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Abstract

Combining global gridded population and fossil fuel based CO2 emission data at 1 km scale,

we investigate the spatial origin of CO2 emissions in relation to the population distribution

within countries. We depict the correlations between these two datasets by a quasi-Lorenz

curve which enables us to discern the individual contributions of densely and sparsely popu-

lated regions to the national CO2 emissions. We observe pronounced country-specific char-

acteristics and quantify them using an indicator resembling the Gini-index. As demonstrated

by a robustness test, the Gini-index for each country arise from a compound distribution

between the population and emissions which differs among countries. Relating these indi-

ces with the degree of socio-economic development measured by per capita Gross Domes-

tic Product (GDP) at purchase power parity, we find a strong negative correlation between

the two quantities with a Pearson correlation coefficient of -0.71. More specifically, this

implies that in developing countries locations with large population tend to emit relatively

more CO2, and in developed countries the opposite tends to be the case. Based on the rela-

tion to urban scaling, we discuss the implications for CO2 emissions from cities. Our results

show that general statements with regard to the (in)efficiency of large cities should be

avoided as it is subject to the socio-economic development of respective countries. Con-

cerning the political relevance, our results suggest a differentiated spatial prioritization in

deploying climate change mitigation measures in cities for developed and developing

countries.

Introduction

Urbanization is an ongoing process in many parts on the globe. It is projected that due to

rural-urban migration much of the future urbanization is going to take place in developing

and transition countries. This leads to ever more mega-cities [1, 2]. In parallel, humanity is fac-

ing another challenge, namely climate change. To date, cities, despite occupying less than 1%

of the global land area, account for more than 70% of the anthropogenic green house gas

(GHG) emissions [3]. Therefore, cities are often identified as the key focal areas for global
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mitigation actions. While a large contribution of the global CO2 emissions is commonly attrib-

uted to cities [4], the CO2 reduction role of further urbanization is also discussed with the

argument of efficiency gains associated with the high densities in cities [5]. Moreover, cities

are known to perform more efficiently in addressing the basic needs of human beings [5].

Hence, a diversified view on cities is needed and in view of climate change mitigation, a better

understanding of the interplay between urbanization, origin of CO2 emissions, and socio-eco-

nomic development is of great interest.

Globally, cities are characterized by higher population densities compared to rural areas.

Recent literature has identified the crucial role played by population density in either increas-

ing or decreasing the emission efficiency in cities [6–10]. The impact of population density on

reducing/increasing CO2 emissions in these studies is either calculated based on specific

assumptions made to calculate the city specific CO2 emissions or through the construction of

city clusters using a clustering algorithm, see [11, 12]. However, most of these studies are lim-

ited to a specific country or a region. Therefore, there is a gap in the existing literature about

the sub-national origin of CO2 emissions at a global scale. Bridging this gap would provide bet-

ter insights as to whether population density is a crucial factor in improving/decreasing emis-

sion efficiency and would identify other factors that influence CO2 emissions at a country

scale.

Here, we investigate how the spatial origin of CO2 emissions relates to the spatial distribu-

tion of population. We address the questions, to which extent locations of large population

also emit the most CO2 and if there is any dependence on human development. In order to

avoid discussions about the proper city definition, the correlations are analyzed on the level of

grid cells—keeping in mind that locations of high population are likely to belong to cities.

Thus, we analyze population and CO2 emissions by employing a quasi-Lorenz curve that

relates the cumulative population and cumulative emissions for entire countries on a grid-cell

level (the Lorenz curve was originally used to describe unequal income distribution).

The shape of these curves explains whether the emissions are concentrated in locations of

high or low population. Inspired by the apparent similarity, we extend the well-known Gini-

index. Based on the data employed, we find that within many countries, locations with high or

low population exhibit different relative emissions. We thus compare the extended “Gini-

index” with the economic strength of the considered countries (as captured by the GDP per

capita) which can be to some extent interpreted as a measure for the stage of development. We

further hypothesize that the development stage of respective countries plays an important role

in explaining this relationship.

Earlier studies attempted to address the emission efficiency of densely populated regions by

means of urban scaling, where an urban indicator is plotted against the city size in terms of

population [13]. The exponent, estimated as the slope of a linear regression in the log-log

representation, quantifies efficiency gains of large or small cities. However, in case of urban

CO2 emissions, published results from urban scaling leave an inconclusive picture (for an

overview we refer to [14, 15]). In the present work we address this issue by combining high res-

olution, global population and CO2 emission data sets in order to quantify whether locations

with high or low population emit more or less CO2. We further discuss an analytic link

between our approach and urban scaling.

Materials and methods

Population data

We used the Gridded Population of the World, version 4 (GPWv4) population count data for

the year 2010 [16]. GPWv4 data allocate the population counts of census units collected
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globally from various institutions into standard 1 × 1 km2 grid cells by means of an areal-

weighting interpolation [17]. Fig 1(a) illustrates the GPWv4 data in the year 2010 for the con-

tiguous US. The distribution of population in the US exhibits an inhomogeneity. The metro-

politan urban agglomerations accommodate a large share of population in the US, whereas the

states in the Mountain West are generally sparsely populated.

CO2 emissions data

Fossil fuel based CO2 emission estimates are obtained from the Open source Data Inventory of

Anthropogenic CO2 (ODIAC) emissions of version ODIAC2015a available globally at 1 × 1

km2 grid for the year 2010 [18]. In the ODIAC dataset, point sources, i.e. power plant emis-

sions obtained from the database CARMA (Carbon Monitoring and Action) are directly

assigned to the grids, while non-point sources (e.g. emissions from transport, industrial, resi-

dential, and commercial sectors) are disaggregated based on global and national emission

estimates made by the Carbon Dioxide Information Analysis Center (CDIAC) [19], using

remotely sensed nightlight data as a proxy. An exception is the emissions from cement produc-

tion which have point source origins but are spatially disaggregated as non-point sources.

Non-land emissions, such as those from international bunkers (international aviation and

maritime shipping), are assigned to the non-point emissions.

Compared with conventional population-based approaches, the nightlight data can trace

the human activities more appropriately [20, 21]. Worthy of special mention is that the

gridded emission data of ODIAC used in this study is not disaggregated using population den-

sity as a proxy. Therefore, the two datasets depict distinguishing zonal patterns, as shown in

the example for the New York metropolitan region in Fig 1(b) and 1(d). Without relying on

the time-consuming update of census data, emissions allocated using nightlights can be

updated more frequently and may be of particular importance for developing countries where

conducting census is still a challenge. Fig 1(c) shows the gridded total anthropogenic CO2

emissions (in tons) for the year 2010 for the contiguous US, analogous to the population data

shown in Fig 1(a). As observed, the emissions also exhibit pronounced inhomogeneities.

In order to check the consistency of the results obtained, we further compare our results

obtained from the ODIAC data with other CO2 emission datasets, namely the Fossil Fuel Data

Fig 1. Population and CO2 emissions for the contiguous USA. (a) Gridded Population of the World, version 4, GPWv4 [17] at 1 × 1 km2 spatial resolution in

2010 and (c) total anthropogenic CO2 emission from ODIAC data [18] for the same region, year, and resolution. (b) and (d) depict magnified views of population

and CO2 emission for the New York metropolitan region, respectively. Visually, large agglomerations of population coincide with large amounts of emissions. To

which extent they relate proportionally is the subject of this paper.

https://doi.org/10.1371/journal.pone.0242479.g001
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Assimilation System (FFDAS) version 2.0 [22] and the Emission Database for Global Atmo-

spheric Research (EDGAR) version 4.3.2 [23]. Both data are for the year 2010. For the sub-

national analysis we also analyze the Vulcan data, which has been analyzed before [12]. How-

ever, we focus on ODIAC, since it has the highest resolution, and we discuss the results of

other datasets in comparison to the ODIAC results.

The fundamentals of creating the four gridded CO2 emission inventories used in this study

have been compared and discussed in detail in [24]. In general, they differentiate themselves in

terms of 1) the energy statistics used which determines the sectors included in calculating the

total national CO2 emissions, and 2) the approach to disaggregating and allocating the CO2

emissions to a regular grid.

Dissimilarities among the inventories may be dominated by the disaggreation method.

FFDAS applies the Kaya identity to balance CO2 emissions across regions, relying on popula-

tion and nightlight data [22, 25] (see also [15] for further information on the Kaya identity).

Viewed as the most accurate emissions inventory, a bottom-up method has been used for the

Vulcan data allocate large point sources, road-specific emissions, and non-point emissions to

census tracts, and further resampled to a 10-km grid [26]. However, since the subnational

emissions data are not always available, the Vulcan data is restricted to the USA at the

moment.

Inhomogeneity index of CO2 emissions Ge

In order to characterize the relation between country-wise population and CO2 emissions, we

plotted the cumulative quantities against each other. We sorted the grid cells of a country by

population in ascending order and calculated the cumulative share of population and CO2

emissions arising therefrom. Then we interpreted the cumulative emissions as a function of

the corresponding cumulative population.

The plotted curves resemble the so-called concentration curves used to describe socio-eco-

nomic inequalities. The most popular concentration curve is the Lorenz curve usually

employed to visualize income inequalities. Other applications of concentration curves include

for example the analysis of socio-economic inequalities in the health sector (e.g. [27]). Since

the curves we compute here, do not agree exactly with the classical definition of a concentra-

tion curve we will refer to them as quasi-Lorenz curves. We justify the choice of this method by

its simplicity—it only requires sorting—and the fact that it does not require any parameters or

assumptions on functional forms.

To quantify the curves, we break the shape of each curve down to a single number. As it is

well known and used in this context, we generalize the Gini coefficient, which originally has

been introduced to quantify income inequality [28]. As illustrated in Fig 2, we distinguish

between curves above or below the dashed line with a slope of 45˚—the line of equality. For

the blue quasi-Lorenz curve, we defined an inhomogeneity index as the ratio of the area

between the curve and the line of equality (marked as A) to the total area below the line of

equality (A + B). Analogously, the inhomogeneity index of the green curve is −A0/(A0 + B0).
We arbitrarily assign the inhomogeneity index for the curves above the line of equality nega-

tive, and below positive.

Results

Inhomogeneity of emissions across countries

Fig 3 shows the quasi-Lorenz curves for a few countries. The slopes of the curves depend on

per capita emissions. In the case of constant emissions per capita, the cumulative share of pop-

ulation and CO2 emissions are proportional to each other and follow the diagonal. This is
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approximately the case for Germany, Fig 3(e). In the case of the USA, Fig 3(a), and the UK, Fig

3(b), the curves are bent to the upper left corner, i.e. the grid cells with small population

already include a large amount of emissions (large slope). On the contrary, the curves, e.g., for

Uganda, Fig 3(h), and Kenya, Fig 3(g), are bent to the lower right corner. Many grid cells with

small population are necessary to include a fair amount of emissions (small slope). Accord-

ingly, curves bent to upper left indicate high per capita emissions in sparsely populated cells

and comparably lower per capita emissions in densely populated cells, and vice versa.

In Germany, per capita CO2 emissions of large cities are smaller than those of small ones,

but the difference seems to be minor [29]. In contrast, per capita CO2 in the UK emissions

remarkably diverge between large and small cities, ranging from 25.6 tonnes per capita in Mid-

dlesbrough to 5.4 tonnes per capita in London in 2012, reflecting the impact of industrial base

[30, 31].

Interestingly, in Fig 3 developed countries seem to belong to the group where the curves

extend to the upper left corner and less developed countries seem to belong to the group

where the curves extend to the opposite corner.

Ge versus GDP per capita at trans-national level

In order to verify whether there is a systematic relationship between the curve type and the

level of countries’ economic development, we plotted the values of the inhomogeneity

index Ge for a large number of countries against the logarithm of GDP Purchasing Power

Fig 2. Illustration of the inhomogeneity index Ge. Quasi-Lorenz curves (solid lines) and the calculation of Ge, which

is inspired by the Gini coefficient: Ge+ = A/(A + B) and Ge− = −A0/(A0 + B0).

https://doi.org/10.1371/journal.pone.0242479.g002
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Parity (PPP) per capita obtained from the World Bank, an important indicator for economic

development.

As observed in Fig 4, the two quantities correlate (with a Pearson correlation coefficient ρ =

−0.71, p� 0.01). In general, for developed countries Ge tends to have smaller values, and for

developing ones it tends to have larger values. Thus, we generalize that in economically devel-

oping countries, high population densities are more emission intense and the opposite is the

case in economically developed countries.

We repeated the analysis for the FFDAS and the EDGAR data. For reasons of consistency,

we also analyze the ODIAC data aggregated to 10 × 10 km2 resolution. For the three datasets,

the resulting Ge-values are plotted against the GPD per capita, analogous to Fig 4.

Fig 5(b) reveals a very similar development dependence when FFDAS data are applied as

for ODIAC [Fig 5(a)]. In contrast, for the EDGAR data [Fig 5(c)] the development dependence

vanishes and is even slightly inverted (ρ = 0.29, p� 0.01). Differences between the Ge-values of

the EDGAR and ODIAC or FFDAS data are most pronounced for developing countries. The

difference in these results could be attributed to the poor quality of population census, high

demographic dynamics, and insufficient geo-spatial data in developing countries. However,

further investigation is needed in order to understand which of these methodological differ-

ences factor more with regard to the pronounced dissimilarities in the results. EDGAR relies

Fig 3. Quasi-Lorenz curves and corresponding inhomogeneity index Ge for selected countries. The country-specific curves are drawn by plotting the

accumulated population (in ascending order) on the horizontal axis against the accumulated share of CO2 emissions of the corresponding grid cells. The panels

show the curves for (a) USA, (b) UK, (c) Brazil, (d) France, (e) Germany, (f) China, (g) Kenya, and (h) Uganda. If the curves follow the diagonal, then low and high

densities have the same emissions per capita. If the curves are bent to the lower right corner, then cells of small density exhibit relatively low emissions and high

population cells exhibit relatively high emissions. Curves in the upper left corner indicate the opposite behavior. The inhomogeneity index Ge is positive or

negative. It can be seen, that various countries exhibit non-proportional relations between population and emissions. The inhomogeneity index Ge seems to be

related to the development of the country.

https://doi.org/10.1371/journal.pone.0242479.g003
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on road networks, population density and agriculture land use data to downscale the national

emissions, which renders it more sensible to errors embedded in the proxy datasets. In com-

parison, FFDAS uses, besides population density, nightlight data to disaggregate emissions.

Moreover, since ODIAC and FFDAS are at least partly based on nightlight data for the sub-

national disaggregation [25, 33, 34], one may argue that the development dependence in Fig 5

(a) and 5(b) are simply due to such an effect in the nightlight data. Thus, we also analyzed the

nightlight data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band

(DNB) data [32] in an analogous way as the emissions data and the results are displayed in Fig

5(d). As can be seen, for nightlight data, we do not see any correlations between Ge-values and

the GDP per capita. Accordingly, we conclude that the development dependence found in the

ODIAC and FFDAS data is not stemming from the nightlight data. Overall, Ge-values tend to

be negative for nightlights, indicating that locations of low population have a relatively strong

contribution.

Ge versus GDP per capita at sub-national level

Next we analyzed whether the correlations between Ge (for ODIAC) and GDP per capita

among countries also appear within a country. Taking China as an example, we disaggerate

the national data into provinces. Analogously as for the countries, we calculate cumulative

emissions vs. cumulative population and determine the inhomogeneity index at the province

level. In Fig 6(a) the Ge-values are plotted vs. the corresponding GDP per capita values, as in

Fig 4. Development dependence of CO2-population-inhomgeneity. The inhomogeneity index Ge is plotted vs. Gross

Domestic Product (GDP) per capita (PPP) for 94 countries on a semi-logarithmic scale. For better readability only the

symbols of a sub-set of countries are labeled. As can be seen, the Ge correlate with the economic development. The

Pearson correlation coefficient between Ge and GDP on a logarithmic scale is ρ = −0.71 (p� 0.01). In more developed

countries high population densities have lower emissions as low densities. The GDP data were obtained from the

World Bank (http://data.worldbank.org), measured in USD of the year 2010.

https://doi.org/10.1371/journal.pone.0242479.g004
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Fig 4 but now for provinces. Similar to the country analysis and even more pronounced, we

find statistically significant correlations (ρ = −0.87, p-value:<0.01).

We performed the corresponding sub-national analysis for the USA on the state level.

However, we could not find significant correlations (see S1 Fig in S1 File). Despite this lack

of correlations, we find a spatial pattern in the USA. States at the west coast and in the North-

east tend to have larger Ge-values. This is also the case for other states at the east coast and in

the Midwest. States in the south as well as Montana, North Dakota, South Dakota tend to

have more extreme Ge-values. Repeating the analysis for the Vulcan data, which might be

considered the most detailed data, still no correlations between Ge and GDP per capita

within the USA are found (S2 Fig in S1 File). However, the analysis does show weak correla-

tions between the Ge-values of Vulcan and ODIAC data. This may imply that, albeit based on

a relatively simple disaggregation scheme, the ODIAC datasets are able to describe the spatial

inhomogeneity of CO2 emissions at a large scale comparably well as a more complex bot-

tom-up based CO2 emission data, particularly in countries where an accurate CO2 inventory

is available.

Fig 5. Comparison of CO2-population-inhomgeneity for different CO2 datasets and nightlights. (a) ODIAC, (b) FFDAS, (c)

EDGAR, (d) nightlights [32]. Each panel is analogous to Fig 4, but for consistency of spatial resolution the underlying ODIAC

data in (a) has been aggregated to 10 km resolution.

https://doi.org/10.1371/journal.pone.0242479.g005
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Robustness of Ge

Lastly we checked the robustness of the Ge coefficient. We explored different forms of sam-

pling and randomization. In order to check the influence of outliers, we create random sub-

samples of the ODIAC data. We constructed a set with 50% of the original size by randomly

selecting pairs of population and emissions values from the original set without replacement

for 1000 iterations. We calculated the cumulative quantities as before and determined the

inhomogeneity index. Repeating the procedure we can assess the statistical spread. As

observed in Fig 7, the resampling has minor influence on the shape of the curve and the result-

ing Ge-values. For Germany, Fig 7(a), 95% of the realizations lead to Ge-values in the range of

-0.131 to 0.063, with a median and mean of -0.032, which is very close to the measured value

-0.033. The sub-sampled robustness check for the UK led to analogous findings [Fig 7(b)].

Another way to randomize is to shuffle. Since in the analysis we have already sorted the

data, we now shuffle only the emissions data and destroy the correlations between emissions

and population. Then we perform the whole analysis and obtain cumulative emissions and

population curves as well as Ge-values. Repeating the procedure we can assess the statistical

spreading. The results are also displayed in Fig 7, and we find that the curves for the shuffled

data are very different from the original curves which shows that the actual shapes in Fig 3 are

due to the correlations between emissions and population. The shape of the curves for the

shuffled data differs between Germany and the UK, Fig 7(a) and 7(b). Since shuffling destroys

any correlations, the actual form of the curves can be attributed to a combination of the proba-

bility distributions of the population and emissions which differ among the countries.

Relation to urban scaling

The analysis of CO2 efficiency that is carried out here using quasi-Lorenz curves can be related

to the urban scaling approach as advocated in [13]. The urban scaling approach aims to

Fig 6. Sub-national inhomogeneity index Ge. We calculated the Ge on the province level for China. In (a) the Ge-values are plotted against the corresponding

province GDP per capita values on a logarithmic scale, analogous to Fig 4. The dashed line indicates the country-level mean Ge. Panel (b) shows a map of China

where the provinces are color-coded according to the inhomogeneity index Ge. It can be seen that the development dependence as found in Fig 4 does also hold on

the sub-national scale—at least in China. Provinces with lowest and highest Ge-values are Hong Kong and Tibet, respectively. Note, however, that for the USA we

do not find sub-national correlations (S1 Fig in S1 File). (Data source of China level-1 administrative boundaries: https://www.naturalearthdata.com/downloads/

10m-cultural-vectors/10m-admin-1-states-provinces/).

https://doi.org/10.1371/journal.pone.0242479.g006
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establish a parametric relationship between the urban population Pu of a city and the respective

emissions Eu. In our analysis we do not analyze urban population and urban emissions explic-

itly but examine gridded population Pg and emission data Eg within countries. Since urban

areas are usually characterized by high population densities (depending on the pixel size), one

could transfer the idea of urban scaling to our setting and assume the scaling relationship

Eg � Pbg . The case of β< 1 indicates CO2 efficiency gains with increasing population (density)

while β> 1 is associated with efficiency losses. Here it is of interest how the non-parametric

quasi-Gini coefficient Ge is related to the parametric scaling exponent β.

Generally there is no simple association between β and Ge. Empirically, the β coefficient is

usually estimated as the slope of a linear regression of the logarithmic quantities. Hence, it

depends on the correlations among the logarithmic quantities cor{log Pg, log Eg} and on the

variance of log Pg and log Eg only. By contrast, Ge as a non-parametric estimator depends on

the exact form of the joint distribution of Pg and Eg. However, it is possible to determine a spe-

cific expression for the relationship between Ge and β under certain conditions. The coeffi-

cients are related via [35]

Ge ¼
b � 1

2l � b � 1
; ð1Þ

if Pg is Pareto distributed with shape parameter λ> 1 and a scaling relation of the form

Eg � Pbg with β< λ holds exactly.

For a detailed derivation see Sec.2 in SI. The formula shows that a scaling coefficient β> 1

is associated with Ge> 0. Equivalently, β< 1 implies Ge< 0. If Eg � Pbg holds only approxima-

tively, Eq (1) should still give a reasonable approximation.

Under this scenario, our finding of development dependent Ge-values implies a corre-

sponding development dependence of the scaling exponent β. Accordingly, in developing

countries large cities are typically less emission efficient and vice versa in developed countries.

Fig 7. Robustness of Ge. In order to illustrate the robustness of the curves in Fig 3 we compare them with curves when the data is sub-

sampled or shuffled. The panels for (a) Germany and (b) UK include the curves for the full samples (Fs), median and envelop for the sub-

sampled data (Sb, green), and the median and envelop for the shuffled data (Sf, orange). The insets show histograms of the corresponding

inhomogeneity indices. It can be seen that sub-samples of the data lead to similar results as for the full sample so that the results are not due

to individual pixels. The Ge values from the shuffling approach −1, as the correlations between population and CO2 are destroyed.

https://doi.org/10.1371/journal.pone.0242479.g007
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Discussion and conclusions

In summary, we have analyzed the correlations between the spatial distribution of population

with CO2 emissions using high resolution datasets. In order to understand these correlations

we employed the quasi-Lorenz curve. The shape of the curve indicates to which extent loca-

tions of high or low population emit relatively more or less CO2. We characterized the inho-

mogeneity by a generalized Gini coefficient. For the ODIAC and FFDAS data it depends on

the socio-economic development of the considered country (developing countries exhibit rela-

tively more emissions in locations of high population). For the EDGAR data there is no devel-

opment dependence (overall relatively more emissions in locations of low population). Within

China, the development dependence persists for the ODIAC data, but within the USA it van-

ishes for the ODIAC and Vulcan data. Sub-sampling and shuffling supports the robustness of

our analysis.

There is a well-known association between urbanization, economic development, and car-

bon emissions. However, the quantitative relations behind this association are less understood.

Here we show that also the location of emissions is influenced by the economic development.

We conclude that during the course of development a spatial separation of emission source

and population happens, based on the results for the ODIAC and FFDAS data. This means to

some extent high-emitting sources relocate away from locations of large population. A possible

explanation could be an increasing environmental consciousness and adoption of cleaner tech-

nologies—a trend similar to the environmental Kuznets curve (EKC). Another possibility

could be altering composition of economic sectors from agriculture over emission intensive

industry to service [36]. While a majority of national mitigation strategies target specific sec-

tors, our results suggest a complementary spatial perspective to prioritize mitigation actions.

Depending on the considered scope of emissions, these would be sparsely populated regions in

developed countries and densely populated regions in developing and transition countries.

Particular attentions should be paid to the latter, as these countries are projected to become

more urbanized in the upcoming decades, which entails further rural-urban migration.

The difficulty in explaining the observed phenomenon of country-specific inhomogeneity

indices may be attributable to a complex interplay of human activity on local, country, and

international scale which entails more evaluation. Concentration or dispersion of human

activities is strongly linked to the extent of urban sprawl. Such structural properties certainly

affect both the population and the emissions. Moreover, as mentioned earlier, the proxies used

to downscale national level CO2 emissions and the sectors included while calculating the

national level emission data will also impact the spatial inhomogeneity of the origin of CO2

emissions. In addition, the location of point sources is an important aspect that can hardly be

generalized on the national or even international scale. Maybe, a starting point could be a bet-

ter understanding of the spatial characteristics of CO2 efficiency. Explaining the presented

phenomenon—i.e. development dependent concentration of emissions in locations of high or

low population—remains a challenge for future research.

Our results for the ODIAC and FFDAS data are consistent with previously reported find-

ings [14], according to which in developing countries large cities are comparably less efficient

in terms of CO2 emissions, and in developed ones small cities are less efficient. On the one

hand, the present study provides stronger empirical evidence, e.g. because it is based on more

data and the signatures are more pronounced. On the other hand, the methodology of the

present study does not rely on any city definition [37, 38] or any assumption about the func-

tional form of the correlations between population and emissions [39].

We argue that the affirmation “large cities are less green” [11] needs to be revised. Accord-

ing to our results only in developing countries large cities are less green. In developed
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countries, including the USA, the opposite is the case, relatively more emissions stem from

small cities. Anyways, we find it misleading to speak about “green cities” in the context of

urban CO2 emissions [7], since greenness usually refers to urban vegetation or metaphorically

to pollution (while CO2 is a colorless gas which as a GHG contributes to global warming).

Certainly, our analysis also has some potential caveats which we want to discuss briefly. The

analysis stands and falls with the employed input data, so we cannot exclude to obtain other

results if we use other population or emissions data as inputs. Why the EDGAR data leads to

different results compared to ODIAC and FFDAS is an interesting problem requiring further

research. Moreover, our curves, such as in Fig 3, can have (multiple) crossings with the diago-

nal, and the index Ge cannot capture to a full extent more complex shapes of the curves.

Another aspect that could be addressed in future studies is the role of the population density

[6, 12, 14, 40, 41]. Here we avoid any discussion about city definitions by simply taking gridded

data. Since the grid cells are approximately of equal area, the population count and the density

are approximately identical. In order to investigate the influence of the density, a suitable city

definition—joining grid-cells—will be necessary.
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