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The conference was organized by G.-M. Greuel (Kaiserslautern), J.H.M. Steenbrink (Nij-

megen) and V.A. Vassiliev (Moscow) and attended by 44 participants from Europe, North

America and Israel. As the conference showed, singularity theory is still a very active area

with many new exciting interactions with other areas in mathematics. This was repre-

sented in 24 talks which were devoted, besides to singularity theory itself, to knot theory,

motivic integration, Frobenius manifolds and theoretical physics, global algebraic geome-

try, hyperplane arrangements, combinatorics and toric geometry, characteristic classes and

elliptic genera, and di�erential equations. One of the talks was devoted to algorithms and

computational aspects of singularity theory together with a demonstration of the computer

algebra system Singular.

The lectures, in particular the talks with relations to di�erent mathematical areas, were

very inspiring and created a lively exchange of mathematical ideas.

1



Abstracts

Indices of 1{forms on an isolated complete intersection singularity

Sabir Gusein-Zade (Moscow)

(joint work with Wolfgang Ebeling)

The problem to generalize the Eisenbud{Levine{Khimshinshvili formula to vector

�elds on singular varieties led to a number of papers devoted to indices of analytic vector

�elds on hypersurface, resp. complete intersection, singularities. We o�er an alternative

approach, which considers 1-forms instead of vector �elds. One can de�ne the index of

a 1-form on an isolated real singularity, and also the index of a holomorphic 1-form on a

complete intersection singularity. The last one can be expressed as the dimension of an

appropriate algebra. There is a family of quadratic forms de�ned on the (complex) linear

space of dimension equal to the complex index, which depends on a point in the target, is

non-degenerate when this point is outside of the bifurcation set, is real if the point is real,

and its signature is equal to the (real) index plus �(�bre)� 1.

2{dimensional McKay-correspondence

Oswald Riemenschneider (Hamburg)

Let � � GL(2; C ) be a �nite small subgroup, and de�ne by Y := Y

�

= ��Hilb

n

(C

2

) the

scheme of all �-invariant ideals I � O

C

2

with colength dim

C

O

C

2

=I = n := ord� such that

� acts on O

C

2

=I as the regular representation. The Hilbert-Chow morphism

Y

�

�!

�

(C

2

)

n

�

S

n

�

�

�

=

C

2

=� =: X

�

is a resolution of the singularities of the quotient singularity X

�

. It was shown that this

resolution is minimal by

� Yukari Ito and Iku Nakamura in case � � SL(2; C ),

� Rie Kidoh for cyclic � � GL(2; C ),

� Akina Ishii in the general case.

The exceptional set E =

S

�

E

�

� Y

�

consists of all ideals I 2 Y

�

with support at 0 2 C

2

.

The following theorem is due to Ito and Nakamura for subgroups of SL(2; C ) (where all

representations are \special"), a remark by the speaker in the cyclic case, and proved by

A. Ishii by means of an equivalence of derived categories.

Theorem: For a non-trivial \special" representation � of �,

E

�

:= fI 2 E j V (I) contains V (�)g

is isomorphic to P

1

. For � 6= �

0

, the intersection E

�

\ E

�

0

is either empty or consists of

exactly one \point", and

E =

[

� non-trivial

� special

E

�

:

More precisely, we have V (I) = V (�) for I 2 E

�

corresponding to smooth points of E, and

I 2 E

�

\ E

�

0

if and only if V (I) = V (�)� V (�

0

).

Here, V (I) := I=(mI + n), where m = m(O

C

2

;0

), n = m

x

O

C

2

;0

, m

x

= m(O

�

C

2

;0

).
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Remarks on equisingular deformations

Theo de Jong (Saarbr

�

ucken)

In this talk the relation between equisingular deformations of plane curve singularities and

sandwiched singularities was studied. To describe this, assume we have (for simplicity) an

irreducible plane curve singularity C. Let ` 2 N be such that ` �

P

i

m

i

, where m

1

; m

2

; : : :

is the multiplicity sequence of C. Associated to the pair (C; `) is a sandwiched singularity

X(C; `) which is a rational surface singularity, obtained from some resolution of C (de-

pending on `) by blowing down non-(�1)-curves. The isomorphism class of C is, in general,

not determined by the isomorphism class of X(C; `), but it is if `� 0. In particular, we

deduce that the dimension of the equisingular stratum of C and of X(C; `) are equal if

`� 0. Using two di�erent formulas for the dimension of the Artin component we are able

to reprove a formula ofWall on the (co-)dimension of the equisingular stratum of a plane

curve singularity.

Frobenius manifolds and tt

�

-equations for singularities

Claus Hertling (Bonn, MPI)

The base space of a semiuniversal unfolding of an isolated hypersurface singularity can be

equipped with the structure of a Frobenius manifold, by work of K. Saito and M. Saito

(1983). They used the Gau�-Manin connection and the mixed Hodge structure (MHS) of

the singularity. One can give a slightly di�erent construction, using the Fourier transform

of the Gau�-Manin connection, that is, oscillating integrals. In this version, K. Saito's

higher residue pairing gets a simple topological meaning, in terms of an intersection form

for Lefschetz thimbles.

Now, the MHS (and, thus, the real structure on the cohomology of the Milnor �bre) is

used in the construction of the Frobenius manifold, but it is not visible in the Frobenius

manifold. It is desirable to enrich the Frobenius manifold in some way with a \shadow" of

the real structure or of the MHS.

It happens that there is a candidate coming from physics. In 1991, S. Cecotti and

C. Vafa wrote a paper \Topological and anti-topological fusion" (Nucl. Phys. B 367

(1991), 359{461). There they study the ground state metric for N = 2 supersymmetric

conformal �eld theories. Special cases of these are related to quasihomogeneous singu-

larities. The results of Cecotti and Vafa yield for quasihomogeneous singularities a

hermitian metric on the base space of a semiuniversal unfolding, which satis�es certain

compatibility conditions with the Frobenius manifold structure. These conditions are called

tt

�

-equations. We can give an independent construction of this hermitian metric, without

any arguments from physics, again using oscillating integrals.
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Motivic zeta-function associated with a family of two variables series

Michel Merle (Nice)

This talk is a report of a work by Gil Guibert, a summary of which is published in the

C.R.A.S. (2001).

Given p analytic functions f

1

; : : : ; f

p

on a complex manifold X of dimension d, one

can associate a motivic zeta function depending on p variables T

1

; : : : ; T

p

(after Denef{

Loeser, Looijenga); namely,

Z(T ) :=

X

n2(N

�

)

p

�

X

n

=(X

0

�(C

�

)

p

)

�

L

djnj

T

n

;

where [ ] stands for the class in the Grothendieck group of varieties over X

0

� (C

�

)

p

;

X

0

= f

�1

1

(0)\ : : :\f

�1

p

(0) and X

n

is the set (constructible and stable at order jnj =

P

i

n

i

)

of the truncated arcs ' at order jnj for which ord(f

j

� ') = n

j

.

Gil Guibert proves that one can associate to the limit � lim

T!1

Z(T

�

1

; : : : ; T

�

p

),

which does not exist when �

1

> 0, : : : , �

p

> 0, a cycle on Spec C [T

1

; T

�1

1

; : : : ; T

p

; T

�1

p

] which

coincides with the Alexander zeta function de�ned by Claude Sabbah for the constant

sheaf on X and the p functions f

1

; : : : ; f

p

.

As a corollary, when X = C

2

, he can compute the (motivic) Alexander zeta function

associated to f

1

; : : : ; f

p

in terms of their tree of contacts. For one function f : C

2

! C , he

gives also the Hodge{Steenbrink spectrum in terms of the same tree of contacts (which

reduces to the data of Puiseux pairs for f irreducible), a result obtained by M. Saito for

f irreducible. Of course, the Alexander polynomial associated to a reducible plane curve

can also be computed in this way (cf. Eisenbud{Neumann).

Structure of discriminants, Cohen-Macaulay reduction, and free

�

divisors

James N. Damon (Chapel Hill)

There have been many directions in which properties of isolated singularities (especially

ICIS) have generalized, such as e.g. completing the ADE classi�cation of functions on man-

ifolds with (singular) boundaries by Arnol'd, Lyashko, Goryunov and Zakalyukin.

Each extension has its own equivalence group G in the Thom{Mather sense and corre-

sponding versal unfoldings and discriminants.

This talk addressed the basic question of whether the discriminants of versal unfoldings

for such equivalences retain the basic property of freeness possessed by versal deformations

of ICIS. In general, they do not. We identify when they do in terms of conditions involving

the G-normal space being Cohen-Macaulay and the genericity of the appropriate analogue

of \Morse singularities". Besides covering a number of situations where the results hold,

we also show their failure as one moves even beyond the simple cases for functions on

manifolds with singular boundaries, and for the simplest classes of non-isolated complete

intersection singularities (through a joint computation with Anne Fr

�

uhbis-Kr

�

uger us-

ing a Singular package which she developed).

For cases where the conditions fail, we describe a method of \Cohen-Macaulay Reduc-

tion" G

�

of the group G, which frequently applies and yields instead a \Free

�

Divisor"

structure for the discriminant.

We indicate the usefulness of this structure for determining the vanishing topology, and

the role of the G

�

-normal space such as in generalizations to non-isolated singularities of

the L

^

e{Greuel formula.
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Motivic Serre invariant and degenerations of algebraic varieties

Franc�ois Loeser (Paris)

In this talk we describe recent work in collaboration with J. Sebag. The problem we

address is the following: let k be a �eld; given a variety X over K = k((t)), and a model

X of X over k[[t]], what information on the special �bre X

0

depends only on X and not on

the chosen model ?

The results are obtained by analogy with Serre's invariant. The latter attaches to a

smooth compact locally p-adic analytic variety X an invariant s(X) 2 Z=(p�1)Z. Two

varietiesX andX

0

of dimension d > 0 are isomorphic i� they have the same Serre invariant.

Let R be a complete discrete valuation ring with residue �eld k and �eld of fractions

K. Assume that k is perfect. Let X be a formal R-scheme of �nite type and consider its

Greenberg scheme Gr(X), which is an analogue of the space of arcs. Set R

n

= R=t

n+1

(t

a uniformizing parameter), X

n

= X


R

R

n

. Then Gr(X) = lim

 ��

Gr

n

(X

n

), with Gr

n

(X

n

) a

k-scheme such that (for A any k-algebra)

Gr

n

(X

n

)(A) = X

�

L(A)


R

R

n

�

;

L(A) = A in the equicharacteristic case, L(A) = W (A) in the mixed characteristic case.

J. Sebag developed a theory of motivic integration on Gr(X) with values inK

0

(Var

k

)[L

�1

].

Here, K

0

(Var

k

) denotes the \Grothendieck ring of algebraic varieties over k", and L = [A

1

k

].

Now if X is a smooth rigid K-space and ! is a gauge form on X then one may de�ne an

integral

R

X

j!j in K

0

(Var

k

)[L

�1

] by using a formal model X with generic �bre X

K

= X. To

prove that the value of

R

X

j!j does not depend on the model X, one uses

� N

�

eron's weak desingularization,

� a fundamental change of variables formula.

Now, if one has two gauge forms ! and !

0

on X, one proves that

R

X

j!j �

R

X

j!

0

j 2 (L�1)K

0

(Var

k

)[L

�1

] :

Since, locally, gauge forms do always exist, this allows to de�ne the motivic Serre invariant

�(X) 2 K

0

(Var

k

)[L

�1

]

�

(L�1)K

0

(Var

k

)[L

�1

]

when K = Q

p

one can show that s

�

X(Q

p

)

�

is equal to N

p

�

�(X)

�

where N

p

stands for

\number of points in F

p

". We also give formulas for �(X) in terms of a weak N�eron

model. In the special case of Calabi-Yau manifolds over K, one can de�ne an invariant in

K

0

(Var

k

)[L

�1

]. In particular, the following analogue of Batyrev's theorem is obtained: if

X and X

0

are two R-smooth models of a Calabi-Yau manifold X over K then their special

�bres de�ne the same class in K

0

(Var

k

)[L

�1

].

Real cohomology groups of the space of non-singular plane projective quintics

Alexei Gorinov (Paris)

We present a modi�cation of Vassiliev's method of calculating cohomology groups of

spaces of non-singular algebraic hypersurfaces of given degree. Due to Alexander duality

these groups are isomorphic to the Borel{Moore homology groups of the space of singular

hypersurfaces. More precisely, in the complex case one has

H

�

�

�

d;n

n �

d;n

�

�

=

H

2D�1��

�

�

d;n

�

;

where �

d;n

is the space of homogeneous polynomials of degree d in n+ 1 variables, �

d;n

is the set of singular polynomials and D = dim

C

�

d;n

. To calculate the groups H

�

(�

d;n

) a
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resolution � : �

d;n

! �

d;n

is constructed, such that � is proper and surjective and �

�1

(x)

is contractible. The main result is that the Poincar�e polynomial of the space �

5;2

n �

5;2

is

equal to (1 + t)(1 + t

3

)(1 + t

5

).

On the homology of the spaces of long knots

Victor Tourtchine (Paris)

The spaces of long knots are the spaces of regular, injective maps R

1

! R

d

, d � 3, coinciding

with a �xed linear map outside some compact subset.

One of the main methods to study the homology groups of such spaces is Vassiliev's

approach that consists of introducing a simplicial resolution of the discriminant set (com-

plement space) of maps R

1

! R

d

, d � 3, having self-intersections or singularities. The

resolved discriminant admits a natural �ltration. The associated spectral sequence is con-

jectured to stabilize in the �rst term.

In the talk the �rst term of this spectral sequence was described in terms of the Hochschild

homology of the (d� 1)-twisted Poisson algebra operad. This operad is the homology op-

erad of the May operad of little cubes. In particular, it gives a new and purely algebraic

point of view on the bialgebra of chord diagrams, that is, the dual of the graded quotient

of the space of �nite type knot invariants.

Singularities and multiplicities

Terence Gaffney (Boston)

The multiplicity of a module has played a useful role in equisingularity problems. A key

property, proved by David Rees, is that if

N �M � O

p

X

are O

X

-modules of �nite colength, with X an equidimensional complex analytic space,

then N is a reduction of M i� e(N) = e(M).

In many situations of interest M is not of �nite colength, so e(M) is not de�ned. In

this talk, using the multiplicity of a pair of modules, we introduce new multiplicities which

provide a generalization of the theorem of Rees. These new multiplicities are then ap-

plied to give necessary and su�cient conditions for a hyperplane to be a limiting tangent

hyperplane to an equidimensional complex analytic space.

Singular and singularities

Gert-Martin Greuel, Anne Fr

�

uhbis-Kr

�

uger and Mathias Schulze

(Kaiserslautern)

Algorithmic and computational aspects have become a major, still growing issue in mathe-

matical research and teaching. In this talk, the abilities of Singular were presented. The

latter is a computer algebra system for polynomial computations with a special emphasis

on commutative algebra, algebraic geometry and singularity theory. In particular, two new

algorithms were presented that have numerous applications in singularity theory:
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� the partial standard basis algorithm for families allows the calculation of a presenta-

tion

O

q

T

M

�! O

p

T

�! T

1

X=T

modulo a power of the maximal ideal in O

T

(X a family of hypersurfaces, resp. CM-

singularities in codim 2, over a smooth base T ). For special cases, it is even possible

to determineM exactly. As an application, the adjacency diagram of the simple space

curve ICIS, to which Giusti and Goryunov contributed numerous adjacencies, can

now be completed.

� based on a suitably modi�ed standard basis algorithm, the monodromy matrix of an

IHS, the spectral pairs, and Saito's matrices A

0

and A

1

can be computed (along the

lines ofM. Saito's paper). During the talk it could be veri�ed for the �rst time that

the singularity given by x

6

+ y

7

+ z

7

+ x

2

y

2

z

2

= 0 has a monodromy matrix with a

Jordan block of size 3. This is one of the smallest known examples with this property

(Malgrange's technique needed even exponents, so this example was inaccessible

for it).

Singular is a free service to the mathematical community. It is provided under the GNU

Public License and available from http://www.singular.uni-kl.de.

Valuations and toric geometry

Bernard Teissier (Paris)

We explored the meaning of the slogan \Every singularity is non-degenerate". A singularity

germ (say formal) (X; 0) � (A

N

(k); 0) is non-degenerate if there exist local coordinates on

A

N

(k) and a fan � of R

N

+

such that the strict transform of X by the proper birational toric

map �(�) : Z(�)! A

N

(k) associated to � is regular and transversal to the exceptional

divisor. The slogan means: every singularity germ can be embedded in some (A

N

(k); 0) in

a non-degenerate way.

More modestly, given a valuation � of O

X;0

(assumed to be equicharacteristic, excellent,

with algebraically closed residue �eld) one may ask if such an embedding exists (depending

on �) with a fan � (depending on �) such that the strict transform of X is regular and

transversal to the exceptional divisor at the point picked by �.

We presented statements which could play a role in a proof of this result.

Existence of curves with prescribed singularities

Thomas Keilen (Kaiserslautern) and Ilya Tyomkin (Tel Aviv)

Given a linear system jDj on a smooth complex projective surface �, and topological, resp.

analytic, singularity types S

1

; : : : ; S

r

, one may ask whether there exists an irreducible,

reduced curve C in jDj having precisely r singular points of the given types. More precisely,

one may ask for su�cient numerical conditions for the existence of such curves in terms of

invariants of the singularity types and the linear system. Knowing that the genus formula

imposes the necessary condition

P

i

�(S

i

) � D

2

+D:K

�

+ 2, it makes sense to consider

a su�cient condition of type

P

i

�(S

i

) � �D

2

+ �D:K + 
, for some absolute constants

�; �; 
 and some �xed divisor K, being a suitable condition. To reach the aim of �nding

such a condition one can proceed in four steps: 1) One brings the existence of a good

curve C 2 jDj with ordinary multiple points down to a vanishing theorem. 2) One derives

such a vanishing theorem with the aid of Kawamata{Vieweg and Nakai{Moishezon from

numerical conditions just depending on the multiplicities and on the linear system. 3) One
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�nds good local conditions representing the singularity types S

1

; : : : ; S

r

. 4) One glues these

local equations with a Viro glueing type method into a curve with ordinary multiple points.

In this way one replaces the multiplicities in the conditions of 2) by bounds for the degree of

the good equations in 3), which are given in terms of the Milnor numbers �(S

1

); : : : ; �(S

r

),

and, �nally, the desired su�cient condition for the existence can be derived.

Adjacencies between planar curve singularity types

Joaquim Ro

�

e (Barcelona)

Let us consider reduced curves C : f = 0, f 2 C [[x; y]], classi�ed by topological equivalence

or equisingularity. The question we addressed is that of adjacencies between classes, that

is, given two equisingularity classes S; S

0

, is it true that S

0

� S ? The same question can

be put in the following way: given S; S

0

, is it true that for all f 2 S

0

there is a family f

t

with f

0

= f and f

t

2 S for t 6= 0, jtj < " ? In this form, a particular case of special interest

is that of linear adjacency, that is, the case that the family is of the form f

t

= f + tg.

We attacked the problem by solving �rst the linear adjacencies, showing that there

are none exceptional. This criterion is combinatorial and expressed in terms of Enriques

diagrams. Then a necessary and a su�cient condition are obtained by studying how the

resolution may vary in families and by studying adjacencies in the variety of all clusters.

Semistable K3-surfaces with icosahedral symmetry

Jan Stevens (G

�

oteborg)

In a type III degeneration of K3-surfaces the dual graph of the central �bre is a triangula-

tion of S

2

. By results of Friedman every combinatorial possibility occurs as central �bre.

This raises the question of explicitly realising one's favourite triangulation.

The tetrahedron gives a nice illustration of the occuring phenomena. One way to realise

the tetrahedral triangulation starts from a pencil �T + �F , where T = 0 is the product of 4

planes in general position, and F = 0 is a general smooth quartic. The total space has A

1

-

singularities where the smooth quartic intersects the edges of the tetrahedron, which have

to be resolved by small resolutions. The most symmetric of possible choices gives a central

�bre which consists of four cubic surfaces. One can also start from the normal crossings

variety obtained by glueing four cubic surfaces along triangles. Embedded deformations

can be computed explicitly. Both constructions lead to di�erent 19-dimensional families.

For the icosahedral triangulation one can construct a dodecahedron consisting of 12 Del

Pezzo surfaces of degree 5, admitting icosahedral symmetry. This object of degree 60 in P

31

is described by 406 equations. An in�nitesimal smoothing deformation can be computed,

but extending it to higher order is beyond all hope.

By breaking the symmetry, the dodecahedron can also be realised with surfaces of degree

12. The special �bre consists of 6 planes with triangles as double curve and three quadric

surfaces with rectangles as double curve. The three remaining divisors arise by resolving

the singularities of the total space of a one-parameter smoothing. Explicit equations were

presented in the talk, they can also be found in our preprint math.AG/0106133.
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Third di�erential and Thom polynomials for isolated hypersurface

singularities

Maxim Kazarian (Moscow)

Thom polynomials are characteristic classes dual to di�erent strata of the discriminant set

in the parameter space of a family of some singular objects (maps, �elds, actions, sections,

varieties, etc.). The computation of the Thom polynomials for isolated hypersurface sin-

gularities by the method of resolution of singularities leads to the classi�cation of marked

singularities of functions. The marking of a germ of a critical point of a function is a point

on the cubic given by the third di�erential of the function. The classi�cation of marked

singularities is parallel to the usual classi�cation of critical points.

In the talk the classi�cation of marked singularities of functions and its application to

the computation of Thom polynomials was discussed.

Topology of hypersurfaces: applications to polar Cremona transformations

and hyperplane arrangements

Alexandru Dimca (Bordeaux)

Let f 2 C [x

0

; : : : ; x

n

] be a non-constant homogeneous polynomial. Let d(f) be the de-

gree of the associated gradient map x 7�! (

@f

x

0

(x) : : : : :

@f

x

n

(x)), regarded as a rational map

P

n

9 9 KP

n

.

We show that d(f) has a simple topological interpretation in terms of the topology of

the hypersurface V � P

n

de�ned by f = 0. This completes some of the results of I. Dol-

gachev (Michigan J. Math. 48 (2000)) on polynomials with d(f) = 1.

When applied to hyperplane arrangements, this result implies that the complement

M = P

n

n

S

i

H

i

has a very special CW-complex structure. This in turn gives information

on the higher homotopy groups �

j

(M) for j > 1.

These results are available on the web (math.AG) and represent a joint work with S. Pa-

padima in Bucharest.

Elliptic genera of singular varieties

Anatoly Libgober (Chicago)

(joint work with Lev Borisov)

We give two extensions of the two-variable elliptic genus (introduced by Krichever,

H

�

ohn, Totaro, Witten, etc.) to singular varieties.

One is given in terms of resolutions of singularities and has Batyrev's string theoretical

Euler characteristic as its limit. If a singular variety admits a crepant resolution then its

elliptic genus is the elliptic genus of the crepant resolution.

Another is de�ned for quotient spaces X=G, whereX is a complex manifold andG a �nite

group of biholomorphic automorphisms. It specializes to the orbifold Euler characteristic

considered by Harvey, Dixon, Vafa, Witten, Hirzebruch, Batyrev, etc. . We

conjecture that the two types of elliptic genera of X=G coincide.

Our de�nition of the orbifold elliptic genus yields the following formula of Dijkgraaf,

Moore, Verlinde and Verlinde: If �

n

is the symmetric group acting on X

n

in the
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standard way then

X

n�0

p

n

Ell

orb

(X

n

=�

n

; y; q) =

1

Y

i=1

Y

`;m

1

(1� p

i

y

`

q

m

)

c(mi;`)

;

where Ell(X) =

P

m;`

c(m; `)y

`

q

m

.

Moduli spaces of polynomials in two variables

Javier Fern

�

andez de Bobadilla de Olaz

�

abal (Nijmegen)

To study families of polynomials in two variables up to right equivalence the space to look

at is C [x; y]=Aut(C

2

). This space is in�nite dimensional and non-Hausdor�, hence quite

di�cult to be studied geometrically. To understand it better we de�ne a geometrically

meaningful strati�cation on it, and consider the quotient of each stratum by the induced

equivalence relation.

Given any f 2 C [x; y], we will associate to it a blowing-up process �

f

, that is, roughly

speaking, the blowing-up process such that the centres of the appearing blowing-ups are

at the same time:

(1) in�nitely near to the projective completion of V (f) � C

2

� P

2

, and

(2) centres of a blowing-up involved in the minimal resolution of the indetermination of

any � 2 Aut(C

2

) viewed as a birational transformation from P

2

to P

2

.

Using �

f

it is possible to associate a graph �

f

to f . We de�ne the stratum associated to

�

f

to be the set of polynomials whose graph is isomorphic to �

f

.

We show that the quotient of each stratum by the induced equivalence relation is the

quotient by a �nite group of an a�ne algebraic variety, and that the properties of the group

and of the variety can be read o� directly from the combinatorics of the graph associated

to the stratum.

The Poincar�e series of a quasi-homogeneous surface singularity

Wolfgang Ebeling (Hannover)

S.M. Gusein-Zade, F. Delgado, and A. Campillo have shown that for an irreducible

plane curve singularity the Poincar�e series of the ring of functions on the curve coincides

with the zeta function of its monodromy transformation.

We show that there is also a relation between the Poincar�e series p

A

(t) of the coordinate

algebra of a two-dimensional quasi-homogeneous isolated hypersurface singularity and the

characteristic polynomial of its monodromy operator. More precisely, we de�ne

 

A

(t) := (1� t)

2�r

r

Y

i=1

(1� t

�

i

); �

A

(t) := p

A

(t) 

A

(t) ;

where

�

g; b; (�

1

; �

1

); : : : ; (�

r

; �

r

)

	

are the orbit invariants. We show that the dual (in

Saito's sense) of the rational function

e

�

A

(t) := �

A

(t)=(1� t)

2g

is the characteristic poly-

nomial of the monodromy operator of (X; x). Similar results can be proved for ICIS of

certain types.

If (X; x) is a Kleinian singularity, not of type A

2n

, then  

A

(t) is the characteristic

polynomial of the a�ne Coxeter element of the corresponding root system, and the above

result implies that �

A

(t) is the characteristic polynomial of the Coxeter element. We derive

this result also directly from the McKay-correspondence.
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Mystics of root distributions for polynomial eigenfunctions of linear ODE

Boris Shapiro (Stockholm)

Consider an operator @

Q

=

P

k

i=0

Q

i

(x) �

d

i

dx

i

with polynomial coe�cients Q

i

(x). We assume

that r := max

i

degQ

i

(x)� i is non-negative. We treat the following \polynomial" spectral

problem:

@

Q

y + �'(x)y = 0 ;(1)

where '(x) is a polynomial of degree r. If degQ

k

� k = r then one can show that (after

an appropriate choice for '(x)) there exist

�

n+r

r

�

polynomial solutions of degree n for (1).

These polynomial eigenfunctions have a remarkable root distribution, asymptotically

following curvilinear traces connecting zeroes of Q

k

(x). Such a curvilinear tree straightens

out by the coordinate change

 

Q

: x 7�!

Z

x

x

0

dt

k

p

Q

k

(x)

(case r = 0). The angles between edges are determined by the underlying trees, etc. .

Relations to WKB-analysis and Strebel di�erentials were discussed.

Modular deformations

Bernd Martin (Cottbus)

The notion of a modular deformation has been introduced for complete complex varieties

and for analytic polyhedra by Palamodov, and later on by Laudal in a formal context.

We are investigating di�erent concepts of modular deformations of germs of isolated

singularities (in�nitesimal, formal) and construct an obstruction theory for enlarging a

modular subgerm, which is induced by the Lie bracket of the tangent cohomology

T

0

(X

0

)� T

1

(X

0

) �! T

1

(X

0

) :

The modular stratum of an ICIS is characterized as 
attening of the relative Tjurina

algebra T

1

(X;S) of the deformation. Based on implementations of the computation of

versal deformations, and of a new 
attening algorithm in Singular, explicit computations

of non-trivial examples are possible. In particular, we �nd a modular family whose modular

stratum has two components, one of those with a jump in the Tjurina number. Moreover,

modular strata of semi-quasihomogeneous functions are connected with the coarse moduli

spaces constructed by Pfister and others using di�erent considerations, but have more

(non-reduced) structure.

The graph of monomial ideals

Klaus Altmann (D

�

usseldorf)

Fixing a polynomial ring R = k[x

1

; : : : ; x

n

] over a �eld, we de�ne a graph G as follows:

its vertices are the monomial ideals M in R, and two monomial ideals M

1

and M

2

are

connected by an edge, if there is an ideal havingM

1

andM

2

as its only monomial Gr�obner

degenerations.

If connected, M

1

and M

2

may be found as the only Gr�obner degenerations of an ideal

admitting an (n� 1)-dimensional grading. On the one hand, this makes it possible to

calculate those so-called edge ideals and to determine whether the M

i

are connected or

11



not. On the other hand, since those are exactly the monomial ideals admitting a full n-

dimensional grading, this fact leads us to think about G as the 1-skeleton in a huge Hilbert

scheme.

The graph G gives rise to interesting subgraphs. First, one might consider only those

monomial ideals being contained in a �xed multigraded Hilbert scheme. If they are con-

nected, then this may be done also inside the Hilbert scheme. A special case is that of

Artinian ideals. If n = 2, then we obtain a new graph of partitions.

Another subgraph is that of the square-free monomial ideals. Via the Stanley-Reisner

construction, this leads to a general notion of 
ips between simplicial complexes.

Composite functions and families of matrices

Victor Goryunov (Liverpool)

Consider a diagram C

m

F

�! C

n

f

�! C , where f is an isolated function singularity, and m � n.

We establish a relation between the natural Tjurina number of the diagram and the Milnor

number of f � F . In particular, this provides the � = � theorem if m = n; n�1.

One of the very �rst applications of this result to the natural classi�cation of simple

families of symmetric matrices is a k(�; 1)-theorem for their discriminants. Classical 2-

coloured braids and 2-coloured Brieskorn braids of series D appear in the context.

Edited by Christoph Lossen (Kaiserslautern)
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