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We study the effect of long-term habituation signatures of auditory selective attention

reflected in the instantaneous phase information of the auditory event-related potentials

(ERPs) at four distinct stimuli levels of 60, 70, 80, and 90dB SPL. The analysis is based

on the single-trial level. The effect of habituation can be observed in terms of the changes

(jitter) in the instantaneous phase information of ERPs. In particular, the absence of

habituation is correlated with a consistently high phase synchronization over ERP trials.

We estimate the changes in phase concentration over trials using a Bayesian approach,

in which the phase is modeled as being drawn from a von Mises distribution with a

concentration parameter which varies smoothly over trials. The smoothness assumption

reflects the fact that habituation is a gradual process. We differentiate between different

stimuli based on the relative changes and absolute values of the estimated concentration

parameter using the proposed Bayesian model.

Keywords: Bayesian models, long-term habituation, instantaneous phase, event-related potentials, circular

statistics

1. INTRODUCTION

In this section we describe: (1) Definition of the habituation-mechanism, (2) The importance of
analyzing phase information of auditory event related potentials (ERPs), and (3) Methods for
objectively characterizing such phase information.

In almost all natural settings, animals are exposed to multiple concurrent streams of sensory
information (Rosen, 1992; Chandrasekaran et al., 2010). To make sense of this sensory overload, it
is crucial to filter it by increasing attention to stimuli that are important or novel and by decreasing
attention to those that are irrelevant. One way of filtering out irrelevant information is through
habituation, a simple form of learning that reflects a decrease in attention to repeated stimuli not
caused by sensory adaptation or sensory fatigue (Rankin et al., 2009; Thompson, 2009; Domjan,
2014).
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FIGURE 1 | The above example is the phase matrix of the N100 attenton-corelate wave of post-stimulus responses induced by a soft (number 1) and

an aversive (number 3) stimuli. The axis labeled as trials, correspond to the extracted phase information of every measured post-stimulus evoked response. The

plots in 2 and 4 show the modulations of phase information at t = 97ms across the trials (responses). In case of a soft stimulus, the phase information are highly

synchronized at the beginning of the experiment (high binding of the attention to stimulus) and then diffuse at the end of the experiment (attention drifts away). In case

of an aversive stimulus, the phase information tend to stay highly synchronized throughout the experiment (high attention binding to stimulus).

One neural signature of habituation can be found in the N100
wave component of auditory event related potentials (ERPs).
ERPs are the endogenous measure of brain responses as a
direct result of a specific sensory event. The non-invasive means
of assessing habituation with ERPs has a number of clinical
applications, from calibrating cochlear implants (especially with
non-cooperative patients such as children) (Smoorenburg et al.,
2002) to understanding pathological attentional binding in
migraines, schizophrenia and tinnitus (Schoenen, 1997; Ludewig
et al., 2002; Walpurger et al., 2003). The N100 component of the
ERPs is defined in the latency period between 80 and 120ms
after the onset of stimuli. The link between the N100 wave and
selective attention has been described in Hillyard et al. (1973).
Habituation is hence believed to be explained as the gradual
reduction in the selective attention to the stimulus which is
reflected as a reduction of the N100 component of measured
ERPs (Thompson, 2009). The reduction of the N100 wave can be
observed both in the amplitude (Butler et al., 1969; Öhman and
Lader, 1972; Hillyard et al., 1973; Rosburg et al., 2006) and phase
(Babiloni et al., 2002; Busch et al., 2009; Low and Strauss, 2011;
Mortezapouraghdam et al., 2014) of the signal.

In Low and Strauss (2011), the correlate of attention states
in the averaged auditory ERP was detected to be reflected in
the jitter of the instantaneous phase of subsequent single-trial
ERPs (see Fell et al., 2004; Sauseng et al., 2007; Barry, 2009
for the relation between amplitude and phase). In Strauss et al.
(2008) and Low and Strauss (2011), it was shown that the
phase information in the N100 is a more robust indicator of

habituation than the amplitude. These phase changes are thought
to reflect lower attentional-binding to the stimulus such that
there is an increased jitter in the phase with habituation (Low
and Strauss, 2011; Mortezapouraghdam et al., 2014). Figure 1
shows the changes in the phase information of attention-correlate
N100 wave for a soft (easy to habituate) and aversive (difficult to
habituate) stimulus.

In Strauss et al. (2013), a 2D denoising algorithm was
applied to the amplitude of collectively segmented ERPs to
extract the morphological signature of the habituation effect in
the data. Measures such as the time-scale coherence between
ERP trials were used in Mariam et al. (2009) to evaluate the
effect of habituation. Most of the preceding studies use the
amplitude or amplitude-phase domain to understand the effect
of habituation, however in Low and Strauss (2011) and Strauss
et al. (2008), it was reported that fewer trials were required
to distinguish between the habituation and non-habituation
processes using only the phase information of ERPs across the
responses.

In a recent study in Mortezapouraghdam et al. (2014), the
effect of long-term habituation was solely based on the study
of instantaneous phase information of ERPs for two different
stimuli levels. The two stimuli consisted of pure-tones of 50
and 100 dB SPL (The 50 dB SPL is considered as a soft
stimulus, as it is easy to habituate to the sound and 100 dB
SPL is considered as aversive stimulus with no habituation
effect). The effect of habituation was evaluated by fitting a
parametric model to different data segments and tracking the
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data distribution over the time. Based on average rate of data
dispersion of segmented data, the study was able to objectively
classify between habituation and non-habituation data from the
recorded ERPs.

In this study, we introduce a Bayesian model which is able
to infer the changes in the underlying probability distribution of
circular data over time. Our method allows incorporating prior
knowledge about the level of data dispersion and its behavior over
time. The proposed approach is related to the Bayesian change-
point algorithm which was presented in Paquet (2007) and Knill
and Pouget (2004).

We compare our method to a moving-window-based
maximum-likelihood estimation of the underlying distributions
using generated data in Section 3.1. We furthermore use our
method to assess the level of habituation on instantaneous phase
information of ERPs obtained from 19 healthy subjects. The
loudness levels used for the auditory stimuli in this data set
range from a soft (and easy to habituate) 60 dB to a loud (and
hard to habituate) 90 dB. Besides the methodology we use in
this work, the range of the stimuli we analyze in the phase
domain in this study (60, 70, 80, 90 dB SPL) is one of the
major differences with our previous studies (Strauss et al., 2008;
Mariam et al., 2009; Mortezapouraghdam et al., 2014). The
classification between different ERPs for close-range stimuli is
more difficult as the elicited ERPs are more similar and hence
more sophisticated methods are required to capture the subtle
differences. We evaluate the performance of our method as a
discriminator between different loudness levels in Section 4.

2. MATERIALS AND METHODS

In this section we describe: (1) A brief description of data
acquisition details and pre-processing of ERP images using non-
local-means algorithm (NLM), (2) Extraction of instantaneous
phase of ERP images using wavelet transformation.

2.1. Human Data Acquisition
Twenty participants (16 female and 4 male; mean age: 23 years
and 3 months with a standard deviation of 4 years and 1 month)
attended the experiment. One subject’s data was lost due to data
corruption and the following focuses on the remaining 19. All
participants had normal hearing as assessed by an audiogram test
before and after the experiment. All subjects provided informed
consent and the study was conducted in accordance with the
declaration of Helsinki. The data was recorded during a training
session for students focusing on intensity relations on event-
related potentials. The aim of the training session was to see
amplitude and latency changes of the N1 wave related to different
intensities of stimuli (See chapter 12 in Hall, 2007).

Before the electrophysiological experiment, the subjective
loudness measurement was measured. Auditory stimuli were
presented in 10 different auditory levels from 10 to 90 dB SPL
for a few trials and the subjects were asked to scale the loudness
of the stimuli based on 10 different scaling levels (not heard,
threshold, very soft, soft, comfortable but soft, comfortable loud,
comfortable but loud, loud upper level, and too loud). To obtain

reliable feedback about the loudness of the stimuli, we used
healthy subjects with no previous hearing abnormalities.

For the electrophysiological experiment, subjects lay on an
examination bed and were instructed to relax with closed
eyes. The EEG signals were recorded using surface electrodes
(Ag/AgCl) which were placed at the right and left mastoid
(active), the vertex (reference) and the upper forehead (ground).
The signal acquired from each mastoid was referred to vertex
(Cz) and processed separately. The electrode impedance was kept
below 5 k� and the recording EEG was sampled at 512Hz.

The experiment consisted of listening to a series of pure tone
beeps presented in their right ear via headphones (Sennheiser
HDA 200) at four different volumes of 60, 70, 80, and 90 dB. Each
beep was at a frequency of 1 kHz and lasted 40ms. There was
a 1 s ISI between stimuli and at least 500 tones were presented
per stimulation level. Participants were instructed not to pay
attention to the stimulus and attempt to ignore the sound during
the experiment. To be sure they did not fall asleep, they were
constantly monitored and checked to be awake.

2.2. Data Pre-processing
We preprocessed our data in three steps outlined in detail
below. First we segmented the data into ERPs centered on the
presentation of the tones. Next we denoised the data using a non-
local means algorithm. Finally, we extracted phase information
from the data using a wavelet transform.

2.3. Data Segmentation
To remove unwanted frequencies, we applied a bandpass FIR
filter of order 1000 and cut-off frequencies of 1 and 30Hz to
the raw EEG. The high filter order was applied to minimize the
phase distortion effects. We then segmented the data to focus
on the first 800ms (or at 512Hz, M = 410 samples) post
stimulus for each trial. Trials that contained amplitudes larger
than 50µV were assumed to contain artifacts and were removed.
This process resulted in at least N = 439 artifact free trials
eT
k
∈ R

M, k = 1, · · · ,N for each subject.
We represent theN trials byM samples per trial ERP image as

E := (e1, . . . , eN)
T

where ek ∈ R
M are the post-stimulus trials that appear as the

rows in the matrix. In Figures 2A,Bwe show an example of 60 dB
(SPL) single-trial ERPs along with the ERP image representation.

2.4. Data Denoising
To denoise the data we applied a non-local means (NLM)
algorithm to the two dimensional ERP images. The NLM
algorithm was first developed by Efros et al. for denoising texture
synthesis (Efros and Leung, 1999). In particular, this algorithm
takes advantage of the extensive self-similarity and repetition in
some textures to smooth the data using image neighborhoods—
or patches—that represent local structure.

Since our ERP images also contain a high level of self-
similarity—because of the time-locked stimulation (Strauss et al.,
2013)—we have previously shown that the NLM algorithm is a
good way to denoise our data while maintaining the regularities
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FIGURE 2 | (A) An example of single trial auditory ERPs. Every trial corresponds to the post-stimulus response. (B) All trials can be represented as an ERP image

where every row corresponds to one trial. (C) The denoised version of the ERP image after applying the NLM algorithm. (D) The average ERP of all trials before and

after applying the NLM. The N100 negative evoked potential peaks between 80 and 100 ms after the onset of stimulus in adults. Its amplitude is strongly correlated

with the time of stimulus onset, stimulus loudness, and inter-stimulus loudness with other sounds. The N100 is followed by the P200 positive evoked potential (usually

referred to as the N1-P2 complex).

between multiple trials (Strauss et al., 2013). In particular, by
adjustment of the parameters, we found that this denoising
algorithm allowed us to extract the morphological changes in
the relative amplitude or latency changes of the single trials and
yield physiologically meaningful information, such as amplitude
modulations of the N100 wave.

Here we used the exact same denoising parameters as in
Strauss et al. (2013) to denoise the ERP image E ∈ R

N×M into
the denoised ERP image Q ∈ R

N×M, whose rows qk ∈ R
M

represent the denoised ERP from trial k. In Figures 2B,Cwe show
an example of ERP image before and after NLM denoising. The
averaged ERP before and after denosing is shown in Figure 2D.

2.5. Phase Extraction
To compute the instantaneous phase information of the denoised
trials qk ∈ R

M, k = 1, . . .N we employ continuous wavelet
transform as explained in Low and Strauss (2011) (See Bruns,
2004 for further studies about different mechanism on extracting
the phase information and the similarity between them). For
every qk ∈ R

M, k = 1, . . .N we compute the complex wavelet
coefficients as

ωk,b := 〈qk, ψa
b 〉L2 , b = 1, . . . ,M,

where ψ ∈ L2 (R) is the wavelet function with a, b ∈ R, a 6= 0
representing the scale and translation parameters, respectively.

We choose the wavelet function to be the sixth derivative of
the complex Gaussian where ψa

b
is the sampled vector of

ψa
b (x) := |a|−1/2ψ((x− b)/a)).

It has been previously illustrated that a fixed scale a = 40 can
be used reliably (significance of p < 0.05) to show physiological
meaningful correlates of N100 modulations of auditory ERPs
for analyzing the attention correlate (Strauss et al., 2008; Low
and Strauss, 2011). By applying the wavelet transformation for
a fixed scale a and discretized translations bm (m = 1, 2, . . . ,M),
we introduce the mapping Ga,b : Q 7→ P (P ∈ R

N×M) with the
complex entries of ωk,b. From the complex entries

ωk,b = Re(ωk,b)+ iIm(ωk,b) = |ωk,b| exp(ipk,b)

with absolute value |ωk,b| :=
√
Re(ωk,b)2 + Im(ωk,b)2 we obtain

the phase pk,b by

pk,b := atan2(Im(ωk,b),Re(ωk,b))

=





arccos
Re(ωk,b)
|ωk,b| if Im(ωk,b) > 0,

− arccos
Re(ωk,b)
|ωk,b| if Im(ωk,b) ≤ 0.

(1)

Here atan2 denotes the “quadrant–specific” inverse of the tangent
function. The definition enforces the 2π-periodic angles pk,b to
be in ∈ [−π, π). Hence by computing the phase pT

k
= (pk,1 of

every trial qk), we construct the instantaneous phase matrix

P = (p1, p2, . . . , pN)
T

of the ERP image Q. As described before in the Introduction,
Figure 1 shows an example of the instantaneous phase matrix.
We study the effect of habituation over phase trials at seven
distinct times denoted as2(t) = {θ1, . . . , θN}, θi ∈ [−π, π), θi ∈
pi,t∀i=1...N where the time span is from t = 97ms to t = 127ms
after the onset of stimulus.
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2.6. Data Modeling Description
In this section: (1) We briefly describe the method of estimating
the concentration parameter of a von Mises distribution at
different segments of phase data. The explained method is based
on previous work. (2) We introduce the forward-backward
Bayesian model as an appropriate method for detecting the exact
times of change. (3)We fully describe the details of themodel and
criteria for determining the model parameters.

2.7. Maximum Likelihood Estimate of
Concentration Parameter
In a previous study (Mortezapouraghdam et al., 2014), we
looked at the auditory selective attention correlate dynamics for
soft (50 dB SPL) and aversive (100 dB SPL) sound stimuli by
measuring the distribution of instantaneous phase data over trials
at a fixed time of interest t (as shown in Figure 1). In particular,
we found that soft stimuli were associated with a broader
distribution of phases than aversive stimuli, when the distribution
of phases was more concentrated. The results indicate the low
binding of the attention to the soft stimulus and high binding of
attention to the aversive stimulus.

To obtain an objective measure for classifying between the
two stimuli based on instantaneous phase information, we split
the data into sliding windows of G trials with overlap of g
and performed a fit with a von Mises distribution for each
window. The von Mises distribution is known as one of the main
popular parametric models for the analysis of directional data
(Fisher, 1995). It is analog to a normal distribution of real-valued
data. The von Mises distribution is defined as f (θ;µ, κ) =(
2πI0(κ)

)−1
exp(κ cos(θ − µ)) which consists of a mean µ ∈

[−π, π) that determines its location, a concentration parameter
κ ∈ R

+ that determines its width and I0(κ) is a modified Bessel
function of first kind and order r. For more information on the
maximum likelihood estimate of the parameters of a von Mises
distribution and its properties see Jammalamadaka and SenGupta
(2001) and Fisher (1995). As κ increases, the distribution has a
high kurtosis, following a high concentration of data samples. See
Figure 3 for illustrations of vonMises distributions with different
value of concentration (κ) and a zero mean (µ = 0). The smallest
κ = 0 resembles a uniform distribution.

There are a number of limitations with the assessment of
phase information using the latter approach. A small window size
makes the results susceptible to noise in the input, and can lead to
over-fitting. A large window size on the other hand comes at a loss
of time precision, making it impossible to detect the exact time at
which a change in the underlying data distribution occurs. The
method in general lacks the ability to detect the gradual change
in the habituation process with a high temporal precision. In
addition it is not easily possible to incorporate prior knowledge
about the long-term habituation process of attentional circuits
into the model. Incorporating such information can be useful for
making the results more robust against noise, and to therefore
improve the performance of certain classification tasks (see
Section 4 for an example).

To obtain a more precise and flexible approach for detection
of habituation effect, we propose a Bayesian modeling approach

FIGURE 3 | The probability density function of a von Mises distribution

with µ = 0 and different concentration values κ . For the smallest κ = 0,

the distribution is uniform. As κ increases, the distribution becomes very

concentrated around the angle µ.

for directional data which is able to capture the changes in
the data with a higher time resolution. Prior knowledge about
the underlying data can be easily incorporated into our model
and improve the reliability of the fitted posterior distribution
under noise. In Section 2.8 we present the details of our model
and validate the proposed model on artificial directional data in
Section 3. At last, we use the method as an objective measure
on phase information of the N100 attention-correlate wave at
four different stimuli levels of 60, 70, 80, 90 dB SPL for detecting
the level of habituation. We classify between the four different
stimuli in Section 3. In Figure 4we show an example of the phase
modulation for different stimulus at different segments G = 150
and g = 0. It is observed that the mean direction for low stimuli
levels (60 and 70 dB SPL) changes more in comparison to the
higher stimulus levels (80 and 90 dB SPL).

2.8. Bayesian Model
Here we derive a recursive Bayesian estimation for modeling the
changes in the hidden states that explain and generate the time
series data. This model computes the likelihood of all the possible
values of the random variable(s) at every stage . This allows the
system to integrate information efficiently over time and space,
and to propagate information from one stage to another without
having to draw concrete conclusions at early stages (Knill and
Pouget, 2004).

In our Bayesian model, the sequence of phase observations
is defined over phase trials at a specific time t (as illustrated in
Figure 1), more precisely 2 = {θ1, θ2, . . . , θN} , θi ∈ [−π, π).
The data is modeled by assuming that at each time step, θi was
generated from a certain but unknown state variable St . Here
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FIGURE 4 | An example of phase distribution over trials at a specific time t, t = 97 ms for a subject at four different stimuli levels of 60, 70, 80, and 90

dB SPL. The phase data 2t has been divided into three different segments corresponding to the beginning (BI), middle (MI), and end (EN) of the experiment. Segment

size is G = 150. Blue, gray, and red data circles correspond to the BI, MI, and EN of the experiment, respectively. The lines correspond to the resultant mean vector

divided by the number of segment samples. As phase data spread more around the circle, the length of the vector mean decreases. (A) The distribution of phase

samples corresponding to 60 dB SPL at different segments BI, MI, EN. (B) The distribution of phase samples corresponding to 70 dB SPL at BI, MI, EN. (C) The

distribution of phase samples corresponding to 80 dB SPL at BI, MI, EN. (D) The distribution of data samples corresponding to 90 dB SPL at BI, MI, EN.

we define St = (µt, κt) by the parameters of a von Mises
distribution, where µt and κt are the mean and concentration
parameter, respectively. For simplicity we represent this state on
a grid of discrete values Rµ = {u1, · · · , um}, ui ∈ [−π, π) and
Rκ = {k0, · · · , km}, ki ∈ [0, ℓ] where ℓ is the upper-bound of the
concentration discretization.

We assume that we have prior information on how the
states should evolve given the past states p(St+1|S1, · · · , St), but
we cannot observe them directly. The available information is
the measurements that are dependent on the state, but noisy:
p(θt, · · · |St).

The assumptions made in the Bayesian network are as
follows:

1. The observation at time t was generated by some process
whose state St is hidden from the observer.

2. The states satisfy the first orderMarkov property. That is given
the value at St−1, the current state St is independent of all states
earlier than t − 1, that is p(St|S1, · · · , St−1) = p(St|St−1).

3. The observations are conditionally independent given the
current state St . That is p (θt|θ1:t−1, St) = p (θt|St) (the
Markov property of data with respect to the states).

Our goal is to infer the distribution over hidden states (µt, κt)
based on the phase data from all N trials, θ1:N . Given the
conditional independence in our model, this is straightforward
to write down as:

p(µt, κt|θ1:N) ∝ p(θt+1:N |µt, κt)p(µt, κt|θ1:t), (2)

where p(µt, κt|θ1:t) denotes the distribution over states at time
t given information in the past and p(µt, κt|θt+1:N) is the
distribution over the states given information in the future. These
distributions are easy to compute using recursive algorithms
that sweep forwards (for p(µt, κt|θ1:t)) and backwards (for
p(µt, κt|θt+1:N)) through the data. We describe these sweeps in
the following sections.

2.8.1. Forward Pass

The forward sweep computes p(µt, κt|θ1:t), the distribution over
the state at time t, given data in the past. Given the dependencies

outlined in Figure 5, this can be computed recursively using
Bayes rule as

p (µt, κt|θ1:t) ∝ p (θt|µt, κt) p (µt, κt|θ1:t−1) (3)

= p (θt|µt, κt)
∑

µt−1,κt−1

p (µt, κt|µt−1, κt−1)

p (µt−1, κt−1|θ1:t−1) (4)

where p (θt|µt, κt) is the likelihood of the data given the
parameters and p (µt, κt|µt−1, κt−1) defines our prior on the
dynamics of µt and κt . This term will be discussed in detail in
Section 2.8.4 below.

2.8.2. Backward Pass

The backward pass computes the probability of the future data
given the state at time t, p(θt+1:N |µt, κt). As with the forward
pass, this can be computed recursively using Bayes rule

p(θt+1:N |µt, κt) =
∑

µt+1,κt+1

p(µt+1, κt+1|µt, κt)

p(θt+1:N |µt+1, κt+1) (5)

=
∑

µt+1,κt+1

p(µt+1, κt+1|µt, κt)

p(θt+1|µt+1, κt+1)p(θt+2:N |µt+1, κt+1)(6)

where p(θt+1|µt+1, κt+1) is the same likelihood and
p(µt+1, κt+1|µt, κt) the same prior as used in the forwards
pass.

2.8.3. Forward-Backward Model and the Initial

Conditions

One problem of the forward method is that its results are heavily
influenced by the initialization at t = 1. Depending on how
the state likelihoods for the first observation are initialized, state
likelihoods at subsequent times can be far from the globally
optimal explanation of the data (see Figure 6 for the effect of
non-adequate initialization in data). A similar effect is observed
if there is a sudden change in the underlying states at a later
time in the data or if the initial data points are outliers (noise).
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FIGURE 5 | The graphical representation of the forward Bayesian model. The state space likelihood in our study are the mean µ and concentration κ

parameters of a von Mises distribution. More precisely Si = (µi, κi ).

FIGURE 6 | We show the effect of the forward and forward-Backward approach for two different data examples. Column A: shows an artificial data set

generated using a rejection sampling approach with an exact time of change at t = 1000. The estimated concentration has been shown for the forward and

forward-backward approach, respectively. Column B: shows the estimated concentration for the forward method (1B) and (2B) of phase information of habituation

data. The effect of the initialization on the results of the forward method is clearly visible. In terms of change detection in the phase modulations, the forward-backward

approach provides more accurate timing information than the forward approach which occurs near t= 400.

Because the forward method does not look ahead of the current
time, it adapts to changes in the data only with a delay. We add a
backward pass to compensate for these effects, and to remove any
influence of the direction of time on the results.
We also mitigate the initialization problem by using the result
of the forward pass at tN to initialize the backward pass, and

vice-verse. Unless the data distribution drastically changes very
close to the end of the data tN , the forward method usually has
sufficiently converged at that point, thus providing a very stable
initialization for the backward pass. After the backward pass
is done, we run the forward pass for a second time, using the
result at t1 from the backward pass for its initialization. Only the
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results of the second forward pass together with the results of the
backward pass are finally used. The results of the first, randomly
initialized forward pass are discarded in the final result, thereby
removing most influence of the original random initialization.

2.8.4. State Transition Model, p (µt, κt|µt−1, κt−1)

For the prior distribution over the state transitions
p (µt, κt|µt−1, κt−1), we first assume that the transition
distributions for the mean, µ, and concentration, κ , are
independent; i.e.,

p (µt, κt|µt−1, κt−1) ∝ p (µt|µt−1) p (κt|κt−1) .

For transition distributions of µ and κ we choose von Mises and
Gaussian distributions, respectively.

More specifically, for the circular parameter, µt ∈ [−π, π) we
assume a von Mises distribution with the mean of µt−1 and the
concentration of K ∈ R

+; i.e.,

p
(
µk|µk−1,K

)
=

exp (K cos (µt − µt−1))

2πI0 (K)
.

For the real valued concentration random variable, we assume a
Gaussian transition distribution,

p (κt = κt|κt−1 = κt−1) =
1

√
2πσ

exp

(
− (κt − κt−1)

2

2σ 2

)

with variance σ 2 > 0.
As the states are discrete random variables, for computing the

p(µt|µt−1) and p(κt|κt−1), we evaluate the vonMises distribution
and Gaussian distribution for all possible values of µt and κt and
then normalize it.

The selection criteria for the prior parameters K and σ 2 for
measured data is described in Section 2.8.5.

2.8.5. Optimization of Prior Parameters

In this section we report on the setting of the model prior
parameters K and σ 2 and other parameters which were used for
analyzing the phase information of ERPs corresponding to 19
subjects at different stimulus levels of 60, 70, 80, and 90 dB SPL.
The phase information over trials was analyzed at seven distinct
times of 2t (t = 97 to t = 197ms with step sizes of three, or
more specifically for all trials at a specific sample of M = 44 to
M = 62) for the phasematrix P ∈ R

N×M . The number of discrete
states for Rµ and Rκ is m = 20 with an upper bound of ℓ = 63
for the concentration parameter. We discretize the concentration
parameter κ using a logarithmic scale.

The state transition model described in Section 2.8.4 has two
free parameters, K and σ 2 which determine the speed with which
µ and κ change over time, respectively. If we fit the parameters
such that the likelihood of the observations p(21:T) is maximized
we overfit the model to a specific dataset. The main problem
with this approach is that it does not help us to discriminate
between different groups of stimuli as reliably as possible. In
addition, no prior information regarding the decaying behavior
of the habituation process is used. We propose to set the free
parameters K and σ 2 such that the resulting fits are robust under

noise, and allow us to discriminate between different stimulus
levels, or more precisely to reliably predict the stimulus level that
the subject has been exposed to. The optimization criteria for the
prior parameters is defined such that the ratio of the variance
between different groups of stimulus levels to the variance of
within groups of our novelty measure is maximized as defined
in Equation (7). Here the novelty measure is defined as the
“normalized” expectation value E′ (κt) which informs about level
of change in the κ parameter rather than its absolute value.

argmax
K,σ 2

(
ρ =

between group variance of E′ (κt)

average within group variance of E′ (κt)

)
(7)

The procedure for computing the normalized expected value
E′ (κt) of concentration κ is as follows:

For a given observation 2 we first obtain E (κt) =∑
κj∈κ

{
κjp

(
κt = κj|2, σ 2,K

)}
∀t = 1 · · ·N by performing the

forward-backward passes. Since our primary interest lies in the
change of κ over trials, and not in its absolute value, we apply
a normalization as follows: Given the sequence of E (κt) over
time t for a given subject and stimulus, we compute the average
of the last 50 samples. We then divide all values E (κt) by the

computed average: E′ (κt) = E(κt)∑N
i=N−50 E(κj)

. Our choice to use the

last 50 samples for the normalization is based on the assumption
that any habituation-related change in the values of κt will have
happened before that point.

For the optimization itself, we consider a finite set of possible
parameters K ∈ RKprior = {K1,K2, ...,Kr} and σ 2 = ∈
Rσ 2 =

{
σ 2
1 , σ

2
2 , . . . , σ

2
r

}
. This is based on prior information

about the habituation process in which the changes are defined
to occur steady in time. Thereby they are set such that
the corresponding probability distributions for the mean and
concentration parameters are peaky (small width), indicating
the transition in mean and concentration states cannot happen
abruptly. Given the range of possible values for K and σ 2

as RKprior = {K1,K2, ...,Kr} and Rσ 2 =
{
σ 2
1 , σ

2
2 , . . . , σ

2
r

}

respectively, we obtain r2 different configuration prior pairs(
Ki, σ

2
j

)
, i, j ∈ 1, 2, ..., r. For each of these configurations, we

first perform the forward-backward procedure and then compute
the ρ criteria. Finally we select those parameters which lead to the
highest ρ value. In Algorithm 1 in the appendix we illustrate the
whole procedure for learning the prior parameters.

3. RESULTS

In this section we describe: (1) Validating the model (as described
in 2.8) on artificial circular data. (2) An example to compare
the advantage of the forward approach in comparison to the
forward-backward method. (3) Applying the model on phase
information of the N100 wave of experimental human-measured
ERPs at different stimuli. (4) The results of the model transition
parameters K and σ 2 for experimental data. (5) The individual
and average results for all subjects at different stimuli levels.
(6) Classification between different stimuli levels based on the
criteria in Equation (7).
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3.1. Model Validation on Artificial Circular
Data
We first validate the method presented in Section 2.8 on artificial
data generated from a von Mises distribution with different
concentration parameters κ . The artificial data is generated using
a rejection sampling method 2 = [2(1),2(2), . . . ,2(J)], such
that 2(i) ∼ vonMises(µi, κi)∀i = 1, . . . , J and with 2 of length
L. As we are not interested in the mean changes of data, we keep
the mean parameters constant for all data segments 2(i).

In Figure 7 we show two artificial data series that are
composed of segments sampled from von Mises distributions
with different κ parameters. The transition times between the
distributions are at t1 = 1000 and t2 = 2000 for plot
(a) and (b) and t1 = 1000, t2 = 1500 and t3 = 2500
for plot (c). After applying our Bayesian model, we compute
the mean square error (MSE) of the estimated concentration
and the actual concentration that was used for generating the
data. For comparison, we also apply a maximum-likelihood
approach to estimate the von Mises parameters using a moving
window of different lengths (the ML estimation is described in
Section 2.7). The MSE of our method for the data presented
in Figures 7A–C are 0.0033, 0.014, and 0.033, respectively.
We generated 50 artificial circular data sets with the same
concentration parameters and transition points for each one of
the examples Figures 7A–C and evaluated the average of MSE
for the estimated concentration parameters. TheMSE are 0.041±
0.04, 0.085± 0.064, and 0.010± 0.020, respectively.

In addition, we tested the accuracy of our model and the ML
approach on data set (c) in Figure 7 under additive noise, to
assess the robustness of the methods. The noise was generated
from a normal distribution with different variances 2̃ = 2 +
N(0, σ 2) for σ 2 ∈ {0.01, 0.02, . . . , 0.05}. The resulting signal was
wrapped to the range [0, 2π). For the windowing approach, we
use four different sizesG = 50, 100, 200, 400 with 98% overlap as
the moving window. The corresponding MSE results are shown
in Figure 8A.

We used a prior of σ 2 = 0.08 for Figure 7A. The small value
of σ is due to the small range of concentration values in this
example. Note that the transition are from κ → κ + 1 in a single
timestep. The transition probability of this event with the given
σ is fairly low (about 0.0002), which avoids overfitting.

We furthermore tested themodel on data with random change
points and random concentration parameters. We generated 50
data-sets 2, each with two random change points of different
concentrations κ1 ∈ [6, 10], κ2 ∈ [3, 5] and κ3 ∈ [1, 2]. In
each case we generated a series of L = 3000 sample points.
We then computed the average MSE for both the windowing /
ML approach and for our forward-backward approach. See
Figure 8B. The same prior parameter as in part (a) was used for
this part.

Note that for the windowing approach with window size w, an
input of L samples only results in L − w parameter estimations.
In order to make the MSE values comparable, we extended the
input signal on both ends with w

2 additional samples from the first
distribution, and the same number of additional samples from
the final distribution.

In a third example in Figure 8C we generated data with a
higher scale in its concentration, i.e., κ1 = 9, κ2 = 1 and
κ3 = 9 for transition times at t1 = 1000 and t2 = 2000. We
used the same prior parameter σ 2 = 0.6071 for artificial data
as was obtained for experimental data (In Section 3.3 we report
on the results of the prior parameters for the experimental data).
As shown, the model is able to track the data distribution at
different noise levels. This example was used to show that given
a similar range of concentration values of the data samples, the
prior parameters from the experimental data can be used to track
the distribution of artificial data-sets.

3.2. Comparison of Forward and
Forward-Backward Estimation
As was described in Section 2.8.3, in Figure 6 we demonstrate
the output of our model on two data sets using the forward and

FIGURE 7 | Results of applying the forward-backward bayesian model on three different data sets. (A) Artificial circular data that is generated from three

different von-mises distributions with concentration parameters of κ1 = 8, κ2 = 2, and κ3 = 1. The transitions are at samples t1 = 1000 and t2 = 2000. (B) Circular

data generated with dispersion values of κ1 = 1, κ2 = 5, κ3 = 1, κ4 = 8 with changes at samples t1 = 1000, t2 = 1500, and t3 = 2500. (C) Artificial data that is

generated from κ1 = 3, κ2 = 2, and κ3 = 1. The transitions are at samples t1 = 1000 and t2 = 2000.
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FIGURE 8 | (A) The average of mean square error (MSE) of estimated concentration for 50 artificial data-sets. The generated data consists of concentration

parameters of κ1 = 3, κ2 = 2, and κ3 = 1 with change points at times t = 1000 and t = 2000. The label M refers to the results obtained from our Bayesian

forward-backward model. The labels w1 to w4 refer to different window sizes of 50, 100, 200, and 400 samples. (B) The MSE of 50 artificially generated data-sets

with random transition times in the concentration parameter, and random κ values. (C) The MSE for 50 artificially generated data-sets with transition times at t = 1000

and t = 2000 with the concentrations of κ1 = 9, κ2 = 1, and κ3 = 9. We used the prior parameter σ2 = 0.6071 for p(κt|κt−1 ) ∼ N(µ, σ2 ) for our model.

forward-backward approach. In column A we generate synthetic
circular data of length 2000 with two different concentration
parameters. The data up to time t = 1000 is generated from
a von Mises with concentration 1 and it drops to 0.5 for the
rest of the time-series. In column B we show the phase of N100
attention-correlate of auditory ERPs induced by low-decibel
(soft) stimuli. This data illustrates the habituation effect as the
phase distribution clearly gets broader around the 400th trial.
This increase in the breadth of the phase distribution is well-
captured by the concentration parameter in the model, which
clearly shows an increase at trial 400.

3.3. Determining the Model Parameters for
Experimental Data
The prior parameters obtained for the transition models are set
to K = 0.6071 and σ 2 = 320. The criteria for optimizing

over σ 2 and K is described in Section 2.8.5 which is based
on Equation (7). In Figure 9 we show the state transition
probability distribution for the selected mean and concentration
parameters K and σ 2, respectively. These parameters play an
important role on the speed of changes in the transition models
and consequently, how abruptly the changes are determined.
As an example, as the variance parameter σ 2 in Nµ,σ 2 (x)
increases and the concentration parameter K in Mµ,K (x)
decreases, the state transitions can occur more abruptly. This
leads to a more abrupt and sudden detection of changes
in the signal’s phase distribution. In the extreme case of a
uniform transition probability for the state transitions, at any
time all subsequent states would have the same likelihood,
independently of the current state. As a consequence, the µt

state would simply track the signal itself, while leaving κt at
a constant high level. In our case, the chosen parameters K
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FIGURE 9 | The plots show the probability distribution for the mean and concentration states with chosen prior parameters K and σ2. The plot (A)

corresponds to the pdf (von Mises distribution) of the mean state transition model with the estimated concentration of K = 0.6071. The plot (B) corresponds to the pdf

(Gaussian distribution) of the concentration state transition model with the estimated variance of σ2 = 320.

FIGURE 10 | (A) The data corresponds to the phase information of auditory ERPs over trials for a case that habituation in long-term has been acquired. (B) The

marginal likelihood of the concentration parameter over trials has been shown. (C) The individual likelihood values of the discrete state space at four different samples

has been shown. The first state-space likelihood corresponds to the fifth sample (beginning of the experiment) up to the sample 480 which is the end of the

experiment. The estimated concentration at the beginning of the experiment is high (reflecting a high binding of attention) and decreases significantly at the end of the

experiment (lower binding of attention).

and σ 2 consider the prior information of habituation into the
model.

3.4. Tracking Data Distribution Over Trials
In Figure 10 we show the analysis of the Bayesian change point
algorithm on a data in which a habituation is thought to be
obtained. The data corresponds to 60 dB SPL which has in
general a comfortable loudness perception. The likelihoods of
the set of states in time (sample times) allow us to track the
temporal changes in the mean and concentration parameters of
the phase data. In this study we are particularly interested in
the changes of the concentration parameter over trials which is
interpreted as an indicator for the degree of attention allocated to
the sensory stimulus. The corresponding marginal distribution
of concentration parameter over all the samples has been shown

in Figure 10B. Every state number (here it is between 1 and
20) corresponds to a different concentration values distributed
logarithmically between [0,63]. In C the likelihood of the discrete
state space at four sample times corresponds to samples from
the beginning, middle, and end of the experiment. The level of
the concentration intensity drops significantly at the end of the
experiment in relation to its initial value at the beginning of the
experiment.

The effect of habituation between different subjects is variable.
For additional clarity, in Figure 11 we illustrate the expected
value of concentration at different stimuli intensities along with
the individual temporal changes in the concentration level for
three different subjects. The individual results of three different
subjects shown in Figure 11 show the change process in the
concentration states of phase data over all trials at a specific

Frontiers in Computational Neuroscience | www.frontiersin.org 11 January 2016 | Volume 10 | Article 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Mortezapouraghdam et al. Bayesian Phase Dynamics

time t = 97ms at different stimulus levels. The marginal
likelihoods of the concentration parameter illustrate the detected
changes in the phase synchronization. The results of 60 dB
SPL in subject 1-(A,B) present a gradual diffusion in phase
synchronization, whereas in 70 dB SPL (C,D), the degree of phase
cluster on average is low and contains many cyclic changes.
As in 80 dB SPL and 90 dB SPL (E,F) and (G,H), respectively,
the phase clustering remains relatively high throughout the
experiment before undergoing significant state transitions. This
is particularly evident in case of 90 dB SPL in which a significant
change occurs at t = 510ms. The averaged results of the
concentration at different times suggest that the level of phase
diffusion for higher stimuli levels such as 80 and 90 dB SPL
are relatively lower. This indicates a stronger attention-binding
to the stimulus because of the subjective unpleasant stimulus
perception.

The same explanation applies to the other two subjects in
Figure 11. We explain the findings as follows: The detected
change process in the concentration states of 60 and 70 dB SPL
in subject 2-(A,B) and (C,D) tend to fluctuate rapidly between
the lower-concentration states. The average of the expected
value of the concentration at these two stimuli are very low
and contain little structural synchronization. The diffused phase
information throughout the experiment indicate a very low
attention-binding to the stimulus. In case of 80 dB SPL phase
samples are uniformly distributed for the first 410ms, followed
by a higher degree synchronization, which is closely reflected in
the fitted concentration states. In the last subject in Figure 11,
a same type of explanation regarding phase modulations can be
applied.

In Section 4 we show how to use the changes in the underlying
estimated concentration parameter to objectively differentiate
between different stimuli.

4. DISCUSSION

The objective goal of this study is to evaluate the degree
of habituation effect using the instantaneous phase of ERPs
induced at different stimuli of 60, 70, 80, and 90 dB SPL. To
do this, we used a Bayesian model to track the changes in the
underlying concentration parameter of the instantaneous phase
information of ERPs. In addition we used the verbal responses
of the participants about the loudness of different stimuli. This
knowledge was used to validate the conclusion about the relation
between the objective measure and the loudness scale at different
stimuli.

Despite the high variability among subjects in terms of
changes in the concentration states (see in Supplementary Figure
1), the average results of the concentration in Figure 12 suggests
that as the loudness level increases, it is highly probable that the
degree of phase synchronization increases as well. To validate the
obtained results, we compare the averaged results of the level of
concentration against the average of the verbal responses of the
participants. As shown in Figure 12B, as stimuli level increases
the intensity of the loudness perception increases as well. This is
consistent with the studies conducted by Hood and Poole (1966)
and Stephens and Anderson (1971) , that the stimuli between 90

and 100 dB SPL are considered as uncomfortably loud in normal
hearing subjects. Furthermore, we applied a one way ANOVA test
over different stimulus levels across all subjects and it can reliably
distinguish between the 60 and 90 dB SPL using the average of
the expected concentration at a significance level of 5% with
p = 0.0101(F = 7.37).

To test the effectiveness of the algorithm on experimental data
and the significance of the results between 60 and 90 dB SPL,
we applied an additional test as follows: we generated a signal
which consists of two parts, the first part corresponds to the data
samples from the first half of the 60 dB SPL and the second part of
the signal contains the samples from the second half of the 90 dB
SPL data. We applied the proposed forward-backward Bayesian
model with the same empirical prior parameters as in Section
3.3 to check if we are able to detect the artificial change point
between two stimuli. In Figure 13, we show a few examples of our
observations. Throughout all observations, the model is able to
track the distribution in terms of the changes in the concentration
parameter.

In some of the tests it is more difficult to detect the artificial
transition. This is mainly because the data in 60 and 90 dB SPL
can behave the same at different time intervals. If the samples in
the first half of the 60 dB SPL have lower concentration and the
second half in 90 dB SPL is in a similar state, then the transition
may not be evident. The same argument holds when different
halves of the signals have high concentration values. However,
given the results and the additional test, we can confidently report
on the significant difference between 60 and 90 dB SPL.

4.1. The Rate of Change of the
Concentration Parameter
To test whether the stimulus level has an impact on the degree of
change in the concentration over trials, we conducted a second
ANOVA test as follows: We adjusted the subject specific factor
in the concentration values by dividing the expected values of
the concentration by the average of the expected value of the
concentration of the last 50 samples (the resulting values are
denoted as W in Algorithm 1). The meaning of the resulting
values can be understood as follows: In case of no change
at all, all values in W will be exactly 1. If the concentration
increases for a subject at a given stimulus level throughout the
experiment, values at the beginning of the experiment will be<1.
A decreasing level of concentration corresponds to values >1.
We next compute the average over the divided expected values
of the concentration for every subject at different stimulus levels.
This shows the relative changes in the phase concentration over
trials with respect to the last 50 samples. A One-way ANOVA test
yields the following results: The null hypothesis that the relative
changes of the expected of concentration is independent of the
stimulus level can be rejected at a significance level of 5% with
p = 0.0178(F = 3.58).

4.2. Limitations
Despite the success to objectively differentiate between different
stimuli by using the instantaneous phase information of the
ERPs, and determine a significant difference between the rate of
change in the concentration parameter among different groups,

Frontiers in Computational Neuroscience | www.frontiersin.org 12 January 2016 | Volume 10 | Article 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Mortezapouraghdam et al. Bayesian Phase Dynamics

FIGURE 11 | The plots in box [1] and [2] and [3] correspond to the results of three different subjects. Plots (A–H) for every box correspond to the

forward-backward results of the concentration likelihood over trials at different stimuli. Part I is the expected value of concentration for data at different times t. Based

on the magnitude of the expected value of the concentration parameter at different times (∀st) as shown in part I for every subject, we are able to distinguish between

different stimuli levels.
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FIGURE 12 | (A) The average expected concentration over all subjects at different stimuli levels. (B) The average over the loudness perception for all subjects at

different stimuli. The loudness perception y-axis is defined as NH, Not heard; THR, Threshold; VS, very soft; S, Soft; CBS, comfortable but soft; CL, comfortable loud;

L, loud; UL, upper level; TL, too loud.

FIGURE 13 | To show the effectiveness of the algorithm to significantly differentiate between 60 and 90dB SPL, we constructed a signal which is

composed of two parts. The first half of the signal (in red) corresponds to the first half of a signal at 60 dB SPL, and the other half (in black) corresponds to the

second half of a signal at 90 dB SPL. We run the proposed algorithm on data with the empirical prior parameters and check if the model is able to track the

distribution of data in terms of the concentration.

the variability in the dynamics of the instantaneous phase among
subjects is very large. Therefore, it is difficult to draw additional
general conclusions, such as determining a general time at which
habituation may occur for different subjects, or to conclude a
unique uncomfortable sound level threshold among all subjects.
Our results are also constrained by the limited amount of data.

As an example of habituation variability, we describe the
behavior of habituation effect for 60 and 70 dB SPL for subjects
1 and 2 in Figure 11. The corresponding results for subject
2 show that the phase information is uniformly distributed
throughout the experiment and as a result, the estimated
concentration fluctuates rapidly between the lower concentration
states. However, the habituation process in subject 1 is visible as a
continuous decay in the phase concentration. The change process
in concentration is more significant in the first subject than

the second one, however based on the average of the expected
value of concentration, it can be concluded that in both cases
a weak level of attention has been allocated to the stimulus due
to low expected value of the concentration. This effect is mainly
due to the variances of neural responses over the number of
stimulus presentations. The same acoustic stimulus presented
to a subject never elicits identical neural responses across a
series of presentation. While this effect holds for a single subject
(intraindividual variability), the effect is even more pronounced
across a group of subjects (interindividual variability) due to
physiological variations in the neural architecture. Moreover, our
experimental paradigm can not force the participants to ignore
a presented stimulus. The information carried by the stimulus is
not limited to its intensity. Associative processes in the individual
subject can alter the subjective impact of a stimulus (see Busse

Frontiers in Computational Neuroscience | www.frontiersin.org 14 January 2016 | Volume 10 | Article 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Mortezapouraghdam et al. Bayesian Phase Dynamics

et al., 2009) and lead to a variation of time periods in which the
subjects voluntarily pay attention to the presented stimulus. At
this stage, with the current data and analysis tools, we believe it is
not possible to describe a definite habituation onset in time which
is solely determined by stimulus intensity.

4.3. Future Work
There are several promising directions for future work:

• We can try to join similar repetitive state transitions into a
single state and show only the state transitions with significant
differences. This could be achieved by applying a discrete two
state Hidden Markov Model on the results of the marginal
value of the concentration parameter.

• To adapt the scale of the states with respect to the overall
average of the expected value of the concentration (i.e.,
different resolutions). Applying such mechanism will help us
to track the behavior of the habituation in cases that a weak
attention level has been allocated to the stimulus.

Additionally, one other area which could improve our
results is denoising the phase information more effectively as
a pre-processing step. In this study the phase information
was extracted after denoising the ERPs using a NLM
algorithm. We suggest to utilize denoising methods directly
on the phase data, to reduce the noise level in the phase
information.
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