
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

An assessment of solvers for algebraically stabilized
discretizations of convection-diffusion-reaction equations

Abhinav Jha1, Ondřej Pártl2, Naveed Ahmed3, Dmitri Kuzmin4

submitted: November 4, 2021

1 RWTH Aachen University
Applied and Computational Mathematics
Schinkelstr. 2
52062 Aachen
Germany
E-Mail: jha@acom.rwth-aachen.de

2 Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: ondrej.partl@wias-berlin.de

3 Gulf University for Science & Technology
Block 5, Building 1
Mubarak Al-Abdullah Area
West Mishref
Kuwait
E-Mail: ahmed.n@gust.edu.kw

4 TU Dortmund University
Institute of Applied Mathematics (LS III)
Vogelpothsweg 87
44227 Dortmund
Germany
E-Mail: kuzmin@math.uni-dortmund.de

No. 2889
Berlin 2021

2020 Mathematics Subject Classification. 65M12, 65M15, 65M60.

Key words and phrases. Finite element methods, discrete maximum principles, algebraic flux correction,
flux-corrected transport, monolithic convex limiting, iterative solvers.



Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/


An assessment of solvers for algebraically stabilized
discretizations of convection-diffusion-reaction equations

Abhinav Jha, Ondřej Pártl, Naveed Ahmed, Dmitri Kuzmin

Abstract

We consider flux-corrected finite element discretizations of 3D convection-dominated
transport problems and assess the computational efficiency of algorithms based on
such approximations. The methods under investigation include flux-corrected transport
schemes and monolithic limiters. We discretize in space using a continuous Galerkin
method and P1 or Q1 finite elements. Time integration is performed using the Crank-
Nicolson method or an explicit strong stability preserving Runge-Kutta method. Nonlinear
systems are solved using a fixed-point iteration method, which requires solution of large
linear systems at each iteration or time step. The great variety of options in the choice
of discretization methods and solver components calls for a dedicated comparative study
of existing approaches. To perform such a study, we define new 3D test problems for
time dependent and stationary convection-diffusion-reaction equations. The results of
our numerical experiments illustrate how the limiting technique, time discretization and
solver impact on the overall performance.

1 Introduction

Traditional stabilization techniques for finite element discretizations of convection-diffusion-
reaction(CDR) equations do not ensure the validity of discrete maximum principles [13]. As a
consequence, numerical solutions may attain physically unrealistic values, and simulations may
crash.
In the context of finite volume schemes and discontinuous Galerkin methods, the relevant
inequality constraints are commonly enforced by using limiters for numerical fluxes or for slopes
of piecewise-polynomial approximations. The first extensions of such schemes to continuous
finite element approximations [19, 22] were based on generalizations of Zalesak’s flux-corrected
transport (FCT) algorithm [24].
During the last two decades, many alternatives were developed using the concept of algebraic
flux correction (AFC). The AFC methodology [5, 18] is based on an algebraic splitting of a
high-order target scheme into a bound-preserving low-order approximation and an antidiffusive
correction term. The latter is decomposed into numerical fluxes that are limited to preserve
important properties of the low-order method.
A theoretical framework for analysis and design of AFC schemes was developed in [5, 21] and
used to construct improved limiter functions in [6, 21]. Further remarkable recent advances
in the field include the development of a monolithic convex limiting strategy for nonlinear
hyperbolic conservation laws and systems [17].
In this work, we focus on efficient numerical solution of the nonlinear discrete problems
that arise from the AFC discretizations of time-dependent and stationary problems. The
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overall computational cost depends on the type of the limiting strategy (predictor-corrector
vs. monolithic) and on the time discretization (explicit vs. implicit). The efficiency of the
implicit schemes and steady-state solvers depends on the convergence rates of the inner and
outer iterations [10].
Unfortunately, these important aspects have received little attention in the AFC literature so
far. We are not aware of any systematic numerical study focused on the overhead cost of the
flux limiting and the performance–accuracy ratio. However, the practical use of AFC tools in
simulation software for real-life applications requires a deeper understanding of such aspects.
As a first step toward that end, we introduce new three-dimensional test problems and solve
them using the AFC schemes proposed in [6, 12, 14, 17]. A direct comparison of CPU times
for different approaches enables us to identify algorithms that offer the best performance for a
certain class of problems.
This paper has the following structure: The numerical schemes that we study are described
in Section 2 (for the evolutionary problems) and Section 3 (for the stationary problems). Our
tests are in Section 4.

2 Evolutionary Convection-Diffusion-Reaction Equations

We consider the following initial-boundary value problem for a scalar evolutionary convection-
diffusion-reaction equation: Find u : (0, T ]× Ω→ R such that

ut − ε∆u+ b · ∇u+ cu = f in (0, T ]× Ω,
u = uD on [0, T ]× ΓD,

ε∇u · n = gN on [0, T ]× ΓN ,
u(0,x) = u0(x) ∀x ∈ Ω.

(1)

Here Ω ⊂ R3 is a bounded polyhedral domain, n is the outward pointing unit normal to the
boundary Γ = ΓD ∪ ΓN, ΓD ∩ ΓN = ∅, and [0, T ] is a bounded time interval. Furthermore, ε,
0 < ε� 1, is a diffusivity constant, b = b(t,x) denotes a solenoidal velocity field, c = c(t,x)
stands for a nonnegative reaction coefficient, and f = f(t,x) represents outer sources of the
unknown scalar quantity u. On ΓD, the Dirichlet boundary conditions (uD) are set, and on ΓN,
the Neumann boundary conditions (gN) are prescribed.
A standard finite element discretization of (1) with P1 or Q1 elements leads to a system of
differential algebraic equations of the form

MCu̇ + Au = F , (2)

where MC = {mij}Ni,j=1 is the consistent mass matrix, A = {aij}Ni,j=1 is the stiffness matrix,
and F is the corresponding right-hand side. The length of the vectors is denoted by N , which
corresponds to the number of degrees of freedom. The matrix entries are given by

mij = (ϕj, ϕi) , (3)
aij = ε (∇ϕj,∇ϕi) + (b · ∇ϕj, ϕi) + (cϕj, ϕi) , (4)

where (·, ·) denotes the standard inner product in L2(Ω), and {ϕi}Ni=1 is the standard finite
element basis.
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The first step in the AFC methodology is to modify (2) so that we obtain an M-matrix A
instead of A. For this purpose, we define the lumped mass matrix ML and an artificial diffusion
matrix D as follows:

ML = diag(mi), mi =
N∑
j=1

mij,

D = {dij}Ni,j=1, dij = −max{aij, 0, aji} for i 6= j, dii = −
N∑

j=1,j 6=i
dij. (5)

Replacing MC by ML and A by A = A+D in (2), we obtain

MLu̇ + Au = F . (6)

The temporal discretization of this equation yields a low-order scheme that is bound preserving,
but overly diffusive.
To reduce this excessive diffusivity, we add an antidiffusive correction term F ∗ on the right-hand
side of (6) to get

MLu̇ + Au = F + F ∗. (7)

To define F ∗, we first consider the residual difference r obtained by subtracting (2) from (6):

r = (ML −MC) u̇ +Du. (8)

Next, we decompose each component of r as

ri =
∑

j=1,j 6=i
rij, where rij = mij(u̇i − u̇j) + dij(uj − ui). (9)

Using this decomposition, we set

F ∗i =
N∑

j=1,j 6=i
αijrij, (10)

where {αij}Nij=1 ⊂ [0, 1] are solution-dependent correction factors; algorithms for calculating
them are called limiters. For αij = 1, we revert to the standard Galerkin formulation, whereas
setting αij = 0 corresponds to the over-diffusive scheme. Note that the computation of rij is
no longer required when i is a Dirichlet node.
Various definitions of αij have been proposed in the literature (see [6, 16, 17, 24]). Some flux
limiters are defined at the semi-discrete level and applicable to steady-state problems as well.
In other approaches, the fluxes rij and the correction factors αij are derived for a particular
time-stepping method. In the next sections, we introduce the time discretizations and limiters
used in our numerical studies.

2.1 Flux-Corrected Transport Algorithms

We begin with algorithms that use (generalizations of) Zalesak’s FCT limiter [24] to calculate
the correction factors αij . The antidiffusive fluxes rij corresponding to specific time integrators
are defined below.
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2.1.1 Crank-Nicolson Scheme

The Crank-Nicolson (CN) time discretization of the semi-discrete problem (7) yields the
nonlinear system[ 1

∆tML + 1
2A
]

un =
[ 1
∆tML −

1
2A
]

un−1 + 1
2F n + 1

2F n−1 + F ∗(un,un−1), (11)

where ∆t is the time-step length, the superscripts denote the time levels, and the correction
term F ∗ is assembled from limited counterparts αijrij of the antidiffusive fluxes [15, 18]

rij = mij

∆t
[
uni − un−1

i −
(
unj − un−1

j

)]
+ dij

2
[
unj + un−1

j −
(
uni + un−1

i

)]
. (12)

The CN-Galerkin scheme is a nondissipative high-order method, which tends to generate small
ripples within the local bounds of the limiting procedure [18]. This behavior can often be cured
by using a high-order linear stabilization or prelimiting [15]. In this work, we prelimit rij as
follows:

rij = minmod (rij, L dij(uj − ui)) , (13)
where

minmod(a, b) =


0 if ab < 0,
min {a, b} if a > 0 ∧ b > 0,
max {a, b} if a < 0 ∧ b < 0,

and L = 2 is a Lipschitz constant based on the analysis in [6].
In addition to the fluxes rij, Zalesak’s limiter (as presented in Section 2.1.3 below) requires a
bound-preserving intermediate solution ũ of low order. For the CN version, it is defined by

ũ = un−1 − ∆t
2 M−1

L

(
Aun−1 − F n−1

)
, (14)

which can be viewed as the solution of (6) at time tn−1/2 computed using the forward Euler
scheme with time step ∆t/2. Note that ũ should be constrained to satisfy the Dirichlet
boundary conditions for nodes belonging to ΓD.
Remark 1. As shown in [18, 21], the explicit predictor ũ is bound preserving under a CFL-like
condition.

We test two implementations of the CN-FCT algorithm: The first one solves the system of
equations for un using a fixed point iteration method, which means that a sparse linear system
needs to be solved at each step. A brief overview of the iterative procedure is given in Section 4.
In what follows, we refer to this scheme as nonlinear Zal+CN.
The second algorithm is the linearized CN scheme proposed in [12] that utilizes ũ defined
by (14) to approximate un by 2ũ− un−1 in formula (12). Hence, it replaces (11) by a linear
system for un. In the following sections, we refer to this scheme as linear Zal+CN.

2.1.2 Second-Order SSP Scheme

As an alternative to the implicit CN scheme, we consider the second-order explicit strong
stability preserving (SSP) time integrator commonly known as Heun’s method. For a linear or
nonlinear system of the form

u̇(t) = G (u(t), t) , (15)
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An assessment of solvers for algebraically stabilized discretizations of CDR equations 5

the numerical solution at time tn is given by

un = un,0 + ∆t
2
[
G
(
un,0, tn,0

)
+ G

(
un,1, tn,1

)]
= un,0 + un,2

2 ,

where

tn,0 = tn−1, tn,1 = tn, (16)
un,0 = un−1, un,s = un,s−1 + ∆tG

(
un,s−1, tn,s−1

)
, s = 1, 2. (17)

The application of this method to (7) requires two explicit Euler updates of the form

unew = u + ∆tM−1
L (F + F ∗(u)− Au) . (18)

At each stage, the flux limiting is performed using Zalesak’s algorithm with the low-order
predictor

ũ = u + ∆tM−1
L (F − Au) (19)

and the antidiffusive fluxes

rij = mij

(
u̇Li − u̇Lj

)
+ dij (uj − ui) , (20)

where
u̇L = M−1

L (F − Au) (21)
stands for the low-order approximation given by (6). As shown in [15], the fluxes defined by
(20) do not require prelimiting because the use of the low-order time derivatives introduces
high-order linear stabilization.

2.1.3 Zalesak’s Limiter

Given a low-order predictor ũ and an array of antidiffusive fluxes rij, our FCT schemes use
Zalesak’s limiter [24] to calculate the correction factors αij as follows:

1 Compute

P+
i =

N∑
j=1,j 6=i

max{rij, 0}, P−i =
N∑

j=1,j 6=i
min{rij, 0}.

2 Compute

Q+
i = max

{
0, max

j=1,...,N,j 6=i
(ũj − ũi)

}
,

Q−i = min
{

0, min
j=1,...,N,j 6=i

(ũj − ũi)
}
.

3 Compute

R+
i = min

{
1, miQ

+
i

∆tP+
i

}
, R−i = min

{
1, miQ

−
i

∆tP−i

}
.

If P+
i or P−i is zero, we set R+

i = 1 or R−i = 1, respectively. We also set R+
i = R−i = 1

if i is a Dirichlet node.
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4 Compute

αij =

min{R+
i , R

−
j } if rij > 0,

min{R−i , R+
j } otherwise.

The CN and SSP versions of Zalesak’s FCT scheme differ in the definition of rij and ũ.

2.2 Monolithic Convex (MC) Limiter

A potential drawback of FCT-like approaches is their dependence on the particular time-
stepping method. As an alternative that is also applicable to stationary problems, we consider
the monolithic convex (MC) limiting algorithm proposed in [17]. Flux limiters of this kind use
definition (20) of rij for the semi-discrete scheme (7). The limited antidiffusive term of the
CN scheme (11) is given by

F ∗i (un,un−1) = 1
2

N∑
j=1,j 6=i

(
αij(un)rij(un) + αij(un−1)rij(un−1)

)
,

while the SSP version performs forward Euler updates (18) using

F ∗i (u) =
N∑

j=1,j 6=i
αij(u)rij(u).

The corresponding nonlinear space discretizations are of the form (15) and reduce to G (u) = 0
at steady state. At each fixed-point iteration or Runge-Kutta stage, the limited fluxes αijrij = r∗ij
are defined by

r∗ij =

min
{
rij,min

{
2dij (ūij − umax

i ) , 2dij
(
umin
j − ūji

)}}
if rij > 0,

max
{
rij,max

{
2dij (ūij − umin

i ) , 2dij
(
umax
j − ūji

)}}
otherwise,

(22)

where ūij are intermediate states defined by

2dijūij = dij(ui + uj) + aij(uj − ui)

and

umax
i = max

j∈Ni

uj, umin
i = min

j∈Ni

uj. (23)

In the last formula, Ni = {j ∈ {1, . . . , N} : mij 6= 0} is the integer set containing the indices
of node i and its nearest neighbors. Note that the definition of umax

i and umin
i can be changed

to ensure linearity preservation [17, Section 6.1].

Remark 2. Note that the MC limiter defined by (22) was designed for hyperbolic conservation
laws. When applying this limiter to convection-diffusion-reaction (CDR) equations, we perform
algebraic flux correction for the semi-discrete problem corresponding to ε = 0, c = 0 and add
the unlimited discretization of ε∆u− cu on the right-hand side of the resulting system.
However, a proper extension of the MC limiter to CDR problems should include the diffusive
and reactive terms in a manner that ensures preservation of local bounds. The development
of such extensions is beyond the scope of the present work which is mainly focused on solver
aspects.
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3 Stationary Convection-Diffusion-Reaction Equations

In this section, we present AFC schemes for the stationary counterpart of (1), the boundary
value problem

−ε∆u+ b · ∇u+ cu = f in Ω,
u = uD on ΓD,

ε∇u · n = gN on ΓN .
(24)

Flux-limited discretizations of such problems always lead to a nonlinear system of equations.
We solve these systems via the fixed point iteration studied in [10, 11] and outlined at the
beginning of Section 4. This iterative solver requires the solution of a system of linear equations
at each step.
When deriving our numerical schemes for (24), we use the same procedure as in Section 2, but
the time derivatives vanish. Hence, the antidiffusive term r reduces to rss, where

rss
i =

∑
j=1,j 6=i

rss
ij =

∑
j=1,j 6=i

dij(uj − ui). (25)

3.1 Monolithic Convex (MC) Limiter

The MC limiter presented in Section 2.2 is directly applicable to stationary problems. At each
fixed-point iteration, the antidiffusive fluxes rss

ij = dij(uj − ui) are limited using formula (22).
The validity of a discrete maximum principle for the converged steady-state solution was shown
in [17, Theorem A.3].

3.2 Monolithic Upwind (MU) Limiter

This limiter was proposed in [14] and analyzed in [5]. Using the notation

rss,+
ij = max

{
rss
ij , 0

}
, rss,−

ij = min
{
rss
ij , 0

}
, (26)

the correction factors αij are computed as follows:

1 Compute

P+
i =

N∑
j=1, aji≤ aij

rss,+
ij , P−i =

N∑
j=1, aji≤ aij

rss,−
ij .

2 Compute

Q+
i = −

N∑
j=1

rss,−
ij , Q−i = −

N∑
j=1

rss,+
ij .

3 Compute

R+
i = min

{
1, Q

+
i

P+
i

}
, R−i = min

{
1, Q

−
i

P−i

}
.

If i is a Dirichlet node or if P+
i or P−i is zero, the corresponding R+

i or R−i is set to 1.
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4 For all i, j such that aji ≤ aij, set

αij =


R+
i if rssij > 0,

1 if rssij = 0,
R−i if rssij < 0,

αji = αij. (27)

Similarly to the MC limiter, this algorithm was designed for the hyperbolic case. It exploits
the skew symmetry of the discrete convection operator and requires a careful extension to
transport problems with diffusion and/or reaction.

3.3 Linearity Preserving (LP) Limiter

This limiter, which makes the AFC scheme linearity preserving, was introduced in [6]. It is
custom-made for P1 elements. The correction factors αij are computed as follows:

1 Compute

P+
i =

N∑
j=1,j 6=i

rss,+
ij , P−i =

N∑
j=1,j 6=i

rss,−
ij ,

where rss,+
ij and rss,−

ij are given by (26).

2 Compute
Q+
i = qi(umax

i − ui), Q−i = qi(umin
i − ui),

where the bounds umax
i and umin

i are defined as in (23), and

qi = −
∑
j∈Ni

γidij

for a positive constant γi depending only on the shape of the spatial grid in the nearest
vicinity of the node i. We define γi as in [6, Rem. 6.2].

3 Compute

R+
i = min

{
1, Q

+
i

P+
i

}
, R−i = min

{
1, Q

−
i

P−i

}
.

If i is a Dirichlet node or if P+
i or P−i is zero, the corresponding R+

i or R−i is set to 1.

4 For all i, j define

αij =


R+
i if rssij > 0,

1 if rssij = 0,
R−i if rssij < 0.

For each combination of non-Dirichlet nodes i and j, set

αij = min {αij, αji} .

For each combination of a Dirichlet node j and a non-Dirichlet node i, set

αij = αij.

The boundary conditions are taken into account by setting aij = 0 for each combination of a
non-Dirichlet node i and a Dirichlet node j.

DOI 10.20347/WIAS.PREPRINT.2889 Berlin 2021



An assessment of solvers for algebraically stabilized discretizations of CDR equations 9

4 Numerical Studies

In this section, we perform numerical studies for stationary and evolutionary convection-diffusion-
reaction problems in 3D domains to evaluate the accuracy and efficiency of the above AFC
methods.
The nonlinear systems corresponding to flux-corrected schemes from Sections 2 and 3 were
solved using a fixed point method with dynamic damping. We give a brief overview of the
scheme for the stationary problem. The same solution strategy is used for the evolutionary
problem. We refer the reader to [10] for a detailed explanation.
The matrix form of the nonlinear schemes under investigation is given by

Au = F + F ∗(u).

We solve such nonlinear systems using fixed-point iterations of the form

Auν+1 = F + ωF ∗(uν),

where ν is the ν-th iteration step, and ω is a dynamic damping parameter. Here, the matrix A
is a constant M -matrix, and thus must be factorized once, and the factorization can be reused
in the iteration loop. For the CN discretization of a time-dependent problem, the iteration
matrix is ((∆t)−1ML + 1

2A). This is also a constant M -matrix, and hence can be reused in
the iteration process.
To evaluate the efficiency of different limiters, we compare the computation times using the
following parameters:

1 Choice of solvers: We have tested several direct and iterative solvers for linear systems
available in the Portable library, Extensible Toolkit for Scientific Computation Toolkit for
Advanced Optimization (PETSc), Release version 3.14.3 [2–4]. The solvers, along with
the PETSc arguments and abbreviations used in the simulations, are listed in Tables 1
and 2. They are all used with the default settings, except that we set rtol = 0, and we
use various values of atol. This means that the stopping criterion for the linear solvers
was

R < atol,

where R is the Euclidean norm of the residual. We also specified various maximum
numbers of iterations.

Table 1: Iterative solvers and the corresponding PETSc arguments.

Name PETSc arguments Abbreviation Marker
(-ksp_type)

flexible GMRES fgmres FGMRES •
loose GMRES lgmres LGMRES �
stabilized BiCG bcgs BCGS N

2 Choice of preconditioners: The iterative solvers of Table 1 are used in combination
with various preconditioners from PETSc, see the list of preconditioners along with the
corresponding PETSc arguments and abbreviations in Table 3.
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Table 2: Direct solvers and the corresponding PETSc arguments.

Name PETSc arguments Abbreviation
(-pc_factor_mat_solver_type)

LU factorization mumps LU
UMFPACK umfpack UMFPACK

Table 3: List of preconditioners and PETSc arguments.

Name PETSc arguments Abbreviation Color
(-pc_type)

Jacobi jacobi Jac gold
point block Jacobi bjacobi BJac red
successive over relaxation sor SOR green
additive Schwarz method asm ASM blue
multigrid mg MG —

3 Effect of parallelization: The numerical simulations are performed both sequentially
and in parallel and compared in terms of the resulting computing times. The parallel
calculations were performed using the Open Run-Time Environment (OpenRTE),
version 1.10.7.0.5e373bf1fd [8], which originated from the Open MPI project.
In our representation, the number of processors is denoted by NP. We consider NP = 4,
8, 16, and 32. The sequential case is denoted by NP = 1.
Note that the definitions of the preconditioners BJac, SOR, and ASM depend on the
number of processors by default (e.g., there is one block for each processor in BJac).
We considered this dependence to be so natural that we kept it when we changed the
number of processors. So, strictly speaking, if we changed the number of processors, we
were no longer using the same solver.

To check the accuracy of the schemes, we compare the L1 and L2 norms (denoted by ‖·‖1 and
‖·‖2) of the error (u− uh), the plots of the solution, and the time evolution of the solution for
a given point.
In the presentation of the numerical results, the following is always the same:

� The spatial grid is always generated by successive uniform refinement starting from an
initial grid. The number of refinement steps performed is called the (refinement) level.

� Unless otherwise specified, the termination criterion for the nonlinear solver is

R <
√

#DOF · tol, (28)

where #DOF is the number of degrees of freedom, and tol is a positive number close
to zero.

� We always use the same pattern when representing the computing times in figures (see,
e.g., Figure 6, page 23): The lines for BJac are always red, the lines for BCGS are always
dotted and so on. Tables 1 and 3 contain the colors and the indices used in this work to
denote the solvers and preconditioners.
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The simulations were performed using the in-house code ParMooN [23] on the computer
HPE Synergy 660 Gen10 with 2 Xeon eighteen-core processors, 3000 MHz and 768 GB RAM.

4.1 Time-dependent problems

4.1.1 Rotating shapes

Our first example is inspired by the well-known two-dimensional transport problem with rotating
bodies [20]. As far as we know, this example has not been treated in the literature before. This
problem aims to investigate the accuracy of the newly introduced MC limiter and to compare
the results with the Zalesak limiter.

Description of Problem

We consider (1) with Ω = (0, 1)3, ε = 0, b = (0.5− y, x− 0.5, 0)T, c = 0, f = 0, T = 2π,
ΓD = Γ, ΓN = ∅, gN = 0, and uD = 0. The initial condition u0 is depicted in Figure 1, i.e., u0
takes the value 1 in the volumes enclosed by the red surfaces and zero everywhere else. These
volumes have the following properties:

� cube: edges of length 0.25 parallel to coordinate axes, center at (0.5, 0.25, 0.5)T ;

� cone: height 0.5 and bottom surface of radius 0.125 and center at (0.75, 0.5, 0.25)T
parallel to plane z = 0;

� hollow cylinder: top and bottom surfaces parallel to plane z = 0, inner radius 0.0625,
outer radius 0.125, height 0.5, bottom surface with center at (0.5, 0.75, 0.25)T .

The velocity field b makes the spatial shapes rotate around the axis x = y = 0.5. One full
rotation takes t = 2π. Since ε and f both are zero, one should obtain a solution similar to the
initial solution after one full rotation.

Figure 1: Example 4.1.1: Initial condition.
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Numerical simulations were performed with the uniform cube mesh with the edge length 2−8

and a fixed time step length ∆t = 10−3. The implicit schemes used LGMRES with SOR as the
preconditioner.
Finally, we set atol = 10−25 for the PETSc solver. The nonlinear solver stopped if R < 10−20

or after 50 iterations. The reason for this maximum number of iterations is explained below.

Discussion of Results

The initial conditions and the solutions after a complete rotation in the plane z = 0.5 are
shown in Figure 2. The latter were calculated using all of the schemes mentioned in Section 2.
Important criteria for assessing the quality of the solutions are the smearing of the layers and
the size of the undershoots and overshoots. This is compared in Figure 2 that shows the
following:
The nonlinear Zal+CN smeared the solution the least, but the layers are uneven. This is
probably due to our low limit on the number of the nonlinear iterations; the linear Zal+CN
would also smear the layer very unevenly if we decreased atol.
The other schemes smeared the solution quite uniformly; but the schemes with the MC limiter
or SSP produced slightly more uniform smearing than the linear Zal+CN.
None of the schemes produced undershoots or overshoots that were larger than the machine
precision.
Figure 3 compares the time evolution of the solution at the point (0.5, 0.25, 0.5)T (i.e., the
initial center of the cube): We can see that the schemes with the MC limiter produced essentially
the same results. The results by the linear Zal+CN are almost identical to them, but they are
a bit better in some parts: e.g., near the times 0.6 or 2.6. The results of Zal+SSP are very
similar to the linear Zal+CN. The least diffusive results are produced by the nonlinear Zal+CN.
However, all of the results are very similar. The errors in ‖·‖2 presented in Table 4 confirm
these observation.

Table 4: Example 4.1.1: Errors at final time measured in ‖·‖2 and computing times.

MC+SSP MC+CN linear Zal+CN nonlinear Zal+CN Zal+SSP
error 5.85e-2 5.85e-02 5.76e-2 4.58e-2 5.76e-2

computing time (hrs) 29.9 106.6 17.7 254.4 22.7

The largest difference between the schemes is in the computing times (Table 4): The computing
time by the nonlinear Zal+CN is by far the worst. The reason is that the rate of the decrease
in the residual during the nonlinear loop steadily decreases in the course of the simulations.
(For MC+CN, on the contrary, this rate is roughly constant.) This property makes the scheme
impractical for large problems and long simulations; and because of this, we decided to limit
the number of the nonlinear iterations by 50. Near the end of the simulation, the final norm of
the residual in the nonlinear loop was around 10−13.
When comparing the nonlinear Zal+CN with the other schemes, we believe that the slightly
higher precision of the solution does not compensate for the excessively long computing time
at all.
One might be surprised that the explicit solvers are not the fastest ones because they do not
require any (non)linear systems to be solved. The reason is that one has to do the assembling
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Figure 2: Example 4.1.1: u0(x) and the resulting u(T,x) for x in the plane given by z = 0.5.

(a) Initial condition. (b) Linear Zal+CN.

(c) Nonlinear Zal+CN. (d) Zal+SSP.

(e) MC+CN. (f) MC+SSP.
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twice in each time step (once for each SSP stage), and in our programs, this assembling is
more expensive than solving the linear system.
Finally, Zal+SSP was faster than MC+SSP. This is because of the complexity of the assembling
in the schemes with the MC limiter (see Remark 2, page 6).

Figure 3: Example 4.1.1: Time evolution of the numerical solution and the true solution at the
point (0.5, 0.25, 0.5)T (i.e., the initial center of the cube).
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4.1.2 Concentration of species

This example was proposed in [13] and can be also found in [1, 12]. We use it to compare the
efficiency of the solvers employed to solve the linear systems arising from the AFC schemes.
We are also interested in the comparison between the Zalesak and the MC limiter.

Description of Problem

This example models a typical situation where a species enters the domain at the entrance,
travels through the domain while breeding and leaves it at the exit.
We consider (1) for Ω = (0, 1)3 , ε = 10−6, b = (1,−1/4,−1/8)T , f = 0 and

c(x) =

1 if distance(x, g) ≤ 0.1,
0 otherwise,

(29)

where g stands for the line segment with the endpoints (0, 11/16, 11/16)T and (1, 7/16, 9/16)T.
These endpoints are the centers of the inlet Γin = {0} × [5/8, 6/8]× [5/8, 6/8] and the outlet
{1} × (3/8, 4/8)× (4/8, 5/8) = ΓN, where ΓD = Γ \ ΓN. Note the differences in the closeness
of the above intervals that define the inlet and outlet.
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We use the following boundary conditions: At Γin, we prescribe

uD(t) =


sin(πt/2) if t ∈ [0, 1],
1 if t ∈ (1, 2],
sin(π(t− 1)/2) if t ∈ (2, 3].

(30)

At ΓN, we prescribe gN = 0. At ΓD \ Γin, we set uD = 0.
The initial condition is u0 = 0, i.e., there are no species within the domain.
In the time interval (0, 1), the inflow increases, and the injected species is transported to the
outlet. Then, in the time interval (1, 2), the inflow is constant, and the species reaches the
outlet. Finally, in (2, 3), the influx decreases.
The simulations were performed for the refinement levels 5–7, where the initial grid consisted
of a single cube. The time step length was ∆t = 5 · 10−3. Finally, we set tol = 10−14 in (28)
and atol = 10−16 for the PETSc solver.
Our choice of tol and atol means that the scheme MC+CN (unlike the other schemes)
produces small undershoots, i.e., negative values of the magnitude larger than the machine
precision. This can be prevented by decreasing these tolerances. However, we did not decrease
them because it would lead to excessive long computing times of the nonlinear Zal+CN (as in
Section 4.1.1). Instead, we replaced all negative components of the solution by zero in each
time step.
We considered all of the solvers and preconditioners listed in Tables 1–3. Simulations were
performed with 4, 8, 16 and 32 processors for the refinement levels 5–7. However, in the
sequential case, we performed the simulations only for the refinement level 5. Note that we do
not list results of the parallel solvers for BCGS + Jac below because the PETSc solver always
crashed for this combination.

Discussion of Results

Tables 5–7 (pages 16–17), 8–10 (pages 17–18) and 11–13 (pages 19–20) show the dependence
of the computing time on the number of processors for the nonlinear and linear Zal+CN and
for MC+CN, respectively. We believe that the reduction in computation time by doubling the
number of processors is acceptable.
We can clearly see that, generally, the best solver is FGMRES, and the worst solver is BCGS.
The order of preconditioners is (from the best one): Jac, SOR, BJac, ASM and MG, where
ASM performs much worse than the first three preconditioners, and MG performs much worse
than ASM.
As expected, the computing times for the nonlinear Zal+CN are several times longer than
those for MC+CN.
In the above discussion, we compared only the parallel algorithms because we expected them to
perform better than their sequential counterparts for the considered sizes of the problems. The
correctness of this conjecture is illustrated by Tables 14–16 (pages 20–21) in which we listed
the computing times for sequential and parallel (4 processors) solvers on the coarse refinement
level. The parallel versions are clearly better.
These tables also show the computing time for the direct solvers LU and UMFPACK. Although
UMFPACK is clearly competitive in the sequential case, the computing time for parallel versions
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Table 5: Example 4.1.2: Computing time in seconds of the solver with the nonlinear Zal+CN
for refinement level 5.

time (sec)
Solver PC NP = 4 NP = 8 NP = 16 NP = 32

BCGS

BJac 2079 1222 760 512
SOR 1986 1167 726 496
ASM 2398 1452 987 680
MG 2540 1476 1081 895

LGMRES

BJac 2079 1229 763 518
SOR 1989 1178 726 499
ASM 2378 1444 986 678
Jac 1901 1130 698 485
MG 2534 1512 1115 955

FGMRES

BJac 2003 1185 737 499
SOR 1907 1126 706 476
ASM 2290 1398 950 650
Jac 1860 1107 684 471
MG 2270 1402 1067 957

Table 6: Example 4.1.2: Computing time in seconds of the solver with the nonlinear Zal+CN
for refinement level 6.

time (sec)
Solver PC NP = 4 NP = 8 NP = 16 NP = 32

BCGS

BJac 12488 6670 3772 2248
SOR 12004 6314 3596 2124
ASM 14144 7555 4463 2760
MG 17302 8763 5187 3022

LGMRES

BJac 12459 6626 3787 2254
SOR 11948 6389 3612 2128
ASM 14077 7528 4448 2736
Jac 11427 6115 3445 2046
MG 17225 8786 5239 3081

FGMRES

BJac 11682 6232 3515 2090
SOR 11068 5939 3354 2002
ASM 13297 7162 4217 2561
Jac 10846 5873 3280 1964
MG 14636 7603 4470 2689

are by far worse than those for the iterative solvers. Therefore, we decided not to include
them in our further comparisons. Also note the interesting fact that the computing time with
UMFPACK actually shots up when running the solver in parallel.
As a measure of accuracy, the authors of [12] proposed to compare the time evolution of the
solution at the center of the outlet, i.e., at the point (1, 7/16, 9/16)T. This is done in Figure 4.
The implicit schemes are represented only by the combination FGMRES + SOR; the other
combinations produced very similar results. Contrary to the implicit schemes, the explicit
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Table 7: Example 4.1.2: Computing time in seconds of the solver with the nonlinear Zal+CN
for refinement level 7.

time (sec)
Solver PC NP = 4 NP = 8 NP = 16 NP = 32

BCGS

BJac 52053 29114 15469 8941
SOR 51732 29042 15504 9209
ASM 58398 32978 17694 10356
MG 89549 54378 31340 16829

LGMRES

BJac 52176 29198 15598 9023
SOR 52203 29426 15508 9293
ASM 58760 32953 17689 10361
Jac 50720 27788 14815 9035
MG 91239 47312 26151 17150

FGMRES

BJac 47523 26532 14117 8141
SOR 46234 25695 13666 8010
ASM 54173 30610 16409 9519
Jac 45626 24908 13356 7846
MG 64826 36046 20632 12251

Table 8: Example 4.1.2: Computing time in seconds of the solver with the linear Zal+CN for
refinement level 5.

time (sec)
Solver PC NP = 4 NP = 8 NP = 16 NP = 32

BCGS

BJac 82 46 30 21
SOR 82 46 30 20
ASM 87 48 33 21
MG 87 48 33 22

LGMRES

BJac 82 46 31 20
SOR 82 45 30 20
ASM 86 48 33 21
Jac 81 44 30 19
MG 89 49 32 22

FGMRES

BJac 81 45 30 19
SOR 82 45 30 20
ASM 86 48 32 21
Jac 81 45 30 21
MG 85 48 32 21

schemes were used with the time step ∆t = 10−3 (because of the CFL condition). The curves
representing the time evolutions probably converge to some curve, but it is not clear which one
is better. Note that the schemes with the MC limiter produced essentially the same results.
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Table 9: Example 4.1.2: Computing time in seconds of the solver with the linear Zal+CN for
refinement level 6.

time (sec)
Solver PC NP = 4 NP = 8 NP = 16 NP = 32

BCGS

BJac 615 339 194 114
SOR 616 331 194 115
ASM 626 343 202 121
MG 665 362 215 125

LGMRES

BJac 624 342 198 116
SOR 617 336 194 115
ASM 650 351 207 123
Jac 615 328 189 112
MG 701 370 214 128

FGMRES

BJac 598 326 192 114
SOR 604 329 188 113
ASM 633 338 198 120
Jac 605 327 188 112
MG 650 351 202 122

Table 10: Example 4.1.2: Computing time in seconds of the solver with the linear Zal+CN for
refinement level 7.

time (sec)
Solver PC NP = 4 NP = 8 NP = 16 NP = 32

BCGS

BJac 4905 2612 1406 794
SOR 4870 2600 1433 808
ASM 4974 2696 1468 822
MG 5747 3142 1797 1019

LGMRES

BJac 5045 2664 1440 813
SOR 5097 2677 1467 846
ASM 5198 2820 1554 878
Jac 4827 2597 1381 803
MG 5971 3224 1882 1020

FGMRES

BJac 4831 2606 1417 796
SOR 4823 2566 1387 794
ASM 4976 2696 1481 834
Jac 4706 2565 1397 783
MG 5465 2981 1650 935

4.2 Stationary problems

4.2.1 Example with non-constant convection

This example was proposed in [7]. We use it to compare the computing times of different
solvers.
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Table 11: Example 4.1.2: Computing time in seconds of the solver with MC+CN for refinement
level 5.

time (sec)
Solver PC NP = 4 NP = 8 NP = 16 NP = 32

BCGS

BJac 184 102 66 42
SOR 177 99 64 42
ASM 196 110 75 49
MG 201 113 73 48

LGMRES

BJac 184 102 66 43
SOR 178 99 64 42
ASM 195 110 76 50
Jac 173 97 63 41
MG 201 111 74 50

FGMRES

BJac 177 99 65 42
SOR 175 98 64 41
ASM 198 109 74 48
Jac 173 96 63 41
MG 212 107 70 46

Table 12: Example 4.1.2: Computing time in seconds of the solver with MC+CN for refinement
level 6.

time (sec)
Solver PC NP = 4 NP = 8 NP = 16 NP = 32

BCGS

BJac 1349 736 416 247
SOR 1329 717 407 240
ASM 1429 777 453 276
MG 1604 852 490 284

LGMRES

BJac 1364 731 420 249
SOR 1332 721 411 243
ASM 1448 790 460 276
Jac 1310 732 403 239
MG 1608 857 496 287

FGMRES

BJac 1320 706 404 239
SOR 1281 689 396 234
ASM 1396 762 444 267
Jac 1271 694 393 234
MG 1447 779 450 264

Description of Problem

We consider (24) with Ω = Ω1 \Ω2, where Ω1 = (0, 5)× (0, 2)× (0, 2) and Ω2 = (0.5, 0.8)×
(0.8, 1.2) × (0.8, 1.2), b = (1, l(x), l(x))T with l(x) = (0.19x3 − 1.42x2 − 2.38x)/4, c = 0,
f = 0 and the convection-dominated case of ε = 10−3. An illustration of the solution is given
in Figure 5.
As for the boundary conditions, we set ΓN := {5} × (0, 2)× (0, 2) and ΓD = ∂Ω \ ΓN, and we
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Table 13: Example 4.1.2: Computing time in seconds of the solver with MC+CN for refinement
level 7.

time (sec)
Solver PC NP = 4 NP = 8 NP = 16 NP = 32

BCGS

BJac 10127 5449 2938 1677
SOR 10174 5428 2934 1702
ASM 10842 5774 3141 1778
MG 13790 7209 3898 2360

LGMRES

BJac 10374 5566 2985 1702
SOR 10446 5569 2996 1739
ASM 11072 5926 3220 1845
Jac 10311 5387 2924 1700
MG 14058 7295 3954 2387

FGMRES

BJac 9924 5278 2837 1602
SOR 9762 5490 2812 1603
ASM 10554 5661 3069 1742
Jac 9692 5144 2779 1593
MG 11987 6267 3386 2024

Table 14: Example 4.1.2: Nonlinear Zal+CN: Computing time in seconds for NP = 1, 4 and
refinement level 5.

time (sec) time (sec)
Solver PC NP = 1 NP = 4 Solver PC NP = 1 NP = 4

BCGS

BJac 5740 2079

FGMRES

BJac 5288 2003
SOR 5355 1986 SOR 4958 1907
ASM 6271 2398 ASM 5821 2290
Jac 5224 — Jac 4958 1860
MG 6618 2540 MG 6013 2270

LGMRES

BJac 5915 2079 LU — 85567 48247
SOR 5248 1989 UMFPACK — 5073 48987
ASM 6325 2378
Jac 5077 1901
MG 6599 2534

prescribe gN = 0 and uD = 0 on ∂Ω2 and uD = 1 on the remainder of ΓD.
The region Ω is covered by unstructured tetrahedral grids corresponding to the refinement
levels 3, 4 and 5. The coarsest one (in Figure 5) was obtained by Gmsh [9]. It consists of 226
tetrahedra. The cell diameters of our grids are in the ranges [0.0718, 0.2313], [0.0510, 0.1548]
and [0.0180, 0.0578], respectively. Finally, we consider atol = 10−14 and tol = 10−10.
Simulations were performed for all solvers and preconditioners listed in Tables 1 and 3 for all NP
listed in item 3 on page 10. We note that certain combinations of solvers and preconditioners
did not work; in particular, the PETSc solver with the preconditioner MG always either crashed
or did not converge. Similarly, the PETSc solver always crashed when combining BCGS with
Jac or SOR, or when combining LGMRES with SOR.
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Table 15: Example 4.1.2: Linear Zal+CN: Computing time in seconds for NP = 1, 4 and
refinement level 5.

time (sec) time (sec)
Solver PC NP = 1 NP = 4 Solver PC NP = 1 NP = 4

BCGS

BJac 252 82

FGMRES

BJac 249 81
SOR 248 82 SOR 247 82
ASM 253 87 ASM 254 86
Jac 248 — Jac 248 81
MG 261 87 MG 255 85

LGMRES

BJac 252 82 LU — 1009 513
SOR 249 82 UMFPACK — 248 516
ASM 255 86
Jac 250 81
MG 261 89

Table 16: Example 4.1.2: MC+CN: Computing time in seconds for NP = 1, 4 and refinement
level 5.

time (sec) time (sec)
Solver PC NP = 1 NP = 4 Solver PC NP = 1 NP = 4

BCGS

BJac 553 184

FGMRES

BJac 543 177
SOR 543 177 SOR 532 175
ASM 585 196 ASM 560 198
Jac 538 — Jac 534 173
MG 593 201 MG 564 212

LGMRES

BJac 558 184 LU — 3750 2066
SOR 541 178 UMFPACK — 513 2078
ASM 571 195
Jac 538 173
MG 590 201

Discussion of Results

Results regarding the comparison of computing times for different limiters, refinement levels
and number of processors (4, 8, 16 and 32) are compared in Figures 6–8, pages 23–25.
First, we believe that the shortening of the computing time by doubling the number of processors
is acceptable. Note that for the lowest refinement level, the problem was obviously too small
for 32 processors, and the computing time even increased sometimes.
Regarding the solvers, we note that FGMRES is clearly the most efficient. Further, BCGS
seems to be slightly better than LGMRES.
As for the preconditioners, the best one is clearly Jac, but only when used for very fine grids:
when coarsening the grid, it becomes less and less efficient. The second best are BJac and
SOR: Sometimes, BJac is better than SOR; sometimes SOR is the better one.
The worst preconditioners are clearly Jac (when used for coarse grids) and ASM.
The computing times of the scheme with the LP limiter are about an order of magnitude larger
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Figure 4: Example 4.1.2: Time evolution of u at (1, 7/16, 9/16)T. The MC limiter produces
essentially the same result for both time discretizations.
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(b) Refinement level 6.
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(c) Refinement level 7.
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Figure 5: Example 4.2.1: Isosurface for u = 0.05 of the solution computed using the MU limiter
for the level 5, and sketch of the coarsest grid (level 0).
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Figure 6: Example 4.2.1: Efficiency of different solvers and preconditioners with respect to the
number of processors for the LP limiter.
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than those of the other runtimes. The same is true for the number of iterations (not shown
here), which is the reason for these long runtimes. This seems to be the price to pay for better
accuracy. This point is discussed in details in the next section.
In the discussion above, we compared only the parallel algorithms because we assumed that
they would perform better than their sequential counterparts on the problem sizes considered.
The correctness of this assumption is illustrated by Tables 17–19, where we have listed the
sequential computing times and the parallel computing times for 4 processors for our lowest
refinement level. The parallel implementations are clearly better.
Finally, Figure 9 compares the solution values along the cut-line defined by y = 1 and z = 1.
We can see that the solutions do not contain any overshoots or undershoots. They are also
approximately the same for x ≤ 4.0. However, they significantly differ for x > 4.0.
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Figure 7: Example 4.2.1: Efficiency of different solvers and preconditioners with respect to the
number of processors for the MU limiter.

(a) Refinement level 3.

4 8 16 32

1.5

2

2.5

3

3.5

NP

tim
e
(s
ec
)

(b) Refinement level 4.

4 8 16 32

10

15

20

25

NP

tim
e
(s
ec
)

(c) Refinement level 5.

4 8 16 32
50

100

150

200

250

NP

tim
e
(s
ec
)

LGMRES + BJac
LGMRES + ASM
LGMRES + Jac
FGMRES + BJac
FGMRES + SOR
FGMRES + ASM
FGMRES + Jac
BCGS + BJac
BCGS + ASM

Table 17: Example 4.2.1: Computing times in seconds of the solver with the LP limiter for
refinement level 3.

time (sec) time (sec)
Solver PC NP = 1 NP = 4 Solver PC NP = 1 NP = 4

LGMRES

BJac 74.6 24.6
BCGS

BJac 63.1 21.7
SOR 79.6 — SOR 66.8 —
ASM 79.8 25.7 ASM 68.4 23.2
Jac 91.0 26.7

FGMRES

BJac 60.8 20.5
SOR 62.9 21.6
ASM 65.3 21.0
Jac 84.9 25.4

DOI 10.20347/WIAS.PREPRINT.2889 Berlin 2021



An assessment of solvers for algebraically stabilized discretizations of CDR equations 25

Figure 8: Example 4.2.1: Efficiency of different solvers and preconditioners with respect to the
number of processors for the MC limiter.
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Table 18: Example 4.2.1: Computing times in seconds of the solver with the MU limiter for
refinement level 3.

time (sec) time (sec)
Solver PC NP = 1 NP = 4 Solver PC NP = 1 NP = 4

LGMRES

BJac 8.2 2.7
BCGS

BJac 7.9 2.9
SOR 8.5 — SOR 8.1 —
ASM 8.7 2.9 ASM 8.3 3.1
Jac 11.1 3.5

FGMRES

BJac 7.6 2.6
SOR 7.8 2.7
ASM 8.0 2.7
Jac 10.0 3.2

4.2.2 Circular convection

This example is an extension of the 2D example with the same name from [17]. We use it to
compare the accuracy of the solutions computed with different limiters.
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Table 19: Example 4.2.1: Computing times in seconds of the solver with the MC limiter for
refinement level 3.

time (sec) time (sec)
Solver PC NP = 1 NP = 4 Solver PC NP = 1 NP = 4

LGMRES

BJac 6.2 2.3
BCGS

BJac 5.8 2.3
SOR 6.4 — SOR 6.0 —
ASM 6.6 2.4 ASM 6.2 2.6
Jac 8.1 2.7

FGMRES

BJac 5.7 2.2
SOR 5.8 2.2
ASM 6.0 2.3
Jac 7.5 2.6

Figure 9: Example 4.2.1: u(x, 1, 1) for x ∈ [0, 0.5] ∪ [0.8, 5] computed using different limiters.
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Description of Problem

We consider equation (24) with Ω = (0, 1)3, ε = 0, b = (y,−x, 0)T, c = 0, and f = 0.
As for the boundary conditions, ΓD is the union of the faces with y = 1, x = 0 and x = 1, and
ΓN = Γ \ ΓD, where gN = 0. The values of uD correspond to the exact solution

u(x, y, z) =


1 if 0.15 ≤ r(x, y) ≤ 0.45,
cos2

(
10π r(x,y)−0.7

3

)
if 0.55 ≤ r(x, y) ≤ 0.85,

0 otherwise,
(31)

where r(x, y) =
√
x2 + y2. An approximation of this solution is in Figure 10.

The domain Ω is covered by tetrahedral grids corresponding to the refinement levels 5–7, with
the initial grid consisting of 6 tetrahedra. The maximum cell diameters of these grids are
approximately 0.0765, 0.0383, and 0.0191, respectively.
Since we wanted to obtain the best approximation of the solution for a given combination of
limiter and refinement level, our stopping criterion for the nonlinear solver was

|Rnew −Rold|/Rnew < tol2 and u(x) ≥ −10−16 ∀x ∈ Ω, (32)

where Rnew and Rold stand for the Euclidean norms of the new and old residues, respectively.
That is, the solver should stop when the solution stops improving. We set tol2 = 10−6 and
atol = 10−14.
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Figure 10: Example 4.2.2: Solution for the refinement level 7 computed by the scheme with
the MC limiter.

Discussion of Results

Table 20, page 27 shows the resulting errors of the numerical solution, measured in ‖·‖1
and ‖·‖2, which denote the standard norms in L1(Ω) and L2(Ω), respectively. Note that we
do not specify which combination of linear systems solver and preconditioner we use. The
reason for this is that we tested all the solvers and preconditioners listed in Tables 1 and 3,
and, as expected, they all gave approximately the same results (with the exception of some
combinations, for which the PETSc solver always crashed). In addition, we only ran our
solvers in parallel.
The errors clearly indicate convergence. However, the L1-error decreases much faster than the
L2-error. For each refinement level, the results obtained with the LP limiter are clearly the best.
The results obtained with the MC and MU limiters are similar.
Due to (32), none of the schemes produced undershoots or overshoots that were larger than
the machine precision.

Table 20: Example 4.2.2: Errors measured in ‖·‖1 and ‖·‖2.

(a) Error in ‖·‖1.

Level MC LP MU
5 8.11e-02 4.14e-02 9.24e-02
6 3.39e-02 1.86e-02 3.62e-02
7 1.62e-02 8.31e-03 1.56e-02

(b) Error in ‖·‖2.

Level MC LP MU
5 1.46e-01 9.76e-02 1.61e-01
6 8.15e-02 6.64e-02 8.52e-02
7 5.81e-02 4.59e-02 5.60e-02

DOI 10.20347/WIAS.PREPRINT.2889 Berlin 2021



A. Jha, O. Pártl, N. Ahmed, D. Kuzmin 28

5 Conclusions

The numerical studies of AFC schemes in this work indicate that the costs of the following
procedures must be taken into account when designing high-performance algorithms: (i)
calculation of the correction factors for limited antidiffusive fluxes, (ii) matrix/residual assembly,
and (iii) iterative solution.
The need for high accuracy and efficiency becomes particularly pronounced in applications of
AFC to 3D problems. As a rule, schemes equipped with more diffusive limiters converge faster
than more accurate approaches. Thus a fair comparison of different algorithms should be based
on CPU times that are required to attain a certain level of accuracy.
An interesting observation is that implicit schemes can outperform their explicit counterparts
even in numerical simulations of transient processes using small time steps. We hope that our
comparison of different limiters and linear algebra tools provides useful insights for finding
combinations of methods that offer the best overall performance in terms of accuracy and
efficiency.
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