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The meeting was organized by H. Abels (Bielefeld), P. Kropholler (QMWC, London)
and K. Vogtmann (Cornell Univ.)

This meeting continued a series of meetings on topological methods in group theory,
taking place about every 4 years. The previous one was in December 1995. At the present
meeting new breakthroughs and important advances in the field were presented and dis-
cussed. They included the following topics: The recent proof by Krammer and Bigelow
that braid groups are linear, new applications of the combinatorial Morse theoretic tech-
niques of Bestvina and Brady, groups acting on cubical complexes — other than the ones
studied by Bestvina and Brady —, automorphisms of free groups, splittings of finitely gen-
erated groups motivated by the Jaco-Shalen—Johannson decomposition of three—manifolds,
L?cohomology and bounded cohomology, group actions on buildings, algebraic geometry
over the free group and others.

The subject is growing and making progress. Accordingly, there were lively discussions
and strong scientific interaction between the participants of the meeting.



List of talks

Monday, January 29

AM
9:00 — 10:00 R. Bieri
Topological properties of S Lo—actions on the hyperbolic plane
10:15 = 11:15 A. Zuk
On a conjecture of Atiyah
11:30 — 12:30 K. Brown
The coset poset

PM
4:00 — 5:00 M. Sapir

Finitely presented non—amenable groups without free subgroups
5:15 — 6:15 M. Burger

Bounded continuous cohomology and applications

Tuesday, January 30

AM
9:00 — 10:00 J. Berrick
Acyclic groups and wild arcs
10:15 - 11:15 B. Rémy
Compactifying trees
11:30 — 12:30 M. Davis
Mock reflection groups

PM
4:00 — 5:00 D. Krammer
Braid groups are linear
5:15 - 6:15 P. Papasoglu
Quasi-isometry invariance of group splittings and JSJ decompositions

Wednesday, January 31

AM
9:00 — 9:45 I. Leary
Some groups of type VF
10:00 — 10:45 K.-U. Bux
Generalized weight tests for presentation 2—complexes
11:00 — 11:45 J. Meier
Duality groups



Thursday, February 1

AM
9:00 — 10:00 S. Bigelow
(Correction to) Braid Groups are linear
10:15 — 11:15 M. Lustig
The structure of an automorphism of F,
11:30 — 12:30 A. Karlsson
Kobayashi—type metrics and dynamics of endomorphisms

PM

4:00 — 5:00 L. Mosher
Quasi—actions on trees

5:15 - 6:15 W. Liick
The relation between the Baum—Connes Conjecture and the Trace Conjec-
ture

Friday, February 2

AM
9:00 — 10:00 R. Charney

Metric characterizations of spherical and Fuclidean buildings
10:15 - 11:15 W. Ballmann
On the rank problem in non—positive curvature
11:30 — 12:30 Z. Sela
Diophantine geometry over groups and the elementary theory of a free group

PM
4:00 — 5:00 M. Bridson
Rigidity and torsion in Aut(F,) and Out(F,)
5:15 - 6:15 M. Bestvina
Bounded cohomology of subgroups of mapping class groups



Abstracts

Some group theoretic applications of twin buildings
PETER ABRAMENKO

Let G be a (possibly twisted) Chevalley group of classical type and of rank r» > 1. Then
G(F,[t]) is of type F, 1 and not of type F, if ¢ > 22"~! (Abels/A. 1987 for the special case
G = SL,y; and A. 1995 for the general case). The same result without any restrictions
concerning ¢ can possibly be proved by Behr if he succeeds in completing his current
research program.

Question: ~ What is the precise finiteness length of T' = G(F,[t,t™'])?

Conjecture: I is of type F5,_1, not of type Fj,

(settled only for r = 1; SLy(F,[t,t™"]) is f.g., not f.p. (Stuhler 77)).

I = G(F,[t,t™"]) is a typical example of a group acting “nicely” on a locally finite twin
building (A, A_)

(in this case A4 is the Bruhat-Tits building of G(F, ((¢*!)))). Another example: I' = G(IF,),
G = Kac—Moody group of compact hyperbolic type.

Conjecture: If a group I' acts “nicely” on a “sufficiently thick” locally finite twin
building (A, A_) with d := dim AL, then T is of type Fy;_1 but not of type Fyy.

d =1 (twin tree case): Conjecture is true (A. 98; thick is sufficient)

d > 1: there exists a program of a proof which is carried out in most details; one topological
result is still missing.

Recent Counter—Example (in the compact hyperbolic situation): for not “sufficiently
thick” twin buildings. G = Kac-Moody group of hyperbolic type (4,4,4) (i.e. all off-diagonal
entries of the Coxeter matrix are 4), F, = F, = G(F,) is even not F5 (= not Fyy_y = F3).
Background: Construction of non—standard Moufang twin buildings.

On the rank problem in non—positive curvature
WERNER BALLMANN

The rank rigidity for compact Riemannian manifolds of non-positive (sectional) curvature
asserts that for any such manifold, M, either the universal covering space, M, is a Rie-
mannian product, or M is a symmetric space of rank > 2, or else the so—called geometric
rank of M is equal to one. In the latter case, some important characteristics of M resemble
those of manifolds of negative curvature.

There should be a similar picture in the larger class of compact (singular) spaces of non—
positive curvature. Rank rigidity is known for 2-dimensional polyhedra with piecewise
smooth metrics of non—positive curvature. In addition, there are some partial results in
higher dimension.

I will describe the state of the affairs.



Growth of Lie algebras and parabolic spaces, and counting of normal
subgroups

LAURENT BARTHOLDI

Let G be a finitely generated group acting on a d-regular rooted tree, and fix an infinite
ray e in the tree. The associated parabolic space is X = G/ stabg(e), with metric induced
by the word metric on G. The growth of X is the function g(n) = #{z € X|d(z,1) = n}.
Let {7,(G)}nen be the lower central series of G, and let £L(G) = @, 7 (G)/ Yn+1(G) be
the corresponding Lie ring, first considered by Wilhelm Magnus. Its growth is the function
f(n) = rank(v,/Vn11), where rank(A) is the minimal number of generators of the abelian
group A.

Branch groups, as defined by Rostislav Grigorchuk, are those groups acting on rooted d-
regular trees that contain a subgroup K itself containing K%, where the d copies of K act
on the d subtrees below the root, and all inclusions have finite index.

Theorem 1. Let G be a branch group with the notation as above. The growth of X is
larger than that of L(G); more precisely, there is a constant C' such that

f) 4+ f(n) <Clg(1) +---+g(n))
holds for all n € N.

This result follows from a complete description of the Lie algebra of Branch groups. The
structure is explicit, and for the most famous examples, to wit the Grigorchuk group &
and the Gupta-Sidki group T', the growth functions are as follows:

Theorem 2.

group | S0 f(i) ST g(i)
& ~n ~n
T |~ n10g1+\/§(3) ~ n10g2(3)

The first row was proven by Rostislav Grigorchuk and myself. The second row is new and
answers a long-standing question by Said Sidki.

Normal subgroups of G are naturally associated to ideals in £(G), which can be described
and counted using the methods used in the above results:

Theorem 3. The number of normal subgroups of & of index 2" is contained between
nlogy(n)/7 and nlog,(n)/4, and is an odd number.

The asymptotics answer a question by Alex Lubotzky.
The above results appear in my preprint “Lie algebras and growth of branch groups”,
available on the web at

http://arxiv.org/math.GR/0101222.

Higher finiteness properties of S-arithmetic groups over function fields
HELMUT BEHR (FRANKFURT AM MAIN)

[F:F,(t)] < oo, Og C F S-arithmetic subring, s = # 5,
G almost simple algebraic group, defined over F,

r =rankp G, r, =rankp G, F, completion of F, v € S,
[' S-arithmetic subgroup of G.



I is of type F,, : <= I K(I',1) with finite n-skeleton.
Question: T is of type F,_y, but not F,, iff r > 0 and > r, =n?
veS
Known results: The answer is yes in the following cases:
(a) n =1 or 2: Finite generation and finite presentability,
H. Behr: Crelle Journal 495 (1998), 79-118.
(b) G = SLy: see U. Stuhler in Inv.math. 57 (1980), 263-281.
(¢) G classical, Og = F,[t], ¢ > 22"~
see P. Abramenko, Springer Lecture Notes 1641 (1996),
and H. Abels in Israel J. Math. 76 (1991), 113-128.

Thus there are some open problems (for G # SLy, n > 3):

i) Is the assumption ¢ > 22"~ necessary?
ii) Treat other rings than Fi[t] for s = 1 and moreover for s > 1, for instance: Is
SLs (F,[t,t7']) of type F3?
iii) How to treat non-split groups?

I shall sketch a program to attack this question with some new methods, old in other
contexts.

I. Reduction theory of arithmetic groups

There exist two versions of reduction theory (also for number fields). The first one con-
structs a fundamental (“Siegel-”)domain for the action of I':

For I' = G(F,[t]), G Chevalley group, this is a polyhedral cone C' in an apartment of the
affine Bruhat—Tits—building X for G(F,). The proofs of the results above use filtrations of
C and X and a criterion of K. Brown.

The second version defines “reduction of points in X with respect to parabolic subgroups
of G” (cf. G. Harder in Inv.math. 42 (1977), 135-175), which may be viewed as points
of the building X, at infinity and allows to define the unstable region X’ of X (cf. D.
Grayson in Springer Lecture Notes 966 (1980), 69-90, and also in Comm.math.Helv. 59
(1984), 600-634, using ideas of Serre, Quillen and Stuhler). X’ has a cover, whose nerve
is given by the spherical Tits building X, for G such that X' has the homotopy type of a
bouquet of (r — 1)-spheres. In the number field case X’ may be retracted to its “inner”
boundary, but this is not true for function fields! Therefore we need also

II. Buildings with opposition

There is a natural notion of “opposition” in a spherical building X, and one can consider
the simplicial complex Opp X of pairs of opposite simplices. This complex has the same
homotopy type as Xy itself, shown by R. Charney for the group G = GL,, (see Inv.math.
56 (1980), 1-17), by Lehrer and Rylands for groups of type A,, and C,, (see Math.Ann. 296
(1993), 607-624), and finally in general by A. von Heydebreck (Dissertation Frankfurt 2000)
— with completely different proofs using combinatorial methods or homological algebra or
the geometry of buildings. I need a version which is also valid over rings; this was proved
only in the first case.

ITI. Special case: G Chevalley group, #S =1

In order to answer the question in this case, I construct a space X by splitting up X’ into
apartments in such a way that X' has a cover whose nerve is Opp Xy. This space can be

retracted to its boundary X' = Y but Y/F is not yet compact; for this purpose I need
a subcomplex of the same homotopy type where opposition is defined with respect to I'.
Then we have the



Proposition: If G is an almost simple Chevalley group of rank r» > 0 over F', then a
S-arithmetic subgroup I for #5 =1 is of type F,_;.
Conjecture: I is not of type F;.

Empty shell
A. J. BERRICK

A (discrete) group G is acyclic if H;(G; Z) = 0 for all ¢ > 1. In particular, acyclic groups
are perfect.

Prominent among examples of acyclic groups in the literature are those with binate struc-
ture. G is binate if to each finitely generated subgroup H one can associate a homomor-
phism ¢ : H — G and u € G such that for all h € H

h = [u, p(h)].

Examples include acyclic groups used by J Mather (for classifying foliations), Wagoner (for
higher algebraic K-theory), Kan & Thurston and Baumslag, Dyer & Heller (for modelling
homotopy types by groups) and de la Harpe & McDuff’s large automorphism groups. These
groups have no nontrivial finite quotient, although every groups is 2-step subnormal in a
binate group.

Examples of acyclic groups without binate structure have been more sporadic. The first
announced as acyclic were those of Baumslag & Gruenberg’s commutator subgroups of
certain two-generator, one-relator groups and Epstein’s fundamental group of an open 3-
manifold (1967). Another is Higman’s four-generator, four-relator group, constructed so
as to have no nontrivial finite quotient. The talk described joint work with Yan-Loi Wong
(to appear in Proc London Math Soc) relating these sporadic examples, as follows.

Theorem 1. (Acyclic groups of Baumslag-Gruenberg type)  Let

B = <$n | T(xn;xn+17 s an+k)>n€Z

where r is a word in the free group of rank k + 1. Then the following statements are
equivalent.

(a) r has exponent sum zero in k of its variables, and exponent sum +1 in the remaining
variable.
(b) B is a perfect group.
(¢c) Define G ={z,y| r(z,yzy ', ... ,y*zy *)). Then
(1) Gap is infinite cyclic,
(ii) B is isomorphic to the commutator subgroup of G, and
(iii) B is acyclic.
Theorem 2. (Acyclic groups of Higman type)  Let
Cpm = <33n | T(Z‘n,l‘n_H, ---axn+k)>nez/m
where r is a (cyclically reduced) word (involving both x,, and x,,y) in the free group of rank

k+ 1, and m > 2k. Then the following statements are equivalent.

(a) r has exponent sum zero in k of its variables, and exponent sum +1 in the remaining
variable.

(b) Cp, is a perfect group.

(¢) Define G, = <:1:,y | r(x,yzy~t, ... yFry k), [:r,ym]>. Then
(i) (Gm)ap is infinite cyclic,
(i) Cy, is isomorphic to the commutator subgroup of G, and



(iii) Cy, is acyclic.

Higman’s group is the example with m = 4 and r(z,,, 1) = Tp[Tn, Tyny1], where subscripts
are to be read in the cyclic group Z/4.

Theorem 3. (Generalization of Epstein and Fox & Artin (1948) constructions) Let X
be a closed connected orientable 3-manifold with infinite cyclic cover S?> x R. Let X be a
smooth knot in X such that [\] generates H,(X). Then the connected infinite cyclic cover
of X \ \ is the complement of a wild arc k in S* with the following properties.

(i) S?\ & is aspherical;

(i) m (S \ k) is the commutator subgroup of m (X \ \) with

T (X\N)/m (S \ k) = Z;
(iii) m (S \ k) is acyclic.
Remarks 4.

1. Epstein’s group is (L) = (z; | zi = 21, 2534 ][, Zi—1]>z'ez , which is evidently of Baumslag-
Gruenberg type.

2. A stitch like Fox’s (1949) gives rise to a wild arc k in S®; here m,(S* — k) = (b, | b, =
[br—1, b, J[bns b Dnez » also of Baumslag-Gruenberg type.

3. Such groups are residually finite; do they always have A5 as a quotient?

Bounded cohomology of subgroups of mapping class groups
MLADEN BESTVINA AND KoJI FUJIWARA

We show that every subgroup of the mapping class group MCG(S) of a compact surface S
is either virtually abelian or it has infinite dimensional second bounded cohomology. As an
application, we give another proof of the Farb-Kaimanovich-Masur rigidity theorem that
states that MCG(S) does not contain a higher rank lattice as a subgroup.

Mladen Bestvina (Latex file of the whole paper is available from the Los Alamos server).

Topological properties of SL;—actions of the hyperbolic plane
ROBERT BIERI (FRANKFURT)

This is joint work with Ross Geoghegan. Every action p : G — Isom(M) of a group G on
a proper CAT(O)-space M imposes a certain structure on the boundary 0M, which can
be encoded in a sequence of subsets

OM 2%(p) 25 p) 2---2%"(p) 2... .

The definition uses controlled homotopy over M: We choose a contractible free G-C'W—
complex X, and a G-map h : X — M; then we say that X is controlled coarsely (n — 1)—
connected over the endpoint e € OM, (CC™ " over e) if each cocompact G-subspace K D X
is contained in a cocompact G—subspace K' C K with the following property: there is a
bag A > 0 such that for each i < n every singular i—sphere of K over the horoball HB, (at
e) dies in K’ over the Aneighbourhood of HB,.

Invariance Theorem: This is independent of the choice of X and h: X — M, so that
¥(p) :={e € OM | X is CC"! over e} is an invariant of p.



In the lecture I sketched how we compute X"(u,,) C OH? for the Mobius action
fim  SLy (Z [L]) — Isom (H?) on the hyperbolic plane. We find

Theorem:

i B OH2, if n < m(m)
% (“m)_{(?HQ—(QUOO), if n > (m),

where 7(m) stands for the number of different primes dividing m. The method applies also
to other S—(arithmetic Fuchsian) groups.

Braid groups are linear
STEPHEN JOHN BIGELOW

Vaughan Jones has shown how to obtain representations of the braid group B, corre-
sponding to the irreducible representation of the symmetric group S,,, indexed by Young
diagrams. These can be used to define the Jones and HOMFLY polynomials of a knot or
link. The definitions are very natural to an expert in subfactors, but somewhat mysteri-
ous to a topologist. I will propose a more topological definition of these representations
following work of Ruth Lawrence.

Rigidity and Torsion in Aut(F),) and Out(F},)
MARTIN R. BRIDSON

The following results are motivated by the desire to extend the analogy betweeen
Aut(Fy)/Out(F}) and lattices in higher-rank Lie groups. These results are reminiscent
of the rigidity properties of such lattices, but they are proved by elementary means, in
particular a detailed analysis of the torsion in Aut(F},).

The first two results are part of joint work with Karen Vogtmann.

Theorem 1: If 1 > 3 then Oul(F,) and Aut(F,) are co-Hopfian and all of their
automorphisms are inner.

Theorem 2:  Ifn < 1 then any homomorphism ¢ : Aut(F\) — Out(F,) has image {1}
or 2.

(There are several related results concerning quotients of Aut(F}).)

Theorem 3:  If Aut(F}) acts by isometries on a complete CAT(O)-space of dimension
d and no point is fized by the whole group, then n > 2(d + 2).

The coset poset
KENNETH S. BROWN

For a finite group G and a non-negative integer s, let P(G,s) be the probability that a
randomly chosen ordered s-tuple from G generates G. Philip Hall gave an explicit formula
for P(G,s), exhibiting the latter as a finite Dirichlet series ) a,n~*, with a, € Z and
a, = 0 unless n divides |G|. For example,

5 6 10 20 60 60
P(Ass)=1— 2> 2 _ 22 2
(4, 5) 5 6 10° 20° 300 60



In view of Hall’s formula, we can speak of P(G, s) for an arbitrary complex number s. The
reciprocal of this function of s is sometimes called the zeta function of G.

The work described in this talk arose from an attempt to understand the value of the
zeta function at s = —1. More precisely, I wanted to explain some surprising divisibility
properties of P(G, —1), which is an integer, that I observed empirically. For example,

P(A5,—1) =1—25— 36 — 100 + 400 + 1800 — 3600 = —1560,

which is divisible by 60 = |A5|. Similarly, P(Ag, —1) is divisible by |Ag|, while P(A7, —1)
is divisible by |A7|/3.

The main theorem is a general divisibility result of this sort. The theorem specifies, for
each prime p, a power p® that divides P(G, —1); the exponent a is defined in terms of the
p-local structure of GG. The precise statement is somewhat technical and will be omitted.

Perhaps more interesting than the result itself is the nature of the proof, which is topolog-
ical. The starting point is an observation of S. Bouc, giving a topological interpretation of
P(G, —1). Consider the coset poset C(G), consisting of proper cosets tH (H < G, z € G),
ordered by inclusion. Recall that we can apply topological concepts to a poset P by using
the simplicial complex A(P) whose simplices are the finite chains in P. In particular, we
can speak of the Euler characteristic x(P) := x(A(P)) and the reduced Euler characteristic
X(P) := x(P) — 1. Bouc’s observation, then, is that

P(G, -1) = =x(C(G)).

This makes it possible to study divisibility properties of P(G, —1) by using group actions
on C(G) and proving the contractibility of certain fixed-point sets. The group we use is G,
acting by conjugation, or (G X G) x Zs, acting by translation and inversion.

Having studied the Euler characteristic of the coset poset, one naturally wants to go further
and study its homotopy type. Our results here are meager, but we show, for example, that
C(G) has the homotopy type of a bouquet of spheres if G is solvable. The dimension of
the spheres is d — 1, where d is the number of complemented chief factors of G, and the
number of spheres is (—1)?P(G, —1).

There remain many open questions about the coset poset.

Generalized Weight Tests for Presentation 2-Complexes
KAI-UWE BUX AND STEVE GERSTEN

Let P = (x1,...,%m | Ri,...,R,) be a finite group presentation, K the associate presen-
tation 2-complex. This complex has one vertex, a loop for each generator, and a disk for
each relator glued in so that the relation can be read of its boundary. We fix an orientation
on each 2-cell such that the relator is read along the boundary in positive direction.

We denote by L the link of the vertex in K. This graph has two vertices for each generator
in P and one edge for each corner of a relator disk in K. Therefore, we can think of the
edges in L as different colours assigned to all the corners of relator disks.

Given a spherical diagram D : S? — K we pull back the colouring to the corners in D.
A vertex v € D is called monochromatic if all surrounding corners are of the same colour
— this is, the induced map Lk(v) — L maps all of Lk(v) to one edge in L. The presentation
P is called monochromatic if every reduced spherical diagram D : S? — Kp contains at
least two monochromatic vertices.

We make the following

Conjecture 1. Every one relator presentation of the trivial group is monochromatic.

10



We develop a sufficient condition for monochromaticity of a presentation in form of a
generalized weight test, which we call an M-test for obvious reasons. It can be checked
mechanically whether a presentation admits an M-test or not. In support of our conjecture,
a computer has verified that all one relator presentations of the trivial group with relator
length up to 19 have M-tests and are therefore monochromatic.

M-tests can also be used to identify some classes of monochromatic presentations. In
particular one can prove the following theorems.

Theorem 2. If P is a one relator presentation and the link graph Lp contains a cut edge,
then P admits an M-test.

Theorem 3. If P = (z | w(x)) where xx occurs precisely once in the cyclic word w, then
P has an M-test.

This includes a result of R. Fenn and C. Rourke about the presentations
(x| o ex e, o tax)

which plays a central role in their account on Klyachko’s car lemma. In fact, one can use
M-tests to reprove Klyachko’s car lemma and hence his:

Theorem 4. The Kervaire Conjecture holds true for torsion free groups, i.e., if G is a
non-trivial torsion free group, t a generator of an infinite cyclic group, and w € G*(t)\ G,
then the natural homomorphism

G — G+ (t)/{(w))

18 tnjective.
We mention that M-tests can also be used to prove some special cases of the Whitehead
conjecture.
For each geometric edge e € L, there are two directed edges e traversing the corner
corresponding to e in positive direction with respect to the fixed orientation of the ambient
2—cell and e~ traversing its corner in the other direction.
We will take the set of directed edges as a common set of vertices for the construction of
two directed graphs. The graph T'® contains an edge from e;' to €5’ if the composition
ej' oes? is a directed path in L. Note that, for every vertex v in a spherical diagram D, the
map Lk(v) — L induces a directed circle in T®.
In the other directed graph I'" an edge points from e' to e5? if the following hold:

® £ = &9.

e The underlying edges e; and e; represent adjacent corners in one relator disk.

e With respect to the orientation of the relator disk induced by &; = &5, the corner ¢;

precedes e,.

We think of these graphs as subgraphs of one directed graph I' = T®* UT". The edges in '’

are coloured black whereas the edges in ['" are red.

Note that the map e — e~° on the vertices of I' induces a colour preserving, orientation

reversing involution ¢ : £(I') — &£(T'). This is to say: if there is an edge from e} to €5’

then there is an edge of the same colour from e;°* to e;“*. We extend ¢ to directed edge
— - .

paths P=¢e¢;0---0 e, in [ by

6(P) = g(¢,) 00 g(e1).
Given a real valued function W : £(T') — R assigning weights to edges of ' we define the
total weight of the edge path P to be the sum Ty (P) := X7_, W (e1).

11



Definition 5. An M-test is a real valued weight function w : E(T') — R satisfying the
following axioms:

1. Every black loop has weight 0.
2. For every closed edge path P of black edges that passes through at least two different
vertices of I', we have

T,(P) + Tu(g(P)) > i
3. For every red closed edge path P, we have ', we have

T, (P) + T (6(P)) > 4.
4. For closed edge path P = €100 ¢6y4 of length 4 with alternating colours, we have

Tu(P) + Tuw(6(P)) < 4.

We mention that a slight change in the above definition of allows for constructing an
asphericity tests, which we call an A-test.
The main result is

Theorem 6. If a presentation P admits an M-test w : E(T') — R, then any reduced
spherical diagram D : S? — Kp has at least two monochromatic vertices.

Metric Characterizations of Spherical and Euclidean Buildings
RUTH CHARNEY

Abstract: A building is a simplicial complex with a covering by Coxeter complexes (called
apartments) satisfying certain combinatorial conditions. A building whose apartments are
spherical (resp. Euclidean) Coxeter complexes has a natural piecewise spherical (resp. Eu-
clidean) metric with nice geometric properties. We show that we can recognize when a
piecewise spherical or piecewise Euclidean complex is a building by a few simple metric
properties and that all of the combinatorial information can be retrieved from these prop-
erties. For example, we prove that a piecewise spherical complex which is CAT(1) and
has the property that every geodesic segment can be locally geodesically continued in a
non-empty, discrete set of directions, is isometric to a spherical building. (joint work with
Alexander Lytchak)

Mock reflection groups
MicHAEL W. DAvIS

Abstract: This is a report on some joint work with Tadeusz Januszkiewicz and Rick Scott.
It turns out that there is a rich class of examples of nonpositively curved closed man-
ifolds which are tiled by either permutohedra or associahedra. Such examples arise as
certain blow-ups of RP™ of projective hyperplane arrangements associated to finite reflec-
tion groups. The universal covers of such examples yield tilings of R"™ by permutohedra or
associahedra. The group of symmetries A of such a tiling of the universal cover is generated
by involutions, but in general it is not a reflection group, rather it is a “mock reflection
group”. I explain these examples, give a presentation for the groups A and discuss some
of their properties.
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On the Hanna Neumann Conjecture
WARREN DICKS

§ 1. The group theory

Let G be a free group, and let H and K be finitely generated subgroups of G.
Let rk(G) denote the rank of G, and let ¥(G) denote max{rk(G) — 1,0}.

Let
Yoi= > HHNK),
HgKeH\G/K
where the summation is over the set of (H, K) double cosets in G, with each double coset
HgK contributing T(H?NK), a value which does not depend on the choice of representative
g of the double coset.
In 1956, Hanna Neumann [4] conjectured that

F(H N K) < §(H)#(K).

In 1990, Walter Neumann [5] introduced the formally stronger statement

> <EH)HEK),

currently referred to as the Strengthened Hanna Neumann Conjecture.

Walter Neumann [5] then showed that modifying the techniques of Hanna Neumann [4]
yielded > < 27(H)t(K); in particular, ) is finite. Similarly, he showed that modifying
the 1971 arguments of R* G™ Burns [1] yields

Y < max{28(H) #(K) — ¥(H), 25(H) {(K) — {(K)}.

In particular, the Strengthened Hanna Neumann Conjecture holds in the cases where both
the subgroups have rank two.
In 1992 and 1996, G™ Tardos [7], [8] improved this to

3" < max{H(H) (K), 25(H) ¢(K) — {(H) - {(K)}.

In particular, the Strengthened Hanna Neumann Conjecture holds in the cases where one
of the subgroups has rank two, or both have rank three.
Relatively recently, Ed Formanek and I [3] improved this to

Y < H(H)H(K) + max{F(H) — 2,0} max{¥(K) — 2,0}.

In particular, the Strengthened Hanna Neumann Conjecture holds in the cases where one
of the subgroups has rank three.

The foregoing is a condensed description of the progress to date, and omits mention of
important work of many mathematicians.

§ 2. The topological methods
In 1983, Stallings [6] showed that it was fruitful to consider the Hanna Neumann conjecture
from the viewpoint of pullbacks of immersions of finite graphs.

In 1994, in [2], T built on his work and considered pushouts of immersions of finite graphs,
codifying some of the information in terms of finite, simple-edged, bipartite graphs, as
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follows. (Here “simple-edged” means that there is at most one edge joining any pair of
vertices.)

We can associate with the above groups a finite, simple-edged, bipartite graph D with
m: = 27(H) red vertices, n: = 27(K) yellow vertices, and p: = 2> edges. Moreover,
we can embed D in three finite, simple-edged, bipartite graphs A, B, C' in such a way that
the finite, bipartite “amalgamated graph”

(AVp B)V (BVpC)V (CVp A)

is simple-edged and can be expressed as the union of two disjoint subgraphs which are
isomorphic to each other (as bipartite graphs). (Here V denotes the disjoint union, and
Vp denotes the the disjoint union amalgamating the two copies of D. )

The Amalgamated Graph Conjecture is the conjecture that the conditions on D given in
the preceding paragraph imply that p < %mn. It was shown in [2] that this is equivalent
to the Strengthened Hanna Neumann Conjecture.

Notice that if D is connected then the amalgamated graph must have an odd number of
components. Notice also that the conditions imply that the amalgamated graph has an
even number of components. Thus D is not connected, so p < max{mn — m,mn — n}.
This is Burns’ result [1].

Ifp> %mn, then D has so many edges that one of the connected components is huge, that
is, has more than half of the edges of D, more than half of the red vertices of D, and more
than half of the yellow vertices of D. Hence the amalgamated graph has three distinguished
components, and if we allow certain “weak” amalgamations to be pulled apart, the rest of
the amalgamated graph could be rearranged to form two disjoint isomorphic graphs.

This suggests that we try to find a sequence of notions of atomic factorizations of graphs
which are all delicate enough to ensure that D has one huge atomic factor and the amal-
gamated graph has three distinguished atomic factors, but coarse enough to allow the
non-distinguished atomic factors of the previous level to break into pairable pieces. This
gives the idea of our (technical) proof [3] that

1 1
p<-—mn+ 5 max{m — 4,0} max{n — 4,0}.

REFERENCES

[1] R.G. Burns, On the intersection of finitely generated subgroups of a free group Math. Z. 119 (1971),
121-130

[2] Warren Dicks, FEquivalence of the strengthened Hanna Neumann conjecture and the amalgamated graph
conjecture, Invent. Math. 117 (1994), 373-389

[3] Warren Dicks and Edward Formanek, The rank three case of the Hanna Neumann conjecture, J. Group
Theory 4 (2001), 113-151

[4] H. Neumann, On intersections of finitely generated subgroups of free groups. Addendum, Publ. Math.
Debrecen 5 (1958), 128

[5] W.D. Neumann, On intersections of finitely generated subgroups of free groups Lecture Notes in
Mathematics 1456 (1990), 161-170

[6] J.R. Stallings, Topology of finite graphs, Invent. Math. 71 (1983), 551-565

[7] G. Tardos, On the intersection of subgroups of a free group, Invent. Math. 108 (1992), 29-36

[8] G. Tardos, Toward the Hanna Neumann conjecture using Dicks’ method, Invent. Math. 123 (1996),
95-104

14



Proper actions of lattices on contractible manifolds
MARK FEIGHN

Abstract: In joint work with Mladen Bestvina, it is shown that a lattice in a semisimple
Lie group G cannot act properly discontinuously on a contractible manifold of dimension
smaller than that of G/K where K is a maximal compact subgroup of G.

¢? invariants for groups and equivalence relations
DAMIEN GABORIAU

Measure Equivalence (ME) between countable groups is a measurable analogue of Quasi-
Isometry. M. Gromov gave the following criterion:

Criterion [Gromov (’93)] Two finitely generated groups T'y and Ty are quasi-isometric
ioff there exist commuting, continuous actions of I'y and I'y on some locally compact space
M, such that the action of each of the groups is properly discontinuous and has a compact
fundamental domain.

Similarly,

Definition (Gromov (’93)) Two countable groups I'y and T's are Measurably Equivalent
(ME) iff there exist commuting, measure preserving, free actions of T'y and T's on some
Lebesgque measure space (2, m) such that the action of each of the groups admits a finite
measure fundamental domain.

Some results and examples

e Standard examples of ME groups are given by lattices (= discrete, finite covolume
subgroups) I'y and 'y in the same Lie group G. The space (2, m) is (G, Haar) and
the lattices act by left (resp. right) multiplication on G.

e ME is an equivalence relation on countable groups.

e Results of Dye (’59), Ornstein-Weiss (’81) and for the most general case Connes-
Feldman-Weiss imply that the ME class of Z (the group of integers) consists in all
infinite amenable groups.

e A. Furman, improving R. Zimmer’s superrigidity for cocycles, showed that for higher
rank simple Lie group G, the collection of all its lattices (up to finite groups) forms a
single ME class.

e The ME class of the free group Fy on two generators contains all finitely generated
(non cyclic) free groups, all compact surface fundamental groups, free products of a
finite number of amenable groups (excluded Z/2Z x Z/2Z), all lattices in SLy(Q)),...

To each countable group T is associated a sequence of numbers € [0, co| called its ¢? Betti
numbers (3, (T))nen that are defined using the ¢ chains of CW-complexes on which I" acts.

Theorem [G.] If 'y and Ty are measurably equivalent, then they have proportionnal (>
Betti numbers.

More precisely if (2, m) is a measure equivalence between them, and Dy (resp. Ds) is
the fundamental domain of the action of Ty (resp. T's), then for all n € N:

m(Dy).Ba(T1) = m(D;).Bu(T).
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Corollary

Lattices in different Sp(n, 1) are not ME

Lattices in different SU(n, 1) are not ME

Lattices in different SO(2n,1) are not ME

Direct products of a different number of free groups are not ME

Corollary Lattices in the same locally compact second countable group have proportional
0? Betti numbers. The ratio is given by the ratio of the covolumes.

Related statement If 5,(T') > 0 then every finitely generated normal subgroup N < T
either is finite or has finite index.

Suppose T' has a normal subgroup N with infinite amenable quotient T'/N. If for some n,
Bn(N) is finite then (,(T) = 0.

Damien Gaboriau
http://www.umpa.ens-1lyon.fr/~gaboriau

Thompson’s Group and non—positive curvature
Ross GEOGHEGAN

I will outline the recent thesis of my student Dan Farley. The theorem is that all diagram
groups (in the sense of Kilibarda and Guba—Sapir) which are defined by finite semigroup
presentations act freely and properly discontinuously on locally finite CAT(O) complexes.
One of those groups, defined by the semigroup presentation (z | x = x?) is Thompson’s
Group F. Farley also shows that all such groups have type F..

A free group generated by a three state automaton
R. GRIGORCHUK

There is a canonical way to generate by a finite automaton a group or a semigroup.
Automata groups possess many interesting and unusual properties as among them there
are infinite torsion groups, groups of intermediate growth, amenable but not elementary
amenable groups etc.

The negative solution of the strong Atiyah Conjecture on L?-Betti numbers was recently
done on the base of the automata presentation of the lamplighter group (joint result of
R. Grigorchuk, P. Linnell, T. Schick and A. Zuk).

Here is a remarkable problem: which groups have finite automata presentations? In joint
work with A. Zuk we answer positively a question of Brunner-Sidki and show that the
3-state automaton of Aleshin generates a free group of rank 3. In the proof a new notion
of dual automaton and of double reduced transitivity is used.

Recent results concerning the geometric invariants of metabelian groups
JENS HARLANDER

Let G be a group and X a K(G, 1)-complex with finite m-skeleton. A character x : G — R
gives rise to a hight function A : X — R on the universial covering of X. The geometric
invariant ¥™(G) € Hom(G,R) (Bieri-Strebel 1980, Bieri-Neumann-Strebel 1987, Bieri-
Renz 1988) consists of the set of characters for which the positive half 27'[0, 00) is (m-
1)-connected. These invariants originated in the work of Bieri-Strebel (1980) on finitely
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generated metabelian groups G' where it was shown that 3! (G) contains the information as
to whether G is finitely presented. In general the X-invariants contain complete information
about the finiteness-type of normal subgroups above the commutator subgroup.

FIGURE 1. Z}(G)° for the metabelian group G = (a,z,y | [z,y], a®aYa, [a,"a]) (w
ranges over all words in z, y) shows that G can be finitely presented but is not of type Fj.

Although the Y-invariants have undergone quite an evolution since 1980 and have been
investigated for many different classes of groups, some fundamental open questions remain
in the metabelian setting. Two conjectures, the Fj,-conjecture and the X™-conjecture,
stand out. They can be loosely formulated as follows:

F,,-conjecture: If G is a finitely generated metabelian group then X!'(G) contains the
information as to whether G is of type F,,.

Y™-conjecture: If G is a metabelian group of type F,, then ¥™(G) can be obtained from
Y1(G) by a simple process.

The F,-conjecture is true (Bieri-Strebel 1980) and both conjectures are known to be
true for metabelian groups of finite rank (Aberg 1986 (F),-conjecture), Meinert 1996
(X-conjecture)). Although considerable extensions of Abergs work exist (Noskov 1993,
Kochloukova 1997) the general case seems to be still far off. In low dimensions some re-
cent progress has been made. The Fz-conjecture (Bieri-Harlander 1999), the Y2-conjecture
(Kochloukova 1998) and the Y3-conjecture (Harlander-Kochloukova 2000) have all been
confirmed in the split case. If asked to speak at the meeting I will report on these recent
low dimensional results.

One relator products of groups
JIM HOWIE

(Joint with Robert Shwarz)

Once upon a time, long long ago, in a galaxy far from here, I proved some theorems about
groups constructed in the following way.
Let GGy, G5 be groups, W € GG; x5 be a cyclically reduced word of length < 2, and m < 2

an integer. Then let

G — G1 * G2

N(Wm)

(where N(-) denotes normal closure).
If m is big enough (which in practice means m > 4 unless further restrictions are placed on
G1,G5 and/or W) then things like the Freiheitssatz (G; — G <= G3) are true. Moreover,
the “obvious” construction yields a K (G, 1)-space, and so H*(G) is “essentially” made up
of H*(Gy) ® H*(G3) ® H*(Z,,), where Z,, is generated by W.
There are some exceptions to the latter statement, in cases where G is “induced” from some
finite triangle group presentation —i.e. W = U -V where UP = V4 =1 and %—i— % + % > 1.
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But in this case we can recover the situation by showing that the “obvious” pushout
diagram

Z,* L, — Triangle(p, ¢, m)

l l

Gl*GQ — G

is “Mayer—Vietoris” (translates to a pushout of K (m, 1)-spaces, and so induces Mayer—
Vietoris sequences in (co)-homology.

This work is an attempt to improve the bound m > 4 to m > 3. We cannot do so in full
generality, but we can prove suitable theorems if we restrict to the case where G is indeuced
(in the same sense) from a one-relator product of finite cyclic groups (a generalized triangle
group), i.e. if AU,V € Gy x Gy with UP = V9 =1and W = W'(U,V), then G = &*% g

N(W3)

nice, in the sense that
(i) the Freiheitssatz holds (G; — G < G2)

W) 7,2, — 2

l l

GI*GQ — G

is Meyer—Vietoris.

Applications of bounded cohomology to rigidity and to foliations
ALESSANDRA [07z1

Recently a systematic theory of continuous bounded cohomology for locally compact groups
using homological methods has been developed by Burger and Monod [3], and has proven
to have far reaching and very diverse applications.

In this report I want to give a few examples to illustrate how this theory can be used
to obtain both rigidity results for actions of finitely generated groups, and a vanishing
theorem for the tangential cohomology of some amenable foliations.

Rigidity results. (Joint with M. Burger, [2], [1], [8]) We shall define invariants associ-
ated to a continuous representation m : I' — H, where T is a finitely generated group
and H is an appropriate topological group, via the interplay between the pull-backs of
bounded cohomology classes and of ordinary cohomology classes of H. We specialize the
discussion to two particular cases, where H = SU(1,n) and where H = Homeo, (S"'), the
groups of orientation preserving homeomorphisms of the circle. In the first result, infor-
mation will be obtained by the vanishing of an appropriate cohomology class. Namely,
let w, € H2(SU(1,n),R) be the class defined by the Kahler form. For every continuous
homomorphism 7 : T' — SU(1,n), we get a bounded class 7*(w,) € HZ([',R). Then we
have:

Theorem 1. 7*(w,) = 0 if and only if either w(T") fizes a point in the boundary of n-
dimensional complex hyperbolic space HE, or w(T') leaves a totally real subspace of HE
movariant.
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If on the other hand we specialize T to be a lattice in SU(1,m), m < n, then we can
get information exactly from the opposite situation, that is, roughly speaking, from the
maximality of the invariant. Namely, let M = T'\H* be a finite volume hyperbolic manifold
and assume that either m > 2 or M is compact (otherwise H?(M,R) = 0), so that the
L?-cohomology Hy,) (M) of M injects into Hip(M) ~ H*(T\R). If 7 : T' — SU(L,n)
is a representation, wj,; is the Kahler class on M and < -,- > is the standard inner
product in H(22)(M), we observe that 7*(w,) € H(22)(M), so that it makes sense to consider

< 7 (wp), war >

Theorem 2. Let m > 2. Then ‘M‘ < 1, and equality holds if and only if © is

<Wp WAL
equivariant with respect to an isometric embedding HF — HF.

<7 (wn),wrr>
<WMN WAL >

Since by purely topological methods one can see that ‘ is constant on connected

components of the representation variety Rep(I", SU(1,n)), we can conclude the following:
Corollary 3. There are no non-trivial deformations of T in SU(1,n).

Observe that this extends a result of Goldman and Millson [5] who proved the theorem
in the cocompact case. Moreover, the requirement that m > 2 is necessary, as Gusevskii
and Parker [7] constructed examples of (non-cocompact) lattices in SU(1,1) which have
quasi-Fuchsian deformations in SU(1,2).

With the same methods we can tackle also problems in which H is not necessarily a linear
group, giving for instance a functorial proof of Milnor-Wood inequality ([10], [11]) and of
a theorem by Matsumoto [9]. To this extent, let ¥, be a compact orientable surface of
genus g > 2 and fundamental group I" and let 7 : I' — Homeo, (S') be a homomorphism.
If e € H*(Homeo, (S'), Z) is the Euler class, then 7*(e) € H*(T', Z) ~ H?*(X,, Z) measures
the obstruction to lifting the [-action to S' — S' and defines the Euler number by eu(r) =
(m*(e), [Z,4]), where [3,] € Hy(X,, Z) is the fundamental class of 3.

Theorem 4. ([10], [11], [9], ¢f. [8], [1]) |eu(n)| < x(%,), and equality holds if and only if
T is semiconjugate to the action of T' on S' given by any hyperbolization of .

Tangential cohomology of foliations. In [6], Gromov observed that the bounded co-
homology of a manifold with amenable fundamental group vanishes and that the bounded
cohomology of a negatively curved manifold surjects (in degree 2 and above) onto the
ordinary cohomology, hence showing that these two conditions cannot coexist. However,
generalizing the above setup to foliations, one has the following:

Theorem 5. [4] Let X be a compact foliated topological space which is measurable. Sup-
pose also that there is a leafwise Riemannian metric on X with non-positive curvature
along the leaves, such that all leaves have rank at most r everywhere. If (X,F) has an
amenable fundamental groupoid, the tangential de Rham cohomology groups vanish in de-
green > r+ 1.

While the above theorem is proven with purely differential geometrical methods and ex-
ploits directly the amenability of the foliation bypassing any bounded cohomology consid-
eration, with Burger [1] we can also give a proof of a related result for foliated bundles
arising from amenable actions which is more in the spirit of Gromov’s paper, using the
functorial approach to bounded cohomology.
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Kobayashi-type metrics and dynamics of endomorphisms
ANDERS KARLSSON

In order to describe certain aspects of the asymptotic geometry of spaces equipped with a
Kobayashi-type distance, the so-called Gromov product seems to be a convenient concept.
This is illustrated by the recent work of Balogh and Bonk [BaBo 99] proving Gromov
hyperbolicity of Kobayashi’s metric on strongly pseudo-convex, bounded C'?-domains, and a
joint paper with Noskov [KaNo 00] concerning the asymptotic geometry of Hilbert’s metric
on domains, convex in a strong sense, as well as arbitrary convex bounded domains. The
classical Teichmiiller spaces may be viewed as in some sense non-strictly convex domains,
and may conceivably admit a similar description of their asymptotic geometry. Note that
it seems or is a fact that metric spaces of Kobayashi-type are typically not nonpositively
curved in either the sense of Alexandrov or of Busemann.

These descriptions in terms of the Gromov product are useful for analyzing the dynamics
of individual and random products of endomorphisms (which are distance non-increasing
maps), cf. [Ka 99]. The hope is that this will turn out to be useful also for obtaining
information about some infinite automorphisms groups.
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Algebraic convergence of function groups
GERO KLEINEIDAM

This is joint work with Juan Souto. Let p : F, — PSLy(C) be a discrete and faithful
convex-cocompact representation of the free group of rank k into PSLy(C). Then H? /p(Fy)
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is an (open) handlebody H and the quotient of the discontinuity domain of the action of
p(F}) on C is a closed Riemann surface of genus k which can be identified with the boundary
OH of H.

By Ahlfors-Bers theory, there is a covering map from 7 (0H ), the Teichmiiller space of 0H,
to the space of PSL,(C)-conjugacy classes of convex-cocompact representations of Fj into
PSLy(C). The deck transformation group is Mod,(H ), the group of those isotopy classes
of diffeomorphisms of H which induce an inner automorphism on m (H) = Fj.

Masur [Mas86] and Otal [Ota88] identified an open subset O of the Thurston bound-
ary of T(0H) with the property that its quotient by Mody(H) may be appended to
T(OH)/Mody(H) as a sort of “boundary at infinity”. O is called the Masur domain.
One says that a sequence (p;) of convex cocompact representations converges into the Ma-
sur domain if some sequence in T (90H) representing (p;) converges to an element of the
Masur domain.

Thurston’s Masur domain Conjecture 1. Let (p;) be a sequence of convex cocompact rep-
resentations of Fj into PSLy(C) which converges into the Masur domain. Then (after

conjugating) (p;) has a subsequence which converges to a discrete and faithful representa-
tion of Fj into PSLy(C).

Canary [Can93] proved the conjecture under some extra assumption on each p;. Otal
[Ota94] proved that the conjecture holds for & = 2 and arbitrary sequences converging
to a minimal arational element in O. Following the strategy of Otal’s proof we give an
affirmative answer for arbitrary £ > 2 and sequences converging to minimal arational
elements of O (see [KS00]). This is the generic case.

Our result can be extended to fundamental groups of compression bodies, i.e. boundary
connected sums of handlebodies and trivial interval bundles over closed surfaces. In this
case, using methods of Otal (see [Ohs]) we show that the manifold obtained in the limit is
topologically tame, i.e. homeomorphic to the interior of a compact manifold.
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Braid Groups are Linear
DAAN KRAMMER

Let B, denote the braid group on n strands. A certain representation p : B, —>

GL (@,Z [qﬂ,tﬂ]) was shown to be faithful by S. Bigelow by a beautiful topolog-

ical argument. His proof involves neither generators of the braid group nor a basis of the
module. We will present a proof of the faithfulness that does involve these things. As
a consequence of our method, we obtain a relation between the exponents of ¢ and the
Charney length function in the braid group.
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Some groups of type VF

Ian J. LEARY, UNIVERSITY OF SOUTHAMPTON

The talk described joint work with Brita E. A. Nucinkis

Throughout the talk, G denotes a discrete group. The universal proper G-space, EG, may
be defined as a terminal object in the homotopy category of proper G-CW-complexes,
where a proper G-CW-complex is by definition a G-CW-complex in which all stabilizers
are finite. (Compare with the universal free G-space EG.) There is another description of
EG: a model for EG is a G-CW-complex E such that for H < G, the fixed point set E7
is empty if H is infinite and is contractible if H is finite.

If H is any torsion-free subgroup of GG, then any model for EG is also a model for EH, and
in particular the minimal dimension of a model for EG provides an upper bound on the
virtual cohomological dimension of G (written vedG) whenever G is virtually torsion-free.
A theorem of F. X. Connolly and T. Kozniewski (for groups of finite ved) and W. Liick (in
general) states that there is a finite type EG if and only if

(a) G contains only finitely many conjugacy classes of finite subgroups;
(b) for each finite subgroup P < G, the normalizer N = Ng(P) admits a finite type BN.

For each n > 0, we exhibit a group G = G(n) for which vedG = 3n but such that any
model for EG has dimension at least 4n. This answers a question first posed by K. S.
Brown. These groups are of type VF or ‘virtually of type F”, i.e., they contain finite-index
subgroups H < G such that H admits a finite BH. We also exhibit groups G that are
virtually of type F' for which (a) does not hold and others for which (b) does not hold.
These examples show that the property of having a finite (resp. finite type) model for E(-)
does not pass to finite-index supergroups.

Our construction relies on work of M. Bestvina and N. Brady, who constructed, for each
non-empty finite flag complex L, a torsion-free group Hy, with the properties that finiteness
conditions of Hj, are controlled by the connectivity properties of L. We observed that Hp,
is functorial in L, and that interesting groups could be obtained as semi-direct products
H;, % @, where () is a finite group of automorphisms of the simplicial complex L. We
also rely on work of R. Oliver (describing which finite groups can act on finite contractible
complexes with what fixed point sets) and on an easy special case of a theorem of J. S.
Crisp (describing the fixed point subgroups in certain Artin groups for finite groups of
‘graph automorphisms’).

The group G = Hj x @ is virtually of type F' if and only if the finite flag complex L
is contractible (by the theorem of Bestvina-Brady). The case when G contains infinitely
many conjugacy classes of finite subgroups (i.e., (a) fails for G) corresponds to the case
when the fixed-point set L% is empty. The case when (b) fails for the normalizer Ng(Q)
corresponds to the case when L® is non-empty but is not contractible. In the case when
L is 3-dimensional, contractible, and contains a 3-simplex in a free Q)-orbit each of whose
faces is in a non-free Q-orbit, then vedG = 3 but any model for EG has dimension at least
4. Direct products of this G produce the examples claimed above.

When L has m vertices, the group Hy, x @) embeds in SLy,(Z), and so these groups also
answer a question of M. Bridson, who asked whether (a) holds for every G < SLy(Z)
admitting a finite type BG.
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Irreducible automorphisms of free groups have North—South dynamics on the
boundary of Outer Space

G. LEviTT AND M. LUSsTICG

Suppose ® € Out(F,) is irreducible with irreducible powers. It acts on the boundary
of Culler—Vogtmann’s outer space with two fixed points T, 7. We show that for any
T # T* the sequence ®P(T) converges to TF as p — +00. The main new tool in the proof
is the following: given an R-tree T with trivial arc stabilizers, we assign to X € 0F, a
point Q(X) belonging to either T or the metric completion of 7.

Our result, and those of Bestvina—Feighn-Handel on polynomially growing automorphisms,
suggest the following question: Given n, is there an integer M with the following property:
for any ® € Out(F},), and any T in the boundary of outer space, the sequence ®?(T')
has at most M limit points as p — +o00. The analogous question for the action of the
mapping class group on the Thurston boundary of Teichmiiller space has a positive answer
(by Nielsen—Thurston theory).

The relation between the Baum-Connes Conjecture and the Trace-Conjecture
WOLFGANG LUCK (MUNSTER)

Abstract: We prove a version of the L?-index Theorem of Atiyah which uses the universal
center-valued trace instead of the standard trace. We construct for G-equivariant K-
homology an equivariant Chern character, which is an isomorphism and lives over the ring
Z C A9 C Q obtained from the integers by inverting the orders of all finite subgroups of
GG.We use these two results to show that the Baum-Connes Conjecture implies the modified
Trace Conjecture which says that the image of the standard trace Ky(C;(G)) — R takes
values in A%, The original Trace Conjecture due to Baum and Connes predicted that its
image lies in the additive subgroup of R generated by the inverses of all the orders of the
finite subgroups of G, and has been disproven by Ranja Roy recently.

The structure of an automorphism of F),
MARTIN LUSTIG, MARSEILLE (PRESENTLY AT MPI BONN)

The solution of the conjugacy problem for automorphisms of F,, (for a rewritten complete
proof see [1], [2]) has various ingredients which are useful tools for further purposes. We
list some of these tools here:

(1) A new version of train tracks for free groups which contain 2-cells (so called “Nielsen
faces”).

(2) A uniqueness result about F,-actions on IR-trees that are invariant under a given
automorphism.

(3) A “Nielsen-Thurston” decomposition of F,, into finitely many strata which is canon-
ically associated to any given automorphism. It can be determined algorithmically.
On each lowest stratum the induced outer automorphism has finite order.

(4) The algorithmic construction of a train track morphism between any two train track
maps which represent the same automorphism.

(5) A (computable) normal form for polynomially growing automorphisms of F,.
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(6) A complete (and algorithmic) analysis of the delicate problem, how an automorphisms
can be built (in infinitely many different ways) out of given “sub-automorphisms” de-
fined on distinct strata of F),. In particular, we obtain a canonical decomposition of
(some power of) any given automorphism into finitely many commuting subautomor-
phisms.

In particular, the following corollaries to the above have already been deduced in [2]:

Theorem 1. For all & € Out(F,) the centralizer Cen(&) in Out(F,) contains

A@me P S

vEV (&)

as subgroup of finite index. Here A(&) is the free abelian subgroup generated by the commut-
ing subautomorphisms of &, and each S, is the centralizer of the finite order automorphism
induced by & on one of its lowest strata, and of a finite family of characteristic conjugacy
classes in that stratum.

Theorem 2. There are algorithms to solve the following problems:

(1) For any a € Aut(F,) determine a finite generating system of
Fiz(a) ={w € F, : a(w) = w}.

(2) For any space X with mi X=F, and any map f: X — X which induces an automor-
phism f. = & € Out(F,), and for any two fized points x = f(x), v = f(2') € X,
decide whether the points x and x' lie in the same Nielsen fized point class of f.

Further applications of the above tools concern work in progress which indicates a solution
of the following problems:

- A fast proof of Brinckmann’s result that every automorphism of F, without periodic
conjugacy classes is hyperbolic (in Gromov’s sense).

- A generalization to arbitrary non-polynomially growing automorphisms of the result
known for irreducible automorphisms « with irreducible powers (iwip), that F,, acts dis-
cretely on the cartesian product of the forward and the backward limit IR-tree of «.

- A complete determination of the dynamics of the homeomorphism of 0F}, induced by any
automorphism of F), (joint work with G. Levitt).

- A decomposition of any iwip automorphisms into finitely many Stallings folds which
preserve the associated train track structure.

[1] M. Lustig Structure and conjugacy for automorphisms of free groups I,
MPI-Bonn preprint series 130, 2000
(see http://www.mpim-bonn.mpg.de/html/preprints/preprints.html)

2] M. Lustig Structure and conjugacy for automorphisms of free groups II,
MPI-Bonn preprint series 4, 2001
(see http://www.mpim-bonn.mpg.de/html/preprints/preprints.html)
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Calculating curvatures in concrete complexes
JON McCAMMOND

There now exists a well-developed theory of nonpositively curved metrical simplical com-
plexes. Unfortunately for the working geometric group theorist, even if someone hands
you an explicit finite metric simplicial complex, there did not — until recently — exist an
algorithm to determine whether the specific complex is non—positively curved.

In this talk we describe such an algorithm.

(joint work with Murray Elder)

PY,, is a duality group
JOHN MEIER

In [3] Bieri and Eckmann introduced a class of groups, called duality groups, whose coho-
mology behaves similarly to manifold cohomology.

Definition 0.1 (Duality groups). Let G be an F'P group of cohomological dimension n.
The group G is an n-dimensional duality group if there exists a G-module D (called the
dualizing module) such that H'(G, M) ~ H, ;(G,D ® M) for all integers i and for all G-
modules M. Equivalently, G is a duality group if its cohomology with group ring coefficients
is torsion free and concentrated in dimension n. There is geometric content to this concept:
If X is a compact K(G,1) of dimension d = ved(G), then one can establish that G is a
duality group by showing that X is (d—2)-acyclic at infinity. See [2] and [6] for background
on duality groups.

Example 0.2. The simplest examples of duality groups are the free and free abelian
groups. It’s also known that duality-by-duality groups are duality groups, which gives
a quick proof that the braid group B, is a duality group of dimensional n — 1. In recent
work it has been shown that Aut(F},) is a virtual duality group of dimension 2n — 2 [1].

My recent work has concentrated on finding various local conditions that imply that a
group is a duality group. In particular I am interested in the situation where a group
admits a natural action on a poset, where the isotropy groups are infinite.

Definition 0.3 (Posets). A finite dimensional poset P is graded if all its maximal chains
have the same length. If ¢ is an element of a graded poset P, the rank of ¢ is the length
of an unrefinable chain from a minimal element of P to ¢, and the corank of ¢ € P is
crk(¢) = d — rk(s) where d is the dimension of |P].

A G-poset P has a strong fundamental domain if there is a subposet F C P which is a
filter (if ¢ € F and 7 > ¢, then 7 € F) and which contains unique representatives of each
G-orbit in P.

Theorem 0.4. (K. Brown & J.M. [see [4]]) Let G be a group of type F P, with cd(G) = d.
Let G act on a graded poset P, whose geometric realization |P| is contractible, and where
there is a strong fundamental domain F C P that is finite and Cohen-Macaulay. If the
stabilizer of each element ¢ € P is a (d — crk(s))-dimensional duality group, then G is a
d-dimensional duality group.

The pure symmetric automorphism group, denoted PY,,, is the subgroup of Aut(F},) con-
sisting of automorphisms that send each generator z; to a conjugate of itself. Theorem 0.4
can be used to establish:
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Corollary 0.5. (Brady, McCammond, M., & Miller [4]) The pure symmetric automor-
phism group 1s a duality group of dimension n — 1.

In addition to being realizable as a natural subgroup of Aut(F,), the group PX,, arises as a
motion group. The pure braid group can be thought of as the group of motions of n points
in the plane; PY,, consists of the motions of the trivial n component link in S*. (See [8].)

Question 0.6. Is the group of motions of n-spheres trivially embedded in S™*? always a
duality group?

Perhaps an even more elementary question is

Question 0.7. Are the groups of motions of non-trivial links in S? virtual duality groups,
for all non-trivial links? In other words, was the assumption that we were working with
the trivial n component link necessary?
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Quasi—actions on trees
LEE MOSHER

Let T" be a graph of groups, finite, and with finitely generated vertex and edge groups.
Let T be the Bass-Serre tree, and by gluing together Cayley graphs, let p: X — T be a
m [—equivariant. “tree of spaces”, so that the mI" action on X is properly discontinuous
and cocompact.

To study quasi—-isometric rigidity properties of 7', given a self-quasi-isometry ¢ : X — X,
we ask: does ¢ coarsely respect the vertex spaces and edge spaces of X7

In many cases where vertex and edge groups are (coarse) PD(n) groups, we give good
answers to this question, producing many new quasi—isometric rigidity theorems.

Folding cube complexes, Coxeter groups and the Haagerup approximation
property
GRAHAM A. NIBLO AND LAWRENCE D. REEVES

In [3] we showed that any group acting without a global fixed point on a finite dimensional
CAT(0) cube complex admits an unbounded conditionally negative kernel, and therefore
cannot have Kazhdan’s property T. It is not to hard to see that if the action is properly
discontinuous and the complex is locally finite then the conditionally negative kernel is
proper and so, via a result of Bekka, Cherix and Valette, the group satifies the Haagerup
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approximation property. Such a group is said to be T-amenable. A result of Higson and
Kasparov [2] then shows that such groups satisfy the Baum-Connes conjecture.

In fact the hypothesis that the cube complex is finite dimensional is superfluous and one
purpose of this note is to remove it. We show:

Theorem 1. Let G be a group acting cellularly on a CAT(0) cube complex X . If the action
has an unbounded orbit then G does not have Kazhdan’s property T, and if the action is
proper then G is T-amenable.

This result was used in the thesis of Dan Farley [1] to show that Thompson’s F-group
is T~amenable, and can be applied more generally to Guba and Sapir’s class of Diagram
Groups.

The method used in this paper links closely with the paper of Higson and Kasparov by
showing how to construct a (metrically) proper affine isometric action of the group G on a
Hilbert space directly from the description of its action on the hyperplanes of the CAT(0)
cube complex. This geometric construction is implicit in the paper [4], but is obscured
by the algebraic language we used there. It may be viewed as a generalisation of Serre’s
folding operation which yields an action on Hilbert space given an action on a tree [5].
Finally we wish to put in print our construction of a CAT(0) cube complex for any finitely
generated Coxeter group, closing the circle of ideas begun in [3].

Theorem 2. Let G be a finitely generated Coxeter group. Then G acts properly bon a
finite dimensional, locally finite CAT(0) cube complex.

It is worth remarking that, as recorded in [6], the action of the Coxeter group on the
cube complex is co-compact if and only if G contains only finitely many conjugacy classes
of triangle group subgroups. This holds for word hyperbolic Coxeter groups and finitely
generated right-angled Coxeter groups.
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Metric Characterizations of Spherical and Euclidean Buildings

Quasi—isometry invariance of group splittings and JSJ decompositions
PAanOS PAPAZOGLOU

We show that a one-ended finitely presented group splits over a 2-ended group if and
only if its Cayley graph is coarsely separated by a quasi-line. This implies in particular
that splittings over 2-ended groups are invariant under quasi-isometries. We show that
JSJ-decompositions are also invariant under quasi-isometries.
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Compactifying Trees
BERTRAND REMY

The purpose of these notes is to present a motivating simple case of a joint project with Y.
Guivarc’h and J.-Ph. Anker. The project itself concerns the compactification of Bruhat-
Tits buildings, that is the metric spaces naturally attached to semisimple groups over non-
Archimedean local fields. We deal with the geometric, the Furstenberg, the Guivarc’h and
the polyhedral compactifications. Our guideline is the case of symmetric spaces. Though
we will state the problems in the context of general buildings, the results stated here will
concern trees.

Let X be a (Riemannian, non-compact) symmetric space, a (locally finite) Bruhat-Tits
building or an arbitrary (locally finite but not necessarily Bruhat-Tits) biregular tree. We
assume we are given an appropriate automorphism group G, which acts by isometries on
X. «Appropriate» means that GG is the semisimple Lie group defining X when it is a
symmetric space or a Bruhat-Tits building. When X is a tree, G is an arbitrary locally
oo-transitive isometry group in the sense of M. Burger and S. Mozes.

As a non-positively curved space, X admits an asymptotic boundary 0., X defined as a set
of equivalence classes of geodesic rays. A classical procedure of gluing 0,,.X to X makes
X U 05X a compactification of X, which we call the geometric compactification xeeom
GxF

~Y

of X. The polyhedral compactification YPOI of X is defined by means of a gluing

where F is the (simpler) compactification of a maximal isometric copy F of a Euclidean
space in X. For a symmetric space such an F'is a maximal flat, for a Bruhat-Tits building
it is an apartment, and for a tree it is simply a geodesic line. The definition of this kind of
compactification is now well-known or straightforward.

PROBLEM
A. Give sense to the Furstenberg and the Guivarc’h compactifications of X.

Both compactifications rely on the simple idea which consists in defining an embedding
of X into a compact metrizable space, and then taking the closure of the image. For
Guivarc’h’s procedure, the compact space is the set of closed subgroups of G' endowed
with the topology of Hausdorff convergence on compact subsets. Furstenberg’s procedure
involves the theory of boundaries of groups. The suitable compact space is that of the
probability measures on a non-trivial Furstenberg boundary of G.

PROBLEM
B. Identify the above compactifications.

For higher-rank symmetric spaces, the compactifications are not all isomorphic. The
Furstenberg, the Guivarc’h and the polyhedral compactifications are G-homeomorphic,
but the geometric compactification is different from all the other ones.

PROBLEM
C. Use the three isomorphic compactifications of X to parametrize interesting classes of
closed subgroups (from a dynamical point of view for instance).

In the case of symmetric spaces, points in the Guivarc’h compactification represent closed
subgroups of G : they are precisely the maximal subgroups enjoying the property of distal-
ity (Guivarc’h’s theorem). A subgroup is distal if the adjoint image of each of its elements
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has its spectrum contained in the unit circle. Besides, taking the point stabilizers enables
to classify a certain class of maximal amenable subgroups (Moore’s theorem).

Here is the result for arbitrary biregular trees.

Theorem 1. Let X be a semi-homogeneous tree and G be a closed locally oo-transitive
group of automorphisms without inversion.

. , . . —Furs —Guiv
A) The Furstenberg and Guivarc’h compactifications Vy — and Vy of the set of

vertices Vx of X make sense.

B) The following identifications hold : XM YPOI =: X and Vf(‘urs ~ V)(;Julv = Vx.

The closure of Vy in X identifies with Vy.
C) An amenable subgroup of G either fixes a vertex v € X, either fixes a boundary point
£ €0, X or stabilizes a geodesic line L C T.

Point C) was proved by elementary arguments by A. Figd-Talamanca and C. Nebbia. Here
it is seen as a straightforward consequence of a measure-theoretic result (the analogue of
Furstenberg’s lemma for trees) due to Lubotzky-Mozes-Zimmer.

Finitely presented non—amenable groups without free non—cyclic subgroups
MARK SAPIR

This is joint work with A. Yu. Olshanskii. We solve the finitely presented version of the von
Neumann problem by constructing a finitely presented non—amenable group without non—
abelian free subgroups. A finitely generated non—amenable group without free subgroups
was constructed by Olshanskii in 1979 and later by Adian. The problem of constructing a
finitely presented example was formulated by Grigorchuk and Cohen in 1982. Our group
is an ascending HNN extension of a torsion finitely generated group of exponent n > 1
(n ~ 10'). So it is torsion by cyclic and satisfies the identity [z,y]” = 1. This is the
first example of a non—elementary finitely presented torsion of bounded exponent by cyclic

group.

Diophantine geometry over groups and the elementary theory of a free group
ZL1L, SELA

Abstract: We study sets of solutions to systems of equations over a free group, projections
of such sets, and elementary sets defined over a free group. The structure theory we obtain
enables us to answer some problems of A. Tarski, and classify those f.g. groups that are
elementary equivalent to a free group.

Free subgroups of word—hyperbolic groups

RICHARD WEIDMANN
(joint with Ilya Kapovich)

Abstract: We give a proof of the following result which has been stated by Gromov in his
original paper on hyperbolic groups.

Theorem 1. For any n € NIC = C(n) with the following property. Suppose that H =
(g1, ...,0n) acts by isometries on a d-hyperbolic space (X,d) (6 > 0). Then one of the
following holds:
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(i) H is free on X.
(2) (g1, .-, 9n) is Nielsen equivalent to (fi, ... f,) such that d(fiy,y) < 6 - ¢ for some
ye X.

This has been known for n = 2 (T. Delzant) and n = 3 (M. Camb). An alternative proof
has been announced by G. Aijantseva.

On a question of Atiyah
ANDRZEJ ZUK

| () )
a b
0

FIGURE 1. The automaton generating the lamplighter group

We present a computation of the spectral measure of a random walk on the lamplighter
group and its relation to the Atiyah conjecture about the range of L2-Betti numbers.

Theorem 1 (Grigorchuk, Zuk [2]). Let G be a group defined by an automaton as in Fig-
ure 1 with a system of generators a and b. Then G is isomorphic to the lamplighter group
Zy VL. The spectrum of the Markov ope- rator M on G is equal to [—1,1]. The finite
dimensional approrimations M, of M have the spectrum:

[
{cos (;r) le€Z,q=1,... ,n}.

The spectral measure of M is discrete and is equal to

5 G arccos (x)) ,

where x € [—1,1] and for z € [0,1]

_ = #{p; (p,q) =1and & <z}
a(z) = T _

q=2

Atiyah [1] introduced for a closed Riemannian manifold (M, g) with universal covering M
the analytic L?-Betti numbers b’(JQ)(M, g) which measure the size of the space of harmonic

square-integrable p-forms on M. Let k,(z,y) be the (smooth) integral kernel of the or-
thogonal projection of all square integrable forms onto this subspace. On the diagonal,
the fiber-wise trace tr,k,(x,x) is defined and is invariant under deck transformations. It
therefore defines a smooth function on M, and Atiyah sets b, (M, g) := [og traky(z, ) do.
By a result of J. Dodziuk this does not depend on the metric and can be determined in
combinatorial terms.

Let T be a group. Denote with fin™'(T') the additive subgroup of Q generated by the
inverses of the orders of the finite subgroups of I'. Note that fin™'(T') = Z if and only if
[ is torsion free. We deal with the following conjecture:
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Conjecture 2. If M s a closed Riemannian manifold with fundamental group T', then

by (M) € fin Y(T). If T is torsion free, this specializes to by (M) € Z.

In [1] it is only asked whether the L2-Betti numbers are always rationals, and integers if
the fundamental group is torsion free. Later, this question was popularized as the Atiyah
conjecture, and also gradually was made precise in the way we formulate it in Conjecture 2
(for a history of this question see the survey paper [4]). The conjecture is proved in many
important cases but Theorem 1 enables one to prove the following:

Theorem 3 (Grigorchuk, Linnell, Schick, Zuk [3]). Let the group G be given by the pre-
sentation
G = {a,t,s|a>=1,[t,s] =1,[t "at,a] = 1,5 as = at™'at).

The group G is metabelian and therefore elementary amenable. Fvery finite subgroup of G
s an elementary abelian 2-group, in particular the order of every finite subgroup of G is a
power of 2. There exists a closed manifold M of dimension 7 with m (M) = G such that
the third L?-Betti number

by (M) = >
Conjecture 2 predicts that the denominator is a power of 2 and thus the manifold M is a
counterexample.
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Edited by Prof. Dr. H. Abels
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