(vh, 0)|||h.11



Altogether, with lemma 6 we have the following estimate
|||(ξuh , ξ

p
h)||| .

1

cS
{(ν

1
2 + (α−

1
2 + α

1
2 )h+ h0 + h

1
2 )hmin(r−1,k)‖u‖min(r,k+1)

+ hmin(s,k)‖p‖min(s,k) + hmin(r−
1
2

,k+
1
2
)‖u‖min(r,k+1)}.The �rst error estimate is now derived with a 
onstant c ≈ max{O(α−1, α

3
2 )}.In the spe
ial 
ase g = 0 the dis
rete solution uh lies in the spa
e H and is
ompletely de
oupled from the pressure.Remark 10 The a priori error estimate does not allow us to 
on
lude that
onvergen
e improves in the L2-norm thanks to the stabilization operator. Thisis due to the fa
t that the 
ontribution of the divergen
e of the solution domi-nates the error estimate in the 
ase of high Reynolds numbers. Also note thateven in 
ase g = 0 it does not seem possible to prove optimal estimates thanksto the stabilization. In the numeri
al se
tion we show in a linear example thatthe stabilized method 
an lead to smaller error in both L2- and H1-norms.Then in a non-linear example we show that the stabilization damps spuriousos
illations on 
oarse meshes.5 Two stabilization operatorsIn the following we present two di�erent stabilization operators, that enter theabstra
t framework proposed above. Other methods su
h as the orthogonalsubs
ales proposed by Codina, [9℄ or the subgrid vis
osity method proposedby John and Kaya [18℄ 
ould also be 
onsidered. An overview of some re
entstabilization methods for the Oseen's equation is given in [4℄.5.1 Edge/fa
e stabilizationThe edge/fa
e stabilization was analyzed for the �rst time in [7℄ for �niteelement dis
retizations of 
onve
tion-di�usion-rea
tion equations. Later, themethod was extended to in
ompressible �ow problems [5℄. The stabilizationoperator reads as

Sh(u,v) =
∑

T∈T̃h

1
2

∫

∂T
γh2

∂T [∇u] · [∇v] ds. (25)Here, h∂T is the size of ∂T , [q] denotes the jump of q a
ross ∂T for ∂T∩∂Ω = ∅,
[q] = 0 on ∂T ∩ ∂Ω 6= ∅ and γ is a tuning parameter.12



For this operator we see (10)�(13) at on
e. Also (14) is easily veri�ed, sin
efor fun
tions u ∈ [H2(Ω)]d the tra
e of ∇u is well de�ned and the stabiliza-tion vanishes. Therefore, fa
e stabilization is H2-
onsistent. For the remainingfeatures of the stabilization we refer the reader to [7,5℄. Here, the operator
π̃h is de�ned by the standard L2-proje
tion onto the spa
e [Zh]

d := [V k
h ]d and

π̃*
h : [Qk−1

h (T̃h)]
d → [Zh]

d is de�ned by the Oswald-quasi interpolation operatorde�ned in ea
h node xi as the straight average
π̃*

h u(xi) =
1

ni

∑

{K:xi∈K}

u(xi)|kwhere ni denotes the number of triangles sharing node xi. One may then showthat the stabilization term (25) satis�es also the 
ondition (15). A streamline-di�usion type operator is obtained by 
hoosing γ = γ0|a ·n∂T |. For details see[5℄.5.2 Lo
al proje
tion stabilizationThe lo
al proje
tion method was introdu
ed in [2℄ and was analyzed for theOseen's problem in [3℄. In order to de�ne the method we de�ne the spa
e ofdis
ontinuous fun
tions on the ma
roelement mesh and set Zh := [Qk−1
h (Th)]

d.It is a dis
ontinuous �nite element spa
e of order k − 1, whi
h is 
ontinuousover the ma
ro simpli
es of the ma
ro triangulation Th. With the (lo
al) L2-proje
tion π̄h,k−1 : [Qk−1
h (T̃h)]

d → [Zh]
d we de�ne the following �u
tuationoperator

κ̄h := I − π̄h,k−1, (26)where I stands for the identity mapping. Now the 
onve
tion is stabilized by
Sh(u,v) = (γ|a|hT κ̄∇u, κ̄∇v). (27)Again, we 
an dire
tly see that (10), (11), and (12) are valid for this operator.In the abstra
t setting above π̃*

h is given by the operator π̄h,k−1. The 
orre-sponding proje
tor π̃h is de�ned as a variant of the S
ott-Zhang interpolationas de�ned in [24℄ modi�ed to satisfy the orthogonality 
onstraint of (15). Fordetails on the analysis we refer to [3℄.6 Numeri
al examplesIn this se
tion we illustrate the theoreti
al results obtained above with two
omputational experiments. All numeri
al 
omputations are performed usingthe �nite element toolbox Alberta [23℄. The evolving sparse linear systemsare solved by the e�
ient dire
t solver Pardiso [14,22℄.13



6.1 A linear exampleFirst, we 
onsider the linear problem (1) in the two dimensional 
ase. Weapproximate the following 
ontinuous solution u = (u, v) in the domain Ω =
[0, 1]× [0, 1]. The example was taken from [13℄ and slightly modi�ed.

ψ(x, y) = c1x
2(x− 1)2y2(y − 1)2

u(x, y) = ∂yψ

v(x, y) = −∂xψ

p(x, y) = c2(x
3 + y3 − 1

2
).We 
hoose ν = 10−4, α = 100·2π2ν ≈ 0.197392, a = u, c1 = 256, c2 = 21.03485and 
ompute the resulting right hand side f . Here, the parameter α 
orre-sponds to a rough estimate for the time step in an instationary s
heme for
omputing the asymptoti
 limit t → ∞ in a �
titious time-dependent Oseenproblem. The 
hosen parameter is related to the smallest eigenvalue of theLapla
e operator and therefore allows to resolve the dissipation of energy inthe equation. By the 
hoi
e of the parameter c2 the rotation and the diver-gen
e part of the (smooth) right hand side f are balan
ed. Therefore, quitea big pressure gradient is guaranteed and non-solenoidal dis
retizations willprodu
e velo
ity approximations, whi
h are polluted by bad approximation ofthe 
ontinous pressure.For this numeri
al test problem we 
ompare three di�erent dis
retizations: theGalerkin Taylor-Hood element P2 − P1 (GTH), the Galerkin S
ott-Vogeliuselement P2 − P−1 (GSV) and the stabilized S
ott-Vogelius element with sta-bilization parameter

γ = γ0‖a‖
2
0,Ω (28)and stabilization parameter γ0 = 3.085 · 10−3. The parameter is tuned byminimizing the error on the 
oarsest mesh. All the 
omputations are performedon ma
ro element meshes as des
ribed above, whi
h are derived from a uniformtriangulation of the unit square, see �gure 1. For the �rst numeri
al examplewe used 4 
onse
utive meshes, with N = 16, 32, . . . , 128 elements on ea
h sideof the unit square. We present the velo
ity errors in the L2 and the H1 norm.The pressure error is presented in the L2 norm. For the �rst test 
ase we notethe following approximate 
onvergen
e orders for the stabilized S
ott-Vogeliuselement:

• ‖u− uh‖0,Ω . h3.29

• ‖∇(u− uh)‖0,Ω . h2.25

• ‖p− ph‖0,Ω . h2.05

• |||u− uh|||h . h2.44.The 
orresponding 
onvergen
e behavior is shown in �gures 2 and 3.14



Fig. 1. Ma
ro Element Triangulation of the Unit Square. N = 2We re
ognize that the error of the stabilized S
ott-Vogelius solution is smaller
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ities and pressurethan that of its Galerkin 
ounterpart on the 
omputational meshes 
onsidered,about one half re�nement step in the L2 norm and one re�nement step in the
H1 norm. The superior performan
e of the S
ott-Vogelius element 
ompared to15



the standard Taylor-Hood elements for the velo
ity approximations is 
learlyvisible in �gure 2.6.2 A nonlinear example - driven 
avity in two dimensionsAs a se
ond example, we present numeri
al 
omputations for the Navier-Stokesequation. We 
hoose the well-known driven 
avity problem in two spa
e di-mensions at Reynolds number 5000 and pres
ribe the velo
ity u = (1, 0) at thetop of the 
avity and no-slip boundary 
onditions elsewhere. At this Reynoldsnumber the steady state solution is stable and referen
e solutions for 
ompar-ison are available in the literature (see [16,11℄).By 
omputing the asymptoti
 limit for t→∞, we have approximated numer-i
ally this stable steady solution. In this situation, the fully impli
it ba
kwardEuler method is su�
ient as time dis
retization s
heme. We start from Stokessolutions and in
rease the time step manually during the 
omputation. Thenonlinear system is solved by a simple, undamped �xed point iteration.Dis
retization in spa
e is performed by the quadrati
 S
ott-Vogelius element,similar to the linear example above. We 
ompare the 
orresponding Galerkindis
retization (GSV-N) to a stabilized formulation with the 
lassi
al linearedge stabilization (SSV-N) on a sequen
e of four uniform ma
ro elementmeshes. On the 
oarsest grid (N = 8) we get 2 · 8 · 8 = 128 ma
ro ele-ments and about 450 divergen
e-free ansatz fun
tions in the approximationspa
e. For the stabilized method we here 
hoose γ = 4.0 · 10−3 as stabilizationparameter.In �gure 4 we show the stabilized solution on the �nest grid with N = 64.Here, we 
an see the typi
al pi
ture of the 
ontinuous solution quite well.There are two se
ondary vorti
es in the bottom 
orner and a third one in theupper left 
orner. In addition, also the small tertiary vortex in the lower right
orner is resolved. The numeri
al results 
ompare well to the data given e.g.in [16℄.While the Galerkin dis
retization seems to be quite stable on the �nest gridand hardly di�ers there from the stabilized solution, we expe
t pronoun
edspurious os
illations in the Galerkin solution on 
oarse grids due to the non-dissipative approximation of the �rst-order derivate. Su
h os
illations 
an eas-ily made visible by plotting the velo
ity-
omponents of the Galerkin solutionon straight lines through the 
avity.First, we demonstrate in �gure 5 that the Galerkin (GSV-64) and the stabilizeddis
retization (SSV-64) do not di�er mu
h on the �nest grid. Even on this �negrid the standard Galerkin method presents spurious os
illations although16



Fig. 4. Driven 
avity at Reynolds number 5000 using the SSV-64 dis
retization.First pi
ture: Velo
ity �eld. Se
ond pi
ture: Five numeri
al traje
tories in the velo
-ity �eld beginning at the following points: (0.1, 0.9), (0.1, 0.1), (0.9, 0.1), (0.5, 0.5),
(0.978, 0.022)their amplitude is very small. The in�uen
e of the grid resolution on the
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Fig. 5. Absolute Values of the Di�eren
e between GSV-64 and SSV-64 dis
retiza-tions on the straight line y = 0.9. First pi
ture: di�eren
e of u-
omponents. Se
ondpi
ture: di�eren
e of v-
omponentsGalerkin and the stabilized dis
retization 
an be studied in �gures 6 and 7.As expe
ted, in the stabilized dis
retization spurious os
illations are redu
ed in
omparison to the Galerkin dis
retization. However, it is not 
lear from thesegraphi
s that the solution quality a
tually improves in the L2-norm whenadding the stabilization terms. For the straight lines x = 0.5 and y = 0.5 we
an �nd some referen
e values for the u and v 
omponents in the literature.In �gures 8 and 9, the results are 
ompared to a referen
e solution presentedin [11℄. The referen
e values are visualized by points.17
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