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Feature Adaptive Sampling for 
Scanning Electron Microscopy
Tim Dahmen1, Michael Engstler2, Christoph Pauly2, Patrick Trampert1,2, Niels de Jonge2,3, 
Frank Mücklich2 & Philipp Slusallek1,2

A new method for the image acquisition in scanning electron microscopy (SEM) was introduced. 
The method used adaptively increased pixel-dwell times to improve the signal-to-noise ratio (SNR) 
in areas of high detail. In areas of low detail, the electron dose was reduced on a per pixel basis, and 
a-posteriori image processing techniques were applied to remove the resulting noise. The technique 
was realized by scanning the sample twice. The first, quick scan used small pixel-dwell times to generate 
a first, noisy image using a low electron dose. This image was analyzed automatically, and a software 
algorithm generated a sparse pattern of regions of the image that require additional sampling. A second 
scan generated a sparse image of only these regions, but using a highly increased electron dose. By 
applying a selective low-pass filter and combining both datasets, a single image was generated. The 
resulting image exhibited a factor of ≈3 better SNR than an image acquired with uniform sampling on 
a Cartesian grid and the same total acquisition time. This result implies that the required electron dose 
(or acquisition time) for the adaptive scanning method is a factor of ten lower than for uniform scanning.

SEM is a widely used microscopy technique with applications in fields such as material science, life science, 
and semiconductor research. The specimen is scanned by a focused electron beam, and back scattered elec-
trons or secondary electrons are detected with the respective detectors. SEM techniques can be extended to 
three-dimensional (3D) imaging using several approaches1. In focused ion beam scanning electron microscopy 
(FIB/SEM), a specimen is imaged by sequentially removing thin layers of material using a focused ion beam. 
Each resulting surface is then scanned using a focused electron beam such that 3D information is acquired 
layer-by-layer2–5. A similar technique is STEM in which the image is acquired via scanning the electron beam 
but here transmitted electrons are used for contrast. In STEM tomography, the specimen is imaged at different 
tilt angles of the specimen. A number of recording schemes has been proposed including single axis tilt series6, 
double axis tilt series7,8, and conical tilt series9,10. Alternatively, 3D information is obtained via recording of a focal 
series11,12. Recently, the combined tilt- and focal series has been introduced as an additional option13,14. Common 
to all these recording schemes is the need to acquire a set of images that are used to reconstruct a 3D dataset.

Due to the large number of pixels in a dataset, the pixel-dwell time, which is the amount of time the electron 
beam illuminates a single pixel, is a crucial parameter for the aforementioned techniques. The pixel-dwell time 
required for a sufficiently high SNR leads to large data acquisition times, in particular for 3D techniques. For 
modern microscopy equipment operating with high brightness field emission electron sources, it is typically 
impossible to decrease the pixel-dwell time, since the probe current in the same spot size cannot be increased on 
account of the limited brightness of the electron source. As an example, consider the acquisition of a 3D dataset 
using FIB/SEM serial sectioning. The size of FIB/SEM tomography datasets is typically in the range of 10242 ×  256 
voxels15. With a typical dwell time of 30 μs, the total time for the image acquisition is in the range of 2 hours. If 
the data from FIB/SEM tomography is extended to the range of 20482 ×  512 or even 40962 ×  512 voxels, the total 
image acquisition time at 30 μs dwell time would be in the order of 18 hours to 3 days.

Another critical factor for most samples under investigation is radiation damage16,17. The effect is the strongest 
in organic samples such as polymers or biological specimen18,19. Beam induced damage in biological specimen 
expresses itself primarily in the form of sample shrinkage perpendicular to the sample plane20 and damage to the 
structure of the sample.

There are several standard strategies to reduce image acquisition time and/or electron dose with characteristic 
drawbacks. The electron microscope can be adjusted for a higher probe current resulting in a higher electron 
dose per time unit and, thus, a shorter acquisition time, but the spatial resolution will be reduced in most cases. 
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Reducing the dwell time at a given probe current will lead to a lower SNR, and thus limits the information content 
of the image. Posterior filtering of the image, e.g. mean filtering, is frequently used to improve image quality after 
image acquisition, but the fine structures in the image are blurred and image sharpness is lost.

In order to circumvent the drawbacks of low SNR at high scan rates, more advanced scanning strategies 
have been developed. Oho et al.21 proposed a method called “aquincuncial”, i.e. non-Cartesian scanning in 
under-sampled conditions. During conversion from a non-Cartesian grid to a Cartesian grid, the number of 
pixels doubles with only a small reduction in image quality, at least in images with structures aligned in x- and 
y-direction. Timischl22 proposed a dynamic scanning method based on adjusting the scanning speed to the 
amount of detected electrons. In bright appearing sample areas, more electrons are detected, and the scanning 
speed can be increased. In this study, we propose to extend this idea by using adaptive scan rates, and use a crite-
rion for the scan rate based not on the value of an individual pixel, but on an analysis of the entire image.

The algorithmic idea of image based adaptive sampling originates from the field of realistic image synthesis, 
for example in movie production. Algorithms in this field are typically based on the ray tracing23,24 method. 
Hereby, a realistic, two-dimensional image is synthetically generated from a 3D scene by computing the color 
value of each pixel. This is achieved by creating a ray starting from the pixel, and computationally simulate light 
propagation along the ray. As each pixel represents a small area, not a point, on the camera plane, one position 
inside the pixel is selected as the starting point for the ray, called the sample position. Typically, several samples 
are evaluated and averaged to achieve better image quality (“anti-aliasing”). However, the computational cost 
of the lighting simulation per ray is high in general, so it is desirable to reach the best possible result with as 
little samples as possible. Various adaptive sampling schemes have been proposed and will be described in the 
following.

In the method called adaptive super sampling23, rays are cast through the corners of a pixel. If the four values 
do not differ from each other by too much, their average is used for the pixel. If not, more rays are cast-from the 
center of the pixel and the centers of the pixel edges. This subdivision continues as needed until some preset limit 
on the number of subdivisions is reached. An alternative approach is adaptive super sampling using Poisson-disk 
sampling25, whereby samples are distributed randomly and some regions of the image may require extra sam-
pling, to avoid aliasing. Similarly, a method proposed by Painter and Sloan26 also uses adaptive super sampling 
based on the image space, but their procedure starts from above the pixel level.

An incremental approach to adaptive sampling is taken in27, where a sequence of images is generated with 
incrementally improved quality. The first images are generated by casting a limited set of rays (less than one per 
pixel) and interpolating the results. Subsequent images are formed by casting additional rays and maximizing 
their impact by distributing them according to a measure of local image complexity.

Since those early contributions, adaptive sampling methods have a permanent place in computer graphics 
research and applications. However, the focus of research has shifted to advanced sampling techniques that make 
use of prior knowledge of the physical nature of light propagation and thus are not readily applicable to electron 
microscopy. In this study, we apply the principle idea of image based adaptive sampling to the image formation 
process of two dimensional scanning electron microscopy. However, the same method could in principle be 
applied to three dimensional FIB/SEM tomography, STEM tomography or even scanning x-ray tomography28.

The proposed method29 consists of an adaptive scanning method based on image analysis of an entire image. 
In order to achieve the seemingly paradox goal of scanning an image based on its own, a-priori unknown, char-
acteristics, a two-step scanning is performed. An initial image is acquired on a conventional Cartesian grid. This 
initial scan is recorded with a small pixel-dwell time. This information is used to estimate image characteristics 
resulting in a mask that contains areas of interest, mainly the phase boundaries. A second scanning step is then 
performed to gather additional information. In this step, the high interest areas (HIA) are scanned again at a 
highly increased pixel-dwell time resulting in a sparse dataset of drastically improved SNR. The final image is then 
formed by filtering the initial dataset to remove noise. This is combined with the second dataset to bring in high 
frequency detail in the HIA.

Material and Methods
Samples.  Cast iron samples used in this study were provided by Neue Halberg Guss GmbH, Saarbrücken, 
Germany. The microstructure consists of a pearlitic iron matrix with graphite inclusions. The carbon content 
is approximately 3.5 wt% and the silicon content is approximately 2 wt% for both samples. The first sample has 
nodular graphite morphology and was taken from a sand casting of a crankshaft for internal combustion engines. 
The second sample has lamellar graphite inclusions and was taken from a sand casting of a crankcase for internal 
combustion engines.

Microscope.  The microscope employed in this study was a FEI Helios NanoLab600 equipped with a Shottky 
field emission electron source. The electron beam was set to an accelerating voltage of 5 kV and a probe current 
of 340 pA. Images were acquired with the Everhart-Thornley secondary electron detector at a working distance 
of 4 mm.

Software.  The basic image acquisition performed in this study was executed using FEI XTUi 3.8.9. The soft-
ware is equipped with basic beam guiding functions for electron and ion beam patterning. All functions specific 
to the methods are presented in this paper and described below were developed as Java Plugins to the ImageJ 
derivative FIJI30. The combination of the custom software and FEI XTUi resulted in a prototype workflow (Fig. 1) 
for the recording of images using the proposed adaptive sampling pattern.

Image Acquisition.  The method presented in this study started with the acquisition of a 10242 pixel image 
at a low pixel-dwell time of 1 μs recorded with 16 bit per pixel. The image was transferred to ImageJ for further 



www.nature.com/scientificreports/

3Scientific Reports | 6:25350 | DOI: 10.1038/srep25350

processing. It was analyzed automatically and classified in two regions. The first region (“filter region”) showed 
smooth gradients, i.e. only low frequency variation of the gray values. The second regions, the HIA, consisted of 
strong discontinuities of the gray values, i.e. it contained the pixels showing edges and other sharp features.

The classification was based on the idea of detecting maxima in gradient magnitude values of a 
Gaussian-smoothed version of the image. Details on the algorithm are given in31. We used the existing imple-
mentation of the algorithm in the software package FeatureJ. First, the image was converted to 32 bit gray scale. 
Next, the edge detection algorithm was executed using the parameters “smoothing scale” = 1.0 and “suppress 
non-maximum gradients” = false, which resulted in an intermediate image representation. Next, the image was 
converted to a binary (black and white) representation, i.e. thresholding was applied. This thresholding was per-
formed in such a way that a fixed number of pixels was classified as belonging to the HIA. In order to determine 
the correct thresholding value to match this condition, a 256 bin histogram of the intermediate representation 
was computed. The running sum of the histogram was computed to find the approximate value that represented 
a certain percentage of pixels with highest intensity. Thresholding was then applied to the image according to this 
value and it was converted to black and white.

The size of the HIA was selected according to two criteria. Firstly, the resulting mask had to consist of closed 
shapes around all phase boundaries in the sample, which was required by the filtering procedure described below. 
Secondly, the size of the HIA should be minimal in order to reduce the average pixel dwell time. The value that 
fulfills those requirements depends on the sparsity of the gradient image, i.e. how “dense” the image appears vis-
ually and had to be entered by the user. This user interaction was supported by a real-time preview of the resulting 
mask. The question if an image consists of closed shapes or not can in principle also be solved algorithmically, so 
this step might be automated in the future.

Alternatively, a gradient magnitude value for the thresholding could be specified directly. In this case, the 
software would select a varying amount of pixels for the HIA to reach a constant quality level of the mask. This 
alternative approach might be beneficial in the case of 3D sectioning, if subsequent slices have a different struc-
ture from the first slice and thus the size of the HIA needs to be adapted per vertical image position.

As the operating software used in this study does not support acquiring pixel-selective images, we used fea-
tures originally intended for ion beam structuring. A trace file in the format PIA Stream File Extension (.str) was 
generated to transfer the shape of the HIA to the software XTUi 3.8.9. Stream files directly access the digital 16 bit 
scan generator and are typically used for milling complex geometries with the ion beam. However, the stream file 
can also be used to control the electron beam. To use stream files for image acquisition, we enabled the built-in 
real time monitor (RTM). This feature activates the secondary electron detector while the stream file is running 
and can be used to acquire a pixel-selective image according to the desired HIA. This way, one can achieve fine 
granular control in the image acquisition process and generate images that have their pixels arranged in arbitrary 
patterns.

To acquire the desired sparse image, the stream file was loaded using the patterning interface of the software. 
By starting the “patterning” process with activated RTM, the beam was switched on and data was recorded only 
in regions specified by the coordinates in the stream file. Hereby, the feature “blackout pattern area for RTM” was 
used to erase remaining signals in the detector prior to recording. The acquired pixels were then recorded in the 
RTM and could be saved and used for further image processing outside the microscope software.

The trace file mentioned above was generated in such a way that the beam scanned the image row by row. 
The beam was turned on (“unblanked”) when entering the HIA. Inside the HIA, every pixel was scanned with a 
larger dwell time resulting in an improvement of SNR compared to the initial image. When leaving the HIA, the 
beam was turned off (“blanked”) and the microscopy skipped to parts of the image representing the filter region. 

Figure 1.  The process of image acquisition. An initial image was acquired at low pixel-dwell time in XTUi. 
The image was analyzed in ImageJ and two files (scan file and mask image) were generated, both representing 
the classification of the image in a high interest area (HIA) and a filter region. A second sparse image was then 
acquired for the HIA with much larger pixel-dwell time. The initial image was filtered using an adaptive filter 
kernel based on the mask image. The sparse image and a filtered version of the initial image were combined to 
form the final result.
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This way, the software XTUi generated a second image, containing only pixels in the rescanning region, but at 
improved SNR. The pixels representing the filter region contained zeros.

Filtering.  In the filter area of the image, a band-limiting image filter was applied to reduce the image noise. 
The filter was designed based on a Gaussian filter kernel because of the well understood band-limiting properties 
of this kernel. Filtering with a Gaussian filter worked without problems inside the filter area but resulted in arti-
facts at the border to the HIA in cases where the filter kernel overlapped the HIA. Therefore, the filter kernel was 
modified per pixel, i.e. a different filter kernel was used for each pixel. The kernel was generated by first computing 
a discrete representation of a 2D Gaussian kernel of width σ  (Fig. 2a). Pixels outside a cutoff of 3σ  were assumed 
to be zero. The filter was then multiplied pixel per pixel with a mask, i.e. the filter value was set to zero for all pixels 
outside this mask. As a mask, the shape of the HIA around the filtered pixel was used (Fig. 2b). This avoided that 
the filter used pixels from the HIA to compute a pixel value in the filter area. However, multiplication with the 
mask was insufficient. For larger Gaussian kernels, the filter kernel sometimes overlapped narrow strips of the 
HIA and reached a second patch of the filter area. This second patch typically belonged to a different phase of the 
sample and should not be considered either. A flood-fill algorithm was therefore used starting at the center of the 
kernel. All pixels not reachable by the flood-fill were also excluded from the mask (Fig. 2c). Finally, the kernel 
had to be re-normalized to ensure that pixel values sum up to one and thus the resulting filter preserves intensity 
(Fig. 2d).

The filtering method is an edge preserving smoothing operator, such as the well-known bilateral filter32 or ani-
sotropic diffusion33. However, our method uses an explicit representation of the features to be preserved, which 
are known a-priori from the previous step in the method gives as mask image. In this regard, the filter is more 
comparable to a guided filter34, albeit avoiding the complicated optimization steps.

Adapation of noise level.  Using the filter described above and choosing a Gaussian with sufficiently large 
value of σ , the noise in the filter area could be removed to almost arbitrary low levels. In the HIA, the noise level 
is reduced by scanning the pixels again at increased pixel-dwell time, respectively electron dose. The reduction of 
noise in the HIA is not arbitrary, though, but depends on the ratio of dwell times of the initial scan and the second 
scan. Typical values are 300 ns for the first scan and 30 μs for the second scan, such that pixel-dwell times that 
are 100 x higher resulting in a SNR improvement of a factor of 10, which still involves clearly visible noise. When 
combining filter area and HIA to form the final image, different parts of the image have different noise levels. 
This can easily be avoided by mixing the filtered version of the HIA with the unfiltered version in the right ratio.

Results
Benchmarking and quantitative assessment.  In order to benchmark the proposed method, several 
images of cast iron with nodular graphite inclusions were recorded. The investigated image consisted of a sig-
nal and deviations, which were composed of noise and systematic errors. For the conditions used in this study, 
the noise was dominated by statistical noise that is a consequence of the limited number of electrons per pixel. 
Systematic deviations included among others (1) microscope drift, which can occur mainly at high magnifica-
tions or unstable operation conditions, (2) a convolution with the point spread function (PSF), and (3) a deforma-
tion of the PSF that is a consequence of non-intermediate signal response of the scanning unit and mainly occurs 
at very high scan rates. All systematic errors were negligible compared to the noise and thus were ignored for this 
study. The image was recorded using an initial scan with 300 ns pixel-dwell time and a sparse scan using 27 μs 
for an HIA of 10%, which results in an average pixel-dwell time of 3 μs (Fig. 3a). A ground truth scan was per-
formed using a high pixel-dwell time of 60 μs (Fig. 3b). As comparison, a conventional scan of the same sample 
was performed using uniform scanning with a pixel-dwell time of 3 μs (Fig. 3c). As image processing operations 
might also be applied to images recorded using uniform scanning, a state-of-the-art edge preserving smoothing 
filter was applied. We have choosen an anisotropic diffusion operator33 with the following settings: number of 
iterations: 200, smoothings per iteration: 1, diffusion limiter along minimal variations: 0.2, diffusion limiter along 
maximal variations: 0.9, time step: 2, edge threshold height: 5.0.

As can be seen by comparing Fig. 3a–c, the image recorded using the adaptive sampling technique looks 
smoother and contains less image noise. By comparing Fig. 3a,b, one of the drawbacks of the adaptive sampling 
method can be seen, namely the fact that some smaller details are missing entirely in the sparse scan. Examples 
are marked with white arrows in Fig. 3b. An interesting benchmark is to compare the image acquired using 

Figure 2.  Structure of the filter kernel. The image was filtered using a different filter kernel for each pixel.  
(a) The filter was designed based on a discrete Gaussian as a starting point. (b) The Gaussian kernel was 
modified by considering the shape of the filter area around the pixel. The filter area is shown in black, the high 
interest area (HIA) in white. (c) A flood fill algorithm was used to detect only those pixels reachable from the 
center (gray). (d) The Gaussian was set to zero for all pixels not contained in the mask and re-normalized.
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adaptive sampling (Fig. 3a) to the result obtained by combining uniform sampling at the same average pixel-dwell 
time and applying state-of-the-art a-posteriori image processing methods (Fig. 3d). As can be seen, the the aniso-
tropic diffusion filter is effective at removing noise, but also creates a slighly blurred image that misses even more 
details compared to the adaptive sampling scheme.

By computing the pixel error, i.e. the per-pixel difference between the ground truth image and the images 
recorded with different settings, signal and deviations could be separated. We found that systematic errors can be 
neglected in our case and in the following, we assume that deviations consist of noise only. We thus considered 
three values for each pixel: the value in the ground truth image (signal only), the value in the image recorded with 
the respective method (signal+ noise) and the difference (noise only). This allowed us to quantify the impact of 
the adaptive sampling and compute the SNR according to the formula mean of signal divided by standard devia-
tion of noise (Table 1). Additionally, we computed peak signal-to-noise-ratio (PSNR)35 and structural similarity 
index (SSIM)36. In the following, all error values are given as difference between pixel value in the respective scan 
and the same pixel value in the ground truth image. All values are expressed as percentage of the maximum pixel 
intensity of the reference scan for comparability. The adaptive sampling scheme with adaptation of noise level 
produces an average pixel error of 1.88% ±  1.65%. This is significantly lower than the uniform scan, which has 
a pixel error of 4.42% ±  3.46%. Another observation is that the standard deviation of the pixel error is similar to 
the average value, which can be expected for an error that is dominated by noise. The uniform scan filtered with 

Figure 3.  Overall performance of the adaptive sampling method. (a) Image recorded with our method using 
an average pixel-dwell time of 3 μ s (initial scan 300 ns, sparse scan 27 μ s for 10% of pixels). (b) Image recorded 
with a uniform pixel-dwell time of 60 μ s as ground truth. The image shows some small details that are missing 
in the sparse scan (examples are indicated by white arrows). (c) Image recorded with uniform sampling at the 
same pixel-dwell time (3 μ s per pixel). (d) Image recorded at 3 μ s per pixel and filtered using an anisotropic 
diffusion operator.
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the isotropic diffusion filter has a pixel error of 1.58% ±  1.81%, which is even lower than the adaptive sampling. 
However, one has to keep in mind that a large part of the pixel error in the case of adaptive sampling is a result of 
the adaptation of the noise level (see methods section). If the noise level adaptation is turned off, the pixel error 
for the adaptive sampling is reduced to 1.30% ±  1.35%, which is significantly better than the values measured for 
the images acquired with uniform sampling and isotropic diffusion filtering. When considering the maximum 
pixel error, the adaptive sampling scheme produces a better result than the uniform scheme with and without 
noise level adaptation and with and without filtering.

Evaluation of the mask generation procedure.  The mask generation procedure was applied with differ-
ent settings on a sample of cast iron with nodular graphite inclusions. A HIA that contains 5% of all pixels turned 
out to be sufficient as representation of gradients since it contained all phase boundaries. Allowing for more 
than 5% led to a highly segmented HIA and did not provide additional benefits. However, the sample used was 
favorable for this filtering method, so an HIA size of more than 5% might be required for samples with a denser 
gradient, such as biological specimen or material science samples with a more complex structure.

The same experiment was conducted on a specimen consisting of cast iron with lamella graphite inclusions. 
The sample had comparable characteristics as the nodular graphite sample in the sense that there were two clearly 
separated phases. However, the lamella structure of the graphite inclusions was more complex, which constituted 
a more difficult case for the edge detection algorithm. The edge detection algorithm with a HIA size of 10% of the 
total image size gave optimal results in the sense that all phase boundaries were included.

Influence of noise in initial image.  Next, the influence of noise in the initial image on the mask genera-
tion was investigated. Images were acquired from the lamella graphite sample with different pixel-dwell times of 
100 ns, 300 ns, 1 μs, and 3 μs. We found that for these different pixel-dwell times, i.e. for different SNR levels in 
the initial image, the mask generation algorithm gave optimal results with different input settings (Table 2). The 
criterion for an acceptable mask was that all particles were surrounded by closed shapes, i.e. all phase bounda-
ries were visible on the mask without gaps. The main parameters were the size of the Gaussian filter for the edge 
detection algorithm σ  (in pixels) and the size of the high interest area A, normalized to the total size of the image 
(in percent).

As can be seen, a lower SNR in the initial image required an increased HIA to avoid missing edges, because 
the determination of the optimal shape was less accurate. Even with an increased HIA size of 20%, we found that 
a pixel-dwell time of 100 ns or less gives unsatisfactory results (Fig. 4e). For a pixel-dwell time of 300 ns–1 μs, the 
results were acceptable (Fig. 4f,g). An image acquired with a pixel-dwell time of 3 μs additionally allowed reduc-
ing the HIA size from 15% to 10% of the total image size (Fig. 4h).

The required electron dose for the initial scan also depended on the contrast of the image. For a sample with 
several phases, the SNR of the image can be defined as the difference of the gray values of the two phases with 
the most similar gray values, divided by the standard deviation of the noise in the image. While the error-free 
detection of every pixel in the edge would require an SNR of 4–5 according to the Rose criterion37, we found 
experimentally that an SNR of 1.4 to 2.3 gives satisfactory results with the used edge detection algorithm (see 
also Table 2). The difference to Rose can be explained by the fact that (1) the edge detection does detect larger 
structures, not individual pixels, and (2) a certain amount of false positives, i.e. pixels that are accidentally classi-
fied as belonging to the HIA are acceptable. From this observation, a rule of thumb can be derived to choose the 
appropriate pixel dwell time for the initial scan, assuming the basic structure of the sample is known. The pixel 
dwell time should be selected such that the SNR according to the definition above is between 1.4 for a sample with 
coarser structures and 2.3 for a sample with finer structures.

Sampling method Average pixel error Maximum pixel error SNR PSNR SSIM

adaptive 1.30% ±  1.35% 45.1% 25.7 32.0 dB 0.81

adaptive +  noise adaptation 1.88% ±  1.65% 47.3% 18.6 32.0 dB 0.69

uniform 4.42% ±  3.46% 68.2% 8.3 25.0 dB 0.31

uniform +  isotropic diffusion 1.58% ±  1.81% 55.2% 20.5 26.5 dB 0.78

Table 1.   Pixel error between the reference scan (uniform sampling with 60 μs pixel-dwell time) and 
different scan modes with an average pixel-dwell time of 3 μs each. All values are presented as percentage of 
the maximum pixel intensity of the reference scan for normalization. Additionally, signal-to-noise-ratio (SNR), 
peak signal-to-noise-ratio (PSNR) and structural similarity index (SSIM) are shown.

pixel-dwell time SNR σ/pixels A

100 ns 1.1 6 20%

300 ns 1.4 3 15%

1 μs 2.3 2.5 15%

3 μs 3.8 2 10%

Table 2.   Optimal settings for the edge detection algorithm depending on the pixel-dwell time. σ  is the 
standard deviation of the filter kernel for the edge detection algorithm, A is the size of the HIA normalized to 
the total size of the image.
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Influence of noise level adaptation.  As explained in the methods section, a critical factor were the band 
limiting characteristics of the used smoothing filter. Choosing a moderate size of the Gaussian filter (about  
1<  σ  < 5 pixels) resulted in clearly visible dominant structures with a spatial frequency about the same distance 
(Fig. 5a,b). Even worse, the structures did not stretch over the full extent of the image, they only covered the filter 
area. As a consequence, pixels of the HIA that do not contain these artifacts appeared visually separated and were 
most likely perceived as artifacts as well. In order to avoid these problems, the filter kernel had to be chosen suf-
ficiently large (σ  ≫  5 pixels). In this case, however, the noise level in the filter area was much lower than the noise 
level in the HIA, so the two areas of the image still did not merge visually, and the HIA remained clearly visible to 
the human eye (Fig. 5c).

The solution to this situation was to adapt the noise levels in the filter area and the HIA. This could be achieved 
by replacing the pixel values in the filter area with a linear combination between the initial signal and the filtered 
signal according to the formula:

= ⋅ + − ⋅p i p i p(1 ) , using (1)final initial filtered

Figure 4.  Impact of the pixel-dwell time of the initial image on the shape of the high interest area (HIA). 
The top row shows the acquired images at (a) 100 ns, (b) 300 ns, (c) 1 μ s, and (d) 3 μ s. The bottom row shows the 
generated HIA in white. The differences to a ground truth HIA generated from an image acquired with 60 μ s 
pixel-dwell time are color coded. Red pixels are missing in the HIA, i.e. might lead to image errors. Green pixels 
are additional pixels in the HIA, i.e. will waste pixel-dwell time during the sparse scan. Results are shown for (e) 
100 ns, (f) 300 ns, (g) 1 μ s, and (h) 3 μ s.

Figure 5.  Results of the noise adaptation procedure. (a) A filter kernel based on a Gaussian with σ  =  1.5 
pixels resulted in visually unpleasant artifacts in the medium frequency range. (b) A Gaussian with σ  =  2.5 
pixels showed comparable artifacts, albeit at lower frequencies. (c) A filter based on a sufficiently large Gaussian 
with σ  =  10 pixels removed those artifacts. However, the filter region now had a much lower noise level than the 
high interest area (HIA), which also was clearly visible. (d) By mixing the filtered version of the signal from the 
initial scan with the unfiltered version in the right ratio, the noise level could be adapted and the filter region 
could no longer be detected easily.
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= .i
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initial

sparse

Hereby, pfinal is the final pixel value, pfiltered the filtered pixel value, and pinitial is the unfiltered pixel value. The factor 
i was computed as the ratio of the square root of the pixel-dwell time of the initial scan tinitial and the pixel-dwell 
time of the sparse scan tsparse. The formula can be motivated using a statistical argument. A random variable esti-
mated by N binary samples has a standard deviation proportional to 1/N1/2. In the context of SEM gray values, 
this means that a pixel gray value suffers from statistical noise proportional to the inverse of the square root of the 
pixel-dwell time, assuming constant beam current. In the case of a sufficiently large filter kernel, it can further-
more be assumed that there is no visible noise in the filtered version of the signal. This means that the factor i is 
the ratio of the noise level in the initial and the sparse image. Thus, combining the noise-free signal pfiltered and the 
noisy signal pinitial in this ratio results in the desired amount of statistical noise in the final pixel value (Fig. 5d).

Scalability to higher magnifications.  In order to test scalability of the method to higher magnifications, 
images of the nodular graphite cast iron sample were recorded using a pixel size of 35 nm. The initial scan was 
performed with a pixel-dwell time of 300 ns (Fig. 6a). The mask was then generated with a HIA area of A =  10%. 
The sparse scan was performed with a pixel-dwell time of 30 μs. The filtering was performed with a filter kernel 
based on a Gaussian with σ  =  10 pixels and the images were combined to a final image with adapted noise level 
(Fig. 6b). At this high magnification, even a small drift that occurs between the initial scan and the sparse scan 
may lead to visible artifacts in images. However, in our tests we did not encounter microscope drift.

Discussion
We propose a new method to reduce the average pixel dwell time in SEM by an adaptive distribution of electron 
radiation. Parts of the sample that show high frequency details are exposed to longer pixel-dwell times while 
smooth parts of the image are scanned more quickly and the resulting noise is removed in software using image 
processing filters. In order to understand the amount of pixel-dwell time that can be gained by the method, one 
must consider three parameters: the pixel-dwell time tinitial for the initial image, the size of the high interest area 
A normalized by the total size of the image, and the pixel-dwell time for the sparse image tsparse. The average 
pixel-dwell time is then given by tavg = tinitial + A · tsparse. Typical values are tinitial =  300 ns, and scanning of 10% of 
the area (A = 0.1) using tsparse = 27 μs. In this case, tavg = 3 μs and the total acquisition time adds up to tavg mul-
tiplied by the number of pixels. According to our measurements, the image based adaptive sampling method 
improved the SNR by a factor of ≈ 3 compared to a uniform sampling at the same average pixel-dwell time. This 
implies that the electron dose can be reduced by a factor of ten for adaptive scanning compared to uniform sam-
pling, since the SNR scales with the square root of the amount of electrons.

Advantages of the method are two-fold. For the acquisition of a high resolution 3D dataset with FIB/SEM, 
the total acquisition time is one of the main limiting factors of the technique. Particularly for the acquisition 
of high-resolution 3D datasets, pixel-dwell times can dominate the total beam time of days or weeks and, thus, 
limit the feasibility of data acquisition. The proposed method allows to reduce acquisition times by a factor of ten 
depending on the sample.

Saving beam time is not the only motivation for reducing pixel-dwell times. Many samples, like biological 
samples, polymers, and ceramics, are sensitive to electron dose. For those cases, imaging means finding a com-
promise between beam-induced radiation damage and noise. The method proposed in this paper can reduce the 
average pixel-dwell time and, thus, helps to avoid radiation damage without introducing noise. However, the total 
electron dose will no longer be distributed evenly over the entire specimen, but focused at phase boundaries. 
While a lot of research exists on the effects of radiation damage on different kind of specimen18,19,38–40, none of 

Figure 6.  Results at higher magnifications. (a) Image recorded with a pixel size of 35 nm and a pixel-dwell 
time of 300 ns. (b) Result of the adaptive sampling with an initial scan of 300 ns and a sparse scan with A =  0.1 
and 30 μ s pixel-dwell time. (c) Ground truth image scanned with a dense scan of 60 μ s pixel dwell time, with the 
high interest area (HIA) indicated in red.
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this research considers inhomogeneous spatial distribution of radiation. The usefulness of the adaptive scanning 
scheme for the imaging of dose sensitive specimen will largely depend on the question how different kinds of 
specimen behave under locally focused radiation.

Formation of beam damage is a complex process, the predominant effects are typically (1) ionization, (2) 
knock-on damage, i.e. removing individual atoms from the matrix, both followed by structural collapse in the 
form of sample shrinkage and (3) sample heating41. For both, ionization and knock-on damage, we expect the 
effects to be highly localized, i.e. to occur mainly at the phase boundaries where the highest electron dose is 
placed. The most prominent radiation damage effect with conventional methods is sample shrinkage. This type 
of damage is expected to be reduced or even avoided altogether using the non-uniform scanning because small 
structures exposed to high dose will be embedded in a stabilizing matrix of material that was exposed to much 
lower electron dose. A similar argument holds for sample heating: small structures exposed to high dose are sur-
rounded by bulks of material that can function as a heat sink, thereby reducing the effect of local sample heating. 
Those expectations however depend on the properties of the specimen, such as structural stability and thermal 
conduction and will need to be investigated on a case-to-case basis.

One concern with the method is that the edge detection algorithm can potentially miss small, isolated fea-
tures. This happens with a relevant probability for features that have a size of approximately one pixel, are not 
attached to larger structures, or give a contrast to the background in the same order of magnitude as the noise of 
the initial scan. If a feature is missed by the edge detection algorithm, the remaining information about the struc-
ture is removed by the filter step and the feature will entirely disappear in the final image. While this behavior is 
acceptable for most applications where structure and morphology of larger features are of interest, it might be an 
issue for questions about small particles close to the resolution limit of the microscope. The proposed adaptive 
sampling method is not applicable in these cases.

In general, the mask generation procedure has a large potential for improvements. Promising approaches 
include more sophisticated edge detection algorithms, advanced image filters as preprocessing to the edge detec-
tion, morphological operations as post processing operations, and the inclusions of three-dimensional data from 
previous slides, in the case of FIB/SEM.

The proposed filter method depends on the assumption that the filter area consists of large, connected shapes. 
Preliminary experiments on more complex samples showed that if the HIA has a shape that cuts the filter area in 
many small, isolated shapes, the filter kernel becomes locally too small, which leads to visual artifacts. This effect 
can be eliminated by closing small holes in the HIA using morphological image processing operations. The filter 
method is also based on the assumption that no high frequency details are present in the filter area. If the sample 
has a complex and relevant texture even between sharp edges, as is the case in most biological applications, the 
proposed filter method is not applicable. A different reconstruction method based on exemplary-based inpainting 
algorithms is probably most promising in this case.

While the noise level in the HIA is determined by the pixel-dwell time of the second scan, the bandwidth 
characteristics in the filter area can be influenced by choosing an appropriate size of the filter kernel. But in order 
to avoid visual artifacts in the middle frequency range of about 5 pixels, the Gaussian kernel has to be chosen 
sufficiently large. In this case, structures of the intermediate frequency range are removed by the filter as well and 
the filter area receives a smooth appearance. Noise levels in the filter area are then much lower than in the HIA. 
Whether or not this poses a problem depends on the application. For most automated analysis algorithms, the 
different noise levels are unproblematic or even favorable. The human eye, however, is highly sensitive to perceive 
differences in the noise level of surfaces, registering every variation as artifact. In order to avoid these problems 
and generate visually pleasant images, it is probably a good idea to ensure that all parts of the final image have the 
same noise level. This can easily be achieved by mixing the correct portion of the initial noisy image into the final 
image as described in the methods section.

The method as presented in this paper is a proof-of-concept study. As the prototypical workflow involves 
switching software twice for each image acquired, the procedure is clearly not practical for FIB/SEM or STEM 
tomography with hundreds or thousands of slices. However, as all involved computations are straightforward, 
the method can in principle be integrated directly into microscope control packages such as FEI XTUi. Once this 
integration is performed, image based adaptive scanning can easily be selected in the software, thereby removing 
the technical restrictions of the prototypic workflow presented in this paper. In this case, the method has the 
potential to replace uniform sampling as the standard scanning mode, at least for a suitable class of sparse gradi-
ent specimens.

The basic idea described in this study is not restricted to FIB/SEM. In principal, the method can be extended 
to low dose scanning transmission electron microscopy (STEM) and STEM tomography as well. As with FIB/
SEM, adaptive pixel-dwell times can help to reduce acquisition times and dose exposure for tilt series acquisition 
in STEM tomography. There are, however, a number of issues to be addressed when applying the concept to 
STEM. Thickness variations in the samples can create low frequency contrast that might unnecessarily trigger 
the edge detection. This issue can potentially be removed by means of a background removal using a rolling ball 
filter or a high pass filter as a preprocessing step to the edge detection. In high resolution STEM with a pixel size 
approaching atomic scale, lattice fringes and drift will raise concerns for the method. We therefore think that the 
method in the current form will be restricted to resolutions above the atomic scale. Another concern is the signal 
response speed. Current generation STEM systems use electromagnetic scanning, which has a much slower sig-
nal response compared to latest generation SEM that uses electrostatic scanning and can lead to a deformation 
of the PSF. This issue might, however, be resolved by future STEM systems that use electrostatic scanning. One 
last consideration for the application to STEM is, if the image processing methods presented in this study are 
useful at all in the case that a tilt series is recorded and the dataset is subject to tomography reconstruction prior 
to presentation. In this case, it is probably better to avoid both filtering and noise level adaptation and perform 
tomographic reconstruction from the raw data acquired from the microscope. Filtering operations can then be 
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performed in three dimensions on the tomogram, if they are required. Other interesting areas of application of 
the ideas presented in this study are the combination of FIB/SEM with energy-dispersive X-ray spectroscopy 
(EDS). Provided a sufficiently responsive means to scan the specimen, the method could even be adapted to work 
with scanning X-ray microscopy with synchrotron radiation.

Conclusions
Image based adaptive sampling was introduced as a new acquisition scheme for SEM. The method is based on 
the idea of scanning the specimen with adaptive pixel-dwell times. Areas containing high frequency details such 
as phase boundaries were scanned slower in order to generate a better SNR while homogeneous areas of low fre-
quencies were scanned faster and the resulting noise was removed using a-posterior filtering. The critical step of 
this method was the automatic separation of the image in areas requiring a high dose and areas that can safely be 
filtered. As this analysis can only be performed effectively by considering the entire image, a two-step scanning 
process was applied. An initial image was acquired at low dose and the analysis was performed on this image. 
A second scan was then applied to only those regions of the image that require more dose. The final image was 
generated by filtering and combining both dataset. Compared to an image acquired with uniform sampling at the 
same total electron dose resulted in a factor of ≈ 3 lower quantitative pixel errors on average, and a factor of ≈ 3 
better SNR, which implies that the electron dose and thus the acquisition time can be reduced by a factor of about 
ten. The methods can in principle be applied to two-dimensional low dose STEM and STEM tomography as well.
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