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Mononuclear Clusterfullerene Single-Molecule Magnet Containing
Strained Fused-Pentagons Stabilized by a Nearly Linear Metal Cyanide
Cluster
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Abstract: Fused-pentagons results in an increase of local steric
strain according to the isolated pentagon rule (IPR), and for all
reported non-IPR clusterfullerenes multiple (two or three)
metals are required to stabilize the strained fused-pentagons,
making it difficult to access the single-atom properties. Herein,
we report the syntheses and isolations of novel non-IPR
mononuclear clusterfullerenes MNC@C76 (M = Tb, Y), in
which one pair of strained fused-pentagon is stabilized by
a mononuclear cluster. The molecular structures of MNC@C76

(M = Tb, Y) were determined unambiguously by single-crystal
X-ray diffraction, featuring a non-IPR C2v(19138)-C76 cage
entrapping a nearly linear MNC cluster, which is remarkably
different from the triangular MNC cluster within the reported
analogous clusterfullerenes based on IPR-obeying C82 cages.
The TbNC@C76 molecule is found to be a field-induced single-
molecule magnet (SMM).

Fullerenes are closed carbon cages with hollow interiors, and
such unique structures bring about intriguing physical and
chemical properties.[1] Most fullerenes isolated during the past
three decades are based on classical carbon cages composed
of hexagons and pentagons only,[1,2] for which the stability is
generally determined by the isolated pentagon rule (IPR)
proposed by Kroto in the 1980s.[3] According to IPR, fused-
pentagons result in an increase of local steric strain of
a carbon cage, thus destabilizing the fullerene.[3, 4] Stabiliza-
tion of the strained fused-pentagon within a non-IPR full-
erene cage has been fulfilled by either endohedral or

exohedral derivatization.[4] In particular, for endohedral
fullerenes which are a special class of fullerene with an
atom, ion, or cluster entrapped in the interior of carbon
cage,[5] the strong coordination of the entrapped metal ion(s)
with the fused-pentagon gives rise to an intramolecular
electron transfer and consequently stabilization of the non-
IPR endohedral fullerene.[4–6] Most of the non-IPR endohe-
dral fullerenes reported to date are based on clusterfuller-
enes[7] owing to the feasibility of entrapping multiple metals in
diverse forms of metal clusters, such as Sc3N@C68,

[6a,b]

Gd3N@C2n (2n = 78, 82, 84),[6c–e] LaSc2N@C80,
[6f] and

Sc2S@C72.
[6g] Noteworthy, for these reported non-IPR clus-

terfullerenes, multiple (two or three) metal ions are required
to stabilize simultaneously the charged metal clusters and the
fused-pentagons. Hence, it is desirable to synthesize novel
non-IPR endohedral fullerenes containing mononuclear
metal clusters.

Clusterfullerenes have been recently recognized as single
molecule magnets (SMMs) with potential applications in
spintronics, quantum computing, and high-density storage
devices.[8, 9] To date only a few endohedral fullerene SMMs
have been reported, including LnxSc3@xN@C80 (Ln = Dy, Ho,
x = 1, 2)[9a–d] and Dy2TiC@C80,

[9e] which are all based on an Ih-
C80 cage entrapping multiple rare-earth-metal ions that are
fixed as a triangle along with the central non-magnetic ion (N
or C). For such clusterfullerene SMMs based on multiple
metal centers, their magnetic properties are generally deter-
mined jointly by the entrapped individual paramagnetic
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constituents, making it difficult to access the single-atom
properties. Very recently we reported new SMMs based on
terbium cyanide clusterfullerenes TbNC@C82, which provide
a model system for the study of endohedral fullerene SMM
owing to its structural simplicity resulted from the mono-
nuclear nature.[10a] Thus, it is highly desirable to synthesize
new mononuclear clusterfullerene SMMs based on other
carbon cages.

Herein we report novel non-IPR mononuclear clusterful-
lerene SMM containing one pair of fused-pentagons, which is
stabilized by a mononuclear cyanide cluster. Two C76-based
mononuclear cyanide clusterfullerenes MNC@C76 (M = Tb,
Y) are synthesized and isolated, and their molecular struc-
tures are determined unambiguously by single-crystal X-ray
diffraction, revealing the non-IPR feature of the C76 cage as
well as the geometry of the entrapped MNC cluster. The
electronic and magnetic properties of MNC@C76 are further
characterized, and TbNC@C76 molecule is identified as
a field-induced SMM.

MNC@C76 (M = Tb, Y) were synthesized by a modified
Kr-tschmer–Huffman DC arc discharge method using a mix-
ture of Tb4O7 (or Y2O3) and graphite (molar ratio of M:C =

1:15) as the raw material under 400 mbar He and 10 mbar N2

gas.[10] Isolations of MNC@C76 (M = Tb, Y) were performed
by multi-step HPLC (see Supporting Information for exper-
imental details). The high purities of MNC@C76 (M = Tb, Y)
were confirmed by laser desorption time-of-flight (LD-TOF)
mass spectroscopic analyses (see Supporting Information
Figure S4 and S6).

High quality cocrystals of MNC@C76 (M = Tb, Y) with
NiII(OEP) (OEP = octaethylporphyrin), MNC@C76·Ni-
(OEP)·2 C6H6, were obtained by layering a benzene solution
of NiII(OEP) over the solution of MNC@C76 in benzene (for
TbNC@C76) or carbon disulfide (for YNC@C76),[6b–g,10, 11] and
were used for the X-ray crystallographic study. Figure 1a,d
show the relative orientations of MNC@C76 and NiII(OEP)

molecules in MNC@C76·Ni(OEP)·2(C6H6) cocrystals. For
both cases of TbNC@C76 and YNC@C76, the C76 cage is
fully ordered, enabling the unambiguous determination of the
carbon cage framework. However, the entrapped MNC
cluster is disordered (see Supporting Information Figur-
es S7–S8). For clarity, only the major site of the cluster was
shown in Figure 1. The asymmetric unit of MNC@C2v(19138)-
C76·NiII(OEP)·2(C6H6) has no crystallographic imposed sym-
metry and contains an intact fullerene molecule together with
an intact NiII(OEP) molecule and two solvent benzene
molecules (Figure 1a,d). A remarkable structural feature of
both cages of TbNC@C76 and YNC@C76 is that there is one
pair of fused-pentagon within the same C2v(19138)-C76 cage
(see Figure 1b,e), thus violating IPR.[2–4] Hence, MNC@C2v-
(19138)-C76 (M = Tb, Y) represents novel non-IPR mononu-
clear clusterfullerenes.

Quite similar to the cases of other reported clusterfuller-
enes including YNC@Cs(6)-C82 and TbNC@C82 mononuclear
cyanide clusterfullerenes,[10] the entrapped TbNC/YNC clus-
ters within TbNC@C2v(19138)-C76 and YNC@C2v(19138)-C76

both exhibit disorders. In fact, as many as 7 and 5 metal sites
are refined for TbNC@C2v(19138)-C76 and YNC@C2v(19138)-
C76, respectively (see Supporting Information Figures S7–S8).
Among them, the major metal site has an occupancy of
0.689(3) and 0.871(2) for Tb and Y, respectively, which locates
just under the junction of the fused-pentagon (see Fig-
ure 1c,f). This is quite similar to the reported non-IPR
clusterfullerenes such as Sc3N@D3(6140)-C68

[6b] and Sc2S@Cs-
(10528)-C72.

[6g] Thus, it is the strong coordination interaction
between Tb/Y metal and the cage that stabilizes the fused-
pentagon within the non-IPR C2v(19138)-C76 cage.

For the reported YNC@Cs(6)-C82 and TbNC@C2(5)-C82

mononuclear cyanide clusterfullerenes, the entrapped MNC
clusters both take a triangular geometry, and it is difficult to
distinguish N and C atoms crystallographically because of
their similarities on the atomic size and scattering power.[10,11d]

However, for the present case of MNC@C2v(19138)-C76, N
and C atoms within MNC cluster can be distinguished by
combining the crystallographic data with DFT computational
results. Our DFT computations of MNC@C76 (M = Tb, Y)
reveal that, for the non-IPR cage isomers (C2v, C1, Cs) of C76,
nearly linear (slightly V-shaped) M-N-C coordination is
always preferred with the energy being 15–18 kJmol@1 lower
than that for linear M-C-N coordination. This agrees well with
the M-N-C bond angle (154.9(13)88 and 160.4(7)88 for Tb and Y,
respectively, see Figure 1c, f) determined by X-ray crystallog-
raphy (see Supporting Information S4 for details). Hence,
except for the non-IPR feature of the C76 cage, the nearly
linear M-N-C configuration of the entrapped MNC cluster
within MNC@C76 highlights another remarkable difference
with the triangular geometry of the MNC cluster for the
analogous clusterfullerenes based on IPR-obeying C82 cages,
YNC@Cs(6)-C82 and TbNC@C82.

[10] A plausible explanation is
that for non-IPR MNC@C76 a stronger M–cage interaction is
required to stabilize the fused-pentagon as confirmed by the
smaller distance of the shortest M–cage contact (see Figure S9
and Table S4), thus the coordination bonding between the
metal atom and [NC]@ ligand is weakened via the change of
the bidentate [NC]@ ligand (for the triangular MNC cluster

Figure 1. Single-crystal X-ray structures of TbNC@C2v(19138)-C76 (a,b)
and YNC@C2v(19138)-C76 (d,e) shown with only the major Tb/Y (Tb1/
Y1) positions.[14] The fused-pentagon pair is highlighted in red. The
structures of the major TbNC (c) and YNC (f) clusters within C2v-
(19138)-C76 cage with X-ray determined bond lengths, bond angles,
and the interactions of the Tb/Y atom with the closest portions of the
cage are also shown. Solvent molecules, hydrogen atoms and minor
metal positions are omitted for clarity. Purple Tb; cyan Y; blue N;
gray C; green Ni.
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within MNC@C82) to a monodentate one (for the nearly
linear MNC cluster within MNC@C76).

Such a dramatic geometric change of the entrapped TbNC
cluster upon changing the carbon cage from IPR-obeying C82

to non-IPR C76 is further confirmed in terms of the N@C bond
length. Interestingly, while the X-ray determined N@C bond
length for YNC@Cs(6)-C82 and TbNC@C82 is in the range
0.935(11) to 1.05(4) c,[10] it elongates to 1.095(19) and
1.092(9) c for TbNC@C2v(19138)-C76 and YNC@C2v-
(19138)-C76, respectively (see Figure 1c, f). These values are
approaching those of the reported N@C triple bonds in
traditional cyanide/nitrile compounds and cyano coordination
complexes (1.12–1.17 c).[12] Thus, it is reasonable to assign the
N@C bond within MNC@C2v(19138)-C76 as a triple bond,
which appears to be compressed within MNC@C82 despite of
the larger cage size. This phenomenon is somewhat surprising
if simply considering the cage-size effect, and can be
interpreted by the weakened M–[NC]@ coordination bonding
induced by the stronger M–cage interaction, which is required
to stabilize the fused-pentagon of the non-IPR C76 cage as
discussed above.

Figure 2A shows the UV/Vis-NIR absorption spectra of
TbNC@C2v(19138)-C76 and YNC@C2v(19138)-C76 dissolved in
carbon disulfide (CS2), and their characteristic absorption
data are summarized in Table S6.
Interestingly, their overall absorp-
tion spectra, the characteristic
absorption peaks, the optical band-
gap (DEgap,optical) and color of CS2

solutions are almost identical, con-
firming their identity on the cage
isomeric structure which predomi-
nantly determines the electronic
absorption of endohedral fullerene
with the same type of entrapped
species.[5, 6]

The electronic properties of
TbNC@C2v(19138)-C76 and

YNC@C2v(19138)-C76 are further investigated by cyclic vol-
tammetry. Figure 2B shows their cyclic voltammograms
measured in o-dichlorobenzene (o-DCB) with tetrabutylam-
monium hexafluorophosphate (TBAPF6) as supporting elec-
trolyte (see also Figures S14–S15), and their characteristic
redox potentials are summarized in Table 1, which includes
also those of other analogous C82- and C76-based endohedral
fullerenes for comparison. Again, the characteristic redox
potentials and the electrochemical gaps (DEgap,ec) of
TbNC@C2v(19138)-C76 and YNC@C2v(19138)-C76 are almost
identical (with the difference being less than 0.05 V, see
Table 1), confirming further the decisive role of the carbon
cage on the electronic properties of endohedral fullerenes
with the same type of entrapped species.[5, 6] MNC@C2v-
(19138)-C76 show a larger separation between the second and
third reduction steps (0.52 and 0.50 V for TbNC@C76 and
YNC@C76, respectively) than those between the first two
reduction steps (first-second, 0.35–0.38 V) and the last two
reduction steps (third-fourth, 0.41–0.42 V), and this phenom-
enon is similar to the cases of YNC@Cs(6)-C82 and TbNC@C82

(Cs(6), C2(5), C2v(9)).[10] Such a resemblance on the electro-
chemical behavior between MNC@C2v(19138)-C76 and
MNC@C82 suggests that they adopt the same electronic
configuration, namely [M3+(NC)@]2+@[C2n]

2@, resulting in
a closed-shell electronic configuration with non-degenerate
low-lying LUMO and accessible LUMO + 1 orbitals.[5, 6, 10,13a]

While YNC@C76 is diamagnetic since there is no unpaired
electron for the Y3+ cation, Tb3+ has eight 4f electrons with
a 7F6 Hund ground state, indicating that TbNC@C76 is
paramagnetic. We then studied the magnetic properties of
TbNC@C76 with a superconducting quantum interference
device (SQUID). Figure 3A shows the normalized magnet-
izations of TbNC@C76 versus the applied field-temperature
quotient x = m0H/T measured at seven temperatures between
1.8 and 10 K. The good scaling in this temperature range
indicates that the ligand field, which splits the Hund ground
state, is so strong that the low temperature magnetization may
be described with one Jz level. Based on a perfect fit between
the experimental magnetization data and the non-collinear
magnetic moment model proposed previously for
DyxSc3@xN@C80,

[9a–c] the magnetic moment jm j of
TbNC@C76 is determined to be 8.9 mB, which agrees well
with the theoretical limit of 9 mB. Therefore, the Tb ground
state is assigned to be Jz =: 6 (see Supporting Information
S7). Such a large Jz value is a prerequisite for SMM.[10a]

Figure 2. A) UV/Vis-NIR spectra of TbNC@C2v(19138)-C76 (a) and
YNC@C2v(19138)-C76 (b) dissolved in CS2. Insets: Enlarged spectral
region (600–1400 nm) and the photographs of samples in CS2.
B) Cyclic voltammograms of TbNC@C2v(19138)-C76 (a) and YNC@C2v-
(19138)-C76 (b) in o-DCB solution. Ferrocene (Fc) was added as the
internal standard and all potentials are referenced to the Fc/Fc+

couple, TBAPF6 as supporting electrolyte, scan rate: 100 mVs@1. The
half-wave potential (E1/2) of each redox step is marked with a solid dot
to aid comparison. The asterisk labels the oxidation peak of Fc.

Table 1: Redox Potentials (V vs. Fc/Fc+), electrochemical gaps (DEgap,EC) of MNC@C2v(19138)-C76 and
other reported C82- and C76-based endohedral fullerenes.

Sample E1/2 [V vs. Fc/Fc+] DEgap,EC

[V][a]
Ref.

Ered Eox

1st 2nd 3rd 4th 1st

TbNC@C2v(19138)-C76 @0.91 @1.26 @1.78 @2.19 0.45 1.36 This work
YNC@C2v(19138)-C76 @0.93 @1.31 @1.81 @2.23 0.46 1.39 This work
TbNC@C2(5)-C82 @0.88 @0.97 @1.55 @1.91 0.50 1.38 [10c]
TbNC@Cs(6)-C82 @0.59 @0.84 @1.77 @1.92 0.55 1.14 [10a]
TbNC@C2v(9)-C82 @0.46 @0.81 @1.78 @1.96 0.55 1.07 [10a]
YNC@Cs(6)-C82 @0.59 @0.84 @1.76 @1.92 0.56 1.15 [10b]
Sm@C2v(19138)-C76 @0.69 @1.04 @1.62 @1.97 0.32 1.01 [13b]

[a] DEgap,EC =E1/2,ox(1)@E1/2,red(1).

Angewandte
ChemieCommunications

1832 www.angewandte.org T 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2017, 56, 1830 –1834

http://www.angewandte.org


Similar to the case of HoSc2N@C80,
[9d] the AC suscepti-

bility shown in Figure 3B qualifies TbNC@C76 as a field-
induced SMM or more specifically single-ion magnet (SIM)
which is a SMM containing only one single magnetic ion.[8b, 10a]

In low fields (m0H = 0.2 T), the AC susceptibility shows
significant temperature dependence of the magnetic relaxa-
tion times. Figure 3 C shows an Arrhenius plot of the magnet-
ization lifetimes in an applied field m0H = 0.2 T with a fit[9a]

extracting characteristic kinetic parameters for the demagnet-
ization of the observed super-paramagnetism. Above 4 K,
a thermal de-magnetization barrier (Deff/kB) of 12: 2 K with
a prefactor (t0) of 80: 40 ms can be obtained. At lower
temperatures, the magnetic relaxation time saturates where

the fit indicates a maximum lifetime (tc) of 9: 1 ms for the
temperature independent decay of the magnetization (see
Supporting Information S7).

In summary, two novel non-IPR mononuclear clusterful-
lerenes MNC@C76 (M = Tb, Y) have been successfully
synthesized and isolated, featuring the stabilization of one
pair of fused-pentagons by a mononuclear MNC cluster. The
MNC cluster entrapped within the non-IPR C2v(19138)-C76

cage is found to take a nearly linear configuration, which is
remarkably different from the triangular geometry of the
MNC cluster for the reported IPR-obeying C82 cage-based
mononuclear cyanide clusterfullerenes. TbNC@C2v(19138)-
C76 and YNC@C2v(19138)-C76 exhibit almost identical elec-
tronic properties as shown by UV/Vis-NIR spectroscopic and
cyclic voltammetric studies. TbNC@C76 is identified to be
a field-induced SMM with a maximum lifetime of 9: 1 ms.
Our study on the novel non-IPR mononuclear clusterfuller-
enes provides new insights into the exceptional stabilities of
strained fullerene molecules.
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