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Abstract: The linear response of non-Hermitian resonant systems demonstrates various intrigu-
ing features such as the emergence of non-Lorentzian lineshapes. Recently, we have developed
a systematic theory to understand the scattering lineshapes in such systems and, in doing so,
established the connection with the input/output scattering channels. Here, we follow up on that
work by presenting a different, more transparent derivation of the resolvent operator associated
with a non-Hermitian system under general conditions and highlight the connection with the
structure of the underlying eigenspace decomposition. Finally, we also present a simple solution
to the problem of self-orthogonality associated with the left and right Jordan canonical vectors
and show how the left basis can be constructed in a systematic fashion. Our work provides a
unifying mathematical framework for studying non-Hermitian systems such as those implemented
using dielectric cavities, metamaterials, and plasmonic resonators.
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1. Introduction

Over the last few years, the physics of non-Hermitian systems has attracted considerable attention
and inspired numerous studies that explore its implications using various platforms such as optics
[1–3], electronics [4–6], and acoustics [7,8]. In these efforts, the spectral response of the relevant
system was obtained by using direct calculations of the various scattering coefficients. While this
strategy is successful for small systems having few modes, it can be tedious for larger systems with
many degrees of freedom. In addition, it does not provide any insight into the response function.
Recently, we have developed a general linear response theory for discrete non-Hermitian systems
(coupled optical microresonators or electronic circuits for example) having exceptional points
(EPs) [9]. In that work, we derived a closed form solution for the resolvent operator (sometimes
called the Green’s function) expansion in terms of the system’s eigenvectors and the Jordan
canonical vectors. This expansion provides a systematic explanation for the structure of the
spectral response and particularly the presence of higher-order Lorentzian lineshapes and their
dependence on the input and output channels. Importantly, the resolvent expansion in our earlier
work is valid for any generic system having any number of EPs of any order and for any excitation
profile and frequency. Our derivation in [9] relies on the algebra of the eigenvectors and the
canonical vectors (bi-orthogonality, self-orthogonality, etc.) associated with the underlying
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Hamiltonian. While this strategy is technically successful, it does not necessarily emphasize the
connection between the resolvent expansion and the structure of the eigenspace.

In this work, we present an alternative, more transparent derivation of the resolvent operator
associated with a generic, discrete non-Hermitian system that highlights the structure of the
eigenspace and also establishes the connection with prior works that focused only on the special,
more restrictive scenario of a non-Hermitian system in the vicinity of EPs. In addition, we also
present a straightforward solution to the problem of self-orthogonality associated with the Jordan
canonical vectors, which in turn facilitates the evaluation of the linear response of non-Hermitian
systems.

2. Results

Resolvent expansion:— Similar to our work in [9], we start by considering a linear, discrete
system (see Fig. 1) described by a set of coupled ordinary differential equations of the form:

i
d |a(t)⟩

dt
= H |a(t)⟩ + iΓ |b(t)⟩, (1)

where the kets |a(t)⟩ = [a1(t), a2(t), . . . , aN(t)]T , |b(t)⟩ = [b1(t), b2(t), . . . , bL(t)]T represent the
field amplitudes inside the discrete system (the electric fields inside coupled optical resonators as
an example) and the excitation signal, respectively. In addition, the N × N matrix H describes the
interaction between the excitation amplitudes associated with the individual resonant elements of
the system while Γ is the N × L coupling matrix between L input channels and the excitation
amplitudes. This system of equations can model coupled optical, electronic, acoustic, or
mechanical systems (see Fig. 1). In some situations, such as in optics, the above equation
is also supplemented by an output relation of the form |v(t)⟩ = Ŷ |b(t)⟩ − ΓT |a(t)⟩, where
|v(t)⟩ = [v1(t), v2(t), . . . , vL(t)]T are the output field amplitudes, and Ŷ describes the the direct
coupling between the input and output channels. Following [9], we will simplify the notation
and define |f (t)⟩ = iΓ |b(t)⟩. Expressed in the Fourier domain (defined in the bases e−iωt) Eq. (1)
takes the form (ωI − H)|A(ω)⟩ = |F(ω)⟩, which admits the solution:

|A(ω)⟩ = G(ω)|F(ω)⟩, (2)

with G(ω) ≡ (ωI − H)−1.
The goal of this paper is to derive an expression for G(ω) in terms of the eigenvectors and

canonical vectors of H under general conditions. In what follows, we suppress the dependence
on ω but keep in mind that we are working in the Fourier domain. Without loss of generality,
we assume that the spectrum of the Hamiltonian H exhibits N − M distinct eigenvalues and one
EP of order M (the order of an EP defines the number of coalescing eigenstates forming the
EP) defined by (H − ωnI)|ϕr

n⟩ = 0, for n = 1, 2, .., N − M, and (H − ωEPI)|ϕr
EP⟩ = 0. Here, the

subscript r refers to right eigenvectors as opposed to left eigenvectors which we will define below.
Obviously, the eigenvectors of H do not span the whole underlying space. It is well known,
however, that the underlying space can be completed by using the Jordan canonical vectors
defined as (H − ωEPI)|Jr

m⟩ = χm |Jr
m−1⟩, for m = 1, . . . , M. Here, we define |Jr

1⟩ ≡ |ϕr
EP⟩ which

satisfies (H − ωEPI)|Jr
1⟩ = 0, and the constants χm are introduced to ensure that the physical

dimensions remain consistent with their numerical values chosen such that
⟨︁
Jr

m |Jr
m
⟩︁
= 1. Due

to the non-Hermiticity of H, the eigenvectors |ϕr
n⟩ are not orthogonal. However, the left and

right eigenvectors satisfy the bi-orthogonality condition ⟨ϕl
m |ϕ

r
n⟩ = δm,n with the left eigenvectors

defined as ⟨ϕl
n |(ωI − H) = 0. This, however, is not necessarily the case for the Jordan canonical

vectors since some of them may be self-orthogonal, i.e.
⟨︁
Jl

m |Jr
m
⟩︁
= 0 for some values of m (see

Supplementary Note 2 in [9]). In our previous work [9], we did not present an algorithmic solution
to this problem. Instead, we considered generalized left vectors ⟨J̃l

m | that satisfy the relation
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⟨︁
J̃l

m |Jr
n
⟩︁
= δm,n. Such generalized vectors can be constructed by applying an orthogonalization

technique (for instance, the Gram-Schmidt procedure [10]) to the left canonical vectors. In the
main text here, we will use the same notation but will present a straightforward algorithmic
strategy for building this bi-orthogonal set shortly after. In contrast to our work in [9], where a
general expansion was sought after directly, here we proceed by decomposing the full space U

into manifolds Uw,v, i.e. U = Uw ⨁︁
Uv with

⨁︁
denoting the direct sum (see Fig. 2). The

key property of Uw,v is their invariance under the action of the Hamiltonian H. Here, Uw is an
invariant subspace spanned by the set of all the right eigenvectors |ϕr

n⟩ except the exceptional
vector |Jr

1⟩, while Uv is an invariant subspace spanned by the right exceptional vector together
with the right Jordan vectors |Jr

m⟩ for m ≥ 2 (see Supplementary Note 1 for more discussion on
this decomposition).

Fig. 1. Illustration of the system and its underlying properties. (a) A schematic of a discrete
non-Hermitian system made of N coupled resonators and having multiple input bm and
output vm channels. The field amplitude in resonator n is denoted by an. (b) An illustration
of one possible scenario for the spectrum associated with the underlying Hamiltonian of
the structure in (a). In that particular example, the system has N − M distinct eigenstates
associated with the eigenvectors |ϕr

n⟩ and an exceptional point of order M corresponding to
an exceptional vector |ϕr

EP⟩. The analysis presented in this work is general and applies to
any other scenario.

It is well known that under the above space decomposition, there exists a similarity transfor-

mation that casts the matrix Hamiltonian H in the block diagonal form H = ⎛⎜⎝
Hw 012

021 Hv
⎞⎟⎠, where

Hw,v are (N − M) × (N − M) and M × M block matrices, respectively; and 012 is a (N − M) × M
null matrix with 021 being the transpose of 012. In this basis, any vector |u⟩ can be naturally

partitioned into two components |u⟩ = ⎛⎜⎝
|uw⟩

|uv⟩

⎞⎟⎠ where |uw⟩ is an N − M dimensional vector that

spans Uw while |uv⟩ is an M dimensional vector that spans Uv. Importantly, in this basis,

the eigenvectors and canonical vectors take the form |ϕr
n⟩ =

⎛⎜⎝
|ϕw,r

n ⟩

|0v⟩

⎞⎟⎠ and |Jr
m⟩ =

⎛⎜⎝
|0w⟩

|Jv,r
m ⟩

⎞⎟⎠. By

using this decomposition scheme, one can now express the resolvent operator and the spectral
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responses in the form G(ω) ≡ (ωI − H)−1 =
⎛⎜⎝
Gw(ω) 012

021 Gv(ω)

⎞⎟⎠ and |Aw,v⟩ = Gw,v |Fw,v⟩ where

Gw,v(ω) = (ωI − Hw,v)−1, |A⟩ = ⎛⎜⎝
|Aw⟩

|Av⟩

⎞⎟⎠, and |F⟩ = ⎛⎜⎝
|Fw⟩

|Fv⟩

⎞⎟⎠.

Fig. 2. Structure of the eigenspace associated with the Hamiltonian H. (a) The construction
of the subspaces Uw and Uv in terms of the right eigenvectors, the exceptional vector, and
the Jordan vectors. (b) Illustration of the decomposition properties of U into the subspaces
Uw,v and the invariance of the latter under the action of the Hamiltonian H.

The above discussion demonstrates that the task of finding the Green’s operator over the
complete space can be eventually reduced to evaluating the Green’s operators over the two
subspaces Uw,v independently which greatly simplifies the analysis. In particular, for the
subspace Uw spanned by |ϕw,r

n ⟩, we find that:

Gw(ω) =

N−M∑︂
n=1

|ϕw,r
n ⟩⟨ϕw,l

n |

ω − ωn
. (3)

This expression can be obtained by simply invoking the completeness relation of the identity
operator associated with Uw: Iw =

∑︁N−M
n=1 |ϕw,r

n ⟩⟨ϕw,l
n | in conjunction with |Aw⟩ = Gw |Fw⟩ (see

Supplementary Note 2).
On the other hand, for the subspace Uv, the expression for the Green’s operator in terms of

the Hamiltonian is given by:

Gv(ω) =

M∑︂
k=1

(Hv − ωEPI)k−1

(ω − ωEP)k
. (4)

This series expansion in terms of H is discussed in [11–13]. A particularly elegant and more
transparent derivation of this expansion that makes use of the nilpotent nature of the matrix
(Hv − ωEPI) has been recently presented in [14], which we also reproduce in Supplementary
Note 3 for completeness.

Again, by invoking the identity operator associated with subspace Uv, namely Iv =∑︁M
k=1 |J

v,r
k ⟩⟨J̃v,l

k |, we obtain:

Gv(ω) =

M∑︂
k=1

|Jv,r
k ⟩⟨J̃v,l

k |

ω − ωEP
+

M∑︂
k=2

χk |Jv,r
k−1⟩⟨J̃

v,l
k |

(ω − ωEP)2
+

M∑︂
k=3

χk χk−1 |Jv,r
k−2⟩⟨J̃

v,l
k |

(ω − ωEP)3
+ · · · (5)

which we can cast in the form:

Gv(ω) =

M∑︂
m=1

M∑︂
k=m

α
(m)

k
|Jv,r

m ⟩⟨J̃v,l
k |

(ω − ωEP)k−m+1 , (6)

with the coefficients α(m)

k given by α(m)
m = 1 and α(m)

k = α
(m)

k−1 χk (see Supplementary Note 3).
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Therefore, the resolvent operator is given by:

G(ω) =
⎛⎜⎝
∑︁N−M

n=1
|φw,r

n ⟩ ⟨φw,l
n |

ω−ωn
012

021
∑︁M

m=1
∑︁M

k=m α
(m)

k
|Jv,r

m ⟩ ⟨J̃v,l
k |

(ω−ωEP)k−m+1

⎞⎟⎠ . (7)

Note that the above expansion is expressed in terms |ϕw,r
n ⟩ and |Jv,r

m ⟩ together with the
corresponding left vectors. Our goal, however, is to express G(ω) in terms of the vectors
associated with the full space, i.e. |ϕr

n⟩ and |Jr
m⟩. To do so, we first recall the definition

|ϕr
n⟩ =

⎛⎜⎝
|ϕw,r

n ⟩

|0v⟩

⎞⎟⎠. It is then straightforward to show that:

N−M∑︂
n=1

|ϕr
n⟩⟨ϕ

l
n |

ω − ωn
=
⎛⎜⎝
∑︁N−M

n=1
|φw,r

n ⟩ ⟨φw,l
n |

ω−ωn
012

021 022

⎞⎟⎠ , (8)

where here 022 is a M × M null matrix.

Similarly, by recalling that |Jr
m⟩ =

⎛⎜⎝
|0w⟩

|Jv,r
m ⟩

⎞⎟⎠, we find that:

M∑︂
m=1

M∑︂
k=m

α
(m)

k
|Jr

m⟩⟨J̃l
k |

(ω − ωEP)k−m+1 =
⎛⎜⎝
011 012

021
∑︁M

m=1
∑︁M

k=m α
(m)

k
|Jv,r

m ⟩ ⟨J̃v,l
k |

(ω−ωEP)k−m+1

⎞⎟⎠ , (9)

where here 011 is a (N − M) × (N − M) null matrix.
By adding the two expressions in Eqs. (8) and (9), we arrive at:

N−M∑︂
n=1

|ϕr
n⟩⟨ϕ

l
n |

ω − ωn
+

M∑︂
m=1

M∑︂
k=m

α
(m)

k
|Jr

m⟩⟨J̃l
k |

(ω − ωEP)k−m+1 =

⎛⎜⎝
∑︁N−M

n=1
|φw,r

n ⟩ ⟨φw,l
n |

ω−ωn
012

021
∑︁M

m=1
∑︁M

k=m α
(m)

k
|Jv,r

m ⟩ ⟨J̃v,l
k |

(ω−ωEP)k−m+1

⎞⎟⎠ .

(10)

The RHS of Eq. (10) is G(ω), so we finally obtain:

G(ω) =

N−M∑︂
n=1

|ϕr
n⟩⟨ϕ

l
n |

ω − ωn
+

M∑︂
m=1

M∑︂
k=m

α
(m)

k
|Jr

m⟩⟨J̃l
k |

(ω − ωEP)k−m+1 . (11)

The above expression is exactly the result obtained in our earlier work [9]. While the result
here is derived in a particular basis, it is straightforward to check that the mathematical structure
of the above expression is invariant under similarity transformations (see Supplementary Note 4).

Left vector basis:— From the definition of the left eigenvectors ⟨ϕl
n |, it is obvious that they

are unique and can be found by solving a row eigenvalue problem (as opposed to the standard
column eigenvalue problem associated with right eigenvectors). However, as indicated above and
discussed in detail in [9], the situation is more complicated for the canonical vectors since some
of them are self-orthogonal, i.e. they can satisfy ⟨Jl

m |Jr
m⟩ = 0 for some values of m. In the main

text, we assumed that we have obtained, somehow, a set of left vectors that together with the
right canonical vectors form a bi-orthogonal set. Here, we present a straightforward procedure to
obtain such a set and, in doing so, we also obtain the left eigenvectors automatically without
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solving any eigenvalue problem. To do so, we first note that the set of right eigenvectors {|ϕr
n⟩}

and right canonical vectors {|Jr
m⟩} are linearly independent [9]. We now form the matrix Q1

whose columns are exactly these vectors, i.e. Q1 = [|ϕr
1⟩ · · · |ϕ

r
N−M⟩, |Jr

1⟩ · · · |J
r
M⟩]. Let us now

assume that we have found the set of the left vectors {⟨ϕl
n |} and {⟨J̃l

n |}. Each of these vectors
is orthogonal to all the different right vectors and has a finite projection on the corresponding
right vectors which can be chosen to be unity, i.e. there is no self-orthogonality. If we arrange
these left vectors as the rows in matrix Q2 according to Q2 = [|ϕl

1⟩ · · · |ϕ
l
N−M⟩, |J̃ l

1⟩ · · · |J̃
l

M⟩]†,
where the superscript † indicates Hermitian conjugation, and invoke the bi-orthogonality, we
obtain Q2Q1 = I, where I is the identity matrix. In other words, we have Q2 = Q−1

1 . Thus, once
the right eigenvectors and canonical vectors are obtained, the bi-orthogonal left vectors can be
determined by a simple matrix inversion.

Working example:— We illustrate here the above results by presenting a simple example for
calculating the right/left vectors and the Green’s operator in a different basis. To do so, we

consider the following Hamiltonian matrix H =
⎛⎜⎜⎜⎜⎝
1 0 0

0 2 1

0 0 2

⎞⎟⎟⎟⎟⎠
, which is already in the Jordan

canonical form. The eigenvalues of H are λ1 = 1 and λ2,3 = 2. The first eigenvalue corresponds

to a distinct eigenvector |ϕr
1⟩ =

⎛⎜⎜⎜⎜⎝
1

0

0

⎞⎟⎟⎟⎟⎠
, whereas λ2,3 is associated with an EP of order two and an

exceptional vector given by |ϕr
EP⟩ ≡ |Jr

1⟩ =

⎛⎜⎜⎜⎜⎝
0

1

0

⎞⎟⎟⎟⎟⎠
. The right Jordan canonical vectors can be easily

obtained from its definition. Choosing χ2 = 1, we find |Jr
2⟩ =

⎛⎜⎜⎜⎜⎝
0

1

1

⎞⎟⎟⎟⎟⎠
.

In order to calculate the left vectors, we apply the procedure outlined above, i.e. we

construct the matrix Q1 = [|ϕr
1⟩, |J

r
1⟩, |J

r
2⟩] =

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 1

0 0 1

⎞⎟⎟⎟⎟⎠
and calculate its inversion, Q2 =

[|ϕl
1⟩, |J̃

l
1⟩, |J̃

l
2⟩]

† =

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 1

0 0 1

⎞⎟⎟⎟⎟⎠
−1

=

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 −1

0 0 1

⎞⎟⎟⎟⎟⎠
. The left bi-orthogonal set of vectors can be

then read off immediately as ⟨ϕl
1 | =

(︂
1 0 0

)︂
, ⟨J̃l

1 | =
(︂
0 1 −1

)︂
, and ⟨J̃l

2 | =
(︂
0 0 1

)︂
.

By substituting these results directly in Eq. (11), we obtain:

G(ω) =
|ϕr

1⟩⟨ϕ
l
1 |

ω − 1
+

|Jr
1⟩⟨J̃

l
1 |

ω − 2
+

|Jr
1⟩⟨J̃

l
2 |

(ω − 2)2
+

|Jr
2⟩⟨J̃

l
2 |

ω − 2
=

⎛⎜⎜⎜⎜⎝
1

ω−1 0 0

0 1
ω−2

1
(ω−2)2

0 0 1
ω−2

⎞⎟⎟⎟⎟⎠
. (12)
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Note that the matrix form of G(ω) is in accordance with what one would expect for a
Hamiltonian H that is already in the Jordan canonical form.

Let us now consider the non-trivial case of a Hamiltonian that is not in its Jordan form. For
sake of simplicity, we will consider the same H as before but written in different basis via a

similarity transform Hnew = T−1HT . Here, we will choose T =
⎛⎜⎜⎜⎜⎝
1 1 2

0 2 3

0 1 2

⎞⎟⎟⎟⎟⎠
, which gives:

Hnew =

⎛⎜⎜⎜⎜⎝
1 0 −1

0 2 −3

0 −1 2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
1 0 0

0 2 1

0 0 2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
1 1 2

0 2 3

0 1 2

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
1 −1 −2

0 4 4

0 −1 0

⎞⎟⎟⎟⎟⎠
. (13)

By repeating the same procedure as above, we find that the distinct eigenvector to be |ψr
1⟩ =

⎛⎜⎜⎜⎜⎝
1

0

0

⎞⎟⎟⎟⎟⎠
while the exceptional vector and Jordan vector are |hr

1⟩ =

⎛⎜⎜⎜⎜⎝
0

−2

1

⎞⎟⎟⎟⎟⎠
and |hr

2⟩ =

⎛⎜⎜⎜⎜⎝
1

−1

0

⎞⎟⎟⎟⎟⎠
(obtained

for χ2 = 1 as before), respectively. The left bi-orthogonal vectors can be easily obtained

as before by evaluating Q1 and its inverse Q2 =

⎛⎜⎜⎜⎜⎝
1 0 1

0 −2 −1

0 1 0

⎞⎟⎟⎟⎟⎠
−1

=

⎛⎜⎜⎜⎜⎝
1 1 2

0 0 1

0 −1 −2

⎞⎟⎟⎟⎟⎠
, which

gives ⟨ψl
1 | =

(︂
1 1 2

)︂
, ⟨h̃l

1 | =
(︂
0 0 1

)︂
, and ⟨h̃l

2 | =
(︂
0 −1 −2

)︂
. Finally, we find (see

Supplementary Note 4):

Gnew(ω) =
|ψr

1⟩⟨ψ
l
1 |

ω − 1
+

|hr
1⟩⟨h̃

l
1 |

ω − 2
+

|hr
1⟩⟨h̃

l
2 |

(ω − 2)2
+

|hr
2⟩⟨h̃

l
2 |

ω − 2

=

⎛⎜⎜⎜⎜⎝
1

ω−1
1

ω−1 − 1
ω−2

2
ω−1 − 2

ω−2

0 2
(ω−2)2 +

1
ω−2

4
(ω−2)2

0 − 1
(ω−2)2

1
ω−2 − 2

(ω−2)2

⎞⎟⎟⎟⎟⎠
.

(14)

One can easily verify that G(ω) = TGnewT−1 (see Supplementary Note 4). Importantly, we
note that the matrix form here is not as simple as before. This is because the eigenvectors and the

canonical vectors in this representation do not coincide with the canonical basis

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎛⎜⎜⎜⎜⎝
1

0

0

⎞⎟⎟⎟⎟⎠
,
⎛⎜⎜⎜⎜⎝
0

1

0

⎞⎟⎟⎟⎟⎠
,
⎛⎜⎜⎜⎜⎝
0

0

1

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

,

which in turn gives rise to a more complicated matrix form with some elements featuring an
interference between Lorentzian and square Lorentzian responses (the terms proportional to 1

ω−x
and 1

(ω−x)2 , respectively, for any number x). Evidently, the simple method presented here for
calculating the left basis, which is one of the main results of this work, facilitates the evaluation
of the linear response.
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3. Discussion and conclusion

We have presented a transparent derivation for the resolvent operator expansion in terms of the
eigenvectors and canonical vectors associated with discrete non-Hermitian Hamiltonians. In
contrast to our previous work [9], our derivation here highlights the connection with the structure
of the underlying eigenspace decomposition. Finally, we have also presented a simple solution to
the problem of self-orthogonality that arises when dealing with the left and right Jordan canonical
vectors and shown how the left basis can be constructed in a systematic fashion using a single
matrix inversion process.
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