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1 Introduction

Scalar convection–diffusion equations model the convective and molecular transport of a
quantity like temperature or concentration. In applications, the convective transport is usually
dominant, which is the case of interest in this paper.

Here, we consider the steady-state situation, where the mathematical problem is formu-
lated as follows: Find u : Ω → R such that

− ε Δu + b · ∇u + c u = g in Ω, u = uD on ∂Ω, (1)

where Ω ⊂ R
d (d = 2, 3) is a bounded polygonal or polyhedral domain with a Lipschitz

continuous boundary ∂Ω , ε > 0 is a constant diffusion coefficient, b ∈ W 1,∞(Ω)d is a
solenoidal convection field, c ∈ L∞(Ω) is a non-negative reaction coefficient, g ∈ L2(Ω)

is an outer source of the quantity u, and uD ∈ H
1
2 (∂Ω) ∩ C0(∂Ω) is a boundary datum.

A characteristic feature of solutions of (1) is the appearance of layers, i.e., of narrow
regions where the solution has a large gradient. These regions are usually so narrow that
the layers cannot be resolved by affordable grids. It is well known that standard discretiza-
tions cannot cope with this situation and they lead tomeaningless numerical solutions that are
globally pollutedwith huge spurious oscillations. The remedy consists in using stabilized dis-
cretizations. In the context of finite element methods, the proposal of the streamline-upwind
Petrov–Galerkin (SUPG) method in [15,22] was the first milestone in this direction. Solu-
tions computed with this method usually have sharp layers at the correct position, but there
are still non-negligible spurious oscillations in a vicinity of layers. Since the publication of
[15,22] the development and analysis of stabilized discretizations for convection-dominated
equations has been an active field of research.

In this research, one can distinguish two directions. The first one is the development of
stabilized methods with a provable order of convergence in appropriate norms. Examples of
this direction are the continuous interior penalty (CIP) method (see, e.g. [16]) and the local
projection stabilization (LPS) method (see [12] for the first application of this method to a
convection-dominated equation). The second direction consists in finding stabilized methods
that compute solutions without spurious oscillations and still with sharp layers. The property
of being free of spurious oscillations can be expressed mathematically with the satisfaction
of the discrete maximum principle (DMP). Usually, the satisfaction of the DMP is proved by
the sufficient condition that the matrix of a linear discretization1 is an M-matrix. However,
it is well known that, in the limit case ε = 0, there is a barrier of the order of the local
discretization error for linear discretizations with M-matrices: these discretizations are at
most of first order, e.g., see [42, Thm. 4.2.2].

Since the property of being free of spurious oscillations might be of utmost importance
for a method to be applicable in practice, a significant amount of work has been devoted to
the development of such methods. Due to the order barrier for linear discretizations, non-
linear discretizations became of interest. One further argument in favor of using nonlinear
discretizations for a convection-dominated problem stems from the fact that most of the
applications in which convection dominates are modeled by nonlinear partial differential
equations. Then, the use of a nonlinear discretization does not constitute a significant over-
head. Since the late 1980s, there have been a number of proposals to remove the spurious
oscillations of the SUPG method by adding appropriate nonlinear terms. This class of meth-
ods is called spurious oscillations at layers diminishing (SOLD) methods, or shock capturing
methods. A comprehensive review was carried out in the companion papers [25,26], and the

1 A linear discretization of (1) is a discretization that leads to a linear system of equations.
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main conclusion of it was that none of the proposed SOLD methods reduced the spurious
oscillations sufficiently well.

Algebraic stabilizations, so-called algebraic flux correction (AFC) schemes, became of
interest to us as a result of numerical assessments of stabilized discretizations in [5,25,28,29].
Themainmotivation for the design ofAFCmethods is the satisfaction of theDMP. In addition,
they provide reasonably sharp approximations of the layers. In contrast to SOLD methods,
which are based on variational formulations, the main idea of AFC schemes consists in
modifying the algebraic system corresponding to a discrete problem, typically the Galerkin
discretization, bymeans of solution-dependent flux corrections. Consequently, AFC schemes
are nonlinear. The basic philosophy of flux correction schemes was formulated already in
[14,43]. Later, the idea was extended to the finite element context, e.g., in [4,39]. In the last
fifteen years, there has been an intensive development of these methods, e.g., see [33–37].

None of the above references deals with the mathematical analysis of the AFC methods.
In fact, the first contributions to the numerical analysis of AFC schemes were presented only
recently in [8,9,11]. The first paper [8] focuses on the solvability of the nonlinear scheme,
while [9] presents the first error analysis of the AFC schemes. Interestingly, the paper [9] also
presented negative results, in the sense that it was shown that unless some restrictions are
imposed on the mesh, the numerical scheme may not converge. Finally, in the recent paper
[11] the role of the linearity preservation was studied. This study is also complemented by
the work [10], where a link between the AFC schemes and a nonlinear edge-based diffusion
scheme is presented, and the linearity preservation of the scheme is also studied in detail.
This latter reformulation offers the applicability of different tools than those used so far for
the analysis of AFC schemes. In particular, it facilitated the a posteriori error analysis of the
AFC method, presented in [2]. Thus, the present paper aims at providing a review of these
works, and performing the analysis in a unified framework.

The rest of the manuscript is organized as follows. After having introduced AFC methods
in Sect. 2, a rewriting as an edge diffusion scheme is presented. A unified analysis is given
in Sect. 3, covering the existence of a solution, minimal conditions for the validity of the
DMP, and finite element error estimates. Three definitions of limiters are provided in Sect. 4.
Strategies for the solution of the nonlinear problems are discussed in Sect. 5. Numerical
studies for different limiters used in AFC schemes and the edge diffusion scheme proposed
in [10] are presented in Sect. 6. Finally, Sect. 7 states the most important open problems in
the field of AFC schemes.

2 The model problem and a unified presentation of AFC schemes

The weak formulation of (1) reads: find u ∈ H1(Ω) such that u|∂Ω = uD , and

a(u, v) = (g, v)Ω ∀ v ∈ H1
0 (Ω), (2)

where (·, ·)Ω denotes the inner product in L2(Ω) or L2(Ω)d and the bilinear form a(·, ·) is
given by

a(u, v) = ε(∇u,∇v)Ω + (b · ∇u, v)Ω + (c u, v)Ω. (3)

Thanks to the Poincaré inequality, and the fact that b is solenoidal and c is non-negative, this
problem has a unique solution.

To discretize the problem (1), we introduce the following notation:

– {Th}h>0 denotes a family of shape regular simplicial triangulations of Ω .
– For a given triangulation Th , Eh denotes the set of its internal edges.
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– For every edge E ∈ Eh , we denote by hE the length of E and by xE,1, xE,2 the endpoints
of E . Furthermore, for every E ∈ Eh , we choose one unit tangent vector tE . Its orientation
is of no importance.

– For every edge E ∈ Eh , we define the neighborhood ωE := ∪{T ∈ Th : T ∩ E 
= ∅}.
– For a given triangulation Th , {x1, . . . , xN } is the set of its nodes. We will assume that

the nodes x1, . . . , xM are the internal nodes, and xM+1, . . . , xN are boundary nodes,
i.e., the nodes where the Dirichlet boundary condition is imposed.

– For a node xi , i = 1, . . . , N , we define

Ei := {E ∈ Eh : xi is an endpoint of E}.
– For a node xi , i = 1, . . . , N , we define Δi := {T ∈ Th : xi ∈ T }.
– For an interior node xi , i = 1, . . . , M , we define the index set of its neighbors

Si := { j ∈ {1, . . . , N } \ {i} : xi and x j are endpoints of the same

internal edge E ∈ Eh}.
– The finite element spaces used in this work are given by

Vh := {vh ∈ C0(Ω) : vh |T ∈ P1(T ) ∀ T ∈ Th}, Vh,0 := Vh ∩ H1
0 (Ω).

– These spaces have standard nodal basis functions denoted by {ϕ1, . . . , ϕN }, uniquely
determined by the conditions ϕi (x j ) = δi j for all i, j = 1, . . . , N . We further notice
that suppϕi = Δi .

– The Lagrange interpolation operator ih : C0(Ω) → Vh is given by

ihv =
N∑

i=1

v(xi ) ϕi .

In addition, we set

ihuD =
N∑

i=M+1

uD(xi ) ϕi |∂Ω.

The Galerkin scheme associated to (2) is given as follows: Find uh ∈ Vh such that
uh |∂Ω = ihuD , and

a(uh, vh) = (g, vh)Ω ∀ vh ∈ Vh,0. (4)

This scheme is well known to lead to inaccurate results on affordable grids.
The first step towards the building of an AFC scheme is the writing of the Galerkin method

(4) in matrix form. For this, we introduce the matrix A = (ai j )
N
i, j=1, where ai j = a(ϕ j , ϕi ).

Then, we represent the discrete solution by a vector U ∈ R
N of its coefficients with respect

to the basis {ϕ1, . . . , ϕN } of Vh . Then U ≡ (u1, . . . , uN ) satisfies the following system of
linear equations:

N∑

j=1

ai j u j = gi , i = 1, . . . , M, (5)

ui = uD(xi ), i = M + 1, . . . , N , (6)

123



A unified analysis of algebraic flux correction schemes... 659

where gi = (g, ϕi )Ω for i = 1, . . . , M . Thanks to the ellipticity of a(·, ·) on Vh,0, the matrix

(ai j )Mi, j=1 is positive definite, i.e.,

M∑

i, j=1

ui ai j u j > 0 ∀ (u1, . . . , uM ) ∈ R
M \ {0}. (7)

Using the matrix A = (ai j )Ni, j=1, we introduce a symmetric artificial diffusion matrix

D = (di j )Ni, j=1 with entries

di j = d ji = −max{ai j , 0, a ji } ∀ i 
= j, dii = −
∑

j 
=i

di j . (8)

The first step of defining an AFC scheme is then to add artificial diffusion to the algebraic
system. More precisely, the problem (4) is replaced by

(AU)i + (DU)i = gi , i = 1, . . . , M, (9)

ui = uD(xi ), i = M + 1, . . . , N . (10)

In practice, the solution of such a perturbed scheme, which corresponds to simple upwind-
ing, is too diffusive to be of interest. Then, the aim of AFC schemes is to localize this added
diffusion in such a way that the DMP is respected, while the internal and boundary layers
are not too smeared. This requires a finer analysis of the structure of the product DU. Since
the row sums of the matrix D vanish, it follows that

(DU)i =
∑

j 
=i

fi j , i = 1, . . . , N ,

where fi j = di j (u j − ui ). Clearly, fi j = − f j i for all i, j = 1, . . . , N . Then, a further
rewriting of (9) reads as follows:

(AU)i +
N∑

j=1

fi j = gi , i = 1, . . . , M,

ui = uD(xi ), i = M + 1, . . . , N .

The next fundamental step in the building of an AFC scheme is to limit the fluxes fi j . In
other words, the idea is to localize the diffusion to the areas surrounding extrema and layers.
To this end, we introduce solution-dependent correction factors (or flux limiters) βi j ∈ [0, 1],
and replace system (9) by

N∑

j=1

ai j u j +
N∑

j=1

βi j (U) di j (u j − ui ) = gi , i = 1, . . . , M, (11)

ui = uD(xi ), i = M + 1, . . . , N . (12)

For βi j = 0, the original system (5) is recovered. Hence, intuitively, the coefficients βi j

should be as close to 0 as possible to limit the modifications of the original problem. So far,
these coefficients have been chosen in various ways, and their definition is always based on
the fluxes fi j . To guarantee that the resulting scheme is conservative, and to be able to show
existence of solutions, one should require that the coefficients βi j are symmetric, i.e.,

βi j = β j i , i, j = 1, . . . , N .
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This requirement also has a mathematical justification. As a matter of fact, in [8], the possible
non-existence of solutions has been shown if this restriction is ignored. Note that (11) does
not involve βi j with i ∈ {M + 1, . . . , N } and hence these values can be chosen arbitrarily.
We define them by the above symmetry condition and by the requirement that βi j = 0 if
i, j ∈ {M + 1, . . . , N }.
2.1 A variational formulation and a rewriting as an edge diffusion scheme

Our starting point is the following variational formulation presented in [9] for problem (11),
(12): Find uh ∈ Vh such that uh |∂Ω = ihuD , and

a(uh, vh) + Dh(uh; uh, vh) = (g, vh)Ω ∀ vh ∈ Vh,0. (13)

Here, the nonlinear form Dh(·; ·, ·) is given by

Dh(z; v,w) =
N∑

i, j=1

βi j (z) di j (v(x j ) − v(xi ))w(xi ).

We now rewrite this nonlinear form using the symmetry of di j and βi j :

Dh(z; v,w)

=
∑

i> j

βi j (z) di j (v(x j ) − v(xi ))w(xi ) +
∑

i< j

βi j (z) di j (v(x j ) − v(xi ))w(xi )

=
∑

i> j

βi j (z) di j (v(x j ) − v(xi ))w(xi ) +
∑

i> j

β j i (z) d ji (v(xi ) − v(x j ))w(x j )

=
∑

i> j

βi j (z) di j (v(x j ) − v(xi ))(w(xi ) − w(x j ))

=
∑

E∈Eh

βE (z) |dE | (v(xE,1) − v(xE,2))(w(xE,1) − w(xE,2)),

where we have denoted βE = βi j = β j i and dE = di j = d ji for any edge E ∈ Eh that has
the endpoints xi and x j .

Hence, with this rewriting of Dh , we can state the following general form of an AFC
scheme: Find uh ∈ Vh such that uh |∂Ω = ihuD , and

ah(uh; uh, vh) = (g, vh)Ω ∀ vh ∈ Vh,0, (14)

where ah(z; v,w) = a(v,w) + Dh(z; v,w) with a(·, ·) being defined in (3) and Dh(·; ·, ·)
given by

Dh(z; v,w) =
∑

E∈Eh

βE (z) |dE | (v(xE,1) − v(xE,2))(w(xE,1) − w(xE,2)). (15)

Since, for any function from Vh , the restriction to any edge E of Eh is a linear function, one
has

Dh(z; v,w) =
∑

E∈Eh

βE (z) |dE | hE (∇v · tE ,∇w · tE )E ∀ v,w ∈ Vh . (16)

From now on we will suppose that, for every edge E ∈ Eh , dE is a real number, not
necessarily linked to the matrix A. This flexibility will allow us to include a wider class of
methods in our presentation.
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The solution-dependent limiters βE are still assumed to satisfy βE ∈ [0, 1] and to assure
the solvability of (14) (see the next section),we furthermake the following continuity assump-
tion:

Assumption (A1) For any E ∈ Eh , the functionβE (uh)(∇uh)|E · tE is a continuous function
of uh ∈ Vh .

It will be shown in Sect. 4 that the limiters defined in [9–11] satisfy Assumption (A1).

Remark 1 The fact that the restriction of the functions v andw to the internal edges is a linear
function is what makes it possible to obtain the expression (16) for Dh . This property also
holds for unmappedQ1 finite elements, and formappedQ1 finite elements on parallelepipeds,
although in that case this methodology would lead to a completely different method, as the
cross-terms would not be included in the method. The implications of this remark are the
topic of current investigations and are to be reported elsewhere. On a related note to the
previous point, AFC-related schemes using higher order elements combined with Bernstein
basis functions have been developed recently in the work [38], but the full stability and error
analysis of the methods is lacking.

3 General properties of the nonlinear scheme

In this section we present the main results associated to the nonlinear scheme (14). More
precisely, we present results on its solvability, minimal conditions for the validity of the
discrete maximum principle, and a first error estimate for the method. In the following
section the conditions imposed herein will be checked for different definitions of the limiters
βE .

3.1 Existence of solutions

Lemma 1 (Consequence of Brouwer’s fixed-point theorem) Let X be a finite-dimensional
Hilbert space with inner product (·, ·)X and norm ‖ · ‖X . Let T : X → X be a continuous
mapping and K > 0 a real number such that (T x, x)X > 0 for any x ∈ X with ‖x‖X = K.
Then there exists x ∈ X such that ‖x‖X < K and T x = 0.

A proof of Lemma 1 can be found in [40, p. 164, Lemma 1.4]. Now, the existence of solutions
for the nonlinear scheme (14) can be proved.

Theorem 1 (Existence of a solution of (14)) If Assumption (A1) holds, then there exists a
solution uh of (14).

Proof For this proof only, we will consider constants C > 0 that may depend on the data of
(1) and h. In addition, we will make use of a function uh,D ∈ Vh , which is an extension of
the boundary datum ihuD . Let us first define the nonlinear mapping T : Vh,0 → [Vh,0]′ by

〈T vh, wh〉 := a(vh + uh,D, wh) + Dh(vh + uh,D; vh + uh,D, wh) − (g, wh)Ω.

Since a(·, ·) is a continuous bilinear form, Assumption (A1) implies that T is a continuous
mapping. Next, from the definition of a(·, ·), it follows that, for any vh ∈ Vh,0,

a(vh, vh) = ε |vh |21,Ω + (c vh, vh) ≥ ε |vh |21,Ω .
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Moreover, (16) and the fact that βE (vh + uh,D) ≥ 0 give

Dh(vh + uh,D; vh, vh) =
∑

E∈Eh

βE (vh + uh,D) |dE | hE ‖∇vh · tE‖20,E ≥ 0.

Then, the definition of the operator T yields

〈T vh, vh〉 ≥ ε|vh |21,Ω + a(uh,D, vh) + Dh(vh + uh,D; uh,D, vh) − (g, vh)Ω.

The terms involving uh,D are bounded next. The Cauchy–Schwarz and Poincaré inequalities
lead to

|a(uh,D, vh)| = ∣∣ε(∇uh,D,∇vh)Ω + (b · ∇uh,D, vh)Ω + (c uh,D, vh)Ω

∣∣

≤ ε |uh,D|1,Ω |vh |1,Ω + √
d ‖b‖∞,Ω |uh,D|1,Ω ‖vh‖0,Ω

+ ‖c‖∞,Ω ‖uh,D‖0,Ω ‖vh‖0,Ω ≤ C‖uh,D‖1,Ω |vh |1,Ω .

In addition, using the shape regularity of the mesh sequence, βE (·) ≤ 1, and the local trace
inequality, one arrives at

|Dh(vh + uh,D; uh,D, vh)|

=
∣∣∣∣∣∣

∑

E∈Eh

βE (vh + uh,D) |dE | hE (∇uh,D · tE ,∇vh · tE )E

∣∣∣∣∣∣

≤
∑

E∈Eh

|dE | hE ‖∇uh,D · tE‖0,E ‖∇vh · tE‖0,E ≤ C |uh,D|1,Ω |vh |1,Ω .

Finally, the application of the Poincaré and Young inequalities gives

〈T vh, vh〉 ≥ ε|vh |21,Ω − C ‖uh,D‖1,Ω |vh |1,Ω − ‖g‖0,Ω‖vh‖0,Ω ≥ ε

2
|vh |21,Ω − C0.

Thus, for vh ∈ Vh,0 such that |vh |1,Ω > (2C0/ε)
1
2 there holds 〈T vh, vh〉 > 0. Lemma 1

implies that there exists vh ∈ Vh,0 such that |vh |1,Ω < 2 (C0/ε)
1
2 and T vh = 0. In other

words, uh := vh + uh,D solves (14). ��
3.2 The discrete maximum principle

In this section we shall formulate general properties of the limiters βE under which the AFC
scheme (14) satisfies the local and global DMP. The local DMP will be formulated on the
patches Δi defined in Sect. 2.

To prove the DMP, we make the following general assumption, which is a reformulation
of an analogous assumption introduced in [32].

Assumption (A2) Consider any uh ∈ Vh and any i ∈ {1, . . . , M}. If uh(xi ) is a strict local
extremum of uh on Δi , i.e.,

uh(xi ) > uh(x) ∀ x ∈ Δi \ {xi } or uh(xi ) < uh(x) ∀ x ∈ Δi \ {xi },
then

ah(uh;ϕ j , ϕi ) ≤ 0 ∀ j ∈ Si .
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Theorem 2 (Local DMP) Let uh ∈ Vh be a solution of (14) with limiters βE satisfying
Assumption (A2). Consider any i ∈ {1, . . . , M}. Then

g ≤ 0 in Δi ⇒ max
Δi

uh ≤ max
∂Δi

u+
h , (17)

g ≥ 0 in Δi ⇒ min
Δi

uh ≥ min
∂Δi

u−
h , (18)

where u+
h = max{0, uh} and u−

h = min{0, uh}. If, in addition, c = 0 in Δi , then

g ≤ 0 in Δi ⇒ max
Δi

uh = max
∂Δi

uh, (19)

g ≥ 0 in Δi ⇒ min
Δi

uh = min
∂Δi

uh . (20)

Proof Let uh ∈ Vh satisfy (14) and let us denote ui = uh(xi ), i = 1, . . . , N . Then uh =∑N
j=1 u j ϕ j and one has

N∑

j=1

ãi j u j = gi , i = 1, . . . , M, (21)

where

ãi j = ah(uh;ϕ j , ϕi ), i = 1, . . . , M, j = 1, . . . , N ,

gi = (g, ϕi )Δi , i = 1, . . . , M.

Moreover, for i = 1, . . . , M , one derives

ãi i ≥ a(ϕi , ϕi ) ≥ ε |ϕi |21,Ω > 0, (22)

N∑

j=1

ãi j = ah(uh; 1, ϕi ) = (c, ϕi )Δi ≥ 0. (23)

These properties follow from the fact that (b · ∇v, v)Ω = 0 for any v ∈ H1
0 (Ω),

Dh(uh;ϕi , ϕi ) ≥ 0, and
∑N

j=1 ϕ j = 1 in Ω .
Consider any i ∈ {1, . . . , M} and let g ≤ 0 in Δi so that gi ≤ 0. Let us denote Ai =∑N
j=1 ãi j . Since ãi j = 0 for any j /∈ Si ∪ {i}, it follows from (21) that

Ai ui +
∑

j∈Si
ãi j (u j − ui ) = gi . (24)

To prove (19), let c = 0 in Δi and assume that maxΔi uh > max∂Δi uh . Since the
maximum of uh on Δi is attained at vertices of the elements ofTh making up Δi , this means
that uh(xi ) is the strict maximum of uh on Δi . Then Assumption (A2) implies that the sum
in (24) is non-negative. Since Ai = 0 (see (23)) and ãi i > 0 (see (22)), there is j ∈ Si such
that ãi j < 0 and hence the left-hand side of (24) is positive, which is a contradiction.

For proving (17), it suffices to consider the case Ai > 0. Let us assume that maxΔi uh >

max∂Δi u
+
h . Then again maxΔi uh > max∂Δi uh and also ui > 0. Like before, the sum in

(24) is non-negative and since Ai ui > 0, the left-hand side of (24) is positive, which is again
a contradiction proving the assertion.

The implications (18) and (20) follow in an analogous way. ��
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Theorem 3 (Global DMP) Let uh ∈ Vh be a solution of (14) with limiters βE satisfying
Assumptions (A1) and (A2). Then

g ≤ 0 in Ω ⇒ max
Ω

uh ≤ max
∂Ω

u+
h , (25)

g ≥ 0 in Ω ⇒ min
Ω

uh ≥ min
∂Ω

u−
h . (26)

If, in addition, c = 0 in Ω , then

g ≤ 0 in Ω ⇒ max
Ω

uh = max
∂Ω

uh, (27)

g ≥ 0 in Ω ⇒ min
Ω

uh = min
∂Ω

uh . (28)

Proof The proof is based on the technique used in [31, Theorems 5.1 and 5.2]. Let uh ∈ Vh
satisfy (14) and let g ≤ 0 in Ω . Then the nodal values of uh satisfy (21) and, due to (7), one
has

M∑

i, j=1

vi ãi j v j ≥
M∑

i, j=1

vi ai j v j > 0 ∀ (v1, . . . , vM ) ∈ R
M \ {0}. (29)

Note that

max
Ω

uh = max{ui : i = 1, . . . , N },
max
∂Ω

uh = max{ui : i = M + 1, . . . , N }.
Let

s = max{ui : i = 1, . . . , N }, J = {i ∈ {1, . . . , N } : ui = s}.
First, let us show that

ãi j ≤ 0 ∀ i ∈ J ∩ {1, . . . , M}, j /∈ J. (30)

Let i ∈ J ∩ {1, . . . , M} and j ∈ Si \ J . Then ãi j = ai j − βE (uh) |dE |, where E is the edge
with endpoints xi and x j . For any k ∈ N, define the function ukh = uh + ϕi/k. Then ukh(xi )
is the strict maximum of ukh on Ω and hence, in view of Assumption (A2),

(ai j − βE (ukh) |dE |) (uki − ukj ) = ah(u
k
h;ϕ j , ϕi ) (uki − ukj ) ≤ 0,

where uki = ukh(xi ) and u
k
j = ukh(x j ). Since ukh → uh for k → ∞, Assumption (A1) implies

that

(ai j − βE (uh) |dE |) (ui − u j ) ≤ 0.

As ui − u j > 0, it follows that ãi j ≤ 0. For j /∈ Si ∪ {i}, one has ãi j = 0, which completes
the proof of (30).

Now we want to prove that the relations (21), (23), (29), and (30) imply (25) and (27). If
c = 0 in Ω and hence

∑N
j=1 ãi j = 0 for i = 1, . . . , M (see (23)), then (21) still holds if

one adds a constant to all components of the vector (u1, . . . , uN ) so that one can assume that
s > 0. If

∑N
j=1 ãi j > 0, then s > 0 can be also assumed since otherwise (25) trivially holds.

Thus, let s > 0 and let us assume that (27) does not hold, which implies that J ⊂
{1, . . . , M}. We shall prove that then

∃ k ∈ J : μk :=
∑

j∈J

ãk j > 0. (31)
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Assume that (31) does not hold. Then, applying (23) and (30), one derives for any i ∈ J

0 ≥
∑

j∈J

ãi j ≥ −
∑

j /∈J

ãi j ≥ 0,

which gives
∑

j∈J

ãi j = 0 ∀ i ∈ J, ãi j = 0 ∀ i ∈ J, j /∈ J.

Thus, the matrix (̃ai j )i, j∈J is singular and hence there exist real numbers {vi }i∈J , not all
equal to zero, such that

∑
i∈J ãi j vi = 0 for j = 1, . . . , M . Consequently, the matrix

(̃ai j )Mi, j=1 is singular, which contradicts (29). Therefore, (31) holds and hence, denoting
r = max{ui : i = 1, . . . , N , i /∈ J }, one obtains using (21), (30), and (23)

s μk =
∑

j∈J

ãk j u j = gk −
∑

j /∈J

ãk j u j ≤ gk + r
∑

j /∈J

(−ãk j ) ≤ r μk

(note that the first inequality implies that r > 0). Hence, s ≤ r , which is a contradiction to
the definition of J . Therefore (27) and hence also (25) holds.

The relations (26) and (28) can be proved analogously. ��
Remark 2 The global DMP stated in (27) and (28) assures that the global maximum
(resp. minimum) is attained on the boundary ofΩ but does not exclude that it is also attained
at internal nodes. Therefore, it is called the weak DMP. The strong DMP states that the global
maximum (resp. minimum) is attained only on the boundary ofΩ and easily follows if c = 0
in Ω and g is negative (resp. positive). Then one has

g < 0 in Ω ⇒ uh(xi ) < max
∂Ω

uh, i = 1, . . . , M, (32)

g > 0 in Ω ⇒ uh(xi ) > min
∂Ω

uh, i = 1, . . . , M. (33)

Indeed, if uh(xi ) = max∂Ω uh for some i ∈ {1, . . . , M}, then i ∈ J and hence it follows
from (21), (23), and (30) that

gi =
N∑

j=1

ãi j u j =
∑

j /∈J

ãi j (u j − ui ) ≥ 0,

which is a contradiction. The statement (33) follows analogously.

3.3 An a priori error estimate

The error estimate will be proven using the following mesh-dependent norm

‖v‖h := (ε |v|21,Ω + c0 ‖v‖20,Ω + Dh(uh; v, v)
) 1
2 ,

where Dh is defined in (15) and c0 := inf essΩ c .

Theorem 4 (Error estimate) Let us suppose that the solution of (2) belongs to H2(Ω) and
that c0 > 0. Then, there exists C > 0, independent of h and the data of (1), such that

‖u − uh‖h ≤ C
(
ε + c−1

0 {‖b‖2∞,Ω + ‖c‖2∞,Ω h2}) 12 h |u|2,Ω + Dh(uh; ihu, ihu)
1
2 .
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Proof We decompose the error in the usual way u−uh = (u− ihu)+(ihu−uh) =: ρh +eh .
First, we notice that Dh(uh; ρh, ρh) = 0, and then, standard interpolation estimates lead to

‖ρh‖h ≤ C(ε + c0 h
2)

1
2 h |u|2,Ω .

To bound the discrete error eh we use the ellipticity of a(·, ·), the properties of Dh(·; ·, ·),
and the relations (14) and (2) to get

‖eh‖2h≤ a(eh, eh) + Dh(uh; eh, eh)
= a(ihu, eh) − {a(uh, eh) + Dh(uh; uh, eh)

}+ Dh(uh; ihu, eh)

= − a(ρh, eh) + Dh(uh; ihu, eh).

Next, the continuity of a gives

a(ρh, eh) ≤
([

ε
1
2 + c

− 1
2

0

√
d ‖b‖∞,Ω

]
|ρh |1,Ω + c

− 1
2

0 ‖c‖∞,Ω ‖ρh‖0,Ω
)

‖eh‖h

≤ C

(
ε

1
2 + c

− 1
2

0 ‖b‖∞,Ω + c
− 1

2
0 ‖c‖∞,Ω h

)
h |u|2,Ω ‖eh‖h .

Moreover, since Dh(uh; ·, ·) is a symmetric positive semi-definite bilinear form, it satisfies
the Cauchy–Schwarz inequality, which gives

Dh(uh; ihu, eh) ≤ Dh(uh; ihu, ihu)
1
2 Dh(uh; eh, eh) 1

2 ≤ Dh(uh; ihu, ihu)
1
2 ‖eh‖h .

Combining the above relations proves the result. ��
A simple estimate of the consistency error Dh(uh; ihu, ihu)

1
2 is given in the following

lemma.

Lemma 2 (Basic estimate of the consistency error) Denoting

Ah = max
E∈Eh

(
|dE | h2−d

E

)
,

one has

Dh(uh; ihu, ihu) ≤ C Ah |ihu|21,Ω ∀ uh ∈ Vh, u ∈ C0(Ω).

If, in particular, dE are defined by (8), then

Dh(uh; ihu, ihu) ≤ C (ε + ‖b‖∞,Ω h + ‖c‖∞,Ω h2) |ihu|21,Ω .

Proof Using βE ≤ 1 and the shape regularity of Th implies that

Dh(uh; ihu, ihu) ≤ Ah

∑

E∈Eh

hd−1
E ‖∇ihu · tE‖20,E ≤ C Ah |ihu|21,Ω .

If dE is defined by (8) for an internal edge E with endpoints xi and x j , then

|dE | ≤
∑

T∈Th , xi ,x j∈T

(
ε |ϕi |1,T |ϕ j |1,T + ‖c‖∞,T ‖ϕi‖0,T ‖ϕ j‖0,T

+ √
d ‖b‖∞,T {|ϕi |1,T ‖ϕ j‖0,T + |ϕ j |1,T ‖ϕi‖0,T }

)

≤ C hd−2
E

(
ε + ‖b‖∞,Ω h + ‖c‖∞,Ω h2

)
,

which finishes the proof. ��
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Lemma 2 shows that if dE is defined by (8), then the convergence order of ‖u − uh‖h is
reduced to 1/2 in the convection-dominated case and no convergence follows in the diffusion-
dominated case. It was demonstrated in [9] that these results are sharp. On the other hand, the
results of [10,11] indicate that a better convergence behaviour in the diffusion-dominated case
may be expected if the AFC scheme is linearity preserving, i.e., if the stabilization originating
from the AFC vanishes in regions where the approximate solution is a polynomial of degree
1. This property can be formulated in terms of the limiters βE in the following way.

Assumption (A3) The limiters βE possess the linearity-preservation property, i.e.,

βE (uh) = 0 if uh |ωE
∈ P1(ωE ) ∀ E ∈ Eh .

The linearity preservation leads to an improved bound of the consistency error provided
that the limiters satisfy the following Lipschitz-continuity assumption.

Assumption (A4) For any E ∈ Eh with endpoints xi and x j , the function βE (uh)(∇uh)|E ·
tE is Lipschitz continuous in the sense that
∣∣∣βE (uh)(∇uh)|E · tE − βE (vh)(∇vh)|E · tE

∣∣∣ ≤ C
∑

E ′∈E i∪E j

∣∣∣(∇(uh − vh))|E ′ · tE ′
∣∣∣,

where C > 0 is independent of uh, vh, i , and j .

Lemma 3 (Improved estimate of the consistency error) Let the limiters βE satisfy Assump-
tions (A3) and (A4). Then

Dh(uh; ihu, ihu) ≤ ε

2
|uh − ihu|21,Ω + C

A2
h

ε
|ihu|21,Ω + ε h2 |u|22,Ω .

Proof The proof is a refinement of the technique used in [10, Theorem 4]. Let us write
Dh =∑E∈Eh

DE with

DE (z; v,w) = βE (z) |dE | hE (∇v · tE ,∇w · tE )E .

Then it follows from Assumption (A4) and the shape regularity of Th that, for any
uh, vh, wh ∈ Vh ,

|DE (uh; uh, wh) − DE (vh; vh, wh)|
≤ C |dE | h2E

∑

E ′∈E i∪E j

∣∣∣(∇(uh − vh))|E ′ · tE ′
∣∣∣
∣∣∣(∇wh)|E · tE

∣∣∣

≤ C̃ |dE | h2−d
E |uh − vh |1,ωE

|wh |1,ωE
. (34)

Consequently,

|Dh(uh; uh, wh) − Dh(vh; vh, wh)| ≤ C Ah |uh − vh |1,Ω |wh |1,Ω .

Like in Lemma 2, one also obtains

|Dh(uh; vh, wh)| ≤ C Ah |vh |1,Ω |wh |1,Ω .

Using the last two estimates and applying Young’s inequality, one obtains

Dh(uh; ihu, ihu) = Dh(uh; ihu − uh, ihu)

+ {Dh(uh; uh, ihu) − Dh(ihu; ihu, ihu)} + Dh(ihu; ihu, ihu)

≤ ε

2
|uh − ihu|21,Ω + C

A2
h

ε
|ihu|21,Ω + Dh(ihu; ihu, ihu).
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To bound the last term, we use the linearity preservation and the Lipschitz continuity of DE .
More precisely, for a given E ∈ Eh , we introduce the function iEu ∈ P1(ωE ) as the unique
solution of the problem

(∇iEu,∇ψ)ωE = (∇u,∇ψ)ωE ∀ ψ ∈ P1(ωE ), (iEu, 1)ωE = (u, 1)ωE .

Using standard finite element approximation results (see [18]), iEu satisfies

|u − iEu|1,ωE
≤ C hE |u|2,ωE

. (35)

Outside ωE , the function iEu can be arbitrarily extended to a function from Vh . In view of
Assumption (A3), one has DE (iEu; iEu, ihu) = 0 and hence, using (34), (35), and the shape
regularity of Th , one obtains

DE (ihu; ihu, ihu) = DE (ihu; ihu, ihu) − DE (iEu; iEu, ihu)

≤ C |dE | h2−d
E |ihu − iEu|1,ωE

|ihu|1,ωE

≤ C̃ |dE | h3−d
E |u|2,ωE

|ihu|1,ωE
.

This implies that

Dh(ihu; ihu, ihu) ≤ C Ah h |u|2,Ω |ihu|1,Ω ≤ C2A2
h

4 ε
|ihu|21,Ω + ε h2 |u|22,Ω,

which completes the proof. ��

4 Various definitions of the limiters

4.1 The Kuzmin limiter

In this section we review the results obtained when implementing the method with the def-
inition of the limiters proposed in [34]. In that work, the algorithm, originally proposed by
Zalesak in [43] was adapted to the steady-state case, and exploited further. We refer then to
this limiter as the Kuzmin limiter. This limiter has been used in numerous works, for exam-
ple [5,9], where a detailed study of its performance for the convection–diffusion equation is
carried out. The numbers dE in the definition of Dh are given by (8) in this case.

After having presented the Kuzmin limiter, we will show that it satisfies Assumption (A1)
and, under an additional assumption on the matrix A, also Assumption (A2). Consequently,
the nonlinear problem (14) possesses a solution and satisfies the discrete maximum principle.
It was demonstrated in [11, Ex. 7.2]with the help of a numerical example that theAFC scheme
with the Kuzmin limiter is not linearity preserving in general.

The definition of the coefficients for the Kuzmin limiter relies on the values P+
i , P−

i , Q+
i ,

Q−
i computed for i = 1, . . . , M by

P+
i :=

∑

j∈Si
a ji≤ai j

f +
i j , P−

i :=
∑

j∈Si
a ji≤ai j

f −
i j , Q+

i := −
∑

j∈Si
f −
i j , Q−

i := −
∑

j∈Si
f +
i j , (36)

where fi j = di j (u j − ui ), f
+
i j = max{0, fi j }, and f −

i j = min{0, fi j }. These values can be
computed by performing a loop over all internal edges. After this loop, one defines

R+
i := min

{
1,

Q+
i

P+
i

}
, R−

i := min

{
1,

Q−
i

P−
i

}
, i = 1, . . . , M. (37)
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If P+
i or P−

i vanishes, we define R+
i := 1 or R−

i := 1, respectively. At Dirichlet nodes,
these quantities are also set to be 1, i.e.,

R+
i := 1, R−

i := 1, i = M + 1, . . . , N . (38)

Then, for any i, j ∈ {1, . . . , N } such that a ji ≤ ai j , we set

αi j :=
⎧
⎨

⎩

R+
i if fi j > 0,

1 if fi j = 0,
R−
i if fi j < 0,

α j i := αi j . (39)

The final step consists in defining βE := 1 − αi j for any internal edge E ∈ Eh having the
endpoints xi , x j .

There is an obvious ambiguity in the definition of βE if ai j = a ji . This ambiguity does not
influence the resulting method if min{ai j , a ji } ≤ 0 since then dE = 0 and the respective term
with βE does not occur in (15). To fulfill the condition min{ai j , a ji } ≤ 0, which also assures
the DMP (cf. Lemma 5), it may help to replace the matrix corresponding to the reaction term
by a lumped diagonal matrix, see [9].

Lemma 4 The Kuzmin limiter satisfies Assumption (A1).

Proof Let E be an internal edge that connects the nodes xi and x j . Then it suffices to show
that αi j (uh)(u j − ui ) is a continuous function of uh ∈ Vh . Because of βE (u) = βi j = β j i ,
αi j = α j i , we can restrict these considerations to the situation that a ji ≤ ai j . Moreover, it
suffices to consider di j < 0 since otherwise αi j ≡ 1.

As first case, ūh ∈ Vh such that fi j (ūh) > 0 will be considered. Then ūi > ū j and hence
fi j (uh) > 0 in a neighborhood of ūh . Using (39), (37), and (36), we obtain

αi j (uh) = R+
i = min{P+

i , Q+
i }

fi j + P̃+
i

with P̃+
i =

∑

k∈Si
aki≤aik ,k 
= j

f +
ik . (40)

The numerator and the denominator are continuous functions and by assumption, the denom-
inator is positive in a neighborhood of ūh . Hence αi j is a continuous function at ūh . In the
same way, we get for the case fi j (ūh) < 0 first that ūi < ū j and second the representation
formula

αi j (uh) = R−
i = min{−P−

i ,−Q−
i }

| fi j | − P̃−
i

with P̃−
i =

∑

k∈Si
aki≤aik ,k 
= j

f −
ik . (41)

Using exactly the same reasoning as above, we conclude that αi j is continuous at ūh in this
case.

The last case is fi j (ūh) = 0 which leads to αi j (ūh)(ū j − ūi ) = 0. Since αi j is bounded by
definition, αi j (uh)(u j −ui ) → 0 as u j → ui . Consequently, αi j (uh)(u j −ui ) is continuous
at ūh . ��

Remark 3 In [9] it was shown that the terms αi j (uh)(u j −ui ) are even Lipschitz-continuous.
The proof of this property is based on the representations (40) and (41) of the coefficients αi j .
The sums in these representations are Lipschitz-continuous and then one can show that the
function which is obtained by multiplying these representations with (u j − ui ) is Lipschitz-
continuous, too.
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Lemma 5 Let the matrix of the system (5) satisfy

min{ai j , a ji } ≤ 0 ∀ i = 1, . . . , M, j = 1, . . . , N , i 
= j. (42)

Then the Kuzmin limiter satisfies Assumption (A2).

Proof Consider any uh ∈ Vh , i ∈ {1, . . . , M}, and j ∈ Si . Let ui := uh(xi ) be a strict local
extremum of uh in Δi . We want to prove that

ai j + (1 − αi j (uh)) di j ≤ 0. (43)

If ai j ≤ 0, then (43) holds since (1 − αi j (uh)) di j ≤ 0. If ai j > 0, then a ji ≤ 0 due to (42)
and hence a ji ≤ ai j and di j = −ai j < 0. Thus, if ui > uk for any k ∈ Si , then fi j > 0 and
fik ≥ 0 for k ∈ Si , so that αi j = R+

i = 0. Similarly, if ui < uk for any k ∈ Si , then fi j < 0
and fik ≤ 0 for k ∈ Si , so that αi j = R−

i = 0. Since ai j + di j ≤ 0, one concludes that (43)
holds. ��
4.2 A limiter leading to linearity preservation and DMP on general meshes (BJK

limiter)

Here we present a limiter recently proposed in [11] using some ideas of [35]. This limiter is
designed in such a way that the AFC scheme satisfies the discrete maximum principle and
linearity-preservation property on arbitrary meshes, which is a substantial improvement in
comparison with the Kuzmin limiter. Like in the previous section, the numbers dE used in
(15) are given by (8).

The definition of the limiter again relies on local quantities P+
i , P−

i , Q+
i , Q

−
i which are

now computed for i = 1, . . . , M by

P+
i :=

∑

j∈Si
f +
i j , P−

i :=
∑

j∈Si
f −
i j ,

Q+
i := qi (ui − umax

i ), Q−
i := qi (ui − umin

i ),

where again fi j = di j (u j − ui ) and

umax
i := max

j∈Si∪{i} u j , umin
i := min

j∈Si∪{i} u j , qi := γi
∑

j∈Si
di j ,

with fixed constants γi > 0. Then one defines the quantities R+
i and R−

i again by (37) and
(38) and one sets

α̃i j :=
⎧
⎨

⎩

R+
i if fi j > 0,

1 if fi j = 0,
R−
i if fi j < 0,

i, j = 1, . . . , N .

Finally, the limiters are defined by βE := 1 − min{̃αi j , α̃ j i } for any internal edge E ∈ Eh
having the endpoints xi , x j .

Lemma 6 The above limiter satisfies Assumptions (A1) and (A2).

Proof The validity of Assumption (A1) follows analogously as in the proof of Lemma 4. Let
us prove Assumption (A2). Consider any uh ∈ Vh , i ∈ {1, . . . , M}, and j ∈ Si and assume
that ui := uh(xi ) is a strict local extremum of uh in Δi . Then we want to prove that

ai j + (1 − min{̃αi j (uh), α̃ j i (uh)}
)
di j ≤ 0. (44)
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If di j = 0, then ai j ≤ 0 and hence (44) holds. Thus, let us assume that di j < 0. If ui > uk
for any k ∈ Si , then fi j > 0 and umax

i = ui so that P+
i > 0, Q+

i = 0 and α̃i j = R+
i = 0.

Since ai j + di j ≤ 0, one obtains (44). If ui < uk for any k ∈ Si , (44) follows analogously. ��
The constants γi can be adjusted in such a way that the linearity-preservation assumption

(A3) is satisfied. In fact, it suffices to use such constants that

ui − umin
i ≤ γi (u

max
i − ui ) ∀ u ∈ P1(R

d). (45)

It was proved in [11] that (45) holds with γi = 1 if the patch Δi is symmetric with respect
to the vertex xi , and with

γi =
max

x j∈∂Δi
|xi − x j |

dist(xi , ∂Δconv
i )

in general, where Δconv
i is the convex hull of Δi .

Lemma 7 The above limiter satisfies Assumption (A3).

Proof Consider any i ∈ {1, . . . , M}. Since R+
i (uh) and R−

i (uh) depend on uh only through
uh |Δi

, it suffices to verify that, for any uh ∈ P1(R
d), one has R+

i (uh) = R−
i (uh) = 1. One

obtains using (45)

P+
i =

∑

j∈Si
u j<ui

di j (u j − ui ) ≤
∑

j∈Si
di j (u

min
i − ui ) ≤

∑

j∈Si
di j γi (ui − umax

i ) = Q+
i

and hence R+
i = 1. Similarly, one obtains R−

i = 1. ��
Remark 4 Note that large values of the constants γi cause that more limiters αi j will be
equal to 1 and hence less artificial diffusion is added, which makes it possible to obtain sharp
approximations of layers. On the other hand, however, large values of γi ’s also cause that the
numerical solution of the nonlinear algebraic problem becomes more involved.

4.3 A limiter based on the variation of the discrete solution (BBK limiter)

In this section we review briefly the limiter presented in [10] and its main results. This limiter,
also referred to as smoothness-based viscosity, has its origin in the finite volume literature
(see, e.g., [24] and [23]), and has also been used (although in a slightly modified way) in the
recent work [19].

The numbers dE in the definition of Dh are given by dE = γ0 h
d−1
E , where γ0 is a fixed

parameter, dependent on the data of (1). The limiters βE , E ∈ Eh , are given by the following
algorithm: for wh ∈ Vh , one defines ξwh as the unique element in Vh whose nodal values are
given by

ξwh (xi ) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∣∣∣
∑

j∈Si
(
wh(xi ) − wh(x j )

)∣∣∣
∑

j∈Si |wh(xi ) − wh(x j )| , if
∑

j∈Si
|wh(xi ) − wh(x j )| 
= 0 ,

0, otherwise.

Then, on each E ∈ Eh , βE is defined by

βE (wh) := max
x∈E

[
ξwh (x)

]p
, p ∈ [1,+∞). (46)
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The value for p determines the rate of decay of the numerical diffusion with the distance to
the critical points. A value closer to 1 adds more diffusion in the far field, while a larger value
makes the diffusion vanish faster, but on the other hand, increasing pmaymake the nonlinear
system more difficult to solve. In our experience, values up to p = 20 are considered safe to
use (see [10] for a detailed discussion). In this section we will detail the proof of the results
using p = 1, but these extend to p > 1 without difficulty (see [10] for details).

Two remarks can be rapidly made about this definition of the limiter. First, if a function
vh has en extremum at an internal node xi , and E ∈ Ei , then βE (vh) = 1. This will be of
paramount importance for the satisfaction of the DMP. Moreover, for meshes which have
a certain structure, the method is linearity preserving, i.e., Assumption (A3) holds. More
precisely, we will say that a mesh is symmetric with respect to its inner nodes if, for every
node xi , and every j ∈ Si , there exists k ∈ Si such that xk − xi = −(x j − xi ). So, if the
mesh is symmetric with respect to its internal nodes, if E ∈ Eh has endpoints xi and x j , and
vh ∈ P1(ωE ), then

∑

l∈Si

(
vh(xi ) − vh(xl)

) = 0 and
∑

l∈S j

(
vh(x j ) − vh(xl)

) = 0,

which gives βE (vh) = 0. So, the method does not add extra diffusion in smooth regions,
whenever the mesh is sufficiently structured.

Remark 5 In [10, Remark 1] a process to generate a method which is linearity preserving
on general meshes is described. It involves a minimization process per node to determine a
set of weights. The same results that hold for the method presented in this work hold for that
variant.

The next result states that the limiter defined in (46) satisfies Assumptions (A1), (A2),
and (A4).

Lemma 8 The limiter defined in this section satisfies Assumptions (A1) and (A4). Moreover,
if the triangulation Th is such that

(∇ϕ j ,∇ϕi )Ω ≤ 0, i = 1, . . . , M, j = 1, . . . , N ,

and γ0 ≥ C0‖b‖∞,Ω +C1 ‖c‖∞,Ω h (where C0 and C1 are two constants independent of h,
but large enough), then Assumption (A2) is fulfilled, too.

Proof To prove (A1) and (A4), let uh, vh ∈ Vh . First, in [10, Lemma 1] the following result
is proven: for any internal node xi the following holds

|ξuh (xi ) − ξvh (xi )| ≤ 4

∑
E ′∈E i

hE ′ |∇(uh − vh) · tE ′ |
∑

E ′∈E i
hE ′
(|∇uh · tE ′ | + |∇vh · tE ′ |) .

Let us now suppose that, for E ∈ Eh having endpoints xi , x j , βE (uh) = ξuh (xi ) and
βE (vh) = ξvh (x j ). Then, using that 0 ≤ ξvh (xi ) ≤ 1 one obtains

βE (uh)∇uh · tE − βE (vh)∇vh · tE ≤ (ξuh (xi ) − ξuh (x j )
)∇uh · tE

+ |ξuh (x j )| |∇(uh − vh) · tE | + |ξuh (x j ) − ξvh (x j )| |∇vh · tE |
≤ (ξuh (xi ) − ξuh (x j )

)∇uh · tE + 5
∑

E ′∈E j

|∇(uh − vh) · tE ′ |.
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In a completely analogous way one obtains

βE (uh)∇uh · tE − βE (vh)∇vh · tE
≤ (ξvh (xi ) − ξvh (x j )

)∇uh · tE + 5
∑

E ′∈E i

|∇(uh − vh) · tE ′ |.

Thus, since ξuh (xi ) − ξuh (x j ) ≥ 0 and ξvh (xi ) − ξvh (x j ) ≤ 0,

βE (uh)∇uh · tE − βE (vh)∇vh · tE
≤ min

{(
ξuh (xi ) − ξuh (x j )

)∇uh · tE ,
(
ξvh (xi ) − ξvh (x j )

)∇uh · tE
}

+ 5
∑

E ′∈E i∪E j

|∇(uh − vh) · tE ′ |

≤ 5
∑

E ′∈E i∪E j

|∇(uh − vh) · tE ′ |,

which proves Assumption (A4) and hence also (A1).
To prove (A2) let us suppose that uh , solution of (14), has an extremum at the internal

node xi . Let j ∈ Si , and let E ∈ Eh be the edge with endpoints xi and x j . Then, as was
mentioned earlier, βE (uh) = 1. Thus, using the shape regularity of the mesh, one obtains

ah(uh;ϕ j , ϕi ) = ε(∇ϕ j ,∇ϕi )Ω + (b · ∇ϕ j , ϕi )Ω

+ (c ϕ j , ϕi )Ω + γ0 βE (uh) h
d
E (∇ϕ j · tE ,∇ϕi · tE )E

≤ C0 ‖b‖∞,Ω hd−1
E + C1 ‖c‖∞,Ω hdE − γ0h

d−1
E

= (C0 ‖b‖∞,Ω + C1 ‖c‖∞,Ω h − γ0) h
d−1
E ,

and Assumption (A2) follows. ��
It follows from Lemma 2 that the consistency error Dh(uh; ihu, ihu) can be bounded as

follows:

Dh(uh; ihu, ihu) ≤ C γ0 h |ihu|21,Ω .

Moreover, if the mesh is symmetric with respect to its internal nodes, then Lemma 3 implies
that the following bound holds for the consistency error

Dh(uh; ihu, ihu) ≤ ε

2
|uh − ihu|21,Ω + C γ 2

0
h2

ε
|ihu|21,Ω + ε h2 |u|22,Ω .

Thus, the method with the definition of the limiters from this section converges for every
regular mesh, and, in addition, in the case in which the limiters are linearity preserving, the

convergence order increases from O(h
1
2 ) to O(h).

4.4 Related recent work

We finish this section by mentioning that, to the research reviewed in this paper, work has
been done in parallel, e.g., in [6,7,19,20]. In those references, a stabilizing term similar to
the one defined in (15) is added to the formulation, and referred to as the Graph Laplacian.
The stabilizing mechanism of the methods presented in those works and the ones reviewed
in this manuscript are very similar. There are, nevertheless, significant differences in the
limiters βE , some of the results obtained in terms of the satisfaction of the discrete maximum
principle, and the linearity preservation of the final schemes.

123



674 G. R. Barrenechea et al.

For example, in [6] the emphasis is in the regularization of the limiter proposed there
(related to the BBK one) in order to make the limiter differentiable, to allow the use of
Newton’s method to solve the nonlinear system. The regularization proposed in there used
regularization parameters that had an impact on the performance of the method. In addition,
although the results concerning the discrete maximum principle were not too different from
the ones reviewed in this work, the linearity preservation was not guaranteed for the regu-
larized limiters. In [19] the definition of the limiter (non-differentiable this time) is modified
using generalized barycentric coordinates in order to make it differentiable on meshes for
which the support of basis functions is convex.

A final important difference between the works reviewed in this paper and the above-
mentioned references consists in the emphasis. While the papers just quoted deal with first
order hyperbolic systems, the results reviewed in this paper dealwith the convection–diffusion
equation. The presence of the Laplacian in the partial differential equation makes the method
satisfy very different properties, especially on non-Delaunay meshes, as it can be seen in [9]
where an example of non-convergence was given for the Kuzmin limiter.

5 Iterative schemes for solving the nonlinear problem

Consider theweak formulation (13) and the equivalent formulation (11), (12) inmatrix-vector
notation. For simplicity, we will restrict the discussion to the case of homogeneous bound-
ary conditions. These formulations represent a nonlinear problem since the coefficients βi j

depend on the finite element solution uh . Applying an iterative scheme for solving the non-
linear problem, our experience is that usually damping is necessary to achieve convergence.
Let u(m)

h , m ≥ 0, be a given approximation of uh .
A fixed point iteration can be defined as follows. In a first step, a finite element function

ũ(m+1)
h is computed by solving: Find ũ(m+1)

h ∈ Vh,0 such that

a
(
ũ(m+1)
h , vh

)
+ Dh

(
u(m)
h ; ũ(m+1)

h , vh

)
= (g, vh)Ω ∀ vh ∈ Vh,0. (47)

The matrix-vector form of (47) is

N∑

j=1

ai j ũ
(m+1)
j +

N∑

j=1

β
(m)
i j di j

(
ũ(m+1)
j − ũ(m+1)

i

)
= gi , i = 1, . . . , M,

ũ(m+1)
i = 0, i = M + 1, . . . , N , (48)

where β
(m)
i j = βi j

(
u(m)

)
. In the iterations (47) and (48), the matrix of the problem changes

in each iteration.
It is also possible to perform a fixed point iteration in such a way that only the right-hand

side changes. Using the relation

N∑

j=1

βi j di j (u j − ui ) =
N∑

j=1

di j u j − ui

N∑

j=1

di j

︸ ︷︷ ︸
=0

−
N∑

j=1

(1 − βi j )di j (u j − ui ),
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one can consider instead of (48) the iteration

N∑

j=1

(
ai j + di j

)
ũ(m+1)
j = gi +

N∑

j=1

(
1 − β

(m)
i j

)
di j
(
u(m)
j − u(m)

i

)

= gi +
N∑

j=1

(
1 − β

(m)
i j

)
f (m)
i j , i = 1, . . . , M,

ũ(m+1)
i = 0, i = M + 1, . . . , N . (49)

Using a sparse direct solver, then the matrix of (49) has to be factorized only once and in all
subsequent iterations, only the solutions of the triangular systems have to be computed.

Another approach for solving the nonlinear problem is a (damped) Newtonmethod. Let us
consider as starting point for deriving this method the matrix-vector formulation (11), (12).
Let the i-th equation be written in the form

Fi (u) =
N∑

j=1

ai j u j +
N∑

j=1

βi j (u)di j (u j − ui ) − gi = 0, i = 1, . . . , M,

then the intermediate solution in Newton’s method is computed by solving

DF
(
u(m)

)
ũ(m+1)
h = DF

(
u(m)

)
u(m)
h − F

(
u(m)

)
, (50)

where DF
(
u(m)

)
is the Jacobian, which can be computed by applying the product rule and

the chain rule, and observing that the derivative of the limiter with respect to the Dirichlet
nodes is not needed since these values are fixed

DFi (u)[v]

=
N∑

j=1

ai jv j +
N∑

j=1

βi j (u)di j (v j − vi ) +
N∑

j=1

(
M∑

k=1

∂βi j

∂uk
(u)vk

)
di j (u j − ui )

=
N∑

j=1

ai jv j +
N∑

j=1

βi j (u)di jv j −
⎛

⎝
N∑

j=1

βi j (u)di j

⎞

⎠ vi

+
M∑

j=1

(
N∑

k=1

∂βik

∂u j
(u)dik(uk − ui )

)
v j .

Hence, the entries of the matrix that has to be inverted in (50) are given by

DF
(
u(m)

)

i j

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ai j + β
(m)
i j di j +

N∑

k=1

∂β
(m)
ik

∂u j
dik
(
u(m)
k − u(m)

i

)
if i 
= j,

aii −
N∑

j=1
j 
=i

β
(m)
i j di j +

N∑

k=1

∂β
(m)
ik

∂ui
dik
(
u(m)
k − u(m)

i

)
if i = j,

for i = 1, . . . M , j = 1, . . . N . The last N − M rows have just the diagonal entry 1. The
derivatives of the limiter with respect to the solution are needed. These derivatives depend on
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Fig. 1 Hemker example: reference solution for ε = 10−4 on a fine grid

the particular limiter that is used in the simulations. Note that the derivation presented above
requires smoothness of the limiters. If this property is not given, a possible approach consists
in modifying the limiters such that they become sufficiently smooth, as is proposed in [6]
for a transport equation. The exploration of strategies for applying Newton-type methods to
(modified) AFC schemes for convection–diffusion–reaction equations is currently ongoing
and will be reported elsewhere.

Let ω(m+1) ∈ [ω0, 1], ω0 > 0, be a damping factor. The next iterate is given by

u(m+1)
h = u(m)

h + ω(m+1)
(
ũ(m+1)
h − u(m)

h

)
.

The choice of appropriate damping parameters is essential for the efficiency of the iteration.
In [26], an automatic strategy for adapting the parameter during the iteration is described.
In [5], the use of the so-called Anderson acceleration, proposed in [3,41], is advocated. The
Anderson acceleration stores vectors from previous iterations and builds with them second
order information.

6 Numerical studies

6.1 The Hemker example

We will consider the so-called Hemker example, which was proposed in [21]. It models
the convection of temperature from a hot circle (2d cylinder) in a channel. The convection
field is constant. There are exponential layers at the circle and interior layers downstream
from the circle. The Hemker problem can be considered as a standard benchmark problem
for convection–diffusion equations. It was used in [5] for comparing a number of stabilized
discretizations. Here, the same setup as in this paper will be considered.

This problem is defined in Ω = {(−3, 9) × (−3, 3)} \ {(x, y) : x2 + y2 ≤ 1}, the
coefficients are b = (1, 0)T , c = 0, g = 0, and the boundary conditions are given by

u(x, y) =
{
0, for x = −3,
1, for x2 + y2 = 1,

and ε∇u · n = 0, elsewhere on the boundary.

In [5], a reference solution on a fine grid containing 48,252,416 degrees of freedom on a
Q1 mesh (for details, see [5]) was computed for ε = 10−4, see Fig. 1. Quantities of interest
defined in [5] are the magnitude of the over- and under-shoots, the difference to the reference
solution on selected cut lines, and the smearing of the interior layer at a certain cutline
downstream from the cylinder. For the concrete definition of these quantities see [5].
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Fig. 2 Hemker example: Grid 1 (left) and Grid 2 (right), both level 0

The simulations were performed with P1 finite elements on two types of grids, see Fig. 2.
Grid 1 is aligned downstream to the convection and it has edges at the position where the
interior layer is expected. The stopping criterion for the nonlinear iteration was based on the

Euclidean norm of the residual vector, which should be smaller or equal than 10−13 (#dof)
1
2 ,

where #dof is the number of degrees of freedom (including Dirichlet nodes) on the respective
grid. As initial iterate, a function that vanishes on all degrees of freedomwas used. The linear
systems were solved with the sparse direct solver UMFPACK, [17]. The simulations were
performed with the code MooNMD [27].

By construction of the Hemker example, the solution takes values in [0, 1]. The first
quantity of interest from [5] considers the violation of this range by the numerical solutions.
Since the AFC methods satisfy the DMP, it is expected that there are no violations if the
nonlinear problems are solved exactly. In fact, we could observe in the numerical results only
negligible violations of the order of the stopping criterion for the iteration of the nonlinear
problem.

Another quantity of interest studies the smearing of the interior layer at x = 4, see Fig. 3.
It can be seen that the smearing introduced by the BJK limiter is always smaller than with
the Kuzmin limiter. In particular, on the aligned Grid 1, the results with the BJK limiter are
much better. This statement is supported by considering the error to the reference solution
at the cutline x = 4, see Fig. 4. To compute the errors, 10001 equidistant points were taken
on the cutline and the vector e contains the differences of the reference solution and the
numerical solution in these points. The errors in the Euclidean norm ‖e‖2 and the maximum
norm ‖e‖∞ are given.

At the cutline y = 1, the results obtained with both limiters are similar, compare Fig. 5.
The negative peak of the error is at the circle in a neighborhood of the point (0, 1). In this
neighborhood, there is the transition from the exponential layer to the interior layer.

Finally, the costs for solving the nonlinear problems is studied. In the used code, only
the fixed point iteration (49) is implemented. Either, the selection of the damping parameter
as described in [26] can be used or the Anderson acceleration with l > 0 vectors and a
fixed damping parameter ω. Results are presented for ω = 0.5 and l = 5, 10, 25 vectors
in the Anderson acceleration. The numbers of iterations that were necessary for solving the
nonlinear problems are illustrated in Fig. 6. It can be seen that generally fewer iterations
were needed for the Kuzmin limiter. On the structured grid, the variant with 25 vectors in
the Anderson acceleration needed often the smallest number of iterations and the fixed point
iteration with an adaptive selection of the damping parameter needed most iterations. But on
the unstructured grid, there is no clear picture. Using many vectors in the Anderson iteration
did even result in failing to reach the stopping criterion on certain levels. For example, results
have been obtained for other values of the damping parameter ω (not reported here due to
space restrictions).More precisely, the use ofω = 0.25 gave similar results to the ones shown
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Fig. 3 Hemker example: width of the interior layer at x = 4

Fig. 4 Hemker example: errors to the cutline at x = 4, left level 3 (nearly 10,000 d.o.f.s), right level 5 (nearly
150,000 d.o.f.s)

Fig. 5 Hemker example: errors to the cutline at y = 1, left level 3 (nearly 10,000 d.o.f.s), right level 5 (nearly
150,000 d.o.f.s)
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Fig. 6 Hemker example: number of iterations for solving the nonlinear problems, for ω = 0.5, l = 5, 10, 25
vectors in the Anderson acceleration, on Grid 1 (left), Grid 2 (right); 100,000 iterations means that the stopping
criterion was not reached

in Fig. 6, needing a few more iterations in most cases. Using ω = 0.7, we observed that the
stopping criterion was not reached in many more cases than for ω = 0.5.

Altogether, these results show a bottleneck of AFC schemes that can hopefully be reduced
or cured by using more advanced methods.

6.2 Illustration of the smearing of layers

Amotivation for studying convection–diffusion equations in channel geometries comes from
the simulation of population balance systems in chemical engineering. For experiments,
chemical engineers often use long and thin pipes. That means, the diameter of the pipes is of
the order of a few millimeters or centimeters and the length of the order of several meters.
There are several specific properties when considering convection–diffusion equations in
pipes or channels. First, a preferred flow direction exists. Second, the grids are eventually
aligned with the flow direction and third, the mesh cells might be anisotropic. For convection-
dominated problems there is the experience that it is of advantage to align the grid with the
convection. In the literature, one finds already observations that report notable smearing of
layers for algebraic stabilizations in examples where the grid is aligned to the convection,
e.g., in [13,28].

This example considers a straight 2d channel, where the convection is a constant vector
pointing into the direction of the channel. Let Ω = (0, 10) × (0, 1) and let ε = 10−10,
b = (1, 0)T , c = g = 0 be the coefficients of the problem. The boundary condition is an
impulse in a center strip at the inlet of the domain and there is a homogeneous Neumann
boundary condition at the outlet:

u =

⎧
⎪⎨

⎪⎩

1 x = 0, y ∈ [0.375, 0.625],
0 x = 0, y /∈ [0.375, 0.625],
0 y = 0 or y = 1,

ε∇u · n = 0 on x = 10, y ∈ (0, 1).

Because of the very small diffusion coefficient, one expects that the initial condition is
transported from the inlet to the outlet.

The coarsest grid is presented in Fig. 7. There are horizontal lines at both positions where
the inlet condition has its jumps. The same stopping criterion for the solution of the nonlinear
problem as in the Hemker example was used.
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Fig. 7 Transport of an impulse: initial grid, level 0

Fig. 8 Transport of an impulse: solution obtained with the SUPG method on level 0

Fig. 9 Transport of an impulse: solutions obtained with the Kuzmin limiter on levels 0 (left) and 1 (right)

Fig. 10 Transport of an impulse: solutions obtained with the BJK limiter on levels 0 (left) and 1 (right)

Applying the SUPGmethod, one obtains a solution with sharp layers in the whole channel
and with basically no spurious oscillations already on level 0, compare Fig. 8. In contrast,
the solutions computed with the AFC schemes showed a notable smearing of the layers, in
particular the solutions obtained with the Kuzmin limiter, see Fig. 9. One can see that the
layers become sharper when refining the grid. The solutions computed with the BJK limiter
are considerably more accurate than those obtained with the Kuzmin limiter, compare Figs. 9
and 10. We could observe that the solution for the Kuzmin limiter on level 3 looks similarly
accurate as the solution of the BJK limiter on level 1.

The deeper understanding of the reasons for the smearing effect and the finding of reme-
dies are open problems. So far, the probably best explanation is given in [28]. Algebraic
stabilizations are by construction multi-dimensional schemes, i.e., there is no dimensional
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Fig. 11 The 3d example: the slice at z = 1 of the approximation obtained using the SUPG method on an
adaptively refined mesh containing 1,308,237 elements

splitting in the construction of the limiters. Such a splitting would be of advantage in this
example since it is basically one-dimensional. However, the limiters see the layers of the
solution that are vertical to the convection and they do not recognize that it is not necessary
to introduce notable diffusion for preventing spurious oscillations.

6.3 A three-dimensional example

Let Ω = Ω1 \ Ω2 with Ω1 = (0, 5) × (0, 2) × (0, 2) and Ω2 = (0.5, 0.8) × (0.8, 1.2) ×
(0.8, 1.2). We consider problem (1) with ε = 10−5, b = (1, �(x), �(x))T where �(x) =
(0.19x3 − 1.42x2 + 2.38x)/4, uD = 1 on ∂Ω1, c = g = 0, and uD = 0 on ∂Ω2. An initial
mesh containing 842 elements was generated using gmsh and adaptively refined to a mesh
containing 1,308,237 elements by using an SUPG method combined with the a posteriori
error estimator from [1]. This adaptively refinedmeshwas then used to obtain approximations
using various AFC methods. The nonlinear problems were solved using the damped fixed
point algorithm from [26, Figure 12], and the initial guess was obtained using a standard
unstabilized Galerkin approximation.

Slices along the plane z = 1 of the solution obtained with the different methods are
shown in Figs. 11, 12, 13, 14. To obtain a reference solution, we pursued this approach
further and obtained a sequence of adaptively refined meshes using the same error estimator
until a highly refined mesh, containing 135,408,953 elements, was built. A highly accurate
(although not fully resolved) SUPG solution was computed in this mesh, and a slice of this
solution along the plane z = 1 is presented in Fig. 15. Finally, in Fig. 16, we compare all
these approximations and depict the cross section of them on the line y = z = 1.

There is a slight violation of the DMP for the method with the Kuzmin limiter. This
violation is due to the fact that the mesh does not respect the hypotheses under which the
DMP can be shown, cf. Lemma 5. For this mesh we have found violations of this condition,
which explains the numerical results and confirms the sharpness of the analytical results.
The boundary and inner layers are significantly sharper for the method with the BJK limiter,
although this comes at the price of having to perform significantly more fixed point iterations
than with the other methods. In fact, for this example the method using the Kuzmin limiter
took 70 iterations to reach convergence, while the method using the BBK limiter took 166
iterations, and the use of the BJK limiter took 1117 iterations to reach convergence. As was
mentioned earlier, the BJK and Kuzmin limiters provide sharper profiles than the BBK one.
This has been observed not only in this example. This behavior seems to be related to the equal
weight given to all fluxes by the construction of the BBK limiter, different from the Kuzmin
one (essentially, an upwind limiter), and the BJK limiter, which has the flux associated to
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Fig. 12 The 3d example: the slice at z = 1 of the approximation obtained using the BBK method. It took
166 iterations for the Euclidean norm of the residual in the damped fixed point algorithm to be less than the
tolerance of 10−6

Fig. 13 The 3d example: the slice at z = 1 of the approximation obtained using the BJK method. It took
1117 iterations for the Euclidean norm of the residual in the damped fixed point algorithm to be less than the
tolerance of 10−6

Fig. 14 The 3d example: the slice at z = 1 of the approximation obtained by the Kuzmin limiter. It took
70 iterations for the Euclidean norm of the residual in the damped fixed point algorithm to be less than the
tolerance of 10−6

Fig. 15 The 3d example: the approximations obtained using the SUPGmethod on an adaptively refined mesh
containing 135, 408, 953 elements
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Fig. 16 The 3d example: the approximations shown in Figs. 11 (SUPG), 12 (BBK), 13 (BJK), 14 (Kuz) and
15 (reference) on the line y = z = 1

the local extremum as main ingredient, and also includes some explicit mesh information to
make it linearity preserving.

7 Open problems

The improvement of AFC schemes and the further development of their analysis have been
listed in [30] among the most important open problems for H1-conforming finite elements
for convection–diffusion equations. Some concrete issues are the following. It was shown by
means of a numerical example that the general a priori estimate given in [9] is sharp. However,
one can observe for the Kuzmin limiter and the BJK limiter higher orders of convergence
than proved in [9], at least on special grids. So far, there is no concrete characterization of
the necessary properties of such grids and no corresponding analysis. A priori analysis of
AFC schemes for anisotropic grids remains an open problem. In addition, numerical analysis
of AFC schemes for time-dependent equations is not available. Last but not least, efficient
numerical methods for solving the nonlinear problems have to be developed.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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