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Topologis
he Methoden in der Gruppentheorie

January 28th { February 3rd 2001

The meeting was organized by H. Abels (Bielefeld), P. Kropholler (QMWC, London)

and K. Vogtmann (Cornell Univ.)

This meeting 
ontinued a series of meetings on topologi
al methods in group theory,

taking pla
e about every 4 years. The previous one was in De
ember 1995. At the present

meeting new breakthroughs and important advan
es in the �eld were presented and dis-


ussed. They in
luded the following topi
s: The re
ent proof by Krammer and Bigelow

that braid groups are linear, new appli
ations of the 
ombinatorial Morse theoreti
 te
h-

niques of Bestvina and Brady, groups a
ting on 
ubi
al 
omplexes | other than the ones

studied by Bestvina and Brady |, automorphisms of free groups, splittings of �nitely gen-

erated groups motivated by the Ja
o{Shalen{Johannson de
omposition of three{manifolds,

L

2

{
ohomology and bounded 
ohomology, group a
tions on buildings, algebrai
 geometry

over the free group and others.

The subje
t is growing and making progress. A

ordingly, there were lively dis
ussions

and strong s
ienti�
 intera
tion between the parti
ipants of the meeting.
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List of talks

Monday, January 29

AM

9:00 { 10:00 R. Bieri

Topologi
al properties of SL

2

{a
tions on the hyperboli
 plane

10:15 { 11:15 A. Zuk

On a 
onje
ture of Atiyah

11:30 { 12:30 K. Brown

The 
oset poset

PM

4:00 { 5:00 M. Sapir

Finitely presented non{amenable groups without free subgroups

5:15 { 6:15 M. Burger

Bounded 
ontinuous 
ohomology and appli
ations

Tuesday, January 30

AM

9:00 { 10:00 J. Berri
k

A
y
li
 groups and wild ar
s

10:15 { 11:15 B. R�emy

Compa
tifying trees

11:30 { 12:30 M. Davis

Mo
k re
e
tion groups

PM

4:00 { 5:00 D. Krammer

Braid groups are linear

5:15 { 6:15 P. Papasoglu

Quasi{isometry invarian
e of group splittings and JSJ de
ompositions

Wednesday, January 31

AM

9:00 { 9:45 I. Leary

Some groups of type VF

10:00 { 10:45 K.-U. Bux

Generalized weight tests for presentation 2{
omplexes

11:00 { 11:45 J. Meier

Duality groups
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Thursday, February 1

AM

9:00 { 10:00 S. Bigelow

(Corre
tion to) Braid Groups are linear

10:15 { 11:15 M. Lustig

The stru
ture of an automorphism of F

n

11:30 { 12:30 A. Karlsson

Kobayashi{type metri
s and dynami
s of endomorphisms

PM

4:00 { 5:00 L. Mosher

Quasi{a
tions on trees

5:15 { 6:15 W. L�u
k

The relation between the Baum{Connes Conje
ture and the Tra
e Conje
-

ture

Friday, February 2

AM

9:00 { 10:00 R. Charney

Metri
 
hara
terizations of spheri
al and Eu
lidean buildings

10:15 { 11:15 W. Ballmann

On the rank problem in non{positive 
urvature

11:30 { 12:30 Z. Sela

Diophantine geometry over groups and the elementary theory of a free group

PM

4:00 { 5:00 M. Bridson

Rigidity and torsion in Aut(F

n

) and Out(F

n

)

5:15 { 6:15 M. Bestvina

Bounded 
ohomology of subgroups of mapping 
lass groups
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Abstra
ts

Some group theoreti
 appli
ations of twin buildings

Peter Abramenko

Let G be a (possibly twisted) Chevalley group of 
lassi
al type and of rank r � 1: Then

G(F

q

[t℄) is of type F

r�1

and not of type F

r

if q � 2

2r�1

(Abels/A. 1987 for the spe
ial 
ase

G = SL

r+1

and A. 1995 for the general 
ase). The same result without any restri
tions


on
erning q 
an possibly be proved by Behr if he su

eeds in 
ompleting his 
urrent

resear
h program.

Question: What is the pre
ise �niteness length of � = G(F

q

[t; t

�1

℄)?

Conje
ture: � is of type F

2r�1

; not of type F

2r

(settled only for r = 1; SL

2

(F

q

[t; t

�1

℄) is f.g., not f.p. (Stuhler 77)).

� = G(F

q

[t; t

�1

℄) is a typi
al example of a group a
ting \ni
ely" on a lo
ally �nite twin

building (�

+

;�

�

)

(in this 
ase �

�

is the Bruhat{Tits building ofG(F

q

((t

�1

)))). Another example: � = G(F

q

),

G = Ka
{Moody group of 
ompa
t hyperboli
 type.

Conje
ture: If a group � a
ts \ni
ely" on a \suÆ
iently thi
k" lo
ally �nite twin

building (�

+

;�

�

) with d := dim�

�

; then � is of type F

2d�1

but not of type F

2d

:

d = 1 (twin tree 
ase): Conje
ture is true (A. 98; thi
k is suÆ
ient)

d > 1: there exists a program of a proof whi
h is 
arried out in most details; one topologi
al

result is still missing.

Re
ent Counter{Example (in the 
ompa
t hyperboli
 situation): for not \suÆ
iently

thi
k" twin buildings. G = Ka
-Moody group of hyperboli
 type (4,4,4) (i.e. all o�-diagonal

entries of the Coxeter matrix are 4), F

q

= F

2

=) G(F

q

) is even not F

2

(=) not F

2d�1

= F

3

).

Ba
kground: Constru
tion of non{standard Moufang twin buildings.

On the rank problem in non{positive 
urvature

Werner Ballmann

The rank rigidity for 
ompa
t Riemannian manifolds of non{positive (se
tional) 
urvature

asserts that for any su
h manifold, M , either the universal 
overing spa
e,

f

M; is a Rie-

mannian produ
t, or

f

M is a symmetri
 spa
e of rank � 2; or else the so{
alled geometri


rank ofM is equal to one. In the latter 
ase, some important 
hara
teristi
s ofM resemble

those of manifolds of negative 
urvature.

There should be a similar pi
ture in the larger 
lass of 
ompa
t (singular) spa
es of non{

positive 
urvature. Rank rigidity is known for 2{dimensional polyhedra with pie
ewise

smooth metri
s of non{positive 
urvature. In addition, there are some partial results in

higher dimension.

I will des
ribe the state of the a�airs.
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Growth of Lie algebras and paraboli
 spa
es, and 
ounting of normal

subgroups

Laurent Bartholdi

Let G be a �nitely generated group a
ting on a d-regular rooted tree, and �x an in�nite

ray e in the tree. The asso
iated paraboli
 spa
e is X = G= stab

G

(e), with metri
 indu
ed

by the word metri
 on G. The growth of X is the fun
tion g(n) = #fx 2 Xj d(x; 1) = ng.

Let f


n

(G)g

n2N

be the lower 
entral series of G, and let L(G) =

L

n�1




n

(G)= 


n+1

(G) be

the 
orresponding Lie ring, �rst 
onsidered by Wilhelm Magnus. Its growth is the fun
tion

f(n) = rank(


n

=


n+1

), where rank(A) is the minimal number of generators of the abelian

group A.

Bran
h groups, as de�ned by Rostislav Grigor
huk, are those groups a
ting on rooted d-

regular trees that 
ontain a subgroup K itself 
ontaining K

d

, where the d 
opies of K a
t

on the d subtrees below the root, and all in
lusions have �nite index.

Theorem 1. Let G be a bran
h group with the notation as above. The growth of X is

larger than that of L(G); more pre
isely, there is a 
onstant C su
h that

f(1) + � � �+ f(n) < C(g(1) + � � �+ g(n))

holds for all n 2 N.

This result follows from a 
omplete des
ription of the Lie algebra of Bran
h groups. The

stru
ture is expli
it, and for the most famous examples, to wit the Grigor
huk group G

and the Gupta-Sidki group �, the growth fun
tions are as follows:

Theorem 2.

group

P

n

i=1

f(i)

P

n

i=1

g(i)

G � n � n

� � n

log

1+

p

2

(3)

� n

log

2

(3)

The �rst row was proven by Rostislav Grigor
huk and myself. The se
ond row is new and

answers a long-standing question by Said Sidki.

Normal subgroups of G are naturally asso
iated to ideals in L(G), whi
h 
an be des
ribed

and 
ounted using the methods used in the above results:

Theorem 3. The number of normal subgroups of G of index 2

n

is 
ontained between

n log

2

(n)=7 and n log

2

(n)=4, and is an odd number.

The asymptoti
s answer a question by Alex Lubotzky.

The above results appear in my preprint \Lie algebras and growth of bran
h groups",

available on the web at

http://arxiv.org/math.GR/0101222:

Higher �niteness properties of S-arithmeti
 groups over fun
tion �elds

Helmut Behr (Frankfurt am Main)

[F : F

q

(t)℄ <1; O

S

� F S-arithmeti
 subring, s = #S,

G almost simple algebrai
 group, de�ned over F ,

r = rank

F

G; r

v

= rank

F

v

G; F

v


ompletion of F; v 2 S,

� S-arithmeti
 subgroup of G.
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� is of type F

n

:() 9K(�; 1) with �nite n-skeleton.

Question: � is of type F

n�1

, but not F

n

i� r > 0 and

P

v2S

r

v

= n?

Known results: The answer is yes in the following 
ases:

(a) n = 1 or 2: Finite generation and �nite presentability,

H. Behr: Crelle Journal 495 (1998), 79{118.

(b) G = SL

2

: see U. Stuhler in Inv.math. 57 (1980), 263{281.

(
) G 
lassi
al, O

S

= F

q

[t℄; q � 2

2n�1

:

see P. Abramenko, Springer Le
ture Notes 1641 (1996),

and H. Abels in Israel J. Math. 76 (1991), 113{128.

Thus there are some open problems (for G 6= SL

2

; n � 3):

i) Is the assumption q � 2

2n�1

ne
essary?

ii) Treat other rings than F

q

[t℄ for s = 1 and moreover for s > 1, for instan
e: Is

SL

3

(F

q

[t; t

�1

℄) of type F

3

?

iii) How to treat non-split groups?

I shall sket
h a program to atta
k this question with some new methods, old in other


ontexts.

I. Redu
tion theory of arithmeti
 groups

There exist two versions of redu
tion theory (also for number �elds). The �rst one 
on-

stru
ts a fundamental (\Siegel-")domain for the a
tion of �:

For � = G(F

q

[t℄); G Chevalley group, this is a polyhedral 
one C in an apartment of the

aÆne Bruhat{Tits{building X for G(F

v

). The proofs of the results above use �ltrations of

C and X and a 
riterion of K. Brown.

The se
ond version de�nes \redu
tion of points in X with respe
t to paraboli
 subgroups

of G" (
f. G. Harder in Inv.math. 42 (1977), 135{175), whi
h may be viewed as points

of the building X

0

at in�nity and allows to de�ne the unstable region X

0

of X (
f. D.

Grayson in Springer Le
ture Notes 966 (1980), 69{90, and also in Comm.math.Helv. 59

(1984), 600{634, using ideas of Serre, Quillen and Stuhler). X

0

has a 
over, whose nerve

is given by the spheri
al Tits building X

0

for G su
h that X

0

has the homotopy type of a

bouquet of (r � 1)-spheres. In the number �eld 
ase X

0

may be retra
ted to its \inner"

boundary, but this is not true for fun
tion �elds! Therefore we need also

II. Buildings with opposition

There is a natural notion of \opposition" in a spheri
al building X

0

and one 
an 
onsider

the simpli
ial 
omplex Opp X

0

of pairs of opposite simpli
es. This 
omplex has the same

homotopy type as X

0

itself, shown by R. Charney for the group G = GL

n

(see Inv.math.

56 (1980), 1{17), by Lehrer and Rylands for groups of type A

n

and C

n

(see Math.Ann. 296

(1993), 607{624), and �nally in general by A. von Heydebre
k (Dissertation Frankfurt 2000)

| with 
ompletely di�erent proofs using 
ombinatorial methods or homologi
al algebra or

the geometry of buildings. I need a version whi
h is also valid over rings; this was proved

only in the �rst 
ase.

III. Spe
ial 
ase: G Chevalley group, #S = 1

In order to answer the question in this 
ase, I 
onstru
t a spa
e

f

X

0

by splitting up X

0

into

apartments in su
h a way that

f

X

0

has a 
over whose nerve is OppX

0

. This spa
e 
an be

retra
ted to its boundary �

f

X

0

=

e

Y , but

e

Y =� is not yet 
ompa
t; for this purpose I need

a sub
omplex of the same homotopy type where opposition is de�ned with respe
t to �.

Then we have the
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Proposition: If G is an almost simple Chevalley group of rank r > 0 over F , then a

S-arithmeti
 subgroup � for #S = 1 is of type F

r�1

.

Conje
ture: � is not of type F

r

.

Empty shell

A. J. Berri
k

A (dis
rete) group G is a
y
li
 if H

i

(G; Z) = 0 for all i � 1: In parti
ular, a
y
li
 groups

are perfe
t.

Prominent among examples of a
y
li
 groups in the literature are those with binate stru
-

ture. G is binate if to ea
h �nitely generated subgroup H one 
an asso
iate a homomor-

phism ' : H ! G and u 2 G su
h that for all h 2 H

h = [u; '(h)℄:

Examples in
lude a
y
li
 groups used by J Mather (for 
lassifying foliations), Wagoner (for

higher algebrai
 K-theory), Kan & Thurston and Baumslag, Dyer & Heller (for modelling

homotopy types by groups) and de la Harpe & M
Du�'s large automorphism groups. These

groups have no nontrivial �nite quotient, although every groups is 2-step subnormal in a

binate group.

Examples of a
y
li
 groups without binate stru
ture have been more sporadi
. The �rst

announ
ed as a
y
li
 were those of Baumslag & Gruenberg's 
ommutator subgroups of


ertain two-generator, one-relator groups and Epstein's fundamental group of an open 3-

manifold (1967). Another is Higman's four-generator, four-relator group, 
onstru
ted so

as to have no nontrivial �nite quotient. The talk des
ribed joint work with Yan-Loi Wong

(to appear in Pro
 London Math So
) relating these sporadi
 examples, as follows.

Theorem 1. (A
y
li
 groups of Baumslag-Gruenberg type) Let

B = hx

n

j r(x

n

; x

n+1

; : : : ; x

n+k

)i

n2Z

where r is a word in the free group of rank k + 1: Then the following statements are

equivalent.

(a) r has exponent sum zero in k of its variables, and exponent sum �1 in the remaining

variable.

(b) B is a perfe
t group.

(
) De�ne G =




x; y j r(x; yxy

�1

; : : : ; y

k

xy

�k

)

�

. Then

(i) G

ab

is in�nite 
y
li
,

(ii) B is isomorphi
 to the 
ommutator subgroup of G; and

(iii) B is a
y
li
.

Theorem 2. (A
y
li
 groups of Higman type) Let

C

m

= hx

n

j r(x

n

; x

n+1

; :::; x

n+k

)i

n2Z=m

where r is a (
y
li
ally redu
ed) word (involving both x

n

and x

n+k

) in the free group of rank

k + 1; and m � 2k: Then the following statements are equivalent.

(a) r has exponent sum zero in k of its variables, and exponent sum �1 in the remaining

variable.

(b) C

m

is a perfe
t group.

(
) De�ne G

m

=




x; y j r(x; yxy

�1

; :::; y

k

xy

�k

); [x; y

m

℄

�

. Then

(i) (G

m

)

ab

is in�nite 
y
li
,

(ii) C

m

is isomorphi
 to the 
ommutator subgroup of G

m

; and
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(iii) C

m

is a
y
li
.

Higman's group is the example withm = 4 and r(x

n

; x

n+1

) = x

n

[x

n

; x

n+1

℄; where subs
ripts

are to be read in the 
y
li
 group Z=4:

Theorem 3. (Generalization of Epstein and Fox & Artin (1948) 
onstru
tions) Let X

be a 
losed 
onne
ted orientable 3-manifold with in�nite 
y
li
 
over S

2

� R. Let � be a

smooth knot in X su
h that [�℄ generates H

1

(X). Then the 
onne
ted in�nite 
y
li
 
over

of X n � is the 
omplement of a wild ar
 � in S

3

with the following properties.

(i) S

3

n � is aspheri
al;

(ii) �

1

(S

3

n �) is the 
ommutator subgroup of �

1

(X n �) with

�

1

(X n �)=�

1

(S

3

n �)

�

=

Z;

(iii) �

1

(S

3

n �) is a
y
li
.

Remarks 4.

1. Epstein's group is �

1

(L) =




z

i

j z

i

= [z

i

; z

�1

i+1

℄[z

i

; z

i�1

℄

�

i2Z

, whi
h is evidently of Baumslag-

Gruenberg type.

2. A stit
h like Fox's (1949) gives rise to a wild ar
 � in S

3

; here �

1

(S

3

� �) = hb

n

j b

n

=

[b

n�1

; b

�1

n

℄[b

n

; b

�1

n+1

℄i

n2Z

, also of Baumslag-Gruenberg type.

3. Su
h groups are residually �nite; do they always have A

5

as a quotient?

Bounded 
ohomology of subgroups of mapping 
lass groups

Mladen Bestvina and Koji Fujiwara

We show that every subgroup of the mapping 
lass groupMCG(S) of a 
ompa
t surfa
e S

is either virtually abelian or it has in�nite dimensional se
ond bounded 
ohomology. As an

appli
ation, we give another proof of the Farb-Kaimanovi
h-Masur rigidity theorem that

states that MCG(S) does not 
ontain a higher rank latti
e as a subgroup.

Mladen Bestvina (Latex �le of the whole paper is available from the Los Alamos server).

Topologi
al properties of SL

2

{a
tions of the hyperboli
 plane

Robert Bieri (Frankfurt)

This is joint work with Ross Geoghegan. Every a
tion � : G! Isom(M) of a group G on

a proper CAT(O){spa
e M imposes a 
ertain stru
ture on the boundary �M; whi
h 
an

be en
oded in a sequen
e of subsets

�M � �

0

(�) � �

1

(�) � � � � � �

n

(�) � : : : :

The de�nition uses 
ontrolled homotopy over M : We 
hoose a 
ontra
tible free G{CW{


omplex X; and a G{map h : X !M ; then we say that X is 
ontrolled 
oarsely (n� 1){


onne
ted over the endpoint e 2 �M , (CC

n�1

over e) if ea
h 
o
ompa
t G{subspa
e K � X

is 
ontained in a 
o
ompa
t G{subspa
e K

0

� K with the following property: there is a

bag � � 0 su
h that for ea
h i < n every singular i{sphere of K over the horoball HB

e

(at

e) dies in K

0

over the �{neighbourhood of HB

e

:

Invarian
e Theorem: This is independent of the 
hoi
e of X and h : X !M; so that

�

n

(�) := fe 2 �M j X is CC

n�1

over eg is an invariant of �:
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In the le
ture I sket
hed how we 
ompute �

n

(�

m

) � �H

2

for the M�obius a
tion

�

m

: SL

2

�

Z

�

1

m

��

! Isom (H

2

) on the hyperboli
 plane. We �nd

Theorem:

�

n

(�

m

) =

(

�H

2

; if n < �(m)

�H

2

� (Q [1); if n � �(m);

where �(m) stands for the number of di�erent primes dividing m: The method applies also

to other S{(arithmeti
 Fu
hsian) groups.

Braid groups are linear

Stephen John Bigelow

Vaughan Jones has shown how to obtain representations of the braid group B

n


orre-

sponding to the irredu
ible representation of the symmetri
 group S

n

, indexed by Young

diagrams. These 
an be used to de�ne the Jones and HOMFLY polynomials of a knot or

link. The de�nitions are very natural to an expert in subfa
tors, but somewhat mysteri-

ous to a topologist. I will propose a more topologi
al de�nition of these representations

following work of Ruth Lawren
e.

Rigidity and Torsion in Aut(F

n

) and Out(F

n

)

Martin R. Bridson

The following results are motivated by the desire to extend the analogy betweeen

Aut(F

1

)=Out(F

1

) and latti
es in higher{rank Lie groups. These results are reminis
ent

of the rigidity properties of su
h latti
es, but they are proved by elementary means, in

parti
ular a detailed analysis of the torsion in Aut(F

n

):

The �rst two results are part of joint work with Karen Vogtmann.

Theorem 1: If 1 � 3 then Out(F

n

) and Aut(F

n

) are 
o{Hop�an and all of their

automorphisms are inner.

Theorem 2: If n < 1 then any homomorphism ' : Aut(F

1

)! Out(F

n

) has image f1g

or Z

2

.

(There are several related results 
on
erning quotients of Aut(F

1

).)

Theorem 3: If Aut(F

1

) a
ts by isometries on a 
omplete CAT(O){spa
e of dimension

d and no point is �xed by the whole group, then n � 2(d+ 2):

The 
oset poset

Kenneth S. Brown

For a �nite group G and a non-negative integer s, let P (G; s) be the probability that a

randomly 
hosen ordered s-tuple from G generates G. Philip Hall gave an expli
it formula

for P (G; s), exhibiting the latter as a �nite Diri
hlet series

P

n

a

n

n

�s

, with a

n

2 Z and

a

n

= 0 unless n divides jGj. For example,

P (A

5

; s) = 1�

5

5

s

�

6

6

s

�

10

10

s

+

20

20

s

+

60

30

s

�

60

60

s

:
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In view of Hall's formula, we 
an speak of P (G; s) for an arbitrary 
omplex number s. The

re
ipro
al of this fun
tion of s is sometimes 
alled the zeta fun
tion of G.

The work des
ribed in this talk arose from an attempt to understand the value of the

zeta fun
tion at s = �1. More pre
isely, I wanted to explain some surprising divisibility

properties of P (G;�1), whi
h is an integer, that I observed empiri
ally. For example,

P (A

5

;�1) = 1� 25� 36� 100 + 400 + 1800� 3600 = �1560;

whi
h is divisible by 60 = jA

5

j. Similarly, P (A

6

;�1) is divisible by jA

6

j, while P (A

7

;�1)

is divisible by jA

7

j=3.

The main theorem is a general divisibility result of this sort. The theorem spe
i�es, for

ea
h prime p, a power p

a

that divides P (G;�1); the exponent a is de�ned in terms of the

p-lo
al stru
ture of G. The pre
ise statement is somewhat te
hni
al and will be omitted.

Perhaps more interesting than the result itself is the nature of the proof, whi
h is topolog-

i
al. The starting point is an observation of S. Bou
, giving a topologi
al interpretation of

P (G;�1). Consider the 
oset poset C(G), 
onsisting of proper 
osets xH (H < G, x 2 G),

ordered by in
lusion. Re
all that we 
an apply topologi
al 
on
epts to a poset P by using

the simpli
ial 
omplex �(P) whose simpli
es are the �nite 
hains in P. In parti
ular, we


an speak of the Euler 
hara
teristi
 �(P) := �(�(P)) and the redu
ed Euler 
hara
teristi


~�(P) := �(P)� 1. Bou
's observation, then, is that

P (G;�1) = �~�(C(G)):

This makes it possible to study divisibility properties of P (G;�1) by using group a
tions

on C(G) and proving the 
ontra
tibility of 
ertain �xed-point sets. The group we use is G,

a
ting by 
onjugation, or (G�G)o Z

2

, a
ting by translation and inversion.

Having studied the Euler 
hara
teristi
 of the 
oset poset, one naturally wants to go further

and study its homotopy type. Our results here are meager, but we show, for example, that

C(G) has the homotopy type of a bouquet of spheres if G is solvable. The dimension of

the spheres is d � 1, where d is the number of 
omplemented 
hief fa
tors of G, and the

number of spheres is (�1)

d

P (G;�1).

There remain many open questions about the 
oset poset.

Generalized Weight Tests for Presentation 2-Complexes

Kai-Uwe Bux and Steve Gersten

Let P = hx

1

; : : : ; x

m

j R

1

; : : : ; R

n

i be a �nite group presentation, K the asso
iate presen-

tation 2-
omplex. This 
omplex has one vertex, a loop for ea
h generator, and a disk for

ea
h relator glued in so that the relation 
an be read of its boundary. We �x an orientation

on ea
h 2-
ell su
h that the relator is read along the boundary in positive dire
tion.

We denote by L the link of the vertex in K. This graph has two verti
es for ea
h generator

in P and one edge for ea
h 
orner of a relator disk in K: Therefore, we 
an think of the

edges in L as di�erent 
olours assigned to all the 
orners of relator disks.

Given a spheri
al diagram D : S

2

! K we pull ba
k the 
olouring to the 
orners in D:

A vertex v 2 D is 
alled mono
hromati
 if all surrounding 
orners are of the same 
olour

{ this is, the indu
ed map Lk(v)! L maps all of Lk(v) to one edge in L: The presentation

P is 
alled mono
hromati
 if every redu
ed spheri
al diagram D : S

2

! K

P


ontains at

least two mono
hromati
 verti
es.

We make the following

Conje
ture 1. Every one relator presentation of the trivial group is mono
hromati
.

10



We develop a suÆ
ient 
ondition for mono
hromati
ity of a presentation in form of a

generalized weight test, whi
h we 
all an M-test for obvious reasons. It 
an be 
he
ked

me
hani
ally whether a presentation admits an M-test or not. In support of our 
onje
ture,

a 
omputer has veri�ed that all one relator presentations of the trivial group with relator

length up to 19 have M-tests and are therefore mono
hromati
.

M-tests 
an also be used to identify some 
lasses of mono
hromati
 presentations. In

parti
ular one 
an prove the following theorems.

Theorem 2. If P is a one relator presentation and the link graph L

P


ontains a 
ut edge,

then P admits an M-test.

Theorem 3. If P = hx j w(x)i where xx o

urs pre
isely on
e in the 
y
li
 word w, then

P has an M-test.

This in
ludes a result of R. Fenn and C. Rourke about the presentations

hx j x

�1

xx

�1

x : : : x

�1

xxi

whi
h plays a 
entral role in their a

ount on Klya
hko's 
ar lemma. In fa
t, one 
an use

M-tests to reprove Klya
hko's 
ar lemma and hen
e his:

Theorem 4. The Kervaire Conje
ture holds true for torsion free groups, i.e., if G is a

non{trivial torsion free group, t a generator of an in�nite 
y
li
 group, and w 2 G? htinG;

then the natural homomorphism

G! G ? hti=hhwii

is inje
tive.

We mention that M-tests 
an also be used to prove some spe
ial 
ases of the Whitehead


onje
ture.

For ea
h geometri
 edge e 2 L; there are two dire
ted edges e

+

traversing the 
orner


orresponding to e in positive dire
tion with respe
t to the �xed orientation of the ambient

2{
ell and e

�

traversing its 
orner in the other dire
tion.

We will take the set of dire
ted edges as a 
ommon set of verti
es for the 
onstru
tion of

two dire
ted graphs. The graph �

b


ontains an edge from e

"

1

1

to e

"

2

2

if the 
omposition

e

"

1

1

Æ e

"

2

2

is a dire
ted path in L: Note that, for every vertex v in a spheri
al diagram D, the

map Lk(v)! L indu
es a dire
ted 
ir
le in �

b

.

In the other dire
ted graph �

r

an edge points from e

"

1

1

to e

"

2

2

if the following hold:

� "

1

= "

2

.

� The underlying edges e

1

and e

2

represent adja
ent 
orners in one relator disk.

� With respe
t to the orientation of the relator disk indu
ed by "

1

= "

2

; the 
orner e

1

pre
edes e

2

.

We think of these graphs as subgraphs of one dire
ted graph � = �

b

[ �

r

. The edges in �

b

are 
oloured bla
k whereas the edges in �

r

are red.

Note that the map e

"

7! e

�"

on the verti
es of � indu
es a 
olour preserving, orientation

reversing involution � : E(�) ! E(�): This is to say: if there is an edge from e

"

1

1

to e

"

2

2

then there is an edge of the same 
olour from e

�"

2

2

to e

�"

1

1

. We extend ' to dire
ted edge

paths P =

!

e

1

Æ � � � Æ

!

e

r

in � by

�(P ) := �(

!

e

r

) Æ � � � Æ �(

!

e

1

):

Given a real valued fun
tion W : E(�)! R assigning weights to edges of � we de�ne the

total weight of the edge path P to be the sum T

W

(P ) := �

r

i=1

W (

!

e

1

):

11



De�nition 5. An M-test is a real valued weight fun
tion w : E(�) ! R satisfying the

following axioms:

1. Every bla
k loop has weight 0.

2. For every 
losed edge path P of bla
k edges that passes through at least two di�erent

verti
es of �, we have

T

w

(P ) + T

w

(�(P )) � 4�:

3. For every red 
losed edge path P , we have �, we have

T

w

(P ) + T

w

(�(P )) � 4�:

4. For 
losed edge path P =

!

e

1

Æ � � � Æ

!

e

4

of length 4 with alternating 
olours, we have

T

w

(P ) + T

w

(�(P )) � 4�:

We mention that a slight 
hange in the above de�nition of allows for 
onstru
ting an

aspheri
ity tests, whi
h we 
all an A-test.

The main result is

Theorem 6. If a presentation P admits an M-test w : E(�) ! R, then any redu
ed

spheri
al diagram D : S

2

! K

P

has at least two mono
hromati
 verti
es.

Metri
 Chara
terizations of Spheri
al and Eu
lidean Buildings

Ruth Charney

Abstra
t: A building is a simpli
ial 
omplex with a 
overing by Coxeter 
omplexes (
alled

apartments) satisfying 
ertain 
ombinatorial 
onditions. A building whose apartments are

spheri
al (resp. Eu
lidean) Coxeter 
omplexes has a natural pie
ewise spheri
al (resp. Eu-


lidean) metri
 with ni
e geometri
 properties. We show that we 
an re
ognize when a

pie
ewise spheri
al or pie
ewise Eu
lidean 
omplex is a building by a few simple metri


properties and that all of the 
ombinatorial information 
an be retrieved from these prop-

erties. For example, we prove that a pie
ewise spheri
al 
omplex whi
h is CAT(1) and

has the property that every geodesi
 segment 
an be lo
ally geodesi
ally 
ontinued in a

non-empty, dis
rete set of dire
tions, is isometri
 to a spheri
al building. (joint work with

Alexander Lyt
hak)

Mo
k re
e
tion groups

Mi
hael W. Davis

Abstra
t: This is a report on some joint work with Tadeusz Januszkiewi
z and Ri
k S
ott.

It turns out that there is a ri
h 
lass of examples of nonpositively 
urved 
losed man-

ifolds whi
h are tiled by either permutohedra or asso
iahedra. Su
h examples arise as


ertain blow-ups of RP

n

of proje
tive hyperplane arrangements asso
iated to �nite re
e
-

tion groups. The universal 
overs of su
h examples yield tilings of R

n

by permutohedra or

asso
iahedra. The group of symmetries A of su
h a tiling of the universal 
over is generated

by involutions, but in general it is not a re
e
tion group, rather it is a \mo
k re
e
tion

group". I explain these examples, give a presentation for the groups A and dis
uss some

of their properties.
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On the Hanna Neumann Conje
ture

Warren Di
ks

x 1. The group theory

Let G be a free group, and let H and K be �nitely generated subgroups of G.

Let rk(G) denote the rank of G, and let ~r(G) denote maxfrk(G)� 1; 0g.

Let

X

: =

X

HgK2HnG=K

~r(H

g

\K);

where the summation is over the set of (H;K) double 
osets in G, with ea
h double 
oset

HgK 
ontributing ~r(H

g

\K), a value whi
h does not depend on the 
hoi
e of representative

g of the double 
oset.

In 1956, Hanna Neumann [4℄ 
onje
tured that

~r(H \K) � ~r(H)~r(K):

In 1990, Walter Neumann [5℄ introdu
ed the formally stronger statement

X

� ~r(H)~r(K);


urrently referred to as the Strengthened Hanna Neumann Conje
ture.

Walter Neumann [5℄ then showed that modifying the te
hniques of Hanna Neumann [4℄

yielded

P

� 2~r(H)~r(K); in parti
ular,

P

is �nite. Similarly, he showed that modifying

the 1971 arguments of R_ G_ Burns [1℄ yields

X

� maxf2~r(H)~r(K)� ~r(H); 2~r(H)~r(K)� ~r(K)g:

In parti
ular, the Strengthened Hanna Neumann Conje
ture holds in the 
ases where both

the subgroups have rank two.

In 1992 and 1996, G_ Tardos [7℄, [8℄ improved this to

X

� maxf~r(H)~r(K); 2~r(H)~r(K)� ~r(H)� ~r(K)g:

In parti
ular, the Strengthened Hanna Neumann Conje
ture holds in the 
ases where one

of the subgroups has rank two, or both have rank three.

Relatively re
ently, Ed Formanek and I [3℄ improved this to

X

� ~r(H)~r(K) + maxf~r(H)� 2; 0gmaxf~r(K)� 2; 0g:

In parti
ular, the Strengthened Hanna Neumann Conje
ture holds in the 
ases where one

of the subgroups has rank three.

The foregoing is a 
ondensed des
ription of the progress to date, and omits mention of

important work of many mathemati
ians.

x 2. The topologi
al methods

In 1983, Stallings [6℄ showed that it was fruitful to 
onsider the Hanna Neumann 
onje
ture

from the viewpoint of pullba
ks of immersions of �nite graphs.

In 1994, in [2℄, I built on his work and 
onsidered pushouts of immersions of �nite graphs,


odifying some of the information in terms of �nite, simple-edged, bipartite graphs, as
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follows. (Here \simple-edged" means that there is at most one edge joining any pair of

verti
es.)

We 
an asso
iate with the above groups a �nite, simple-edged, bipartite graph D with

m : = 2~r(H) red verti
es, n : = 2~r(K) yellow verti
es, and p : = 2

P

edges. Moreover,

we 
an embed D in three �nite, simple-edged, bipartite graphs A, B, C in su
h a way that

the �nite, bipartite \amalgamated graph"

(A _

D

B) _ (B _

D

C) _ (C _

D

A)

is simple-edged and 
an be expressed as the union of two disjoint subgraphs whi
h are

isomorphi
 to ea
h other (as bipartite graphs). (Here _ denotes the disjoint union, and

_

D

denotes the the disjoint union amalgamating the two 
opies of D. )

The Amalgamated Graph Conje
ture is the 
onje
ture that the 
onditions on D given in

the pre
eding paragraph imply that p �

1

2

mn. It was shown in [2℄ that this is equivalent

to the Strengthened Hanna Neumann Conje
ture.

Noti
e that if D is 
onne
ted then the amalgamated graph must have an odd number of


omponents. Noti
e also that the 
onditions imply that the amalgamated graph has an

even number of 
omponents. Thus D is not 
onne
ted, so p � maxfmn � m;mn � ng.

This is Burns' result [1℄.

If p >

1

2

mn, then D has so many edges that one of the 
onne
ted 
omponents is huge, that

is, has more than half of the edges of D, more than half of the red verti
es of D, and more

than half of the yellow verti
es ofD. Hen
e the amalgamated graph has three distinguished


omponents, and if we allow 
ertain \weak" amalgamations to be pulled apart, the rest of

the amalgamated graph 
ould be rearranged to form two disjoint isomorphi
 graphs.

This suggests that we try to �nd a sequen
e of notions of atomi
 fa
torizations of graphs

whi
h are all deli
ate enough to ensure that D has one huge atomi
 fa
tor and the amal-

gamated graph has three distinguished atomi
 fa
tors, but 
oarse enough to allow the

non-distinguished atomi
 fa
tors of the previous level to break into pairable pie
es. This

gives the idea of our (te
hni
al) proof [3℄ that

p �

1

2

mn +

1

2

maxfm� 4; 0gmaxfn� 4; 0g:

Referen
es

[1℄ R.G. Burns, On the interse
tion of �nitely generated subgroups of a free group Math. Z. 119 (1971),

121{130

[2℄ Warren Di
ks, Equivalen
e of the strengthened Hanna Neumann 
onje
ture and the amalgamated graph


onje
ture, Invent. Math. 117 (1994), 373{389

[3℄ Warren Di
ks and Edward Formanek, The rank three 
ase of the Hanna Neumann 
onje
ture, J. Group

Theory 4 (2001), 113{151

[4℄ H. Neumann, On interse
tions of �nitely generated subgroups of free groups. Addendum, Publ. Math.

Debre
en 5 (1958), 128

[5℄ W.D. Neumann, On interse
tions of �nitely generated subgroups of free groups Le
ture Notes in

Mathemati
s 1456 (1990), 161{170

[6℄ J.R. Stallings, Topology of �nite graphs, Invent. Math. 71 (1983), 551{565

[7℄ G. Tardos, On the interse
tion of subgroups of a free group, Invent. Math. 108 (1992), 29{36

[8℄ G. Tardos, Toward the Hanna Neumann 
onje
ture using Di
ks' method, Invent. Math. 123 (1996),

95{104

14



Proper a
tions of latti
es on 
ontra
tible manifolds

Mark Feighn

Abstra
t: In joint work with Mladen Bestvina, it is shown that a latti
e in a semisimple

Lie group G 
annot a
t properly dis
ontinuously on a 
ontra
tible manifold of dimension

smaller than that of G/K where K is a maximal 
ompa
t subgroup of G.

`

2

invariants for groups and equivalen
e relations

Damien Gaboriau

Measure Equivalen
e (ME) between 
ountable groups is a measurable analogue of Quasi-

Isometry. M. Gromov gave the following 
riterion:

Criterion [Gromov ('93)℄ Two �nitely generated groups �

1

and �

2

are quasi-isometri


i� there exist 
ommuting, 
ontinuous a
tions of �

1

and �

2

on some lo
ally 
ompa
t spa
e

M , su
h that the a
tion of ea
h of the groups is properly dis
ontinuous and has a 
ompa
t

fundamental domain.

Similarly,

De�nition (Gromov ('93)) Two 
ountable groups �

1

and �

2

are Measurably Equivalent

(ME) i� there exist 
ommuting, measure preserving, free a
tions of �

1

and �

2

on some

Lebesgue measure spa
e (
; m) su
h that the a
tion of ea
h of the groups admits a �nite

measure fundamental domain.

Some results and examples

� Standard examples of ME groups are given by latti
es (= dis
rete, �nite 
ovolume

subgroups) �

1

and �

2

in the same Lie group G. The spa
e (
; m) is (G;Haar) and

the latti
es a
t by left (resp. right) multipli
ation on G.

� ME is an equivalen
e relation on 
ountable groups.

� Results of Dye ('59), Ornstein-Weiss ('81) and for the most general 
ase Connes-

Feldman-Weiss imply that the ME 
lass of Z (the group of integers) 
onsists in all

in�nite amenable groups.

� A. Furman, improving R. Zimmer's superrigidity for 
o
y
les, showed that for higher

rank simple Lie group G, the 
olle
tion of all its latti
es (up to �nite groups) forms a

single ME 
lass.

� The ME 
lass of the free group F

2

on two generators 
ontains all �nitely generated

(non 
y
li
) free groups, all 
ompa
t surfa
e fundamental groups, free produ
ts of a

�nite number of amenable groups (ex
luded Z=2Z � Z=2Z), all latti
es in SL

2

(Q

p

),...

To ea
h 
ountable group � is asso
iated a sequen
e of numbers 2 [0;1℄ 
alled its `

2

Betti

numbers (�

n

(�))

n2N

that are de�ned using the `

2


hains of CW-
omplexes on whi
h � a
ts.

Theorem [G.℄ If �

1

and �

2

are measurably equivalent, then they have proportionnal `

2

Betti numbers.

More pre
isely if (
; m) is a measure equivalen
e between them, and D

1

(resp. D

2

) is

the fundamental domain of the a
tion of �

1

(resp. �

2

), then for all n 2 N:

m(D

2

):�

n

(�

1

) = m(D

1

):�

n

(�

2

):
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Corollary

� Latti
es in di�erent Sp(n; 1) are not ME

� Latti
es in di�erent SU(n; 1) are not ME

� Latti
es in di�erent SO(2n; 1) are not ME

� Dire
t produ
ts of a di�erent number of free groups are not ME

Corollary Latti
es in the same lo
ally 
ompa
t se
ond 
ountable group have proportional

`

2

Betti numbers. The ratio is given by the ratio of the 
ovolumes.

Related statement If �

1

(�) > 0 then every �nitely generated normal subgroup N / �

either is �nite or has �nite index.

Suppose � has a normal subgroup N with in�nite amenable quotient �=N . If for some n,

�

n

(N) is �nite then �

n

(�) = 0.

Damien Gaboriau

http://www.umpa.ens-lyon.fr/�gaboriau

Thompson's Group and non{positive 
urvature

Ross Geoghegan

I will outline the re
ent thesis of my student Dan Farley. The theorem is that all diagram

groups (in the sense of Kilibarda and Guba{Sapir) whi
h are de�ned by �nite semigroup

presentations a
t freely and properly dis
ontinuously on lo
ally �nite CAT(O) 
omplexes.

One of those groups, de�ned by the semigroup presentation hx j x = x

2

i is Thompson's

Group F: Farley also shows that all su
h groups have type F

1

:

A free group generated by a three state automaton

R. Grigor
huk

There is a 
anoni
al way to generate by a �nite automaton a group or a semigroup.

Automata groups possess many interesting and unusual properties as among them there

are in�nite torsion groups, groups of intermediate growth, amenable but not elementary

amenable groups et
.

The negative solution of the strong Atiyah Conje
ture on L

2

{Betti numbers was re
ently

done on the base of the automata presentation of the lamplighter group (joint result of

R. Grigor
huk, P. Linnell, T. S
hi
k and A. Zuk).

Here is a remarkable problem: whi
h groups have �nite automata presentations? In joint

work with A. Zuk we answer positively a question of Brunner{Sidki and show that the

3{state automaton of Aleshin generates a free group of rank 3. In the proof a new notion

of dual automaton and of double redu
ed transitivity is used.

Re
ent results 
on
erning the geometri
 invariants of metabelian groups

Jens Harlander

Let G be a group and X a K(G; 1)-
omplex with �nite m-skeleton. A 
hara
ter � : G! R

gives rise to a hight fun
tion h :

~

X ! R on the universial 
overing of X. The geometri


invariant �

m

(G) � Hom(G;R) (Bieri-Strebel 1980, Bieri-Neumann-Strebel 1987, Bieri-

Renz 1988) 
onsists of the set of 
hara
ters for whi
h the positive half h

�1

[0;1) is (m-

1)-
onne
ted. These invariants originated in the work of Bieri-Strebel (1980) on �nitely
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generated metabelian groups G where it was shown that �

1

(G) 
ontains the information as

to whether G is �nitely presented. In general the �-invariants 
ontain 
omplete information

about the �niteness-type of normal subgroups above the 
ommutator subgroup.

Figure 1. �

1

(G)




for the metabelian group G = ha; x; y j [x; y℄; a

x

a

y

a; [a;

w

a℄i (w

ranges over all words in x; y) shows that G 
an be �nitely presented but is not of type F

3

.

Although the �-invariants have undergone quite an evolution sin
e 1980 and have been

investigated for many di�erent 
lasses of groups, some fundamental open questions remain

in the metabelian setting. Two 
onje
tures, the F

m

-
onje
ture and the �

m

-
onje
ture,

stand out. They 
an be loosely formulated as follows:

F

m

-
onje
ture: If G is a �nitely generated metabelian group then �

1

(G) 
ontains the

information as to whether G is of type F

m

.

�

m

-
onje
ture: If G is a metabelian group of type F

m

then �

m

(G) 
an be obtained from

�

1

(G) by a simple pro
ess.

The F

2

-
onje
ture is true (Bieri-Strebel 1980) and both 
onje
tures are known to be

true for metabelian groups of �nite rank (Aberg 1986 (F

m

-
onje
ture), Meinert 1996

(�-
onje
ture)). Although 
onsiderable extensions of Abergs work exist (Noskov 1993,

Ko
hloukova 1997) the general 
ase seems to be still far o�. In low dimensions some re-


ent progress has been made. The F

3

-
onje
ture (Bieri-Harlander 1999), the �

2

-
onje
ture

(Ko
hloukova 1998) and the �

3

-
onje
ture (Harlander-Ko
hloukova 2000) have all been


on�rmed in the split 
ase. If asked to speak at the meeting I will report on these re
ent

low dimensional results.

One relator produ
ts of groups

Jim Howie

(Joint with Robert Shwarz)

On
e upon a time, long long ago, in a galaxy far from here, I proved some theorems about

groups 
onstru
ted in the following way.

Let G

1

, G

2

be groups, W 2 G

1

?G

2

be a 
y
li
ally redu
ed word of length � 2; and m � 2

an integer. Then let

G =

G

1

? G

2

N(W

m

)

(where N(�) denotes normal 
losure).

If m is big enough (whi
h in pra
ti
e means m � 4 unless further restri
tions are pla
ed on

G

1

; G

2

and/or W ) then things like the Freiheitssatz (G

1

,! G  - G

2

) are true. Moreover,

the \obvious" 
onstru
tion yields a K(G; 1){spa
e, and so H

�

(G) is \essentially" made up

of H

�

(G

1

)�H

�

(G

2

)�H

�

(Z

m

); where Z

m

is generated by W:

There are some ex
eptions to the latter statement, in 
ases where G is \indu
ed" from some

�nite triangle group presentation { i.e. W � U �V where U

p

= V

q

= 1 and

1

p

+

1

q

+

1

m

> 1:

17



But in this 
ase we 
an re
over the situation by showing that the \obvious" pushout

diagram

Z

p

? Z

q

���! Triangle(p; q;m)

?

?

y

?

?

y

G

1

? G

2

���! G

is \Mayer{Vietoris" (translates to a pushout of K(�; 1){spa
es, and so indu
es Mayer{

Vietoris sequen
es in (
o){homology.

This work is an attempt to improve the bound m � 4 to m � 3: We 
annot do so in full

generality, but we 
an prove suitable theorems if we restri
t to the 
ase where G is indeu
ed

(in the same sense) from a one{relator produ
t of �nite 
y
li
 groups (a generalized triangle

group), i.e. if 9U; V 2 G

1

? G

2

with U

P

= V

q

= 1 and W = W

0

(U; V ); then G =

G

1

?G

2

N(W

3

)

is

ni
e, in the sense that

(i) the Freiheitssatz holds (G

1

,! G  - G

2

)

(ii)

Z

p

? Z

q

���!

Z

p

?Z

q

N(W

0

3

)

?

?

y

?

?

y

G

1

? G

2

���! G

is Meyer{Vietoris.

Appli
ations of bounded 
ohomology to rigidity and to foliations

Alessandra Iozzi

Re
ently a systemati
 theory of 
ontinuous bounded 
ohomology for lo
ally 
ompa
t groups

using homologi
al methods has been developed by Burger and Monod [3℄, and has proven

to have far rea
hing and very diverse appli
ations.

In this report I want to give a few examples to illustrate how this theory 
an be used

to obtain both rigidity results for a
tions of �nitely generated groups, and a vanishing

theorem for the tangential 
ohomology of some amenable foliations.

Rigidity results. (Joint with M. Burger, [2℄, [1℄, [8℄) We shall de�ne invariants asso
i-

ated to a 
ontinuous representation � : � ! H, where � is a �nitely generated group

and H is an appropriate topologi
al group, via the interplay between the pull-ba
ks of

bounded 
ohomology 
lasses and of ordinary 
ohomology 
lasses of H. We spe
ialize the

dis
ussion to two parti
ular 
ases, where H = SU(1; n) and where H = Homeo

+

(S

1

), the

groups of orientation preserving homeomorphisms of the 
ir
le. In the �rst result, infor-

mation will be obtained by the vanishing of an appropriate 
ohomology 
lass. Namely,

let !

n

2 H

2




(SU(1; n);R) be the 
lass de�ned by the K�ahler form. For every 
ontinuous

homomorphism � : � ! SU(1; n), we get a bounded 
lass �

�

(!

n

) 2 H

2

b

(�;R). Then we

have:

Theorem 1. �

�

(!

n

) = 0 if and only if either �(�) �xes a point in the boundary of n-

dimensional 
omplex hyperboli
 spa
e H

n

C

, or �(�) leaves a totally real subspa
e of H

n

C

invariant.

18



If on the other hand we spe
ialize � to be a latti
e in SU(1; m), m < n, then we 
an

get information exa
tly from the opposite situation, that is, roughly speaking, from the

maximality of the invariant. Namely, letM = �nH

m

C

be a �nite volume hyperboli
 manifold

and assume that either m � 2 or M is 
ompa
t (otherwise H

2

(M;R) = 0), so that the

L

2

-
ohomology H

2

(2)

(M) of M inje
ts into H

2

dR

(M) ' H

2

(�;R). If � : � ! SU(1; n)

is a representation, !

M

is the K�ahler 
lass on M and < �; � > is the standard inner

produ
t in H

2

(2)

(M), we observe that �

�

(!

n

) 2 H

2

(2)

(M), so that it makes sense to 
onsider

< �

�

(!

n

); !

M

>.

Theorem 2. Let m � 2. Then

�

�

�

<�

�

(!

n

);!

M

>

<!

M

;!

M

>

�

�

�

� 1, and equality holds if and only if � is

equivariant with respe
t to an isometri
 embedding H

m

C

,! H

n

C

.

Sin
e by purely topologi
al methods one 
an see that

�

�

�

<�

�

(!

n

);!

M

>

<!

M

;!

M

>

�

�

�

is 
onstant on 
onne
ted


omponents of the representation variety Rep(�; SU(1; n)), we 
an 
on
lude the following:

Corollary 3. There are no non-trivial deformations of � in SU(1; n).

Observe that this extends a result of Goldman and Millson [5℄ who proved the theorem

in the 
o
ompa
t 
ase. Moreover, the requirement that m � 2 is ne
essary, as Gusevskii

and Parker [7℄ 
onstru
ted examples of (non-
o
ompa
t) latti
es in SU(1; 1) whi
h have

quasi-Fu
hsian deformations in SU(1; 2).

With the same methods we 
an ta
kle also problems in whi
h H is not ne
essarily a linear

group, giving for instan
e a fun
torial proof of Milnor-Wood inequality ([10℄, [11℄) and of

a theorem by Matsumoto [9℄. To this extent, let �

g

be a 
ompa
t orientable surfa
e of

genus g � 2 and fundamental group � and let � : �! Homeo

+

(S

1

) be a homomorphism.

If e 2 H

2

(Homeo

+

(S

1

);Z) is the Euler 
lass, then �

�

(e) 2 H

2

(�;Z) ' H

2

(�

g

;Z) measures

the obstru
tion to lifting the �-a
tion to

f

S

1

! S

1

and de�nes the Euler number by eu(�) =

(�

�

(e); [�

g

℄), where [�

g

℄ 2 H

2

(�

g

;Z) is the fundamental 
lass of �

g

.

Theorem 4. ([10℄, [11℄, [9℄, 
f. [8℄, [1℄) j eu(�)j � �(�

g

), and equality holds if and only if

� is semi
onjugate to the a
tion of � on S

1

given by any hyperbolization of �

g

.

Tangential 
ohomology of foliations. In [6℄, Gromov observed that the bounded 
o-

homology of a manifold with amenable fundamental group vanishes and that the bounded


ohomology of a negatively 
urved manifold surje
ts (in degree 2 and above) onto the

ordinary 
ohomology, hen
e showing that these two 
onditions 
annot 
oexist. However,

generalizing the above setup to foliations, one has the following:

Theorem 5. [4℄ Let X be a 
ompa
t foliated topologi
al spa
e whi
h is measurable. Sup-

pose also that there is a leafwise Riemannian metri
 on X with non-positive 
urvature

along the leaves, su
h that all leaves have rank at most r everywhere. If (X;F) has an

amenable fundamental groupoid, the tangential de Rham 
ohomology groups vanish in de-

gree n � r + 1.

While the above theorem is proven with purely di�erential geometri
al methods and ex-

ploits dire
tly the amenability of the foliation bypassing any bounded 
ohomology 
onsid-

eration, with Burger [1℄ we 
an also give a proof of a related result for foliated bundles

arising from amenable a
tions whi
h is more in the spirit of Gromov's paper, using the

fun
torial approa
h to bounded 
ohomology.
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Kobayashi-type metri
s and dynami
s of endomorphisms

Anders Karlsson

In order to des
ribe 
ertain aspe
ts of the asymptoti
 geometry of spa
es equipped with a

Kobayashi-type distan
e, the so-
alled Gromov produ
t seems to be a 
onvenient 
on
ept.

This is illustrated by the re
ent work of Balogh and Bonk [BaBo 99℄ proving Gromov

hyperboli
ity of Kobayashi's metri
 on strongly pseudo-
onvex, bounded C

2

-domains, and a

joint paper with Noskov [KaNo 00℄ 
on
erning the asymptoti
 geometry of Hilbert's metri


on domains, 
onvex in a strong sense, as well as arbitrary 
onvex bounded domains. The


lassi
al Tei
hm�uller spa
es may be viewed as in some sense non-stri
tly 
onvex domains,

and may 
on
eivably admit a similar des
ription of their asymptoti
 geometry. Note that

it seems or is a fa
t that metri
 spa
es of Kobayashi-type are typi
ally not nonpositively


urved in either the sense of Alexandrov or of Busemann.

These des
riptions in terms of the Gromov produ
t are useful for analyzing the dynami
s

of individual and random produ
ts of endomorphisms (whi
h are distan
e non-in
reasing

maps), 
f. [Ka 99℄. The hope is that this will turn out to be useful also for obtaining

information about some in�nite automorphisms groups.
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Algebrai
 
onvergen
e of fun
tion groups

Gero Kleineidam

This is joint work with Juan Souto. Let � : F

k

! PSL

2

(C ) be a dis
rete and faithful


onvex-
o
ompa
t representation of the free group of rank k into PSL

2

(C ). Then H

3

=�(F

k

)
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is an (open) handlebody H and the quotient of the dis
ontinuity domain of the a
tion of

�(F

k

) on

^

C is a 
losed Riemann surfa
e of genus k whi
h 
an be identi�ed with the boundary

�H of H.

By Ahlfors-Bers theory, there is a 
overing map from T (�H), the Tei
hm�uller spa
e of �H,

to the spa
e of PSL

2

(C )-
onjuga
y 
lasses of 
onvex-
o
ompa
t representations of F

k

into

PSL

2

(C ). The de
k transformation group is Mod

0

(H), the group of those isotopy 
lasses

of di�eomorphisms of H whi
h indu
e an inner automorphism on �

1

(H) = F

k

.

Masur [Mas86℄ and Otal [Ota88℄ identi�ed an open subset O of the Thurston bound-

ary of T (�H) with the property that its quotient by Mod

0

(H) may be appended to

T (�H)=Mod

0

(H) as a sort of \boundary at in�nity". O is 
alled the Masur domain.

One says that a sequen
e (�

i

) of 
onvex 
o
ompa
t representations 
onverges into the Ma-

sur domain if some sequen
e in T (�H) representing (�

i

) 
onverges to an element of the

Masur domain.

Thurston's Masur domain Conje
ture 1. Let (�

i

) be a sequen
e of 
onvex 
o
ompa
t rep-

resentations of F

k

into PSL

2

(C ) whi
h 
onverges into the Masur domain. Then (after


onjugating) (�

i

) has a subsequen
e whi
h 
onverges to a dis
rete and faithful representa-

tion of F

k

into PSL

2

(C ).

Canary [Can93℄ proved the 
onje
ture under some extra assumption on ea
h �

i

. Otal

[Ota94℄ proved that the 
onje
ture holds for k = 2 and arbitrary sequen
es 
onverging

to a minimal arational element in O. Following the strategy of Otal's proof we give an

aÆrmative answer for arbitrary k � 2 and sequen
es 
onverging to minimal arational

elements of O (see [KS00℄). This is the generi
 
ase.

Our result 
an be extended to fundamental groups of 
ompression bodies, i.e. boundary


onne
ted sums of handlebodies and trivial interval bundles over 
losed surfa
es. In this


ase, using methods of Otal (see [Ohs℄) we show that the manifold obtained in the limit is

topologi
ally tame, i.e. homeomorphi
 to the interior of a 
ompa
t manifold.
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Braid Groups are Linear

Daan Krammer

Let B

n

denote the braid group on n strands. A 
ertain representation � : B

n

�!

GL

�

n(n�1)

2

;Z [q

�1

; t

�1

℄

�

was shown to be faithful by S. Bigelow by a beautiful topolog-

i
al argument. His proof involves neither generators of the braid group nor a basis of the

module. We will present a proof of the faithfulness that does involve these things. As

a 
onsequen
e of our method, we obtain a relation between the exponents of t and the

Charney length fun
tion in the braid group.
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Some groups of type VF

Ian J. Leary, University of Southampton

The talk des
ribed joint work with Brita E. A. Nu
inkis

Throughout the talk, G denotes a dis
rete group. The universal proper G-spa
e, EG, may

be de�ned as a terminal obje
t in the homotopy 
ategory of proper G-CW-
omplexes,

where a proper G-CW-
omplex is by de�nition a G-CW-
omplex in whi
h all stabilizers

are �nite. (Compare with the universal free G-spa
e EG.) There is another des
ription of

EG: a model for EG is a G-CW-
omplex E su
h that for H � G, the �xed point set E

H

is empty if H is in�nite and is 
ontra
tible if H is �nite.

If H is any torsion-free subgroup of G, then any model for EG is also a model for EH, and

in parti
ular the minimal dimension of a model for EG provides an upper bound on the

virtual 
ohomologi
al dimension of G (written v
dG) whenever G is virtually torsion-free.

A theorem of F. X. Connolly and T. Ko�zniewski (for groups of �nite v
d) and W. L�u
k (in

general) states that there is a �nite type EG if and only if

(a) G 
ontains only �nitely many 
onjuga
y 
lasses of �nite subgroups;

(b) for ea
h �nite subgroup P � G, the normalizer N = N

G

(P ) admits a �nite type BN .

For ea
h n > 0, we exhibit a group G = G(n) for whi
h v
dG = 3n but su
h that any

model for EG has dimension at least 4n. This answers a question �rst posed by K. S.

Brown. These groups are of type VF or `virtually of type F ', i.e., they 
ontain �nite-index

subgroups H � G su
h that H admits a �nite BH. We also exhibit groups G that are

virtually of type F for whi
h (a) does not hold and others for whi
h (b) does not hold.

These examples show that the property of having a �nite (resp. �nite type) model for E(-)

does not pass to �nite-index supergroups.

Our 
onstru
tion relies on work of M. Bestvina and N. Brady, who 
onstru
ted, for ea
h

non-empty �nite 
ag 
omplex L, a torsion-free group H

L

with the properties that �niteness


onditions of H

L

are 
ontrolled by the 
onne
tivity properties of L. We observed that H

L

is fun
torial in L, and that interesting groups 
ould be obtained as semi-dire
t produ
ts

H

L

o Q, where Q is a �nite group of automorphisms of the simpli
ial 
omplex L. We

also rely on work of R. Oliver (des
ribing whi
h �nite groups 
an a
t on �nite 
ontra
tible


omplexes with what �xed point sets) and on an easy spe
ial 
ase of a theorem of J. S.

Crisp (des
ribing the �xed point subgroups in 
ertain Artin groups for �nite groups of

`graph automorphisms').

The group G = H

L

o Q is virtually of type F if and only if the �nite 
ag 
omplex L

is 
ontra
tible (by the theorem of Bestvina-Brady). The 
ase when G 
ontains in�nitely

many 
onjuga
y 
lasses of �nite subgroups (i.e., (a) fails for G) 
orresponds to the 
ase

when the �xed-point set L

Q

is empty. The 
ase when (b) fails for the normalizer N

G

(Q)


orresponds to the 
ase when L

Q

is non-empty but is not 
ontra
tible. In the 
ase when

L is 3-dimensional, 
ontra
tible, and 
ontains a 3-simplex in a free Q-orbit ea
h of whose

fa
es is in a non-free Q-orbit, then v
dG = 3 but any model for EG has dimension at least

4. Dire
t produ
ts of this G produ
e the examples 
laimed above.

When L has m verti
es, the group H

L

o Q embeds in SL

2m

(Z), and so these groups also

answer a question of M. Bridson, who asked whether (a) holds for every G � SL

N

(Z)

admitting a �nite type BG.
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Irredu
ible automorphisms of free groups have North{South dynami
s on the

boundary of Outer Spa
e

G. Levitt and M. Lustig

Suppose � 2 Out(F

n

) is irredu
ible with irredu
ible powers. It a
ts on the boundary

of Culler{Vogtmann's outer spa
e with two �xed points T

+

; T

�

: We show that for any

T 6= T

�

the sequen
e �

p

(T ) 
onverges to T

�

as p! �1: The main new tool in the proof

is the following: given an R{tree T with trivial ar
 stabilizers, we assign to X 2 �F

n

a

point Q(X) belonging to either � T or the metri
 
ompletion of T:

Our result, and those of Bestvina{Feighn{Handel on polynomially growing automorphisms,

suggest the following question: Given n; is there an integer M with the following property:

for any � 2 Out(F

n

); and any T in the boundary of outer spa
e, the sequen
e �

p

(T )

has at most M limit points as p ! +1: The analogous question for the a
tion of the

mapping 
lass group on the Thurston boundary of Tei
hm�uller spa
e has a positive answer

(by Nielsen{Thurston theory).

The relation between the Baum-Connes Conje
ture and the Tra
e-Conje
ture

Wolfgang L

�

u
k (M

�

unster)

Abstra
t: We prove a version of the L

2

-index Theorem of Atiyah whi
h uses the universal


enter-valued tra
e instead of the standard tra
e. We 
onstru
t for G-equivariant K-

homology an equivariant Chern 
hara
ter, whi
h is an isomorphism and lives over the ring

Z � �

G

� Q obtained from the integers by inverting the orders of all �nite subgroups of

G.We use these two results to show that the Baum-Connes Conje
ture implies the modi�ed

Tra
e Conje
ture whi
h says that the image of the standard tra
e K

0

(C

�

r

(G)) ! R takes

values in �

G

. The original Tra
e Conje
ture due to Baum and Connes predi
ted that its

image lies in the additive subgroup of R generated by the inverses of all the orders of the

�nite subgroups of G, and has been disproven by Ranja Roy re
ently.

The stru
ture of an automorphism of F

n

Martin Lustig, Marseille (presently at MPI Bonn)

The solution of the 
onjuga
y problem for automorphisms of F

n

(for a rewritten 
omplete

proof see [1℄, [2℄) has various ingredients whi
h are useful tools for further purposes. We

list some of these tools here:

(1) A new version of train tra
ks for free groups whi
h 
ontain 2-
ells (so 
alled \Nielsen

fa
es").

(2) A uniqueness result about F

n

-a
tions on RI -trees that are invariant under a given

automorphism.

(3) A \Nielsen-Thurston" de
omposition of F

n

into �nitely many strata whi
h is 
anon-

i
ally asso
iated to any given automorphism. It 
an be determined algorithmi
ally.

On ea
h lowest stratum the indu
ed outer automorphism has �nite order.

(4) The algorithmi
 
onstru
tion of a train tra
k morphism between any two train tra
k

maps whi
h represent the same automorphism.

(5) A (
omputable) normal form for polynomially growing automorphisms of F

n

.
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(6) A 
omplete (and algorithmi
) analysis of the deli
ate problem, how an automorphisms


an be built (in in�nitely many di�erent ways) out of given \sub-automorphisms" de-

�ned on distin
t strata of F

n

. In parti
ular, we obtain a 
anoni
al de
omposition of

(some power of) any given automorphism into �nitely many 
ommuting subautomor-

phisms.

In parti
ular, the following 
orollaries to the above have already been dedu
ed in [2℄:

Theorem 1. For all �̂ 2 Out(F

n

) the 
entralizer Cen(�̂) in Out(F

n

) 
ontains

A(�̂)�

M

v2V (�̂)

S

v

as subgroup of �nite index. Here A(�̂) is the free abelian subgroup generated by the 
ommut-

ing subautomorphisms of �̂, and ea
h S

v

is the 
entralizer of the �nite order automorphism

indu
ed by �̂ on one of its lowest strata, and of a �nite family of 
hara
teristi
 
onjuga
y


lasses in that stratum.

Theorem 2. There are algorithms to solve the following problems:

(1) For any � 2 Aut(F

n

) determine a �nite generating system of

Fix(�) = fw 2 F

n

: �(w) = wg:

(2) For any spa
e X with �

1

X ~=F

n

and any map f : X ! X whi
h indu
es an automor-

phism f

�

= �̂ 2 Out(F

n

), and for any two �xed points x = f(x); x = f(x

0

) 2 X,

de
ide whether the points x and x

0

lie in the same Nielsen �xed point 
lass of f .

Further appli
ations of the above tools 
on
ern work in progress whi
h indi
ates a solution

of the following problems:

- A fast proof of Brin
kmann's result that every automorphism of F

n

without periodi



onjuga
y 
lasses is hyperboli
 (in Gromov's sense).

- A generalization to arbitrary non-polynomially growing automorphisms of the result

known for irredu
ible automorphisms � with irredu
ible powers (iwip), that F

n

a
ts dis-


retely on the 
artesian produ
t of the forward and the ba
kward limit RI -tree of �.

- A 
omplete determination of the dynami
s of the homeomorphism of �F

n

indu
ed by any

automorphism of F

n

(joint work with G. Levitt).

- A de
omposition of any iwip automorphisms into �nitely many Stallings folds whi
h

preserve the asso
iated train tra
k stru
ture.

[1℄ M. Lustig Stru
ture and 
onjuga
y for automorphisms of free groups I,

MPI-Bonn preprint series 130, 2000

(see http://www.mpim-bonn.mpg.de/html/preprints/preprints.html)

[2℄ M. Lustig Stru
ture and 
onjuga
y for automorphisms of free groups II,

MPI-Bonn preprint series 4, 2001

(see http://www.mpim-bonn.mpg.de/html/preprints/preprints.html)

24



Cal
ulating 
urvatures in 
on
rete 
omplexes

Jon M
Cammond

There now exists a well{developed theory of nonpositively 
urved metri
al simpli
al 
om-

plexes. Unfortunately for the working geometri
 group theorist, even if someone hands

you an expli
it �nite metri
 simpli
ial 
omplex, there did not | until re
ently | exist an

algorithm to determine whether the spe
i�
 
omplex is non{positively 
urved.

In this talk we des
ribe su
h an algorithm.

(joint work with Murray Elder)

P�

n

is a duality group

John Meier

In [3℄ Bieri and E
kmann introdu
ed a 
lass of groups, 
alled duality groups, whose 
oho-

mology behaves similarly to manifold 
ohomology.

De�nition 0.1 (Duality groups). Let G be an FP group of 
ohomologi
al dimension n.

The group G is an n-dimensional duality group if there exists a G-module D (
alled the

dualizing module) su
h that H

i

(G;M) ' H

n�i

(G;D 
M) for all integers i and for all G-

modulesM . Equivalently, G is a duality group if its 
ohomology with group ring 
oeÆ
ients

is torsion free and 
on
entrated in dimension n. There is geometri
 
ontent to this 
on
ept:

If X is a 
ompa
t K(G; 1) of dimension d = v
d(G), then one 
an establish that G is a

duality group by showing that

e

X is (d�2)-a
y
li
 at in�nity. See [2℄ and [6℄ for ba
kground

on duality groups.

Example 0.2. The simplest examples of duality groups are the free and free abelian

groups. It's also known that duality-by-duality groups are duality groups, whi
h gives

a qui
k proof that the braid group B

n

is a duality group of dimensional n � 1. In re
ent

work it has been shown that Aut(F

n

) is a virtual duality group of dimension 2n� 2 [1℄.

My re
ent work has 
on
entrated on �nding various lo
al 
onditions that imply that a

group is a duality group. In parti
ular I am interested in the situation where a group

admits a natural a
tion on a poset, where the isotropy groups are in�nite.

De�nition 0.3 (Posets). A �nite dimensional poset P is graded if all its maximal 
hains

have the same length. If & is an element of a graded poset P, the rank of & is the length

of an unre�nable 
hain from a minimal element of P to &, and the 
orank of & 2 P is


rk(&) � d� rk(&) where d is the dimension of jPj.

A G-poset P has a strong fundamental domain if there is a subposet F � P whi
h is a

�lter (if & 2 F and � > &, then � 2 F) and whi
h 
ontains unique representatives of ea
h

G-orbit in P.

Theorem 0.4. (K. Brown & J.M. [see [4℄℄) Let G be a group of type FP , with 
d(G) = d.

Let G a
t on a graded poset P, whose geometri
 realization jPj is 
ontra
tible, and where

there is a strong fundamental domain F � P that is �nite and Cohen-Ma
aulay. If the

stabilizer of ea
h element & 2 P is a (d� 
rk(&))-dimensional duality group, then G is a

d-dimensional duality group.

The pure symmetri
 automorphism group, denoted P�

n

, is the subgroup of Aut(F

n

) 
on-

sisting of automorphisms that send ea
h generator x

i

to a 
onjugate of itself. Theorem 0.4


an be used to establish:
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Corollary 0.5. (Brady, M
Cammond, M., & Miller [4℄) The pure symmetri
 automor-

phism group is a duality group of dimension n� 1.

In addition to being realizable as a natural subgroup of Aut(F

n

), the group P�

n

arises as a

motion group. The pure braid group 
an be thought of as the group of motions of n points

in the plane; P�

n


onsists of the motions of the trivial n 
omponent link in S

3

. (See [8℄.)

Question 0.6. Is the group of motions of n-spheres trivially embedded in S

n+2

always a

duality group?

Perhaps an even more elementary question is

Question 0.7. Are the groups of motions of non-trivial links in S

3

virtual duality groups,

for all non-trivial links? In other words, was the assumption that we were working with

the trivial n 
omponent link ne
essary?
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Quasi{a
tions on trees

Lee Mosher

Let � be a graph of groups, �nite, and with �nitely generated vertex and edge groups.

Let T be the Bass-Serre tree, and by gluing together Cayley graphs, let p : X ! T be a

�

1

�{equivariant. \tree of spa
es", so that the �

1

� a
tion on X is properly dis
ontinuous

and 
o
ompa
t.

To study quasi{isometri
 rigidity properties of �

1

�; given a self{quasi{isometry ' : X ! X;

we ask: does ' 
oarsely respe
t the vertex spa
es and edge spa
es of X?

In many 
ases where vertex and edge groups are (
oarse) PD(n) groups, we give good

answers to this question, produ
ing many new quasi{isometri
 rigidity theorems.

Folding 
ube 
omplexes, Coxeter groups and the Haagerup approximation

property

Graham A. Niblo and Lawren
e D. Reeves

In [3℄ we showed that any group a
ting without a global �xed point on a �nite dimensional

CAT(0) 
ube 
omplex admits an unbounded 
onditionally negative kernel, and therefore


annot have Kazhdan's property T. It is not to hard to see that if the a
tion is properly

dis
ontinuous and the 
omplex is lo
ally �nite then the 
onditionally negative kernel is

proper and so, via a result of Bekka, Cherix and Valette, the group sati�es the Haagerup
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approximation property. Su
h a group is said to be T-amenable. A result of Higson and

Kasparov [2℄ then shows that su
h groups satisfy the Baum-Connes 
onje
ture.

In fa
t the hypothesis that the 
ube 
omplex is �nite dimensional is super
uous and one

purpose of this note is to remove it. We show:

Theorem 1. Let G be a group a
ting 
ellularly on a CAT(0) 
ube 
omplex X. If the a
tion

has an unbounded orbit then G does not have Kazhdan's property T , and if the a
tion is

proper then G is T -amenable.

This result was used in the thesis of Dan Farley [1℄ to show that Thompson's F{group

is T{amenable, and 
an be applied more generally to Guba and Sapir's 
lass of Diagram

Groups.

The method used in this paper links 
losely with the paper of Higson and Kasparov by

showing how to 
onstru
t a (metri
ally) proper aÆne isometri
 a
tion of the group G on a

Hilbert spa
e dire
tly from the des
ription of its a
tion on the hyperplanes of the CAT(0)


ube 
omplex. This geometri
 
onstru
tion is impli
it in the paper [4℄, but is obs
ured

by the algebrai
 language we used there. It may be viewed as a generalisation of Serre's

folding operation whi
h yields an a
tion on Hilbert spa
e given an a
tion on a tree [5℄.

Finally we wish to put in print our 
onstru
tion of a CAT(0) 
ube 
omplex for any �nitely

generated Coxeter group, 
losing the 
ir
le of ideas begun in [3℄.

Theorem 2. Let G be a �nitely generated Coxeter group. Then G a
ts properly bon a

�nite dimensional, lo
ally �nite CAT(0) 
ube 
omplex.

It is worth remarking that, as re
orded in [6℄, the a
tion of the Coxeter group on the


ube 
omplex is 
o-
ompa
t if and only if G 
ontains only �nitely many 
onjuga
y 
lasses

of triangle group subgroups. This holds for word hyperboli
 Coxeter groups and �nitely

generated right-angled Coxeter groups.
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Metri
 Chara
terizations of Spheri
al and Eu
lidean Buildings

Quasi{isometry invarian
e of group splittings and JSJ de
ompositions

Panos Papazoglou

We show that a one-ended �nitely presented group splits over a 2-ended group if and

only if its Cayley graph is 
oarsely separated by a quasi-line. This implies in parti
ular

that splittings over 2-ended groups are invariant under quasi-isometries. We show that

JSJ-de
ompositions are also invariant under quasi-isometries.
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Compa
tifying Trees

Bertrand REMY

The purpose of these notes is to present a motivating simple 
ase of a joint proje
t with Y.

Guivar
'h and J.-Ph. Anker. The proje
t itself 
on
erns the 
ompa
ti�
ation of Bruhat-

Tits buildings, that is the metri
 spa
es naturally atta
hed to semisimple groups over non-

Ar
himedean lo
al �elds. We deal with the geometri
, the Furstenberg, the Guivar
'h and

the polyhedral 
ompa
ti�
ations. Our guideline is the 
ase of symmetri
 spa
es. Though

we will state the problems in the 
ontext of general buildings, the results stated here will


on
ern trees.

Let X be a (Riemannian, non-
ompa
t) symmetri
 spa
e, a (lo
ally �nite) Bruhat-Tits

building or an arbitrary (lo
ally �nite but not ne
essarily Bruhat-Tits) biregular tree. We

assume we are given an appropriate automorphism group G, whi
h a
ts by isometries on

X.

hh

Appropriate

ii

means that G is the semisimple Lie group de�ning X when it is a

symmetri
 spa
e or a Bruhat-Tits building. When X is a tree, G is an arbitrary lo
ally

1-transitive isometry group in the sense of M. Burger and S. Mozes.

As a non-positively 
urved spa
e, X admits an asymptoti
 boundary �

1

X de�ned as a set

of equivalen
e 
lasses of geodesi
 rays. A 
lassi
al pro
edure of gluing �

1

X to X makes

X t �

1

X a 
ompa
ti�
ation of X, whi
h we 
all the geometri
 
ompa
ti�
ation X

geom

of X. The polyhedral 
ompa
ti�
ation X

pol

of X is de�ned by means of a gluing

G� F

�

where F is the (simpler) 
ompa
ti�
ation of a maximal isometri
 
opy F of a Eu
lidean

spa
e in X. For a symmetri
 spa
e su
h an F is a maximal 
at, for a Bruhat-Tits building

it is an apartment, and for a tree it is simply a geodesi
 line. The de�nition of this kind of


ompa
ti�
ation is now well-known or straightforward.

PROBLEM

A. Give sense to the Furstenberg and the Guivar
'h 
ompa
ti�
ations of X.

Both 
ompa
ti�
ations rely on the simple idea whi
h 
onsists in de�ning an embedding

of X into a 
ompa
t metrizable spa
e, and then taking the 
losure of the image. For

Guivar
'h's pro
edure, the 
ompa
t spa
e is the set of 
losed subgroups of G endowed

with the topology of Hausdor� 
onvergen
e on 
ompa
t subsets. Furstenberg's pro
edure

involves the theory of boundaries of groups. The suitable 
ompa
t spa
e is that of the

probability measures on a non-trivial Furstenberg boundary of G.

PROBLEM

B. Identify the above 
ompa
ti�
ations.

For higher-rank symmetri
 spa
es, the 
ompa
ti�
ations are not all isomorphi
. The

Furstenberg, the Guivar
'h and the polyhedral 
ompa
ti�
ations are G-homeomorphi
,

but the geometri
 
ompa
ti�
ation is di�erent from all the other ones.

PROBLEM

C. Use the three isomorphi
 
ompa
ti�
ations of X to parametrize interesting 
lasses of


losed subgroups (from a dynami
al point of view for instan
e).

In the 
ase of symmetri
 spa
es, points in the Guivar
'h 
ompa
ti�
ation represent 
losed

subgroups of G : they are pre
isely the maximal subgroups enjoying the property of distal-

ity (Guivar
'h's theorem). A subgroup is distal if the adjoint image of ea
h of its elements
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has its spe
trum 
ontained in the unit 
ir
le. Besides, taking the point stabilizers enables

to 
lassify a 
ertain 
lass of maximal amenable subgroups (Moore's theorem).

Here is the result for arbitrary biregular trees.

Theorem 1. Let X be a semi-homogeneous tree and G be a 
losed lo
ally 1-transitive

group of automorphisms without inversion.

A) The Furstenberg and Guivar
'h 
ompa
ti�
ations V

Furs

X

and V

Guiv

X

of the set of

verti
es V

X

of X make sense.

B) The following identi�
ations hold : X

geom

' X

pol

=: X and V

Furs

X

' V

Guiv

X

=: V

X

.

The 
losure of V

X

in X identi�es with V

X

.

C) An amenable subgroup of G either �xes a vertex v2X, either �xes a boundary point

�2�

1

X or stabilizes a geodesi
 line L � T .

Point C) was proved by elementary arguments by A. Fig�a-Talaman
a and C. Nebbia. Here

it is seen as a straightforward 
onsequen
e of a measure-theoreti
 result (the analogue of

Furstenberg's lemma for trees) due to Lubotzky-Mozes-Zimmer.

Finitely presented non{amenable groups without free non{
y
li
 subgroups

Mark Sapir

This is joint work with A. Yu. Olshanskii. We solve the �nitely presented version of the von

Neumann problem by 
onstru
ting a �nitely presented non{amenable group without non{

abelian free subgroups. A �nitely generated non{amenable group without free subgroups

was 
onstru
ted by Olshanskii in 1979 and later by Adian. The problem of 
onstru
ting a

�nitely presented example was formulated by Grigor
huk and Cohen in 1982. Our group

is an as
ending HNN extension of a torsion �nitely generated group of exponent n � 1

(n � 10

10

): So it is torsion by 
y
li
 and satis�es the identity [x; y℄

n

= 1: This is the

�rst example of a non{elementary �nitely presented torsion of bounded exponent by 
y
li


group.

Diophantine geometry over groups and the elementary theory of a free group

Zlil Sela

Abstra
t: We study sets of solutions to systems of equations over a free group, proje
tions

of su
h sets, and elementary sets de�ned over a free group. The stru
ture theory we obtain

enables us to answer some problems of A. Tarski, and 
lassify those f.g. groups that are

elementary equivalent to a free group.

Free subgroups of word{hyperboli
 groups

Ri
hard Weidmann

(joint with Ilya Kapovi
h)

Abstra
t: We give a proof of the following result whi
h has been stated by Gromov in his

original paper on hyperboli
 groups.

Theorem 1. For any n 2 N 9C = C(n) with the following property. Suppose that H =

hg

1

; : : : ; g

n

i a
ts by isometries on a Æ{hyperboli
 spa
e (X,d) (Æ > 0). Then one of the

following holds:
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(i) H is free on X.

(2) (g

1

; : : : ; g

n

) is Nielsen equivalent to (f

1

; : : : f

n

) su
h that d(f

1

y; y) < Æ � 
 for some

y 2 X:

This has been known for n = 2 (T. Delzant) and n = 3 (M. Camb). An alternative proof

has been announ
ed by G. Aijantseva.

On a question of Atiyah

ANDRZEJ

_

ZUK

a

ε 1

b

0

0

11

Figure 1. The automaton generating the lamplighter group

We present a 
omputation of the spe
tral measure of a random walk on the lamplighter

group and its relation to the Atiyah 
onje
ture about the range of L

2

-Betti numbers.

Theorem 1 (Grigor
huk,

_

Zuk [2℄). Let G be a group de�ned by an automaton as in Fig-

ure 1 with a system of generators a and b. Then G is isomorphi
 to the lamplighter group

Z

2

o Z. The spe
trum of the Markov ope- rator M on G is equal to [�1; 1℄. The �nite

dimensional approximations M

n

of M have the spe
trum:

�


os

�

l

q

�

�

; l 2 Z; q = 1; : : : ; n

�

:

The spe
tral measure of M is dis
rete and is equal to

�

�

1

�

ar

os (x)

�

;

where x 2 [�1; 1℄ and for z 2 [0; 1℄

�(z) =

1

X

q=2

#fp; (p; q) = 1 and

p

q

� zg

2

q

� 1

:

Atiyah [1℄ introdu
ed for a 
losed Riemannian manifold (M; g) with universal 
overing

f

M

the analyti
 L

2

-Betti numbers b

p

(2)

(M; g) whi
h measure the size of the spa
e of harmoni


square-integrable p-forms on

f

M . Let k

p

(x; y) be the (smooth) integral kernel of the or-

thogonal proje
tion of all square integrable forms onto this subspa
e. On the diagonal,

the �ber-wise tra
e tr

x

k

p

(x; x) is de�ned and is invariant under de
k transformations. It

therefore de�nes a smooth fun
tion on M , and Atiyah sets b

p

(2)

(M; g) :=

R

M

tr

x

k

p

(x; x) dx.

By a result of J. Dodziuk this does not depend on the metri
 and 
an be determined in


ombinatorial terms.

Let � be a group. Denote with fin

�1

(�) the additive subgroup of Q generated by the

inverses of the orders of the �nite subgroups of �. Note that fin

�1

(�) = Z if and only if

� is torsion free. We deal with the following 
onje
ture:
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Conje
ture 2. If M is a 
losed Riemannian manifold with fundamental group �, then

b

p

(2)

(M) 2 fin

�1

(�). If � is torsion free, this spe
ializes to b

p

(2)

(M) 2 Z.

In [1℄ it is only asked whether the L

2

-Betti numbers are always rationals, and integers if

the fundamental group is torsion free. Later, this question was popularized as the Atiyah


onje
ture, and also gradually was made pre
ise in the way we formulate it in Conje
ture 2

(for a history of this question see the survey paper [4℄). The 
onje
ture is proved in many

important 
ases but Theorem 1 enables one to prove the following:

Theorem 3 (Grigor
huk, Linnell, S
hi
k,

_

Zuk [3℄). Let the group G be given by the pre-

sentation

G = ha; t; s j a

2

= 1; [t; s℄ = 1; [t

�1

at; a℄ = 1; s

�1

as = at

�1

ati:

The group G is metabelian and therefore elementary amenable. Every �nite subgroup of G

is an elementary abelian 2-group, in parti
ular the order of every �nite subgroup of G is a

power of 2. There exists a 
losed manifold M of dimension 7 with �

1

(M) = G su
h that

the third L

2

-Betti number

b

3

(2)

(M) =

1

3

:

Conje
ture 2 predi
ts that the denominator is a power of 2 and thus the manifold M is a


ounterexample.
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