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Abstract

The paper is devoted to the mathematical investigation of a general class of electro{

reaction{di�usion systems with nonsmooth data which arises in applications to semi-

conductor technology. Besides of a basic problem, a reduced problem is considered

which is obtained if the kinetics of the free carriers is fast. For two dimensional

domains we prove a global existence and uniqueness result. In addition, asymptotic

properties of solutions are studied. Basic ideas are energy estimates, Moser iteration,

regularization techniques and an existence result for electro{di�usion systems with

weakly nonlinear volume and boundary source terms which is proved in the paper,

too. The relationship between the property that the energy functional decays expo-

nentially in time to its equilibrium value and the existence of global positive lower

bounds for the densities of the species is investigated. We illustrate relations between

the model and its reduced version in general and for concrete examples. Finally, we

discuss the special features of heterostructures for simpli�ed model problems.
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1 Introduction

1.1 The basic model

This paper is devoted to the investigation of evolution problems for electro{reaction{di�usion

systems in heterostructures. We start with a more detailed explanation of concrete model

equations which we are interested in.

Let 
 be a bounded domain, � = �D[�N[�0 its boundary, mes �0 = 0, � the outer unit normal.

We considermmobile, electrically charged speciesXi with charge numbers qi. Let initial particle

densities Ui : 
 ! R+ of these species, �xed charge densities f
 : 
 ! R, f� : �N ! R and

the electrostatic potential v�0 : �D ! R as data of our problem be given. The particle densities

ui : R+ � 
! R+ of the species Xi and their chemical potentials vi : R+ � 
! R will vary in

time by di�usion processes, by chemical reactions running in 
 as well as on � and, �nally, by a

drift which is caused by the inner electric �eld whereby the charge density of the mobile species

u0 =
Pm

i=1 qiui will be an additional source term for the electrostatic potential v0 : R+�
! R.

All quantities are suitably scaled.

The relations between the densities and the chemical potentials (the so called state equations)

are assumed to be given by the Boltzmann statistics

ui = ui e
vi on R+ �
; i = 1; : : : ;m; (1.1)

where ui : 
 ! R+ is some reference density of the i{th species. In order to describe the

underlying kinetic processes the electrochemical potentials

�i = vi + qiv0 on R+ � 
; i = 1; : : : ;m; (1.2)

are introduced. Their gradients are assumed to be the driving forces of the particle uxes

ji = �Di uir�i on R+ � 
; i = 1; : : : ;m; (1.3)

with given di�usivities Di : 
 ! R+ . Finally, a �nite number of mass action type reactions of

the form

�1X1 + � � �+ �mXm 
 �1X1 + � � �+ �mXm

is considered where � = (�1; : : : ; �m), � = (�1; : : : ; �m) denote the vectors of stoichiometric

coeÆcients of such a reaction. Let R
 and R� denote the sets of all pairs (�; �) belonging to

all reactions in 
 and on �, respectively. The corresponding reaction rates R

�� and R�

�� are

assumed to be given as

R
�
�� = k

�
��(x; v0; v1; � � � ; vm)

�
e
Pm

i=1
�i�i � e

Pm

i=1
�i�i
�
;

x 2 �; (v0; v1; : : : ; vm) 2 Rm+1
; (�; �) 2 R�

; � = 
;�;

9>=>; (1.4)

with kinetic coeÆcients k��� : �� R
m+1 ! R+ .

Now we are able to formulate the basic equations of our model. Balancing the number of

particles for each species we get the initial boundary value problem

@ui

@t
+r � ji +

X
(�;�)2R


(�i � �i)R


�� = 0 on (0;1) � 
;

� � ji �
X

(�;�)2R�

(�i � �i)R
�
�� = 0 on (0;1) � �;

ui(0) = Ui on 
; i = 1; : : : ;m:

9>>>>>>>=>>>>>>>;
(1.5)
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The electrostatic potential implicitly here occuring via (1.3), (1.4) and (1.2) is obtained from

the elliptic boundary value problem

�r � ("rv0) = f

 +

mX
i=1

qiui on (0;1) � 
;

v0 = v
�
0 on (0;1) � �D;

� � ("rv0) + �v0 = f
� on (0;1) � �N

(1.6)

where the dielectric permittivity " : 
! R+ and the capacity � : �N ! R+ are given.

Motivated by problems arising in semiconductor technology we are interested in the investigation

of heterostructures. Then all physical parameters ui, Di, k
�
�� , " and � depend on the space

variable x in a nonsmooth way. In general besides of the kinetic coeÆcients k��;� also the

di�usivities Di depend on the state variables. But such a dependency is not considered in this

paper.

If problem (1.5), (1.6) has a suÆciently smooth solution then the relations (1.6) must be ful�lled

for t = 0, too. We set V0 = v0(0) and introduce new quantities

ev0 := v0 � V0; evi := vi + qiV0;eui := uie
�qiV0 ; ek���(x; ev0; � � � ; evi; � � � ) := k

�
��(x; ev0 + V0(x); � � � ; evi � qiV0(x); � � � ):

(1.7)

Then after omitting the tilde all relations (1.1) { (1.5) remain unchanged whereas (1.6) has to

be replaced by

�r � ("rv0) + e0 =
mX
i=1

qiui on (0;1)� 
;

v0 = 0 on (0;1)� �D;

� � ("rv0) + �v0 = 0 on (0;1)� �N

9>>>>>>=>>>>>>;
(1.8)

where

e0 =
mX
i=1

qiUi: (1.9)

Qualitative properties of the functions ui; k
�
�� as assumed in Section 2 remain valid if the data

f


; f

�
; v

�
0 for the original Poisson equation (1.6) are given in an appropriate way.

A precise formulation of the basic model equations (1.5), (1.8) will be given in Section 2. Here

let us only mention the weak formulation of the Poisson equation (1.8): For �xed t 2 (0;1)

�nd v0 2 H1
0 (
 [ �N ) such thatZ




n
"rv0 � rh+

�
e0 �

mX
i=1

qiui

�
h

o
dx+

Z
�N

�v0hd� = 0

8h 2 H1
0 (
 [ �N ):

9>>=>>; (1.10)

In general one has to require that each reaction conserves the electric charge what means

mX
i=1

qi(�i � �i) = 0 8(�; �) 2 R
 [R�
: (1.11)
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Then, multiplying the continuity equations in (1.5) by qi, integrating by parts and summing up,

we get Z



mX
i=1

qiui(t; x) dx =

Z



mX
i=1

qiUi(x) dx 8t > 0 (1.12)

such that the total electric charge of all mobile species is conserved, too. In our further inves-

tigations of the basic model equations (1.5), (1.8) we do not make explicit use of (1.11). But

this assumption as well as its consequence (1.12) are of interest in deriving some reduced model

equations.

1.2 The reduced model

Again motivated by problems arising in semiconductor technology let us consider the situation

that there are two special species Xm�1 with qm�1 = �1 (electrons) and Xm with qm = +1

(holes) and that in 
 there runs among other reactions a generation{recombination reaction of

the form

Xm�1 +Xm 
 0 (1.13)

with the reaction rate

R = k

�
e�m�1+�m � 1

�
:

This reaction obviously conserves the charge. In addition we assume (1.11) to be ful�lled for all

other reactions, too. The special character of the species Xm�1, Xm consists in the fact, that

their kinetic coeÆcients Dm�1, Dm and k are large compared with those of the other species.

Therefore it makes sense to consider the limit case

Dm�1; Dm; k !1: (1.14)

If we want the uxes jm�1, jm as well as the reaction rate R to remain bounded we have to

require that

r�m�1 = r�m = 0; �m�1 + �m = 0 on R+ � 
:

Then � := �m�1 depends only on time t and it holds

vm�1 = v0 + �; vm = �(v0 + �); �m�1 = �; �m = ��: (1.15)

Using (1.1) the electron and hole densities are expressed as

um�1 = um�1e
v0+� ; um = ume

�(v0+�): (1.16)

All left hand quantities in (1.15), (1.16) will be known if v0 and � are known. Therefore we may

omit in (1.5) the continuity equations for i = m � 1;m. Substituting into the reaction rates

occuring in the remaining continuity equations the relations (1.15) and taking into account

(1.11) we obtain

R
�
�� = k

�
��(x; v0; v1; � � � ; vm�2; v0 + �;�v0 � �)�

e��
Pm

i=1
�iqi

�
e
Pm�2

i=1
�i(�i+qi�) � e

Pm�2

i=1
�i(�i+qi�)

�
;

x 2 �; (v0; v1; : : : ; vm�2) 2 Rm�1 ; � 2 R; � = 
;�:

(1.4�)
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Thus we get a reduced initial boundary value problem for the �rst m� 2 species still involving

the variables v0 and �. These variables may be found from the Poisson equation (1.8) and from

the conservation relation (1.12). Substituting there the relations (1.16) we obtain

�r � ("rv0) + e0(�; v0 + �) =
m�2X
i=1

qiui on (0;1) � 
;

v0 = 0 on (0;1) � �D;

� � ("rv0) + �v0 = 0 on (0;1) � �N ;Z


e0(�; v0 + �) dx =

Z



m�2X
i=1

qiui dx on (0;1)

(1.8�)

where

e0(x; y) =
mX
i=1

qiUi(x) + um�1(x) e
y � um(x) e

�y
; x 2 
; y 2 R: (1.9�)

In order to determine v0 and � thus we arrive at a boundary value problem for a nonlinear

Poisson equation constrained by a nonlocal condition. The corresponding weak formulation

reads as follows: For �xed t �nd (v0; �) 2 H1
0 (
 [ �N )� R such that

Z



n
"rv0 � rh+

�
e0(�; v0 + �)�

m�2X
i=1

qiui

�
(h+ �)

o
dx+

Z
�N

�v0hd� = 0

8(h; �) 2 H1
0 (
 [ �N )� R:

(1.10�)

Together with (1.5) (where one has to replace m by m � 2 and (1.4) by (1.4�)) we have found

the reduced model equations for the �rst m � 2 species which we are interested in. In the

reduced model the real kinetics of the species Xm�1;Xm is neglected with the exception of

the charge conservation relation containing the initial values Um�1; Um which besides of the

reference densities um�1; um must be given.

Now we want to reformulate the reduced model equations in such a way that their structure

becomes more similar to that of the basic model equations. We set em = m � 2 and introduce

the variables

ev0 := v0 + �; eui := ui; evi := vi;
e�i := �i + qi�; i = 1; : : : ; em: (1.17)

Again as in (1.1), (1.2) it holds

eui = uie
evi ; e�i = evi + qiev0; i = 1; : : : ; em;

and instead of (1.5) we obtain

@eui
@t

+r � eji + X
(e�;e�)2 eR


(e�i � e�i) eR
e�e� = 0 on (0;1) � 
;

� � eji � X
(e�;e�)2eR�

(e�i � e�i) eR�e�e� = 0 on (0;1) � �;

eui(0) = Ui on 
; i = 1; : : : ; em:

9>>>>>>>>=>>>>>>>>;
(1.5��)

Here as in (1.3) it holds eji = �Di euire�i; i = 1; : : : ; em;
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since r� = 0 and because of (1.4�) we �nd that

eR�e�e� = ek�e�e� (x; ev0; ev1; � � � ; evem; �)�ePemi=1 e�ie�i � e
Pem

i=1
e�ie�i�;

x 2 �; (ev0; ev1; : : : ; evem) 2 Rem+1
; � 2 R; (e�; e�) 2 eR�

; � = 
;�;

ek�e�e� (x; ev0; ev1; � � � ; evem; �) = X
(�;�)2R�

�i=e�i; �i=e�i; i=1;:::;em
k
�
�� (x; ev0 � �; ev1; � � � ; evem; ev0;�ev0) e��Pm

i=1
�iqi ;

eR� =n
(e�; e�) 2 Zem+ � Z

em
+ : (e�; e�) 6= (0; 0); e�i = �i;

e�i = �i; i = 1; : : : ; em; (�; �) 2 R�
o
:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

(1.4��)

The only essential di�erence between (1.4��) and (1.4) is that the kinetic coeÆcients ek�e�e� addi-

tionally depend on �. The constrained Poisson problem (1.8�) is transformed to

�r � ("rev0) + e0(�; ev0) =
emX
i=1

qieui on (0;1) � 
;

ev0 = � on (0;1) � �D;

� � ("rev0) + �ev0 = �� on (0;1) � �N ;Z


e0(�; ev0) dx =

Z



emX
i=1

qieui dx on (0;1)

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(1.8��)

with the corresponding weak formulation: Find (ev0; �) 2 n(h+�; �) : h 2 H1
0 (
[�N ); � 2 R

o
�

(H1
0 (
 [ �N ) + R) � R such that

Z



n
"rev0 � reh+ �e0(�; ev0)� emX

i=1

qieui� eho dx+ Z
�N

�(ev0 � �) (eh� �) d� = 0

8(eh; �) 2 n(h+ �; �) : h 2 H1
0 (
 [ �N ); � 2 R

o
:

Under some assumptions which we shall formulate in the next section (see (2.1), (2.2)) the

following equivalent formulation can be derived: Find (ev0; �) 2 H � R such that

Z



n
"rev0 � reh+ �e0(�; ev0)� emX

i=1

qieui� eho dx+Z
�N

�(ev0 � �(ev0)) (eh � �(eh)) d� = 0 8eh 2 H; � = �(ev0)

9>>>>=>>>>; (1.10��)

where

H = H
1
0 (
 [ �N ) + R � H

1(
);

�(w) =

8>><>>:
(mes �D)

�1

Z
�D

w d� if mes �D 6= 0;

k�k�1
L1(�N )

Z
�N

� w d� if mes �D = 0;
w 2 H1(
):

(1.18)

Although the variational equation in (1.10��) contains an additional nonlinear term in the

volume integral as well as a nonlocal term in the boundary integral this equation has the same
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principal structure as (1.10). After inserting the relation � = �(ev0) into (1.4��) the kinetic

coeÆcients ek�e�e� depend only on the variables ev0; : : : evem (nonlocally with respect to ev0). Thus

after introducing new variables our reduced model equations (1.5��) and (1.8��) do not di�er

essentially from the basic model equations (1.5) and (1.8) what makes it possible to investigate

both models in a uni�ed way.

1.3 Comments

An essential feature of the model equations (1.5), (1.8) and (1.5��), (1.8��), respectively, is

the fact that they allow thermal equilibria as steady states (see Subsection 5.1). Moreover,

there is a convex functional which can be interpreted from the viewpoint of thermodynamics

as free energy. This functional turns out to be a Lyapunov function of the system and ensures

exponential decay of arbitrary perturbations of thermal equilibria, at least under some additional

structural property of the underlying reaction system (see Section 5). Energy estimates like in

Subsection 3.3 and Subsection 5.3 are the basic key in deriving global estimates and existence

results.

If there are only two kinds of species with opposite sign of their charge (electrons and holes)

we obtain the classical drift{di�usion model of carrier transport in semiconductors (the van

Roosbroeck system, see [53]) as a special case of our model equations (1.5), (1.8). Normally,

here more general boundary conditions are of interest. Then the steady states do not correspond

to thermal equilibria (see e.g. [1, 2, 41, 49, 54]). Starting from �rst results of Mock (see

[51]) the transient problem has been extensively investigated by Gajewski and Gr�oger (see

[17, 18, 19, 20, 21, 29, 32]).

As already mentioned in the preceding subsections we are mainly interested in electro{reaction{

di�usion problems arising in semiconductor technology. Here more then two kinds of charged

or uncharged species as well as a lot of chemical reactions have to be taken into account. An

overview of corresponding model equations, especially in the reduced form (1.5��), (1.8��), may

be found in [38]. From this �eld of applications also the choice of our boundary conditions is

motivated. Often the model equations (1.5��), (1.8��) are once more reduced by assuming a

local electroneutrality condition to determine the electrostatic potential (see [38, 54]). Special

cases of this type where (besides of electrons and holes) only one kind of species is electrically

charged have been investigated in [23, 25, 50].

Other applications of electro{reaction{di�usion systems come from the �eld of electrolysis.

Whereas in papers of Amann (see [3, 4]) and Yu [60] the continuity equations are completed

by an electroneutrality condition in papers of Choi and Lui (see [7, 8, 9, 10, 11]) and J�ungel

[42] the full system of continuity equations coupled with the Poisson equation is considered.

Resulting from the special situation in electrolysis all these authors work with smooth kinetic

coeÆcients and mainly with smooth domains. The application of some of their techniques to

the case of nonsmooth data in the situation of heterostructures as considered in our paper can

not be expected, such that other techniques are needed.

Our investigation of the multiple species problem is based on methods developed by Gajewski

and Gr�oger for the van Roosbroeck system in heterogeneous semiconductor structures [21].

The main di�erence to [21] consists in the fact that we have no Dirichlet conditions for the

continuity equations and more general reaction terms. From this arise some complications in

deriving global lower bounds which we shall overcome by using an additional energy estimate

(see Subsection 5.3 and [24, 26]).
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1.4 Contents of the paper

In Section 2 we give a precise formulation of the problems introduced in the preceding sub-

sections (cf. problem (P) below). There we summarize also the assumptions on the data our

further considerations are based on. Besides of assumptions concerning the principal struc-

ture of di�usion, drift and reaction terms there are requirements of a more ore less technical

character (two dimensional domains { cf. (2.1), growth condition for the source terms in the

continuity equations { cf. (2.6), nondegeneracy condition of the reaction system { cf. (5.9)).

Preliminary results concerning estimates for the solution of the possibly nonlinear and nonlocal

Poisson equation, uniqueness of the solution of the evolution problem and �rst energy estimates

are collected in Section 3. Here we make essential use of assumption (2.1). Section 4 is devoted

to existence results which are obtained by some regularization technique (cf. problem (PN))

if the additional assumption (2.6) is ful�lled. Furthermore under the same assumption global

upper bounds for the densities are established. The existence of global lower bounds as well as

results concerning the asymptotic behaviour are obtained in Section 5 where assumption (5.9)

plays an important rôle.

Section 6 contains existence and uniqueness results for electro{di�usion systems with weakly

nonlinear source terms (cf. problem (PG)) which may be of interest by their selves. Here these

results ensure the solvability of the regularized problem (PN) which is considered in Section 4

to construct the solution of problem (P).

In Section 7 we discuss relations between the basic and the reduced models. As was to be

expected we can prove that both models are asymptotically equivalent.

In the last section we present some examples, especially for the case of heterostructures, which

are motivated from applications to semiconductor technology.

1.5 Technicalities

Let us collect some notation and results which are relevant for the paper. We assume that


 � R
2 is a bounded (strictly) Lipschitzian domain. The notation of function spaces Lp(
;Rk ),

L
p(�;Rk ), H1(
;Rk ), k 2 N, L	(
) corresponds to that in [45]. If there is no danger of

misunderstanding we shall write shortly Lp instead of Lp(
;Rk ), and H1 instead of H1(
;Rk ).

With regard to the de�nition of the spaces H1
0 (
 [ �N ), W

1;p
0 (
 [ �N ) we refer to [31] or to

[21, Appendix]. Let us note that H1
0 (
 [ �N ) = H

1(
) if �N = @
. By Zk+, R
k
+ , L

p
+ we denote

the cones of nonnegative elements. For the scalar product in Rk we use a centered dot. In our

estimates positive constants, which depend at most on the data of our problem, are denoted

by c. Analogously, d : R+ ! R+ stands for continuous, monotonously increasing functions with

limy!1 d(y) =1.

We shall apply Sobolev's imbedding theorems (see [45]) as well as some further imbedding

results. First, by a modi�ed application of the H�older inequality from [45, p. 317, formula (5)]

we derive

kwkq
Lq(�)

� c1:19 kwkq�1L2(q�1)(
)
kwkH1(
) 8w 2 H1(
); q � 2 with c1:19 = c
 q: (1.19)

For w 2 H1(
) \ L1(
) from (1.19) we �nd

kwkLq(�) � kwkL1(
)

� j
j1=2c
 q kwkH1(
)

kwkL1(
)

�1=q
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and passing to the limit q !1 we get

kwkL1(�) � kwkL1(
) 8w 2 H1(
) \ L1(
): (1.20)

As a special case of the Gagliardo{Nirenberg inequality (see [16, 52]) we use the following result:

kwkLp � cp kwk1=pL1
kwk1�1=p

H1 8w 2 H1(
); 1 < p <1: (1.21)

Especially, for p from compact intervals

kwkLp � c kwk1=p
L1
kwk1�1=p

H1 8w 2 H1(
); p1 � p � p2 with c � maxfcp1 ; cp2 ; 1g1=p1 :

As an extended form of Gagliardo{Nirenberg's inequality one obtains that for any � > 0 and

any p 2 (1;1) there exists a c�;p > 0 such that

kwkpLp � � kw ln jwjkL1 kwkp�1H1 + c�;p kwkL1 8w 2 H1(
): (1.22)

In [5] this inequality is proved for bounded domains with smooth boundary and p = 3. An

inspection of that proof yields the validity of (1.22) also for bounded Lipschitzian domains and

p 2 (1;1), since (1.21) is true in this case, too. Finally, from Trudinger's imbedding theorem

(see [57]) we get

kejwjkLp � dp(kwkH1) 8w 2 H1(
); 1 � p <1: (1.23)
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2 The problem

2.1 Assumptions

In the next subsection we shall formulate a general evolution problem which involves the concrete

model problems discussed in Section 1. Here we summarize all assumptions which our further

considerations are based on:


 is a bounded Lipschitzian domain in R2 ; � := @
;

�D; �N are disjoint open subsets of �; � = �D [ �N ;

�D \ �N consists of �nitely many points;

9>>=>>; (2.1)

qi 2 Z; ui; Ui 2 L1(
); ui; Ui � c > 0;

Di 2 L1(
); Di � c > 0; i = 1; : : : ;m;

U0 :=
Pm

i=1qiUi;

" 2 L1(
); " � c > 0; � 2 L1+ (�N ); mes�D + k�kL1(�N ) > 0;

9>>>>>=>>>>>;
(2.2)

H is a linear closed subspace of H1(
); H1
0 (
 [ �N ) � H;

� 2 L(H1(
);R);

v � �(v) 2 H1
0 (
 [ �N ) 8v 2 H;

�(h)
R
�N
�(v � �(v)) d� = 0 8h 2 H1

0 (
 [ �N ); 8v 2 H;

9>>>>>>=>>>>>>;
(2.3)

e0 : 
� R ! R satis�es the Carath�eodory conditions;

je0(x; y)j � c ecjyj f.a.a. x 2 
; 8y 2 R; c > 0;

e0(x; y)� e0(x; z) � b0(x) (y � z) f.a.a. x 2 
; 8y; z 2 R with y � z;

b0 2 L1+ (
); kb0kL1 � c k�k; c > 0;

9>>>>>=>>>>>;
(2.4)

R

; R� are �nite subsets of Zm+ � Z

m
+;

for � = 
; � and (�; �) 2 R� we de�ne

R
�
�� := k

�
��(x; y; z) (e

��� � e���); x 2 �; y = (y0; y1; � � � ; ym) 2 Rm+1
;

�i := yi + qiy0; i = 1; : : : ;m; z 2 R; where
k
�
�� : �� R

m+1 � R ! R+ satis�es the Carath�eodory conditions;

k
�
��(x; �; �) is locally Lipschitz continuous uniformly with respect to x;

k
�
��(x; y; z) � cec (jy0j+jzj) f.a.a. x 2 �; 8(y; z) 2 Rm+2

;

k
�
��(x; y; z) � b

�
��;R(x) f.a.a. x 2 �; 8(y; z) 2 Rm+2 with y0; z 2 [�R;R];

b
�
��;R 2 L1+ (�); kb���;RkL1(�) > 0:

9>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>;

(2.5)

For the proof of existence results we shall additionally suppose that

max
i=1;:::;m

n
(e��� � e���) (�i � �i)

o
� c

� mX
j=1

en� �j + 1
�

8� 2 Rm ; 8(�; �) 2 R�
; � = 
;�; with n
 = 2; n� = 1; c > 0:

9>>>=>>>; (2.6)
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Finally, for the investigation of asymptotic properties we need a further assumption on the

structure of the reaction system which will be introduced later on (see (5.9)).

Remark 2.1. The subspace H, see (2.3), equipped with the norm of H1(
) will be regarded

as a Hilbert space. Then it holds

H
� =

n
u0 : u0 = eu0jH ; eu0 2 H1(
)�

o
:

If eu0 2 H1(
)� may be identi�ed with a function eu0 2 L2(
),
heu0; hiH1 =

Z



eu0 hdx 8h 2 H1(
);

then for u0 = eu0jH we obtain

hu0; hiH = heu0; hiH1 =

Z



eu0 hdx 8h 2 H;
and u0 may also be identi�ed with the function eu0 2 L

2(
) since H1
0 (
 [ �N ) � H and

H
1
0 (
 [ �N ) lies dense in L2(
).

Remark 2.2. By the assumptions (2.2){(2.4) it follows that there exists a c > 0 such that

krv0k2L2 +
Z


b0 v

2
0 dx+

Z
�N

�(v0 � �(v0))
2 d� � ckv0k2H1 8v0 2 H: (2.7)

Remark 2.3. We de�ne the function �0 by

�0(x; y) := e0(x; y)y �
Z y

0
e0(x; �) d�; x 2 
; y 2 R:

By (2.4) we easily �nd the following properties of e0 and �0:

(e0(x; y)� e0(x; y)) (y � y) � b0(x) (y � y)2;

e0(x; y)(y � y)�
Z y

y
e0(x; �) d� � 1

2
b0(x) (y � y)2;

�0(x; y) � 1
2
b0(x) y

2
;Z y

0
e0(x; �) d� � 1

2
b0(x) y

2 + e0(x; 0)y f.a.a. x 2 
; 8y; y 2 R:

(2.8)

Often we will write only the second argument of the functions e0 and �0.

Remark 2.4. For a special realization of H, � and e0 we refer to (1.18) and (1.9�).

Remark 2.5. The form of the reaction terms in (2.5) involves some important structural prop-

erties. First, it holds

R
�
��(x; y; z)

mX
i=1

(�i � �i)(yi + qiy0) � 0

f.a.a. x 2 �; 8y = (y0; : : : ; ym) 2 Rm+1
; 8z 2 R:

(2.9)

This relation will ensure the energy estimates in Section 3. Furthermore, for i = 1; : : : ;m

e��i (e��� � e���)(�i � �i) � �i e

�
(�i�1)�i+

P
j 6=i

�j�j

	
if �i > �i;

e��i (e��� � e���)(�i � �i) � �i e

�
(�i�1)�i+

P
j 6=i

�j�j

	
if �i < �i:

(2.10)

These relations are used for getting lower bounds in Section 4 and Section 5.
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Remark 2.6. For example, the assumption (2.6) is ful�lled for a reaction with stoichiomet-

ric coeÆcients (�; �) 2 R� if
Pm

j=1 �j = 0 or
Pm

j=1 �j = 0. Another possibility is that

max
�Pm

j=1 �j ;
Pm

j=1 �j

	 � n�: Let us note that condition (2.6) means only restrictions on

the source terms of the continuity equations whereas sink terms may be of higher order. In the

van Roosbroeck system which is a special case of our more general setting the source terms are

of order zero.

2.2 Formulation of the problem (P)

In order to formulate our general evolution problem we use the variables

v = (v0; v1; : : : ; vm) : R+ � 
! R
m+1 (potentials),

u = (u0; u1; : : : ; um): R+ � 
! R
m+1 (densities).

Analogously we set U = (U0; U1; : : : ; Um) where U0 =
Pm

i=1 qiUi (cf. (2.2)). Since we want to

take into account heterostructures the potentials must belong to a space of suÆciently smooth

functions while the densities are regarded as elements of the corresponding dual space. We work

with the function spaces

X := H �H
1(
;Rm); Y := L

2(
;Rm+1)

and their duals X�, Y � = Y . In addition, let

W := X \ L1(
;Rm+1):

We de�ne the operators A : W �X �! X
�, E0 : H �! H

� and E : X �! X
� by

hA(w; v); vi :=
Z



n mX
i=1

Diuie
wir�i � r�i +

X
(�; �)2R


R


��(�; w; �(w0)) (� � �) � �

o
dx

+

Z
�

X
(�; �)2R�

R
�
��(�; w; �(w0)) (� � �) � � d�; v 2 X;

where �i = vi + qiv0; �i = vi + qiv0; i = 1; : : : ;m;

hE0v0; v0i :=
Z



n
"rv0 � rv0 + e0(�; v0)v0

o
dx+

Z
�N

�(v0 � �(v0))(v0 � �(v0)) d�; v0 2 H;

hEv; vi := hE0v0; v0i+
Z



mX
i=1

uie
vivi dx; v 2 X:

Then the problem which we are interested in reads as

u
0(t) +A(v(t); v(t)) = 0; u(t) = Ev(t) f.a.a. t 2 R+ ; u(0) = U;

u 2 H1
loc(R+ ;X

�); v 2 L2loc(R+ ;X) \ L1loc(R+ ; L1(
;Rm+1 )):

9=; (P)

Remark 2.7. Problem (P) includes the precise weak formulation of the model problems in-

troduced in Section 1. The 0{th components of the equations u0 + A(v; v) = 0 and u = Ev

represent the continuity equation for the charge density and the (possibly nonlinear, nonlocal)

Poisson equation (1.10) and (1.10��), respectively. The other components of these equations are

the weak form of (1.5) and (1.1), respectively.
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Remark 2.8. By test functions of the form (w;�q1w; : : : ;�qmw), w 2 H, we obtain that for

solutions (u; v) of (P) it holds

u0(t) =
mX
i=1

qiui(t)jH in H� 8t 2 R+ : (2.11)

Remark 2.9. If (u; v) is a solution of (P) then u; v have the following regularity properties:

u 2 C(R+ ; Y ), u 2 Cw�(R+ ; L
1(
;Rm+1)), v0 2 C(R+ ;H), vi 2 C(R+ ; L

2), i = 1; : : : ;m,

v 2 Cw�(R+ ; L1(
;Rm+1)). These regularity properties imply the relations

u0(t) = E0v0(t) in H
�
;

ui(t) = ui e
vi(t) in L1(
); i = 1; : : : ;m;

u0(t) =
mX
i=1

qiui(t) in L
1(
)

9>>>>>>=>>>>>>;
8t 2 R+ : (2.12)

Remark 2.10. Because of (2.7), (2.8) the operator E0 : H �! H
� is strongly monotone. There-

fore there exists a constant c > 0 such that

kv0(t)kH1 ; j�(v0(t))j � c

�
1 +

mX
i=1

kui(t)kL2
�
8t 2 R+ (2.13)

if (u; v) is a solution of (P). Finally let us note that the operator E : X �! X
� is strictly

monotone.
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3 Preliminary results

3.1 Estimates for the solution of the Poisson equation

Lemma 3.1. Let the assumptions (2.1){(2.4) be ful�lled. Then there exist constants c > 0,

q > 2 and a continuous increasing positive function d such that

kv0kL1 � c
�ku0 ln ju0jkL1 + d(kv0kH1) + 1

�
; (3.1)

kv0kW 1;q � c
�ku0kL2q=(2+q) + d(kv0kH1) + 1

�
(3.2)

if v0 2 H and E0v0 = u0 2 L2(
).

Proof. Let v0 2 H be the solution of E0v0 = u0. Then w := v0 � �(v0) 2 H
1
0 (
 [ �N ) and for

h 2 H1
0 (
 [ �N ) it holds �(h)

R
�N

� w d� = 0, cf. (2.3). Since H1
0 (
 [ �N ) � H it follows from

the weak formulation of the Poisson equation thatZ


"rw � rhdx+

Z
�N

� w hd� =

Z


(u0 � e0(�; v0))hdx 8h 2 H1

0 (
 [ �N ):

Because of the last assumption in (2.2) we can now apply to this equation results of Gr�oger for

elliptic equations [31, Theorem 1] and [30, Theorem 1] and obtain

kv0kL1 � c
�ku0 � e0(�; v0)kL	 + kv0kH1

�
; 	(s) = (1 + s) ln (1 + s)� s for s � 0;

kv0kW 1;q � c
�ku0 � e0(�; v0)k(W 1;q=(q�1)

0
(
[�N ))�

+ kv0kH1

�
for some q > 2:

Because of (2.4) and (1.23) we can estimate the Orlicz norm of u0 � e0(�; v0) by

ku0 � e0(�; v0)kL	 � c (ku0 ln ju0jkL1 + d(kv0kH1) + 1);

and the �rst assertion of the lemma is proved. Moreover, using the Sobolev imbedding theorem

as well as Trudinger's result (1.23) we get

ku0 � e0(�; v0)k(W 1;q=(q�1)

0 (
[�N ))�
� c

�ku0kL2q=(2+q) + d(kv0kH1) + 1
�

which completes the proof. �

3.2 Uniqueness result

From now up to the end of Section 5 we suppose the assumptions (2.1){(2.5) to be ful�lled.

Theorem 3.1. There exists at most one solution of (P) .

Proof. It suÆces to prove uniqueness on every �nite time interval S := [0; T ]. Let (uj ; vj); j =

1; 2, be solutions of (P). Then there exists a constant c such that

kuj(t)kL1 ; kvj(t)kL1 ; kvj(t)kL1(�); j�(vj0(t))j; kvj0(t)kW 1;q � c f.a.a. t 2 S; j = 1; 2;
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where q > 2 (cf. Lemma 3.1). We set eu := u
1 � u

2, ev := v
1 � v

2. Testing the di�erence of the

Poisson equations E0v
1
0(t) � E0v

2
0(t) = eu0(t) by ev0(t) we obtain by the strong monotonicity of

E0 that

kev0(t)kH1 � c

mX
i=1

keui(t)kL2 f.a.a. t 2 S: (3.3)

Let zi := eui=ui, i = 1; : : : ;m. We use (0; z1; : : : ; zm) 2 L
2(S;X) as test function for (P) and

take into account that R�
��(x; �; �) is uniformly locally Lipschitz continuous. The norms of evi in

L
2(
) and L2(�) can be estimated by the corresponding norms of zi. With inequality (3.3) and

r := 2q=(q � 2) we conclude as follows

mX
i=1

n
kzi(t)k2L2+

Z t

0
kzik2H1ds

o
� c

Z t

0

mX
i=1

n
kzikLrkrv10kLqkrzikL2

+ krev0kL2krzikL2 + kzik2L2 + kev0k2H1 + kzik2L2(�)
o
ds

�
Z t

0

mX
i=1

n
1
4
kzik2H1 + c

�kzik2=rL2
krv10kLqkzik2�2=rH1 + kzik2L2

�o
ds

�
Z t

0

mX
i=1

n
1
2
kzik2H1 + c

�kv10krW 1;qkzik2L2 + kzik2L2
�o

ds

�
Z t

0

mX
i=1

n
1
2
kzik2H1 + ckzik2L2

o
ds 8t 2 S:

Gronwall's lemma yields zi = 0 on S; i = 1; : : : ;m. With (3.3) the assertion follows. �

3.3 Energy estimates

In this subsection we collect results on energy estimates which can be obtained similar to the

techniques in [26, Section 4]. We de�ne the functional �: X �! R,

�(v) :=

Z



n
"
2
jrv0j2 +

Z v0

0
e0(y) dy +

mX
i=1

ui (e
vi � 1)

o
dx+

Z
�N

�
2
(v0 � �(v0))

2 d�:

Because of (1.23) this functional is continuous, Gâteaux di�erentiable and it holds @� = E.

Since E is strictly monotone the functional � is strictly convex. Its conjugate functional

F : X� �! R ,

F (u) := sup
v2X

�hu; vi � �(v)
	
;

is proper, lower semicontinuous and convex. It holds u = Ev = @�(v) if and only if v 2 @F (u).
F may be interpreted as the free energy of the reaction{di�usion system.

Lemma 3.2. If u 2 H� � L
2
+(
;R

m) then the value of F (u) can be calculated as

F (u) =

Z



n
"
2
jrv0j2 + �0(v0)

o
dx+

Z
�N

�
2
(v0 � �(v0))

2 d� +
mX
i=1

Fi(ui)
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where v0 ful�ls the relation E0v0 = u0 and

Fi(ui) =

Z



n�
ui(ln

ui

ui
� 1) + ui

o
dx; ui 2 L2+(
):

Moreover the functional F jH��L2+(
;R
m) is continuous.

Proof. 1. We de�ne �0 : H �! R, �i : H
1(
) �! R, i = 1; : : : ;m, by

�0(v0) :=

Z



n
"
2
jrv0j2 +

Z v0

0
e0(y) dy

o
dx+

Z
�N

�
2
(v0 � �(v0))

2 d�;

�i(vi) :=

Z


ui(e

vi � 1) dx:

Then �(v) =
Pm

i=0�i(vi) and obviously F (u) = ��(u) =
Pm

i=0 �
�
i (ui).

2. Since E0 is strongly monotone and hemicontinuous (here Trudinger's result (1.23) is used)

E0 is surjective (see e.g. [22, 47, 62]) such that for u0 2 H� there exists v0 2 H with u0 = E0v0

and �0 is subdi�erentiable in v0. Therefore (cf. [12, 61])

��0(u0) = hE0v0; v0i � �0(v0) =

Z



n
"
2
jrv0j2 + �0(v0)

o
dx+

Z
�N

�
2
(v0 � �(v0))

2 d�:

The continuity of ��0 on H now results from the strong monotonicity of E0 and the continuity

of �0.

3. Next we prove the continuity of Fi. Let wn; w 2 L
2
+(
) and wn ! w in L2(
). Because of

j� ln �j � e�1 + �
2 for � � 0 we obtain by Fatou's lemma that

2

Z


( 1e + w

2) dx � lim inf
n!1

Z


( 2e + w

2 + w
2
n � jwn lnwn � w lnwj) dx

� 2

Z


( 1e +w

2) dx� lim sup
n!1

Z


jwn lnwn � w lnwjdx

which ensures that limn!1

R

 jwn lnwn � w lnwjdx = 0. Together with wn ! w in L2(
) this

proves the continuity of Fi.

4. It remains to show that ��i (ui) = Fi(ui) if ui 2 L
2
+(
), i = 1; : : : ;m. Let ui 2 L

2
+(
) and

let wn 2 H
1(
), wn � 0 and wn ! ui=ui in L

2(
). Moreover, let Æ > 0 suÆciently small. We

de�ne vin := ln(wn + Æ) 2 H
1(
) and uin := ui (wn + Æ). Then uin � Æui and uin ! ui + Æui

in L2(
). Since the function f(�) := ln(� + Æ); � � 0, is Lipschitz continuous with Lipschitz

constant Æ�1 we �nd that

hui � uin; vini ! �
Z


Æui ln(ui=ui + Æ) dx as n!1: (3.4)

By the subdi�erentiability of �i in vin it follows

��i (uin) = huin; vini � �i(vin) = Fi(uin)

which yields

��i (ui) = sup
vi2H1(
)

�hui; vii � �i(vi)
	 � hui; vini � �i(vin) = hui � uin; vini+ Fi(uin):
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Because of the lower semicontinuity of ��i , the continuity of Fi and of (3.4) after passing to the

limit n!1 we obtain

��i (ui + Æui) � lim inf
n!1

��i (uin) = lim
n!1

Fi(uin) = Fi(ui + Æui)

� ��i (ui) +

Z


Æui ln(ui=ui + Æ) dx:

Again using the lower semicontinuity of ��i , the continuity of Fi and the estimate

jÆ ln(� + Æ)j �

8><>: Æj ln Æj if 0 � � � 1=2;

Æ(e�1 + �) if � > 1=2

by passing to the limit Æ ! 0 the assertion follows. �

Along any solution (u; v) of (P) the function t 7! F (u(t)) is absolutely continuous and it holds

(see [6])
d

dt
F (u(t)) = �D(v(t)) f.a.a. t 2 R+

where the dissipation rate D is given by

D(v) := hA(v; v); vi; v 2W:

Note that by the de�nition of the operator A and by (2.9) the dissipation rate is nonnegative

for all v 2W . This ensures the following result.

Theorem 3.2. Let (u; v) be a solution of (P). Then

F (u(t2)) � F (u(t1)) � F (U) for t2 � t1 � 0;

kv0(t)kH1 +
mX
i=1

kui(t) lnui(t)kL1 +
Z t

0
D(v(s)) ds � c 8t 2 R+

where c depends only on the data.

The following corollary is a direct consequence of Theorem 3.2, (3.1), (2.11) and (1.20).

Corollary 3.1. There is a constant c3:5 > 0 depending only on the data such that

kv0(t)kL1 ; kv0(t)kL1(�); j�(v0(t))j � c3:5 8t 2 R+ (3.5)

if (u; v) is a solution of (P).
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4.1 The regularized problem (PN)

In the sequel we consider a problem on an arbitrarily �xed time interval S := [0; T ] which arises

from (P) by regularizing the reaction terms. Let, for N 2 R+ , �N : Rm+2 ! [0; 1] be a �xed

Lipschitz continuous function such that

�N (y; z) :=

8><>:
0 if j(y; z)j1 � N;

1 if j(y; z)j1 � N=2
; j(y; z)j1 := maxfjy0j; : : : ; jymj; jzjg:

We de�ne the operator AN : W �X �! X
� by

hAN (w; v); vi :=
Z



n mX
i=1

Diuie
wir�i � r�i

+
X

(�; �)2R


�N (w; �(w0))R


��(�; w; �(w0)) (� � �) � �

o
dx

+

Z
�

X
(�; �)2R�

�N (w; �(w0))R
�
��(�; w; �(w0)) (� � �) � � d�; v 2 X;

where �i = vi + qiv0; �i = vi + qiv0; i = 1; : : : ;m. The operator E is not changed. Now we are

looking for solutions of the following regularized problem

u
0(t) +AN (v(t); v(t)) = 0; u(t) = Ev(t) f.a.a. t 2 S; u(0) = U;

u 2 H1(S;X�); v 2 L2(S;X) \ L1(S;L1(
;Rm+1)):

9=; (PN)

4.2 Solvability of (PN)

Theorem 4.1. For each N 2 R+ there exists a unique solution of (PN).

Proof. We intend to apply Theorem 6.1. For �xed N 2 R+ , � = 
;�; i = 1; : : : ;m; we de�ne

functions g�i : �� R
m+1 � R ! R by

g
�
i (x; y; z) := �N (y; z)

X
(�; �)2R�

R
�
��(x; y; z)(�i � �i):

Obviously g
�
i satis�es the Carath�eodory conditions. Since R�

��(x; �; �) are uniformly locally

Lipschitz continuous and �N is a Lipschitz continuous function with �N (y; z) = 0 for j(y; z)j1 �
N the function g�i (x; �; �) is uniformly Lipschitz continuous. The property (2.9) yields

mX
i=1

g
�
i (x; y; z) (yi + qiy0) � 0 for a.a. x 2 �; 8(y; z) 2 Rm+2

since �N (y; z) � 0. Moreover, since �N (y; z) = 0 for j(y; z)j1 � N we �nd the estimate

jg�i (x; y; z)j �
X

(�; �)2R�

max
(y;z)2[�N;N ]m+2

jR�
��(x; y; z)jj�i � �ij for a.a. x 2 �; 8(y; z) 2 Rm+2
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the right hand side of which is bounded by some constant depending on N . At last using (2.10)

one proves easily that

g
�
i (x; y; z) � c

� eyi for a.a. x 2 �; 8(y; z) 2 Rm+2 with yi � 0:

Thus the functions g�i , � = 
;�, i = 1; : : : ;m, ful�l the assumptions (6.1), and we can apply

Theorem 6.1 to obtain the assertion. �

4.3 Estimates for the solution of (PN)

We are going to �nd estimates for solutions of (PN) which do not depend on N . In this

paper we prove such estimates under the additional assumption (2.6). At �rst, note that for

the solution of (PN) the relation (2.11) is valid. The dissipation rate corresponding to (PN),

DN (v) := hAN (v; v); vi, is nonnegative for all v 2 W . Therefore the results of Theorem 3.2

remain true for the solution of (PN) and

F (u(t)) � c; kv0(t)kH1 � c 8t 2 S;

kui(t)kL1 ; kui(t) lnui(t)kL1 � c 8t 2 S; i = 1; : : : ;m:
(4.1)

By Lemma 3.1 we �nd that

kv0(t)kL1 ; kv0(t)kL1(�); j�(v0(t))j � c4:2;

kv0(t)kW 1;q � c

� mX
i=1

kui(t)kL2q=(2+q) + 1
�

8t 2 S:
(4.2)

All these estimates in (4.1) and (4.2) are independent of N and of the length T of the time

interval S.

Next we look for upper bounds for the densities. These will not depend on T . We intend to use

the Moser technique and start with some preliminary estimate.

Lemma 4.1. Additionally we suppose (2.6). Then there exists a constant c > 0 depending only

on the data, but not on N and T , such that for the solution (u; v) of (PN)

mX
i=1

kui(t)kL2 � c 8t 2 S:

Proof. Let K := maxf1; kU1=u1kL1 ; : : : ; kUm=umkL1g and zi := (ui=ui �K)+, i = 1; : : : ;m.

We use the test function

2et(0; z1; : : : ; zm) 2 L2(S;X)

for (PN). Note that by (2.6) the source terms in the volume and boundary reactions are of at

most second and �rst order, respectively. Moreover, the factor �N in front of the source terms

can be estimated by 1. With the inequalities (4.1) and (4.2) we �nd by using the trace inequality
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(1.19), the H�older and Young inequalities that for all t 2 S

et
mX
i=1

kzi(t)k2L2 �
Z t

0
es

mX
i=1

n
� Ækzik2H1 + c

�kzik2L2(�) + kzikL1(�) + kzikL1

+ kzik2L2 + kzik3L3 + krv0kLqkui=uikLrkrzikL2
�o

ds

�
Z t

0
es

mX
i=1

n
� Æ

2
kzik2H1 + c

�kzik3L3 + 1

+
�
1 +

mX
j=1

kzjkLr0
�kzikH1(kzikLr + 1)

�o
ds

with r = 2q=(q � 2), r0 = 2q=(q + 2), q from (3.2) and some positive constant Æ. For kzik3L3 we
apply inequality (1.22) with p = 3, � := Æ=(c+8c

Pm
i=1 kzi ln zikL1(S;L1)). Moreover, from (1.22)

with p = r and p = r
0, respectively, from Gagliardo{Nirenberg's inequality (1.21) and Young's

inequality we �nd a constant c > 0 such that

mX
i=1

�
1+

mX
j=1

kzjkLr0
�kzikH1(kzikLr + 1)

�
mX
i=1

�
�

mX
j=1

kzj ln zjkL1 + Æ
4

�
kzik2H1 + c

�
1 +

mX
i=1

kzi ln zik2r
0=(r0�1)

L1

�

with � de�ned as above. In addition, here we used the relation y � y ln jyj+ c for y � 0 and the

fact that 2 < 2r=(r � 1) < 2r0=(r0 � 1). Thus we can continue our estimates by

et
mX
i=1

kzi(t)k2L2 �
Z t

0
es

mX
i=1

n�
2� c

mX
j=1

kzj ln zjkL1 � Æ
4

�kzik2H1 + c
�kzi ln zik2r0=(r0�1)L1

+ 1
�o

ds:

By the choice of � the factor in front of kzik2H1 is nonpositive and we arrive together with (4.1)

at

et
mX
i=1

kzi(t)k2L2 � c

Z t

0
es

mX
i=1

(kzi ln zik2r
0=(r0�1)

L1(S;L1)
+ 1) ds � c et 8t 2 S

which implies the desired estimate for
Pm

i=1 kui(t)kL2 . �

Remark 4.1. Since r0 = 2q=(q + 2) < 2, by relation (4.2) and Lemma 4.1 there are constants

c; c4:3 > 0 depending only on the data, not on N and T , such that for the solution (u; v) of

(PN)

mX
i=1

kui(t)kLr0 � c; kv0(t)kW 1;q � c4:3 8t 2 S: (4.3)

Theorem 4.2. Additionally we assume (2.6). Then there exists a constant c4:4 > 0 depending

only on the data, but not on N and T , such that for the solution (u; v) of (PN)

kui(t)=uikL1 � c4:4 8t 2 S; i = 1; : : : ;m: (4.4)

The same estimate holds for the L1(�){norms of ui(t)=ui for a.a. t 2 S.
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Proof. The proof is based on Moser iteration. In [21] such techniques are used for the van

Roosbroeck equations. But our system contains more general volume and boundary reaction

terms only ful�lling assumption (2.6). Therefore we obtain Moser exponents di�ering from those

in [21]. Let zi := (ui=ui � K)+ with K de�ned in the proof of Lemma 4.1, wi := z
p=2
i where

p � 4. Since vi 2 L2(S;H1) \ L1(S;L1) we have
pet (0; z

p�1
1 ; : : : ; z

p�1
m ) 2 L2(S;X)

and we can take it as a test function for (PN). We de�ne

� := c
2r
4:3 + 1 where r = 2q=(q � 2); q from (3.2): (4.5)

Note that volume and boundary reaction terms satisfy the restrictions (2.6) and j�N j � 1. Since

K is a constant de�ned by the data and ui � zi +K we have for all t 2 S

et
mX
i=1

Z


uijwi(t)j2 dx

�
Z t

0
es

mX
i=1

n Z



n
� Æjrwij2 + cp

�jwij2 + uijrv0jjrzp�1i j+ (u2i + 1)z
p�1
i

�o
dx

+ cp

Z
�
(ui + 1)z

p�1
i d�

o
ds

�
Z t

0
es

mX
i=1

n
� Ækwik2H1 + cp

�krv0kLqkrwikL2(kwikLr + 1)

+ kwik2(p+1)=pL2(p+1)=p
+ kwik2L2(�) + 1

�o
ds:

We apply for r and ep := 2(p + 1)=p, p � 4, Gagliardo{Nirenberg's inequality (1.21). Since ep 2
(2; 5=2] for p � 4, the constant cep can be estimated from above by means of maxfc2; c5=2; 1g1=2.
We continue

et
mX
i=1

Z


uijwi(t)j2 dx

�
Z t

0
es

mX
i=1

n
� Æ

2
kwik2H1 + cp

2r(krv0k2rLq + 1)(kwik2L1 + 1)

+ cp
�kwik(p+2)=pH1 kwikL1 + kwik3=2H1 kwik1=2L1

+ 1
�o

ds

�
Z t

0
es

mX
i=1

c

n
p
2r
�(kwik2L1 + 1) + p

4kwik2p=(p�2)L1
+ p

4kwik2L1 + 1
o
ds

� cp
2r
�

Z t

0
es

mX
i=1

(kwik2p=(p�2)L1
+ 1) ds � cp

2r
�et

mX
i=1

(sup
s2S

kzi(s)kp
2=(p�2)

Lp=2
+ 1):

Therefore we obtain the estimate

mX
i=1

kzi(t)kpLp + 1 � c4:6p
2r
�
� mX
i=1

sup
s2S

kzi(s)kp=2Lp=2
+ 1

�2p=(p�2) 8t 2 S; p � 4 (4.6)

with c4:6 > 1 depending only on the data. Let

ak :=
mX
i=1

sup
s2S

kzi(s)k2
k

L2
k + 1; k = 1; 2; : : : :
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Now we set p = 2k, k 2 N, k � 2. From (4.6) we conclude that

ak � (22r)k (� c4:6) a

�
2k

2k�1�1

	
k�1

�
"
(22r)

�Pk�2

i=0
(k�i)2i

	
(� c4:6)

�Pk�2

i=0
2i
	
a

�
2k�1

	
1

#Qk�1

j=1
2j

2j�1

:

The last inequality can be proved by induction. Note that the product c� :=
Q1
j=1

2j

2j�1
is �nite

and all of its factors are greater than 1. Moreover

k�2X
i=0

2i � 2k�1;
k�2X
i=0

(k � i) 2i � 2k+1; k � 2

such that

ak � (24r� c4:6 a1)
c�2

k

:

Thus we arrive at

mX
i=1

kzi(t)kL2k �
p
m
�
24r� c4:6

� mX
i=1

sup
s2S

kzi(s)k2L2 + 1
��c� 8t 2 S; k � 2:

Passing to the limit k !1 we obtain

mX
i=1

kzi(t)kL1 � p
m
�
24r� c4:6

� mX
i=1

sup
s2S

kzi(s)k2L2 + 1
��c� 8t 2 S:

Writing this inequality in terms of ui and applying the result of Lemma 4.1 we �nd the desired

estimates in 
. The estimates at the boundary follow from (1.20). �

We intend to estimate the densities from below (or the negative parts of the chemical potentials

from above) by Moser iteration, too. Corresponding estimates for the van Roosbroeck equations

were given in [21, Lemma 4.6]. Our more general reaction and boundary terms do not produce

new diÆculties in proving the recursion formula since estimates from above are already known.

Lemma 4.2. Let the estimate (4.4) for the solution (u; v) of (PN) be ful�lled. Then there exists

a constant c > 0 such that the recursion formula

etk(vi +K)�(t)kpLp � c

Z t

0
esp2r�

�k(vi +K)�(s)kp
Lp=2

+ 1
�
ds

8p � 2; 8t 2 S; i = 1; : : : ;m;

holds where K := maxfk[ln(U1=u1)]�kL1 ; : : : ; k[ln(Um=um)]�kL1g, �; r from (4.5) and c de-

pends on the data, but not on N , T and p.

Proof. Let z := (ln (ui=ui) + K)�. For p � 2 we take the test function which has the i{th

component

�petzp�1ui=ui;
the other components shall be zero. Note that from the L1{estimates for v0, uj=uj , j =

1; : : : ;m, on 
 and at � and from the structure of the volume and boundary reactions (see

(2.10)) it follows that

R
�
��(�i � �i)z

p�1ui

ui
= k

�
��

h mY
j=1

�uj
uj
eqjv0

��j � mY
j=1

�uj
uj
eqjv0

��ji
z
p�1ui

ui
(�i � �i) � c z

p�1
:
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Moreover, the factor �N in front of the reaction terms can be estimated by 1. Now estimates like

in [21, p. 24] (trace and imbedding results, the Gagliardo{Nirenberg and H�older inequalities)

give the recursion formula

etkz(t)kpLp �
Z t

0
escp2r�

�kzkp
Lp=2

+ 1
�
ds 8t 2 S (4.7)

which proves the lemma. �

Lemma 4.3. Under the assumption of Lemma 4.2 there exists a constant c > 0 depending only

on the data, but not on N and T , such that for the solution (u; v) of (PN)

k(vi +K)�(t)kL1 � c ecT 8t 2 S; i = 1; : : : ;m;

(with K de�ned in Lemma 4.2 ).

Proof. Using the notation of Lemma 4.2 we continue the estimate in (4.7) for p = 2 by

etkz(t)k2L1 � cetkz(t)k2L2 � c

Z t

0
es(kz(s)k2L1 + 1) ds 8t 2 S

and apply Gronwall's Lemma to obtain that kz(t)kL1 � c ecT , t 2 S. �

Theorem 4.3. For the solution (u; v) of (PN) we assume the validity of estimate (4.4). Then

there exists a continuous increasing function d4:8 > 0 depending only on the data, but not on

N , such that

kv�i (t)kL1 � d4:8(T ) 8t 2 S; i = 1; : : : ;m: (4.8)

The same estimate holds for the L1(�){norms of v�i (t) for a.a. t 2 S.

Proof. We use the notation of Lemma 4.2 again. Similar as in the proof of Lemma 4.6 in [21]

we �nd from (4.7) that

kz(t)kL1 � c4:9�
�
sup
s2S

kz(s)kL1 + 1
� 8t 2 S: (4.9)

Together with Lemma 4.3 this supplies the estimate kz(t)kL1 � d(T ). Thus we obtain a lower

bound for lnui(t)=ui depending only on the data and on T . This procedure can be done for

i = 1; : : : ;m. The estimate for the boundary norms follows from (1.20). �

4.4 Existence result

Theorem 4.4. Under the additional assumption (2.6) there exists a (unique) solution of prob-

lem (P).

Proof. We de�ne a mapping from R+ to L1(
;Rm+1)� L
1(
;Rm+1) by

(u(t); v(t)) := (u eN(t)
(t); v eN(t)

(t)) for t > 0;

(u(0); v(0)) := (U;E�1
0 U0; ln [U1=u1]; : : : ; ln [Um=um])
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where (u eN(t)
; v eN(t)

) is the solution of (PeN(t)) on S := [0; t] and

eN(t) := 2max
�
c4:2; ln c4:4; d4:8(t)

	
: (4.10)

Since eN(t) � eN(s) for t � s and since the solution of each problem (PN) is unique we get

(u eN(s)
(s); v eN(s)

(s)) = (u eN(t)
(s); v eN(t)

(s)); s � t:

Thus we obtain that the pair of time functions (u; v)j[0;t] is a solution of (PeN(t)) on [0; t]. By the

choice of eN(t) we guarantee that the operators A eN(t)
and A coincide on the solution of (PeN(t))

(see (4.1), (4.2), Theorem 4.2, Theorem 4.3). Therefore (u; v) de�ned here is a solution of (P).

Uniqueness has been proved in Theorem 3.1. �

4.5 Global estimates

Theorem 4.5. Under the assumption (2.6) for the solution (u; v) of (P) it holds

kui(t)=uikL1 � c4:4 8t 2 R+ ; i = 1; : : : ;m: (4.11)

The same estimate is valid for the L1(�){norms of ui(t)=ui for a.a. t 2 R+ . Furthermore it

holds

ess inf
x2


ui(t) � ess inf
x2


ui e
�d4:8(t) 8t 2 R+ ; i = 1; : : : ;m: (4.12)

Proof. Let (u; v) be the solution of (P) and t 2 R+ be arbitrarily given. Then (u; v)j[0;t] is the
solution of (PeN(t)) on S = [0; t] with eN(t) de�ned in (4.10). Thus Theorem 4.2 gives

kui(t)=uikL1 � c4:4; i = 1; : : : ;m;

which leads to the desired L1(
){estimate in (4.11). The corresponding estimate for the bound-

ary norms again follows from (1.20). Additionally, Theorem 4.3 gives

k(ln(ui=ui))�(t)kL1 ; � d4:8(t); i = 1; : : : ;m:

This leads to

ui(t) � ui e
�d4:8(t) f.a.a. x 2 


which proves the last assertion. �

The lower bound obtained in (4.12) depends on t, especially it tends to zero if t!1. Thus it

makes sense to ask if there is a positive constant lower bound for the densities. This question

is closely related to the asymptotic behaviour of the solution of (P) which will be discussed in

the next section.
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5 Global lower bounds and asymptotics

5.1 Invariants and steady states

In this section we suppose the general assumptions (2.1){(2.5). Further assumptions will be

speci�ed later on. First, we introduce some spaces. By S � R
m we denote the stoichiometric

subspace belonging to all volume and boundary reactions,

S := spanf�� � : (�; �) 2 R
 [R�g:

We de�ne

U :=
�
u 2 X� : u0 =

mX
i=1

qiuijH ; (hu1; 1i; : : : ; hum; 1i) 2 S
	

and U? := fv 2 X : hu; vi = 0 8u 2 X�g. One easily veri�es that

U? =
�
v 2 X : r� = 0; � 2 S? where �i = vi + qiv0; i = 1; : : : ;m

	
:

Having in mind Remark 2.8 and using the test function (0; 1; : : : ; 1) we obtain for a solution

(u; v) of (P) the following invariance property

u(t) 2 U + U 8t 2 R+ : (5.1)

Remark 5.1. Let � 2 S? and de�ne

I�(u) :=
mX
i=1

�ihui; 1i; u 2 X�
:

If (u; v) is a solution of (P) we �nd by (5.1) that

I�(u(t)) = I�(U) 8t 2 R+ :

Thus each � 2 S? generates an invariant of the reaction{di�usion system. If (1.11) should be

ful�lled then q = (q1; : : : ; qm) 2 S? and the corresponding invariant would represent the total

electric charge.

According to (5.1) it makes sense to look for steady states (u�; v�) of (P) which ful�l the property

u
� 2 U + U .

Theorem 5.1. There exists a unique steady state (u�; v�) of (P) in the sense that

A(v�; v�) = 0; u� = Ev
�
; u

� 2 U + U; v
� 2W: (5.2)

The element u� is the unique minimizer of F on U + U , while the element v� is the unique

minimizer of �� hU; �i on U?. Furthermore

u
�
; v

� 2 L1(
;Rm+1); v� 2 L1(�;Rm+1);

u
�
i � c > 0 a.e. on 
; a�i := ev

�

i +qiv
�

0 = const > 0; i = 1; : : : ;m:

For the proof we refer to [26, Theorem 3.1] or to [24, Theorem 3.2]. Because of (2.2) the

assumption concerning the initial values required there is ful�lled.
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5.2 Asymptotics of the free energy

According to Theorem 3.2 we already know that the free energy along trajectories of (P) remains

bounded and decays monotonously. Now we want to investigate the asymptotic behaviour of

the free energy in more detail. Let (u�; v�) be the steady state (5.2) and let (u; v) be a solution

of (P). Because of v� 2 U? and u(t)� u
� 2 U , t 2 R+ , we get

F (u(t)) � F (u�) =

Z



n mX
i=1

n
ui(t)(ln

ui(t)

u�i

� 1) + u
�
i

o
+

Z v0(t)

v�0

(e0(v0(t))� e0(y)) dy +
"
2
jr(v0(t)� v

�
0)j2

o
dx

+

Z
�N

�
2
(v0(t)� v

�
0 � �(v0(t)� v

�
0))

2 d�

� c
� mX
i=1

k
q
ui(t)=u

�
i � 1k2L2 + kv0(t)� v

�
0k2H1

�
8t 2 R+ :

(5.3)

Here we used the properties (2.7) and (2.8).

Theorem 5.2. Let (u; v) be a solution of (P) and de�ne

a(t) := (a1(t); : : : ; am(t)); ai(t) := ui(t)=ui e
qiv0(t); t 2 R+ ; i = 1; : : : ;m:

Then there exists a sequence ftkgk2N , tk 2 R+ , with tk ! +1 such that
q
ai(tk) !

q
a�i in

H
1(
), v0(tk)! v

�
0 in H, u(tk)! u

� in Y where (a�; v�0) belongs to the set

M :=
n
(a; v0) 2 Rm+ �H :

mY
i=1

a
�i
i =

mY
i=1

a
�i
i 8(�; �) 2 R
 [R�

;

(E0v0; u1; : : : ; um) 2 U + U where ui := ui ai e
�qiv0 ; i = 1; : : : ;m

o (5.4)

and it holds u�0 = E0v
�
0, u

�
i = uia

�
i e
�qiv

�

0 , i = 1; : : : ;m. Moreover, F (u(t))! F (u�) as t! +1.

Proof. 1. Let (u; v) be a solution of (P). Then for ai = e�i it holds
p
ai(t) 2 H

1(
) for a.a.

t 2 R+ and by Corollary 3.1 we obtain that

evi jr�ij2 � c

���rpai���2:
For all (�; �) 2 R
 [R� it holds

�
e��� � e���

�
(�� �) � � � c

h mY
i=1

p
ai

�i �
mY
i=1

p
ai

�i
i2

and using Corollary 3.1 again we �nd that

D(v(t)) � c eD(a(t)) f.a.a. t 2 R+ with some c > 0 (5.5)
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where

eD(a) := Z



n mX
i=1

���rpai���2 + X
(�;�)2R


b


��;R

h mY
i=1

p
ai

�i �
mY
i=1

p
ai

�i
i2o

dx

+

Z
�

X
(�;�)2R�

b
�
��;R

h mY
i=1

p
ai

�i �
mY
i=1

p
ai

�i
i2
d�

(5.6)

with R = c3:5.

2. Moreover, by the de�nition of ai and a
�
i (cf. Theorem 5.1)q

ai=a
�
i � 1 = eqi(v0�v

�

0 )=2 (
q
ui=u

�
i � 1) + eqi(v0�v

�

0)=2 � 1;

which yields with (5.3) and Corollary 3.1 that

k
q
ai(t)=a

�
i � 1k2L2 + kv0(t)� v

�
0k2H1 � c

�kqui(t)=u�i � 1k2L2 + kv0(t)� v
�
0k2H1

�
� c(F (u(t)) � F (u�)) � c(F (U) � F (u�)) 8t 2 R+ ; i = 1; : : : ;m:

(5.7)

These estimates will be used in some of the next proofs, too. Here they ensure that

k
q
ai(t)k2L2 + kv0(t)k2H1 � c 8t 2 R+ : (5.8)

3. Because of k eD(a)kL1(R+) <1 (cf. Theorem 3.2 and (5.5)) there exists a sequence tk ! +1
such that eD(a(tk)) ! 0. This implies r

p
ai(tk) ! 0 in L

2, and since k
p
ai(tk)kL2 � c (cf.

(5.8)) we conclude that
p
a(tk) !

p
a� in H

1(
;Rm ) with
p
a� 2 R

m . Next, by (5.6) and

Fatou's lemma we obtain

mY
i=1

q
a�i

�i
=

mY
i=1

q
a�i

�i
;

mY
i=1

a
�
i
�i =

mY
i=1

a
�
i
�i 8(�; �) 2 R
 [R�

:

4. By (5.8) it holds kv0(tk)kH1 � c. Therefore, at least for a subsequence, v0(tk)* v
�
0 in H

1(
),

v0(tk)! v
�
0 in L

2(
).

5. We set u�i = uia
�
i e
�qiv

�

0 and u�0 =
Pm

i=1 qiu
�
i . Since

kui(tk)� u
�
i kL2 � c

�kqai(tk)�qa�i k2L4 + k
q
ai(tk)�

q
a
�
i kL2 + kv0(tk)� v

�
0kL2

�
we obtain that u(tk)! u

� in Y .

6. It holds E0v0(tk+l) � E0v0(tk) = u0(tk+l) � u0(tk). By the strong monotonicity of E0 and

because of u0(tk)! u
� in H�, v0(tk)* v

�
0 in H

1(
) we have v0(tk)! v
�
0 in H

1(
), too. Since

E0 is demicontinuous we �nd

E0v(tk)* E0v
�
0 in H

�
; E0v

�
0 = u

�
0:

7. Since (E0v0(tk); u1(tk); : : : ; um(tk))* (E0v
�
0 ; u

�
1; : : : ; u

�
m) in X

� and u(tk) 2 U + U it results

u
� = (E0v

�
0; u

�
1; : : : ; u

�
m) 2 U + U . Thus we �nally get (a�; v�0) 2M:

8. Because of u� 2 H
� � L

2
+(
;R

m ) and the continuity result in Lemma 3.2 we obtain that

F (u(tk)) ! F (u�). The monotonous decay of the free energy (see Theorem 3.2) leads to

F (u(t))! F (u�) as t! +1. �
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Remark 5.2. If (u; v) is a steady state in the sense of (5.2) then ai := evi+qiv0 = const > 0 and

it holds
Qm
i=1 a

�i
i =

Qm
i=1 a

�i
i for all (�; �) 2 R
 [ R�. Moreover, we have (E0v0; u1; : : : ; um) 2

U + U . Thus (a; v0) 2 M. On the other hand, let be (a; v0) 2 M and ai > 0, i = 1; : : : ;m,

then (u; v) de�ned by u0 := E0v0, ui := ui ai e
�qiv0 , vi := lnai � qiv0, i = 1; : : : ;m, is a steady

state in the sense of (5.2). If there are elements (a; v0) 2 M with a =2 intRm+ then we have no

correspondence of such elements to a steady state (u; v) in the sense of (5.2).

In order to exclude the situation which has been mentioned at the end of Remark 5.2 we shall

assume that

M� intRm+ �H: (5.9)

Then by Theorem 5.1 M = f(a�; v�0)g follows.

Remark 5.3. For the van Roosbroeck system assumption (5.9) is ful�lled. But (5.9) can be

veri�ed also for more complicated reaction systems considered in [38] (cf. the examples in

Section 8, too).

Corollary 5.1. Let the additional assumption (5.9) be ful�lled and let (u; v) be a solution of

(P). Then v0(t)! v
�
0 in H,

q
ai(t)!

q
a�i ,

q
ui(t)!

q
u�i in L

2(
) and ai(t)! a
�
i , ui(t)! u

�
i

in L1(
), i = 1; : : : ;m, as t! +1.

Proof. Continuing the proof of Theorem 5.2 and using assumption (5.9) we now have a� = a
�,

v
�
0 = v

�
0 , u

� = u
� and F (u(t))! F (u�) as t! +1. By the inequalities (5.3) and (5.7) we �nd

the assertions for
p
ui(t),

p
ai(t) and v0(t). With

kui(t)� u
�
i kL1 � k

q
ui(t)�

q
u�i kL2k

q
ui(t) +

q
u�i kL2 ; k

q
ui(t)kL2 � c 8t 2 R+ (5.10)

and corresponding estimates for ai we verify the last two assertions. �

5.3 Exponential decay of the free energy

The additional assumption (5.9) leads to sharper asymptotic results. Without the knowledge

of global a priori bounds for the densities from above and below away from zero it is possible

to show that the free energy along trajectories of the system (P) decays exponentially to its

equilibrium value. The proof is based on an estimate of the free energy from above by the

dissipation rate. The following result can be obtained by the same methods as in [26, Theorem

5.2] (or in [24, Theorem 4.2], there the nonlinearity e0 of the Poisson equation is included, but

not the nonlocal term �).

Theorem 5.3. We assume (5.9). Then for every R > 0 there exists a cR > 0 such that

F (Ev) � F (u�) � cRD(v)

for all v 2MR where

MR :=
�
v 2W : F (Ev) � F (u�) � R; Ev 2 U + U

	
:

Theorem 5.3 enables us to improve the global stability results given in Corollary 5.1.
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Theorem 5.4. Let (5.9) be satis�ed. Then there exists a � > 0 depending only on the data

such that

F (u(t)) � F (u�) � e��t (F (U) � F (u�)) 8t � 0 (5.11)

if (u; v) is a solution of (P).

For the proof we refer to [26, Theorem 5.3]. Next, we collect some estimates resulting from

(5.11) which will be of importance for the start of global a priori estimates for the densities

from below by positive constants.

Corollary 5.2. Let (u; v) be a solution of (P) and let (5.11) be satis�ed. Then there exists a

constant c > 0 depending only on the data such that for i = 1; : : : ;m it holds

k
q
ui(t)=u

�
i � 1kL2 ; k

q
ai(t)=a

�
i � 1kL2 � c e��t=2;

kv0(t)� v
�
0kH1 ; kui(t)� u

�
i kL1 ; kai(t)� a

�
i kL1 � c e��t=2 8t 2 R+ :

(5.12)

Moreover there exists a constant c5:13 > 0 depending only on the data such that

kv0 � v
�
0kL2(R+;H1); kv0 � v

�
0kL1(R+;L1); kv0 � v

�
0kL1(R+;L1(�)) � c5:13;

kui=u�i � 1kL1(R+;L1); kui=u�i � 1kL1(R+;L1(�)) � c5:13; i = 1; : : : ;m:
(5.13)

Proof. The assertions in (5.12) are a consequence of (5.11), (5.7) and (5.10). From (5.12) the

�rst four estimates in (5.13) follow immediately. By the L1{estimates for v0 and v
�
0 and since

ui(t)=u
�
i 2 H1(
) f.a.a. t 2 R+ we have f.a.a. t 2 R+
jui(t)=u�i � 1j � c

�jai(t)=a�i � 1j+ jv0(t)� v
�
0j
�

� c
���qai(t)=a�i � 1

��2 + ��qai(t)=a�i � 1
��+ jv0(t)� v

�
0 j
�

a.e. in 
; �:

With the trace inequality (1.19) we obtain

kui=u�i � 1kL1(�) � c
�kqai=a�i � 1k2H1 + k

q
ai=a

�
i � 1k2=3

L2
+ kv0 � v

�
0kH1

	
:

Since kD(v)kL1(R+) � c we �nd by (5.5) and (5.12) that k
q
ai=a

�
i � 1kL2(R+;H1) � c. This

together with (5.12) proves the last assertion in (5.13). �

5.4 Global lower bounds for the chemical potentials

Next we are looking for global lower bounds for the chemical potentials, in other words, for

positive global lower bounds for the densities. We want to do this similarly to Lemma 4.2

and Theorem 4.3. Lemma 4.3 must be improved since now we have to look for a lower bound

which is independent of the length of the time interval. Corresponding estimates for the van

Roosbroeck equations were given in [21, Lemma 4.6]. But the main di�erence to our problem

is the fact that there essentially Dirichlet boundary conditions for the continuity equations are

used to �nd a start of the iteration process. This fails in our setting.

In what follows besides of (2.1){(2.5) we shall suppose that there is a constant c5:14 depending

only on the data such that

kuikL1(R+;L1(
)); kui=uikL1(R+;L1(�)) � c5:14; i = 1; : : : ;m; (5.14)
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and that (5.11) is satis�ed if (u; v) is a solution of problem (P).

At �rst we prove a lemma which provides a suitable start for the Moser iteration.

Lemma 5.1. Let (u; v) be a solution of (P) and let (5.14) and (5.11) be ful�lled. Then there

exists a constant c > 0 depending only on the data such that

kv�i (t)kL1 � c; 8t 2 R+ ; i = 1; : : : ;m:

Proof. For �xed i 2 f1; : : : ;mg the functional �: H1 ! R , given by

�(w) :=

Z


u
�
i (x)#(w(x)) dx; #(y) =

(
� ln(1� y) if y � 0;

+1 if y > 0

where u�i is the i{th component of the steady state (5.2) is convex and lower semicontinuous.

Its conjugate G := �� : (H1)� ! R is proper, convex and lower semicontinuous. If (u; v) is a

solution of (P) then G(ui(t)) may be written as

G(ui(t)) =

Z



n
u
�
i

�
ln
ui

u
�
i

��
(t)� (ui � u

�
i )
�(t)

o
dx:

The function z := (1 � u
�
i =ui)

� belongs to L2loc(R+ ;H
1) and for a.a. t 2 R+ we have that

�z(t) 2 @G(ui(t)). Thus the Br�ezis formula (see [6]) yields

G(ui(t))�G(Ui) = �
Z t

0
hu0i(s); z(s)iH1 ds =

Z t

0
hA(v; v); (0; : : : ; z; : : : ; 0)ids 8t 2 R+ :

Let z := (ln(ui=u
�
i ))

�. Since ��i =const (see Theorem 5.1) we can evaluate

uir(vi + qiv0)rz = uir[(vi � v
�
i + qi(v0 � v

�
0)]rz = �u�i (rz)2 + u

�
i qir(v0 � v

�
0)rz:

Taking into account the boundedness from above and below of u�i we derive for t 2 R+

G(ui(t)) �
Z t

0

n
� Æ krzk2L2 + ckr(v0 � v

�
0)kL2krzkL2

+

Z



X
(�; �)2R


k


��

�
e��� � e���

�
(�i � �i)

�
1� u

�
i

ui

��
dx

+

Z
�

X
(�; �)2R�

k
�
��

�
e��� � e���

�
(�i � �i)

�
1� u

�
i

ui

��
d�
o
ds+G(Ui)

(5.15)

where Æ > 0. By assumption (2.2) the initial value G(Ui) is �nite. We decompose 
 into


+(s) := fx 2 
 : ui(s; x) � u
�
i (x)g; 
�(s) := fx 2 
 : ui(s; x) < u

�
i (x)g:

On 
+ reaction terms multiplied by the test function vanish. Since (a�; v�0) 2 M, a�i =

u
�
i =uie

qiv
�

0 ; i = 1; : : : ;m; and �� � 2 S, �� 2 S? we have in 
��
e��� � e���

� �
1� u

�
i

ui

��
= e���

�

h mY
j=1

�uj
u�j

eqj(v0�v
�

0)
��j � mY

j=1

�uj
u�j

eqj(v0�v
�

0 )
��j i�u�i

ui
� 1

�
:

The expression in the brackets as function of (u1=u
�
1; : : : ; um=u

�
m; v0�v�0) is Lipschitz continuous

on [0; R]m� [�R;R], R > 0, and at (1; : : : ; 1; 0) its value is zero. Since uj=uj ; j = 1; : : : ;m, and

v0 are globally bounded (see (5.14) and Corollary 3.1) we get f.a.a. s 2 R+��e���(s) � e���(s)
�� j�i � �ij � c

� mX
j=1

juj(s)=u�j � 1j+ jv0(s)� v
�
0j
�

a.e. on 
�:
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Next, for �i > �i (then �i � 1) we estimate (cf. also (2.10))

�
e��� � e���

�
(�i � �i)

u
�
i

ui

= (�i � �i)e
����

h
eq�� (v0�v

�

0 )
� ui
u�i

��i�1Y
j 6=i

�uj
u�j

��j � eq�� (v0�v
�

0 )
mY
j=1

�uj
u�j

��j u�i
ui

i

� (�i � �i)e
����

h
eq�� (v0�v

�

0 )
� ui
u�i

��i�1Y
j 6=i

�uj
u�j

��j � eq�� (v0�v
�

0 )
mY
j=1

�uj
u�j

��ji
:

Again the term in the brackets is Lipschitz continuous in (u1=u
�
1; : : : ; um=u

�
m; v0�v�0) on [0; R]m�

[�R;R], R > 0, at (1; : : : ; 1; 0) its value is zero and f.a.a. s 2 R+

�
e���(s) � e���(s)

�
(�i � �i)

u
�
i

ui(s)
� c

� mX
j=1

juj(s)=u�j � 1j+ jv0(s)� v
�
0 j
�

a.e. on 
�:

Similar estimates are obtained for �i < �i. The same arguments hold for the boundary terms.

Applying (5.13) we continue estimate (5.15) by

G(ui(t)) � c

n
1 + kv0 � v

�
0k2L2(R+;H1) + kv0 � v

�
0kL1(R+;L1) + kv0 � v

�
0kL1(R+;L1(�))

+
mX
j=1

�kuj=u�j � 1kL1(R+;L1) + kuj=u�j � 1kL1(R+;L1(�))
�o � c 8t 2 R+ :

From the de�nition of G we thus obtain that kz(�)kL1 is bounded on R+ . Since

v
�
i (t) =

�
ln
ui

ui

��
(t) � z(t) +

�
ln
u
�
i

ui

��
the assertion of Lemma 5.1 follows. �

Theorem 5.5. Let (u; v) be a solution of (P) and let (5.14) and (5.11) be ful�lled. Then there

exists a constant c5:16 > 0 depending only on the data such that

kv�i (t)kL1 � c5:16; ess inf
x2


ui(t) � ess inf
x2


ui e
�c5:16 8t 2 R+ ; i = 1; : : : ;m: (5.16)

A corresponding estimate holds for the L1(�){norms of v�i (t) for a.a. t 2 R+ .

Proof. Arguing as in the proof of Theorem 4.3 with z(t) := (ln(ui(t)=ui) +K)� and K de�ned

in Lemma 4.2 we obtain inequality (4.9) for all t 2 R+ , i = 1; : : : ;m, since c4:9 does not depend

on the length of the time interval. By Lemma 5.1 we therefore obtain the global boundedness

of kz(t)kL1 . The estimates for the boundary norms follow from (1.20). �

Corollary 5.3. Let (u; v) be a solution of (P) and let (5.14) and (5.16) be ful�lled. Then by [26,

Theorem 5.1] relation (5.11) is satis�ed. Thus, if global upper bounds are known the existence

of global lower bounds is equivalent to the fact that the free energy decays exponentially to its

steady state value F (u�).
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5.5 Asymptotics of the densities and potentials

Theorem 5.6. Let (u; v) be a solution of (P) and let (5.14) and (5.16) be ful�lled. Then there

exist constants c; �p > 0 depending only on the data such that

mX
i=0

kui(t)� u
�
i kLp � c e��p t 8 t � 0;

mX
i=0

kvi(t)� v
�
i kLp � c e��p t 8 t � 0 where p 2 [1;+1):

Proof. Because of Corollary 5.3 the estimates (5.12) are valid. By (5.14), (2.12) and by (5.12)

we obtain for p 2 [1;+1), i = 1; : : : ;m

kui(t)� u
�
i kpLp � kui(t)� u

�
i kL1kui(t)� u

�
i kp�1L1 � c

p e�� t=2 8 t 2 R+ :

Since by (5.12) kv0(t)� v
�
0kH1 � c e�� t=2 and by Corollary 3.1 kv0(t)� v

�
0kL1 � c, t 2 R+ , we

estimate

kv0(t)� v
�
0kpLp � kv0(t)� v

�
0kL1kv0(t)� v

�
0kp�1L1 � c

p�1kv0(t)� v
�
0kH1 � c

p e�� t=2 8t 2 R+ :

Under our assumptions we �nd

kvi(t)� v
�
i kL1 = klnui(t)� lnu�i kL1 � ckui(t)=u�i � 1kL1 8t 2 R+

which together with the estimates (5.14) and (5.16) proves the second assertion. �

5.6 Summary

Now we summarize our results which we have obtained under the assumptions (2.1){(2.5) com-

pleted by the growth condition (2.6) and by the nondegeneracy requirement (5.9).

Theorem 5.7. We assume (2.1){(2.5), (2.6) and (5.9). Then there is a unique solution of (P).

For this solution global estimates as in (4.11) and (5.16) are satis�ed. Moreover the results on

the asymptotic behaviour as in Theorem 5.4 and Theorem 5.6 are valid.
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6 Electro{di�usion systems with weakly nonlinear volume and boundary
source terms

6.1 Formulation of the problem (PG)

In this section we are looking for a general existence result for a system of continuity equations

with bounded Lipschitz continuous right hand sides and boundary terms coupled with the

(possibly nonlinear, nonlocal) Poisson equation considered on arbitrarily �xed time intervals S.

The purpose of such a result is that the solvability of more general equations of the form (1.5),

(1.8) (for example with reactions of higher order) could be proved by means of our result if it is

possible to regularize the reaction and boundary terms in a suitable way and to derive a priori

estimates for this regularized problem which are independent of the regularization level.

We investigate such problems under the general assumptions (2.1){(2.4) and replace the as-

sumptions (2.5) and (2.6) by the following ones:

For � = 
;�; i = 1; : : : ;m; we have

i) g
�
i : �� R

m+1 � R ! R satis�es the Carath�eodory conditions;

ii) jg�i (x; y; z) � g
�
i (x; y; z)j � L�max

�
maxi=0;:::;m jyi � yij; jz � zj�

f.a.a. x 2 �; 8(y; z); (y; z) 2 Rm+2
;

iii)
Pm

i=1 g
�
i (x; y; z)(yi + qiy0) � 0 f.a.a. x 2 �; 8(y; z) 2 Rm+2

;

iv) jg�i (x; y; z)j � c
� f.a.a. x 2 �; 8(y; z) 2 Rm+2

;

v) g
�
i (x; y; z) � c

� eyi f.a.a. x 2 �; 8(y; z) 2 Rm+2 with yi � 0:

9>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>;

(6.1)

We consider the problem

u
0(t) +AG(v(t); v(t)) = 0; u(t) = Ev(t) f.a.a. t 2 S; u(0) = U;

u 2 H1(S;X�); v 2 L2(S;X) \ L1(S;L1(
;Rm+1))

9=; (PG)

where E is de�ned as in Subsection 2.2 and the operator AG : W � X �! X
� now contains

modi�ed volume and boundary terms g
i ; g
�
i and is given by

hAG(w; v); vi :=
Z



mX
i=1

n
Diuie

wir�i � r�i + g


i (�; w; �(w0)) �i

o
dx

+

Z
�

mX
i=1

g
�
i (�; w; �(w0)) � i d�; v 2 X;

where �i = vi + qiv0; �i = vi + qiv0; i = 1; : : : ;m:

6.2 The regularized problem (PM)

To prove existence for (PG) we investigate a regularized problem (PM) which arises from (PG)

by cutting the nonlinearities in front of the di�usion terms and in the statistics and adding some

regularizing term vanishing under the cutting level. We show the solvability of (PM) and �nd
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a priori estimates not depending on the cutting level M . Thus a solution of (PM) is a solution

of (PG) if one had taken the cutting level suÆciently large. We �x M �M
� � 1 with

uie
�M� � Ui � uie

M�

; i = 1; : : : ;m: (6.2)

We denote by PM the projection from R onto [�M;M ],

PM (y) :=

8>>>><>>>>:
�M if y < �M;

y if y 2 [�M;M ];

M if y > M;

and de�ne operators EM : X �X �! X
�, EM : X �! X

� and AM : X �X �! X
� by

hEM (w; v); vi := hE0v0; v0i+
Z



mX
i=1

uie
PMwi vi dx; v 2 X; EMv := EM (v; v);

hAM (w; v); vi :=
Z



mX
i=1

n
Diuie

PMwir�i � r�i + CM (�i � PMwi � PM (qiw0)) � i

+ g


i (�; w; �(w0)) �i

o
dx+

Z
�

mX
i=1

g
�
i (�; w; �(w0)) �i d�; v 2 X

where �i = vi + qiv0; �i = vi + qiv0; i = 1; : : : ;m; and

CM := 2 max
�
L
(m+ 1) + 2c1:19

2
L�

2(m+ 1)2ÆM
�1
; ÆM

	
;

c1:19 comes from the trace inequality (1.19), and ÆM > 0 is �xed such that

ÆM � Diuie
�M f.a.a. x 2 
; i = 1; : : : ;m:

We are looking for solutions of the regularized problem

u
0(t) +AM (v(t); v(t)) = 0; u(t) = EMv(t) f.a.a. t 2 S; u(0) = U;

u 2 H1(S;X�); v 2 L2(S;X):

9=; (PM)

6.3 A priori estimates for solutions of (PM)

First, let us note that assertions like in Remark 2.8 and Remark 2.9 are valid. Especially it

holds ui(t) = uie
PMvi(t) in L

1(
) for all t 2 R+ . Energy estimates as in Section 3.3 can be

obtained, too. We de�ne regularized energy functionals �M : X �! R;

�M (v) :=

Z



n
"
2
jrv0j2 +

Z v0

0
e0(y) dy +

mX
i=1

ui

Z vi

0
ePMy dy

o
dx+

Z
�N

�
2

�
v0 � �(v0)

�2
d�;

and FM := ��M . It holds @�M (v) = EMv. Thus, if u = EMv, v 2 X, then

FM (u) =hEMv; vi � �M (v)

=

Z



n
"
2
jrv0j2 + �0(v0) +

mX
i=1

�
ui(ln

ui

ui
� 1) + ui

�o
dx+

Z
�N

�
2

�
v0 � �(v0)

�2
d�:
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Let (u; v) be a solution of (PM) with M ful�lling (6.2). Then v(t) 2 @FM (u(t)) for a.a. t 2 S.

Because of (�i�PMvi�PM (qiv0))�i � 0 and the property (6.1), iii) of g�i we have hAM (v; v); vi �
0 and we can conclude by the Br�ezis formula (see [6]) that

FM (u(t)) +

Z t

0
hAM (v; v); vids � FM (U) = F (U) � c 8t 2 S

independently of M . Note, that by Lemma 3.2 and (6.2) the values for F (U) and FM (U)

coincide. With (2.7), (2.8) we �nd by the de�nition of FM that the norms kv0(t)kH1 and

kui(t) lnui(t)kL1 for t 2 S are bounded independently of M . Thus ku0(t) ln ju0(t)jkL1 � c for

t 2 S and the relations (3.1) and (3.2) guarantee independently of M the estimates

kv0(t)kL1 ; kv0(t)kL1(�); j�(v0(t))j � c6:3;

kv0(t)kW 1;q � c
� mX
i=1

kui(t)kL2q=(2+q) + 1
� 8t 2 S: (6.3)

Lemma 6.1. We suppose the assumptions (2.1){(2.4) and (6.1) to be ful�lled. Let M �
maxfc6:3maxi=1;:::;m jqij;M�g. Then there exists a constant c > 0 not depending on M such

that

kui(t)kL2 � c 8t 2 S; i = 1; : : : ;m;

for any solution (u; v) of (PM).

Proof. The proof is based on the ideas of Lemma 4.1. Since we have for any solution (u; v) of

(PM) and for K � maxf1; kU1=u1kL1 ; : : : ; kUm=umkL1g that

(�i � PMvi � PM (qiv0))
�ui
ui
�K

�+
= (vi � PMvi))

�ui
ui
�K

�+ � 0

we can omit this term in our estimates. Additionally, taking into account that now ui = uie
PMvi

and that by assumption (6.1), iv) all volume and boundary source terms may be estimated by

c
� times the test function. According to relation (6.3) krv0kLq can be estimated in exactly the

same way as in Lemma 4.1. �

Lemma 6.2. We suppose the assumptions (2.1){(2.4) and (6.1) to be ful�lled. Let M �
maxfc6:3maxi=1;:::;m jqij;M�g. Then there exists a constant c6:4 > 0 depending on the data,

but not on M , such that

kui(t)=uikL1 � c6:4 8t 2 S; i = 1; : : : ;m; (6.4)

for any solution (u; v) of (PM).

Proof. Having in mind the remarks in the proof of Lemma 6.1 concerning the regularized

terms and the boundedness of the source terms g�i (cf. (6.1), iv)) the proof is the same as in

Theorem 4.2. �

Lemma 6.3. We suppose the assumptions (2.1){(2.4) and (6.1) to be ful�lled. Let M �
maxfc6:3maxi=1;:::;m jqij; ln (c6:4 + 1);M�g. Then there exists an increasing function d6:5 de-

pending on the data, but not on M , such that

kln (ui(t)=ui)kL1 � d6:5(T ) 8t 2 S; i = 1; : : : ;m; (6.5)

for any solution (u; v) of (PM).
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Proof. We apply the techniques of the proofs of Theorem 4.3, Lemma 4.2 and Lemma 4.3.

Again we set z = (ln(ui=ui) +K)� with K from Lemma 4.2. Due to the choice of M for any

solution of (PM) it holds qiv0 = PM (qiv0) and vi � PMvi (see (6.3) and (6.4)). Therefore it

follows that

�(�i � PMvi � PM (qi v0))
ui

ui
z
p�1 � 0

and this term can be omitted in the estimates. If z > 0 then it holds evi � ePMvi = ui=ui and

vi � 0. Therefore we obtain from (6.1), v) the relation

g
�
i

ui

ui
z
p�1 � c

� evi
ui

ui
z
p�1 � c

�
z
p�1

; � = 
; �:

Thus the estimates of Lemma 4.2 remain true, and we can continue to argue as in the proofs of

Theorem 4.3 and Lemma 4.3. �

6.4 Solvability of (PM)

For �xed M , we use a time discretization scheme to show the existence of a solution of (PM).

For n 2 N let hn := T=n and Sjn :=](j � 1)hn; jhn]. If V is any Banach space we denote by

Cn(S; V ) the space of all functions u : ]0; T ] �! V which are constant on each of the intervals

S
j
n. The value of u 2 Cn(S; V ) on Sjn is denoted by uj. We de�ne the operators

�n : Cn(S;X
�) �! Cn(S;X

�); Kn : Cn(S;X
�) �! C(S;X�);

(�nu)
j :=

1

hn
(uj � u

j�1);

(Knv)(t) :=
1

hn

�
(tjn � t)uj�1 + (t� t

j�1
n )uj

�
8t 2 Sjn

where u0 := U is the initial value of problem (PG). Obviously, (Knu)
0 = �nu. For n 2 N we

investigate the problem

�nun(t) +AM (vn(t); vn(t)) = 0; un(t) = EMvn(t) 8t 2 (0; T ];

vn 2 Cn(S;X):

9=; (PMn)

Remark 6.1. As in Remark 2.8 for solutions of (PMn) it holds that

un0(t) =
mX
i=1

qiuni(t)jH in H� 8t 2 S: (6.6)

Lemma 6.4. We assume (2.1){(2.4) and (6.1). Then for every n 2 N there exists at least one

solution of (PMn). Furthermore

sup
n2N

n
kvnkL2(S;X) + kKnunkC(S;Y ) + kKnunkH1(S;X�)

o
<1: (6.7)

Proof. 1. We show that for given uj�1 2 X�
; hn 2 R+ , there exists a solution (uj; vj) 2 X��X

of the problem

u
j + hnAM (vj ; vj) = u

j�1
; u

j = EMv
j
: (6.8)
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Let B : X ! X
� be de�ned by B(v) := EMv + hnAM (v; v). Using the decomposition B(v) =

B(v; v) with

B(w; v) := EM (w; v) + hnAM (w; v); (w; v) 2 X �X;

we easily �nd that B is a coercive operator of variational type (cf. [48]). By [48, p. 182] the

problem (6.8) has at least one solution.

2. Next, we prove estimates for the solutions (un; vn) of (PMn). Since for t > 0 it holds

un(t) = EMvn(t) 2 @�M (vn(t)) we have vn(t) 2 @FM (un(t)) and

hun(t)� eu; vn(t)i � FM (un(t)) � FM (eu) 8eu 2 X� 8t 2 (0; T ]:

Therefore, for l = 1; : : : ; n;

FM (uln)� FM (U) =
lX

j=1

FM (ujn)� FM (uj�1n ) �
lX

j=1

hujn � u
j�1
n ; v

j
ni

=� hn

lX
j=1

hAM (vjn; v
j
n); v

j
ni � �hn

lX
j=1

�
cM

mX
i=1

k�jnik2H1 � CM

�
:

Because of the de�nition of FM , (2.7) and (2.8) we obtain that

sup
n2N

kvn0kL1(S;H1); sup
n2N

k�nkL2(S;(H1)m); sup
n2N

kvnkL2(S;X) <1:

Thus, from �nun = �AM (vn; vn) we get

sup
n2N

k�nunkL2(S;X�) <1:

The equation un = EMvn forces that uni = uie
PMvni in L1

�
S;L

2
�
, i = 1; : : : ;m. Having in

mind (6.6) we state un0 =
Pm

i=1 qiuni in L
1
�
S;L

2
�
and we �nd that Knun 2 C(S; Y ) and

sup
n2N

kKnunkC(S;Y ) <1:

Since kKnunkL2(S;X�) � c kKnunkL2(S;Y ) � c kKnunkC(S;Y ) and �nun = (Knun)
0 we obtain

sup
n2N

kKnunkH1(S;X�) <1

which completes the proof. �

Lemma 6.5. We assume (2.1){(2.4) and (6.1). Then there exists at least one solution of (PM).

Proof. 1. Let, for n 2 N, (un; vn) be a solution of (PMn). Because of (6.7) there exist v 2
L
2(S;X), u 2 H

1(S;X�) \ L2(S; Y ) such that, at least for subsequences, vn * v in L2 (S;X),

Knun * u in H
1(S;X�), L2 (S; Y ). In particular, Knun * u, �nun * u

0 in L
2(S;X�). If

t 2 S, v 2 X are �xed the mapping

w 7! hw(t); viX for w 2 H1(S;X�)

de�nes a continuous linear functional on H1(S;X�). Therefore

Knun(t)* u(t) in X� 8t 2 S: (6.9)
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We �nd that

kun �Knunk2L2(S;X�) � h
2
nk�nunk2L2(S;X�) ! 0:

Thus, without loss of generality, we may assume that

(Knun � un)(t)! 0 in X�
; un(t)* u(t) in X� f.a.a. t 2 S:

Since kKnun(t)kY ; kun(t)kY � c for all t 2 S (see (6.7)) we conclude that

Knun(t)* u(t) in Y 8t 2 S; un(t)* u(t) in Y f.a.a. t 2 S: (6.10)

Because of Knun(0) = U we have u(0) = U .

2. From uni = ui e
PMvni we �nd by (6.7) that the sequences (uni=ui)n2N , i = 1; : : : ;m, are

bounded in L2
�
S;H

1
�
. From (6.10) we have that

uni(t)=ui * ui(t)=ui in L
2 f.a.a. t 2 S; i = 1; : : : ;m: (6.11)

Thus, applying Lebesgue's theorem

uni=ui * ui=ui in L
2(S;L2); i = 1; : : : ;m: (6.12)

Now we use the inequality (6.40) in [46, p. 529]:

For all � > 0 there is an N� > 0 such that

kwk2L2 �
N�X
j=1

�
w; j

�2
L2

+ �kwk2H1 8w 2 H1(
) (f jgj2N ON-base in L2):

We integrate this inequality for w := uni=ui � uli=ui over [0; T ]. Using (6.11), the boundedness

of un(t) in Y for t 2 S, n 2 N, Lebesgue's theorem and the boundedness of uni=ui in L
2
�
S;H

1
�
,

we �nd that funi=uig is a Cauchy sequence in L2(S;L2). By (6.12) we get

uni=ui ! ui=ui; uni ! ui in L
2(S;L2); i = 1; : : : ;m: (6.13)

Together with Knun � un ! 0 in L2 (S;X�) this leads to

(Knun)i ! ui in L
2(S; (H1)�); i = 1; : : : ;m: (6.14)

3. Because of (6.6) and (6.13) we obtain from un0 * u0 in L
2 (S;H�) and

Pm
i=1 qiuni !Pm

i=1 qiui in L
2(S; (H1)�) that

un0 ! u0 =
mX
i=1

qiuijH in L2(S;H�); un ! u; Knun ! u in L2 (S;X�) :

4. Let ~u 2 Y with FM (~u) < +1 and S1 be any subinterval of S. Since for t 2 (0; T ],

un(t) = EMvn(t) we have vn(t) 2 @FM (un(t)). Using vn * v in L2 (S;X), un ! u in L2 (S;X�)

and the lower semicontinuity of FM on X� we conclude thatZ
S1

h~u� u(t); v(t)idt = lim
n!1

Z
S1

h~u� un(t); vn(t)idt

� lim sup
n!1

Z
S1

�
FM (~u)� FM (un(t))

	
dt

�
Z
S1

�
FM (~u)� FM (u(t))

	
dt:
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Because S1 was an arbitrary subinterval we obtain

h~u� u(t); v(t)i � FM (~u)� FM (u(t)) f.a.a. t 2 S

which means v(t) 2 @FM (u(t)) f.a.a. t 2 S. Thus u(t) 2 @�M (v(t)) = EMv(t) f.a.a. t 2 S and

FM (u(t)) � FM (U) =

Z t

0
hu0(s); v(s)ids 8t 2 S: (6.15)

5. By the Lipschitz continuity of E�1
0 and by un ! u in L2(S;X�) we �nd

kvn0 �E
�1
0 u0k2L2(S;H1) = kE�1

0 un0 �E
�1
0 u0k2L2(S;H1) � ckun0 � u0k2L2(S;H�) ! 0:

On the other hand, we have vn * v in L2 (S;X) which implies E�1
0 u0 = v0 and vn0 ! v0 in

L
2
�
S;H

1
�
, v0 2 L2 (S;H).

6. In what follows fn denotes terms with limn!1 fn = 0. Since vn * v in L2 (S;X), �nun * u
0

in H1(S;X�) we obtain from (PMn) and (6.15)

0 =

Z
S
h�nun +AM (vn; vn); vn � vids

=fn +

Z
S
h�nun; vni � hu0; vi + hAM (vn; vn)�AM (v; v); vn � vids

=fn + FM (un(T ))� FM (u(T )) +

Z
S
hAM (vn; vn)�AM (v; v); vn � vids:

(6.16)

We split the terms with AM in two parts and estimate each part separately. Firstly,

hAM (vn; vn)�AM (vn; v); vn � vi

=
mX
i=1

Z



n
Diuie

PMvn jr(�ni � �i)j2 + CM (�ni � �i)
2
o
dx

�
mX
i=1

n
ÆMkr(�ni � �i)k2L2 + CMk�ni � �ik2L2

o
:

(6.17)

Secondly,Z
S
hAM (vn; v)�AM (v; v); vn � vids =Z

S

� Z



mX
i=1

n
Di(uni � ui)r�ir(�ni � �i) + (g
i (�; vn; �(vn0))� g



i (�; v; �(v0)))(�ni � �i)

� CM (PMvni � PMvi + PM (qivn0)� PM (qiv0))(�ni � �i)
o
dx

+

Z
�

mX
i=1

(g�i (�; vn; �(vn0))� g
�
i (�; v; �(v0)))(�ni � �i) d�

�
ds:

By (6.13) and vn * v in L2 (S;X) we conclude that PMvni ! PMvi; PM (qivn0) ! PM (qiv0)

in L2
�
S;L

2
�
, �ni * �i in L

2
�
S;H

1
�
, (uni � ui)r�i ! 0 in L2

�
S;L

2
�
, i = 1; : : : ;m. Thus we

�nd that the gradient terms as well as the terms with CM tend to zero if n ! 1. Moreover,

since by assumption (6.1), ii) the functions g�i (x; �; �) are uniformly Lipschitz continuous and
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jvni � vij � j�ni � �ij + jqijjvn0 � v0j, j�(vn0) � �(v0)j � c�kvn0 � v0kH1 , we obtain by the

boundedness of k�ni � �ikL2(S;H1) and vn0 ! v0 in L
2(S;H1) thatZ

S
hAM (vn; v) �AM (v; v); vn � vids � fn �Z

S

mX
i=1

n
L
(m+ 1)k�ni � �ik2L2 + 2

ÆM
c
2
1:19L

2
�(m+ 1)2k�ni � �ik2L2 + ÆM

2
k�ni � �ik2H1

o
ds:

Because of the choice of CM from (6.17) and the last inequality we get

Z
S
hAM (vn; vn)�AM (v; v); vn � vids � fn +

ÆM
2

mX
i=1

k�ni � �ik2L2(S;H1): (6.18)

Inserting this in (6.16) we obtain

FM (u(T ))� FM (un(T )) � fn +
ÆM
2

mX
i=1

k�ni � �ik2L2(S;H1):

Since FM is weakly lower semicontinuous on X�, Knun(t)* u(t) in X� for all t 2 S (see (6.9))

and Knun(T ) = un(T ), n 2 N, we �nd

lim inf
n!1

FM (un(T )) � FM (u(T )):

Thus, passing to the limit we obtain

lim sup
n!1

mX
i=1

k�ni � �ik2L2(S;H1) � 0:

This means �ni ! �i in L
2(S;H1), i = 1; : : : ;m. Combining this result with vn0 ! v0 in

L
2(S;H) we get vn ! v in L2 (S;X).

7. The last convergence result implies immediately that AM (vn; vn)! AM (v; v) in L2 (S;X�).

From the �rst step we know that AM (vn; vn) = ��nun * �u0 in L
2 (S;X�). Thus u0 +

AM (v; v) = 0 a.e. on R+ , the validity of u = EMv a.e. on R+ was stated in step 4, and so the

proof is complete. �

6.5 Existence and uniqueness result

Theorem 6.1. We assume (2.1){(2.4) and (6.1). Then there exists a unique solution of (PG).

Proof. Let (u; v) be a solution of (PM) (see Lemma 6.5) with M satisfying

M � max
�
c6:3 max

i=1;:::;m
jqij; ln (c6:4 + 1); d6:5(T );M

�
	

(see (6.3), Lemma 6.2, Lemma 6.3, (6.2)). Then we have vi = PMvi, qiv0 = PM (qiv0) a.e. on

S�
, i = 1; : : : ;m, and therefore (u; v) is a solution of (PG), too. Uniqueness can be proved as

in Theorem 3.1 now using the uniform Lipschitz continuity of g�i (x; �; �), � = 
; �; i = 1; : : : ;m.

�
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7 Relations between the basic model and the reduced model

7.1 Preliminaries

In this section we investigate relations between the basic model (1.5), (1.8) introduced in Sub-

section 1.1 (where the kinetic coeÆcients in (1.14) are �nite, but very large) and the reduced

model (1.5��), (1.8��) derived in Subsection 1.2 (under the assumption that these kinetic coef-

�cients tend to in�nity). For this purpose all quantities, spaces and operators for the reduced

model are marked by a `�' whereas all quantities belonging to the basic model have the same

notation used in the previous sections. The common weak formulation of both problems has

been given in Subsection 2.2. In Table 1 we summarize once more, how relevant quantities have

to be chosen in order to get the basic model and the reduced model, respectively. As in the

previous sections we suppose that for the data of the basic model (P) at least the assumptions

(2.1){(2.5) are ful�lled. From this one easily obtains corresponding properties for the data of

the reduced problem (eP) what is summarized in the following lemma.

Lemma 7.1. The assumptions (2.1){(2.5) for (P) ensure the validity of the corresponding prop-

erties (2.1){(2.5) for (eP). If for (P) additionally (2.6) is ful�lled this property is carried over

to the reduced problem.

basic problem (P) reduced problem (eP)
number of species m em = m� 2

densities u0 =
Pm

i=1 qiui eu0 =Pem
i=1 qieui

ui; i = 1; : : : ;m eui; i = 1; : : : ; em
potentials v0; vi; i = 1; : : : ;m ev0; evi; i = 1; : : : ; em
Hilbert spaces H = H

1
0 (
 [ �N ) eH = H

1
0 (
 [ �N ) + R

X = H �H
1(
;Rm ) eX = eH �H

1(
;Rem)
continuity equations R� � Z

m
+ �Z

m
+

eR� � Z
em
+ � Z

em
+ as in (1.4��)

R�� as in (1.4) eRe�e� as in (1.4��)

Poisson equation e0(v0) =
Pm

i=1 qiUi ee0(ev0) =Pm
i=1 qiUi + um�1 e

ev0 � um e�ev0
�(v0) = 0 e�(ev0) =

8>>><>>>:
j�Dj�1

Z
�D

ev0 d�; j�Dj 6= 0

k�k�1
L1(�N )

Z
�N

� ev0 d�; j�Dj = 0

initial values U0 =
Pm

i=1 qiUi
eU0 =Pem

i=1 qi
eUi

Ui; i = 1; : : : ;m eUi = Ui; i = 1; : : : ; em
Table 1: Overview on relevant quantities for the basic and the reduced model, respectively.
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Remark 7.1. The result concerning the validity of (2.6) for (eP) can be improved as follows.

Assume that for (P) the reaction terms have the more general property

max
i=1;:::;m�2

n
(e��� � e���)(�i � �i)

o
� c ec(j�m�1j+j�mj)

�m�2X
j=1

en� �j + 1
�

8� 2 Rm ; 8(�; �) 2 R�
; � = 
;�; with n
 = 2; n� = 1; c > 0

then for (eP) the assumption (2.6) is ful�lled. Thus, for models including some special higher

order reactions (of higher order with respect to electrons and holes) existence results can be

obtained by the methods of this paper if the corresponding reduced form of the model is used.

Let us remember that the reduction of the model equations was carried out under the assump-

tions that for the basic model the relations (1.11) are ful�lled, that qm�1 = �1, qm = 1 and

that the special reaction (1.13) is present. These assumptions imply

(0; : : : ; 0; 1; 1) 2 S; q = (q1; : : : ; qm�2;�1; 1) 2 S? (7.1)

and we shall suppose the properties (7.1) to be ful�lled in this section, too. By (7.1) we easily

�nd that

if � =
�
�1; : : : ; �m

� 2 S? then �m�1 = ��m;
� = �m q + b� with b� 2 S?; b�m�1 = b�m = 0:

(7.2)

From the de�nition of eR
, eR� in (1.4��) we obtain

eS =
ne� 2 Rem : e�i = �i; i = 1; : : : ; em; � 2 So;

eS? =
ne� 2 Rem : (e�; 0; 0) 2 S?o

and (7.2) ensures that

� 2 S? if and only if � = �m q + (e�; 0; 0) and e� 2 eS?: (7.3)

Finally, this implies that dim eS? = dimS? � 1 and dim eS = dimS � 1.

7.2 Reconstructed quantities

We do not expect that the kinetics of the reduced problem (eP) and of the basic problem (P)

coincide, but we shall show that some important properties are preserved nevertheless and that

both problems are asymptotically equivalent in some sense. By (1.15), (1.16) and (1.17) we have

a rule, how to compute from quantities related to the reduced model (eP) new quantities related

to the basic model (P). We will mark these reconstructed quantities with a `^'. Thus we de�ne

the vectors
^
u = (

^
u0; : : : ;

^
um),

^
v = (

^
v 0; : : : ;

^
vm) and

^

� = (
^

� 1; : : : ;
^

�m),
^
a = (

^
a1; : : : ;

^
am) by

i = 0 i = 1; : : : ;m� 2 i =m� 1;m

^
u0 = E0

^
v 0

^
ui = eui ^

ui = uie
�qiev0

^
v 0 = ev0 � e�(ev0) ^

v i = evi ^
v i = �qiev0

^

� i =
e�i � qie�(ev0) ^

� i = �qie�(ev0)
^
a i = eaie�qie�(ev0) ^

a i = e�qie�(ev0)
(7.4)
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and obtain that the so de�ned quantities ful�ll the relations

^
ui = uie

^
v i = ui

^
a ie

�qi
^
v 0 ;

^
a i = e

^
� i ;

^

� i =
^
v i + qi

^
v 0; i = 1; : : : ;m: (7.5)

We apply the formulas (7.4) not only to solutions (eu; ev) of (eP) but also to the corresponding

initial value ( eU; eV ) = (eu(0); ev(0)) and steady state (eu�; ev�). These reconstructed quantities are

denoted by (
^

U;
^

V ) and (
^
u
�
;
^
v
�
), respectively.

Lemma 7.2. Let ev0 2 eH, eu 2 eH��L2+(
;Rm�2 ) be given and let
^
v 0,

^
u be de�ned as in (7.4).

Then
^
v 0 2 H,

^
u 2 H� � L

2
+(
;R

m). Moreover, the following assertions are valid:

i) If eE0ev0 = eu0 then F (^u) = eF (eu).
ii) If eE0ev0 = eu0 and eu0 = m�2X

i=1

qieui in L2(
) then ^
u0 =

mX
i=1

qi
^
ui in L

2(
).

iii) If eE0ev0 = eu0 and eu 2 eU + eU then
^
u 2 U + U .

Proof. Essentially the proof is based on the de�nition of the spaces H, eH and on properties of

the functional e� (see Table 1 and (2.3)).

i) Taking into account that E0
^
v 0 =

^
u0, eE0ev0 = eu0, we obtain

F (
^
u) = eF (eu)� Z




ne�0(ev0)� mX
i=m�1

n
^
ui

�
ln

^
ui

ui
� 1

�
+ ui

oo
dx = eF (eu)

since (see Remark 2.3)

e�0(ev0) = �
mX

i=m�1

n
qiuie

�qiev0 ev0 + ui(e
�qiev0 � 1)

o
=

mX
i=m�1

n
^
ui

�
ln

^
ui

ui
� 1

�
+ ui

o
:

ii) For arbitrary h 2 H � eH we �nd that

h^u0; hiH = hE0
^
v 0; hiH

= h eE0ev0; hieH +

Z


(e0 � ee0(ev0))hdx

= heu0; hieH +

Z


(e0 � ee0(ev0))hdx

=

Z



nm�2X
i=1

qieui + e0 � ee0(ev0)o hdx = Z



mX
i=1

qi
^
ui hdx

and thus
^
u0 =

Pm
i=1 qi

^
ui in L

2(
).

iii) eu� eU 2 eU means that

eu0 � eU0 = m�2X
i=1

qi(eui � Ui) in L
2(
) ;

m�2X
i=1

e�iheui � Ui; 1iH1 = 0 8e� 2 eS?:
Since eU0 =Pm�2

i=1 qiUi, U0 =
Pm

i=1 qiUi (see Table 1) because of ii) we obtain

^
u0 � U0 =

mX
i=1

qi(
^
u i � Ui) in L

2(
)
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and it remains to show that

mX
i=1

�ih^ui � Ui; 1iH1 = 0 8� 2 S?:

First we set � = q. Then

mX
i=1

qih^ui � Ui; 1iH1 =

Z



mX
i=1

qi(
^
u i � Ui) dx =

Z



nm�2X
i=1

qieui � ee0(ev0)o dx = heu0 � eE0ev0; 1ieH = 0:

For arbitrary � 2 S? by using the decomposition (7.3), � = (e�; 0; 0) + �mq; e� 2 eS?, we ensure
that

mX
i=1

�ih^ui � Ui; 1iH1 =
m�2X
i=1

e�iheui � Ui; 1iH1 + �m

mX
i=1

qih^u i � Ui; 1iH1 = 0: �

Lemma 7.3. Let (eu; ev) be a solution and (eu�; ev�) the steady state of (eP). Let (^u;^v ) and (^u�;^v �)
be de�ned by (7.4). Then

^
v 0 2 C(R+ ;H1(
));

^
u;

^
v 2 C(R+ ; L2(
;Rm+1 ));

^
u(0) =

^

U;
^
v (0) =

^

V :

Moreover, there is a constant c depending only on the data of (P) such that for all t 2 R+ the

following relations are ful�lled:

k^v 0(t)kH1 ; k^v 0(t)kL1 � c;

mX
i=0

k^ui(t)kL1 � c

�m�2X
i=1

keui(t)kL1 + 1
�
;

mX
i=1

k^v i(t)kL1 � c

�m�2X
i=1

kevi(t)kL1 + 1
�
;

k^v 0(t)� ^
v
�

0kH1 � c kev0(t)� ev�0kH1 ;

mX
i=1

k^ui(t)� ^
u
�

i kLp � c

�m�2X
i=1

keui(t)� eu�i kLp + kev0(t)� ev�0kLp�;
mX
i=1

k^v i(t)� ^
v
�

i kLp � c

m�2X
i=0

kevi(t)� ev�i kLp ; p 2 [1;+1):

Proof. We know that ev0 2 C(R+ ;H
1(
)) (see Remark 2.9) and kev0(t)kH1 ; kev0(t)kL1 � c for

all t 2 R+ (see Theorem 3.2, Corollary 3.1). Then because of (7.4) we obtain for i = m� 1;m

k^ui(t1)� ^
ui(t2)kL2 � c kev0(t1)� ev0(t2)kL2 ; t1; t2 2 R+

and thus
^
um�1;

^
um 2 C(R+ ; L

2). Again taking into account Remark 2.9 and (7.4) all other

assertions are easily veri�ed. �

The results of Lemma 7.2 and Lemma 7.3 show that further properties which can be derived

for the `�'{quantities of the reduced problem (eP) like the global estimates in (4.11) and (5.16)

and the results on the asymptotic behaviour of Theorem 5.4 and Theorem 5.6 carry over to the

`^'{quantities. For example, if (eP) is solvable and for its solution (eu; ev) it holds for all t 2 R+
eF (eu(t))� eF (eu�) � e��t ( eF ( eU)� eF (eu�)); m�2X

i=1

keui(t)� eu�i kL1 + kev0(t)� ev�0kH1 � c e��t=2
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then for the reconstructed quantities (
^
u;

^
v ) we obtain

F (
^
u(t))� F (

^
u
�
) � e��t (F (

^

U )� F (
^
u
�
));

mX
i=1

k^ui(t)� ^
u
�

i kL1 + k^v 0(t)� ^
v
�

0kH1 � c e��t=2:

7.3 Invariants, steady states and asymptotic behaviour

An immediate consequence of Lemma 7.2, iii) is the following result.

Theorem 7.1. Let (eu; ev) be a solution of (eP). Then
^
u(t) 2 U + U 8t 2 R+ :

This result means that up to the transformation (7.4) both problems (P) and (eP) have the same
invariants: If I�; � 2 S?, is given as in Remark 5.1 then

I�(u(t)) = I�(
^
u(t)) = I�(U) 8t 2 R+

for any solution of (P) and (eP), respectively. Next we show that again up to the transformation

(7.4) both problems (P) and (eP) have the same steady state.

Lemma 7.4. Let (ea; ev0) 2 fM be given and let (
^
a;

^
v 0) be de�ned according to (7.4). Then

(
^
a;

^
v 0) 2M. Moreover, if ea 2 intRm�2+ then

^
a 2 intRm+ , too.

Proof. (ea; ev0) 2 fM means that ea 2 Rm�2+ , ev0 2 eH,

m�2Y
i=1

eae�ii �
m�2Y
i=1

ea e�ii = 0 8(e�; e�) 2 eR
 [ eR�
;

eu 2 eU + eU where eu0 = eE0ev0; eui = uieaie�qiev0 ; i = 1; : : : ;m� 2:

(7.6)

Now de�ne (
^
a;

^
v 0) as well as

^
u according to (7.4). Obviously, we have

^
a 2 R

m
+ ,

^
v 0 2 H. For

arbitrary (�; �) 2 R
 [ R� we set e� = (�1; : : : ; �m�2); e� = (�1; : : : ; �m�2). Then because of

(1.4��) and (7.6)

mY
i=1

^
a
�i
i �

mY
i=1

^
a
�i
i = e�q��e�(ev0)hm�2Y

i=1

eae�ii �
m�2Y
i=1

ea e�ii i = 0

is obtained if (e�; e�) 6= (0; 0). Otherwise this relation is trivially satis�ed. Finally, we have

^
u0 = E0

^
v 0;

^
ui = ui

^
a ie

�qi
^
v 0 ; i = 1; : : : ;m;

and by (7.6) and Lemma 7.2, iii) we conclude that
^
u 2 U + U . Thus (

^
a;

^
v 0) 2 M. The last

assertion of the lemma follows immediately from the construction of
^
a from ea and ev0. �

Theorem 7.2. There are unique steady states (u�; v�) of (P) and (eu�; ev�) of (eP) and it holds

u
� =

^
u
�
; v
� =

^
v
�
:
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Proof. The existence of the unique steady states for (P) and (eP) (in the sense of (5.2)) follows

with Lemma 7.1 from Theorem 5.1 applied to the corresponding problems. If (eu�; ev�) is the
steady state of (eP) then the related quantities (ea�; ev�0) with eai = eev�i +qiev�0 , i = 1; : : : ;m � 2,

belong to fM and ea� 2 int Rm�2+ (see Remark 5.2). Because of Lemma 7.4 the pair (
^
a
�
;
^
v
�

0)

lies in M and
^
a
� 2 int Rm+ . Again using Remark 5.2 the pair (

^
u
�
;
^
v
�
) with

^
u
�

0 = E0
^
v
�

0,
^
u
�

i = ui
^
a
�

i e
�qi

^
v
�

0 ,
^
v
�

i = ln
�^
u
�

i =ui

�
, i = 1; : : : ;m, is a steady state of (P). The uniqueness of the

steady state of (P) now ensures that u� =
^
u
�
, v� =

^
v
�
. �

Now we are able to prove the announced asymptotic equivalence of both the problems (P)

and (eP), at least under the additional assumption that (5.9) for problem (P) is ful�lled. From

Lemma 7.4 one easily obtains the following assertion.

Lemma 7.5. If the additional assumption (5.9) for problem (P) is ful�lled, then the property

(5.9) is valid for the set fM corresponding to the reduced problem (eP), too.
Theorem 7.3. Let the assumption (5.9) for (P) be ful�lled. If (u; v) and (eu; ev) are solutions of
(P) and of (eP), respectively, then the following estimates are satis�ed:

jF (u(t)) � F (
^
u(t))j � c e��t 8t 2 R+ ;

mX
i=1

kui(t)� ^
ui(t)kL1 + kv0(t)� ^

v 0(t)kH1 � c e��t=2 8t 2 R+

where the constants c; � > 0 depend only on the data. If additionally assumption (2.6) for (P)

is ful�lled then there are unique globally bounded solutions (u; v) of (P) and (eu; ev) of (eP) and
for p 2 [1;+1) it holds

mX
i=0

�
kui(t)� ^

ui(t)kLp + kvi(t)� ^
v i(t)kLp

�
� c e��pt 8t 2 R+

where again the constants �p > 0; c depend only on the data.

Proof. Applying Theorem 5.4 to (P) and (eP), respectively, we �nd
F (u(t))� F (u�) ; eF (eu(t))� eF (eu�) � c e��t 8t 2 R+ :

From Lemma 7.2, i) and Theorem 7.2 we conclude that

F (
^
u(t))� F (

^
u
�
) = F (

^
u(t))� F (u�) � c e��t 8t 2 R+

and by using the triangle inequality the �rst assertion is veri�ed. The second one follows analo-

gously from Corollary 5.2, Lemma 7.3 and Theorem 7.2. Under the additional assumption (2.6)

the existence of unique solutions of (P) and (eP) and their global boundedness are established

in Theorem 5.7. Using now Theorem 5.6, Lemma 7.3 and Theorem 7.2 the last estimate is

obtained. �
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8 Examples

8.1 Example 1

First we are looking for a simple example of a class of model equations di�erent variants of which

have been applied in order to simulate technological processes in the fabrication of semiconductor

devices and integrated circuits (see e.g. [14, 15, 28, 36, 37, 38, 43, 55]). Especially we will discuss

the validity of our assumptions (5.9) and (2.6).

We consider a homogeneous semiconductor material with m = 6 species as outlined in Fig. 1,

Table 2 and four volume reactions1 as listed in the upper part of Table 3 and Table 4.

semiconductor boundary gas

host atoms on

lattice sites

host atoms on

interstices � X3

vacancies � X4

dopant atoms on

lattice sites � X2

dopant atoms on

interstices � X1

dopant atoms in

gas phase

Fig. 1: Species considered in the example.

species name of the species charge number

X1 dopant atoms on interstices 0

X2 dopant atoms on lattice sites �1
X3 self-interstitial host atoms 0

X4 vacancies in the host lattice 0

X5 electrons �1
X6 holes +1

Table 2: Species, their names and charges.

In the third column of Table 4 we have written the rate formulas as usual starting from the

mass action law. The coeÆcients kj ; bkj , j = 1; : : : ; 4, are assumed to be positive constants. We

require that there exists a simultaneous equilibrium to all reactions under consideration with

strictly positive densities. To ensure this some necessary and suÆcient conditions (the so called

1In this section we use a more convenient numbering of the reactions.
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Reaction name of the reaction reaction equation

R1 Kick-out reaction X1 
 X2 +X3 +X6

R2 Frank-Turnbull mechanism X1 +X4 
 X2 +X6

R3 defect generation and recombination X3 +X4 
 0

R4 electron-hole generation and recombination X5 +X6 
 0

R5 in�ltration of dopants to interstitial sites X1 
 0

R6 surface recombination of self-interstitials X3 
 0

R7 surface recombination of vacancies X4 
 0

Table 3: Volume and boundary reactions between the di�erent species.

Reaction �� � rate formulas

R1 (1;�1;�1; 0; 0;�1) bk1(u1 � k1u2u3u6) k1(e
�1 � e�2+�3+�6)

R2 (1;�1; 0; 1; 0;�1) bk2(u1u4 � k2u2u6) k2(e
�1+�4 � e�2+�6)

R3 (0; 0; 1; 1; 0; 0) bk3(u3u4 � k3) k3(e
�3+�4 � 1)

R4 (0; 0; 0; 0; 1; 1) bk4(u5u6 � k4) k4(e
�5+�6 � 1)

R5 (1; 0; 0; 0; 0; 0) bk5(u1 � k5) k5(e
�1 � 1)

R6 (0; 0; 1; 0; 0; 0) bk6(u3 � k6) k6(e
�3 � 1)

R7 (0; 0; 0; 1; 0; 0) bk7(u4 � k7) k7(e
�4 � 1)

Table 4: Reactions and their rate formulas.

Wegscheider conditions [59]) must be ful�lled. In our example (Rj = 0; j = 1; : : : ; 4) there is

only one condition, namely

k1 k3 = k2:

Then choosing arbitrary constants u1; u4; u5 > 0 and setting

u2 =
1

k2k4

u1u4u5; u3 =
k3

u4
; u6 =

k4

u5
(8.1)

we obtain that ui = const > 0; i = 1; : : : ; 6, and Rj = 0; j = 1; : : : ; 4. Choosing these ui as

reference densities, introducing the electrostatic potential2 ', the chemical potentials �i, as well

as the electrochemical potentials �i and activities ai according to

�i = ln (ui=ui); �i = �i + qi'; ai = e�i ; i = 1; : : : ; 6;

and �nally de�ning

k1 = bk1 u1; k2 = bk2 u1 u4; kj = bkj kj; j = 3; 4;

2In our examples we do not make use of the transformation (1.7) and denote the potentials v0, vi before

applying (1.7) by ', �i.
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we obtain the reaction rates as written in the last column of Table 4. On the other hand, we

could �rstly introduce electrochemical potentials

�i = ln (ui=ui) + qi'; i = 1; : : : ; 6;

and rate formulas as in the last column of Table 4 (see [33, 44]). Now the coeÆcients kj ,

j = 1; : : : ; 4, and ui, i = 1; : : : ; 6, are given positive constants. Then we easily obtain rate

formulas as written in the third column of Table 4. The equilibrium constants are

k1 =
u1

u2u3u6
; k2 =

u1u4

u2u6
; k3 = u3u4; k4 = u5u6; (8.2)

and the Wegscheider condition is obviously ful�lled.

We denote by q := (0;�1; 0; 0;�1; 1) 2 R
6 the vector of charge numbers. Then (�; �) corre-

sponding to the reactions R1 to R4 ful�ll the relation (1.11). Moreover, in our example it holds

� � q = � � q = 0. Finally, the stoichiometric subspace belonging to this reaction system and its

orthogonal complement are given by

S = spanf(1;�1;�1; 0; 0;�1); (0; 0; 1; 1; 0; 0); (0; 0; 0; 0; 1; 1)g;
S? = spanfq; (1; 1; 0; 0; 0; 0); (0; 1;�1; 1; 0; 0)g;
dim S = dim S? = 3:

(8.3)

The system of continuity equations reads as

@ui

@t
+r � ji +R



i = 0 on (0;1) � 
;

ji � � = 0 on (0;1) � �;

ui(0) = Ui on 
; i = 1; : : : ; 6;

9>>>>>=>>>>>;
(8.4)

R

 = (R1 +R2;�R1 �R2;�R1 +R3; R2 +R3; R4;�R1 �R2 +R4):

For the sake of simplicity we use homogeneous boundary data for the Poisson equation (1.6),

thus (see footnote 2 on page 47)

�r � ("r') = f +
6X
i=1

qiui on (0;1) � 
;

' = 0 on (0;1) � �D;

� � ("r') + �' = 0 on (0;1) � �N

9>>>>>>=>>>>>>;
(8.5)

where f = f

 denotes a �xed background doping. For the data we assume that Ui 2 L

1(
),

Ui � c > 0, i = 1; : : : ; 6, f 2 L1(
). Especially we are interested in the case that in additionZ



n
f +

6X
i=1

qiUi

o
dx =

Z



n
f � U2 � U5 + U6

o
dx = 0: (8.6)

Because of Remark 5.1 and (8.3), (8.6) we have three invariants the values of which are given

by the initial state, namely

I1(t) =

Z


(f � u2(t)� u5(t) + u6(t)) dx = 0;

I2(t) =

Z


(u1(t) + u2(t)) dx =

Z


(U1 + U2) dx;

I3(t) =

Z


(u2(t)� u3(t) + u4(t)) dx =

Z


(U2 � U3 + U4) dx; t � 0:

(8.7)
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In applications to semiconductor technology precise initial data U5, U6 for electrons and holes,

respectively, are hardly known. Mostly they are determined by one of the two following proce-

dures.

Lemma 8.1. Let U2 2 L
1(
) and f 2 L

1(
) be given. Then there exist unique U5; U6 such

that

U5U6 = k4; f � U2 � U5 + U6 = 0; U5; U6 � 0 a.e. on 
: (8.8)

Furthermore, Ui 2 L1(
); Ui � c > 0, i = 5; 6, and (8.6) is satis�ed.

Proof. The unique solution of (8.8) is given by

U5 = �U2 � f

2
+

sh
U2 � f

2

i2
+ k4 ; U6 =

U2 � f

2
+

sh
U2 � f

2

i2
+ k4 :

From this the other assertions follow. �

Lemma 8.2. Let U2 2 L1(
) and f 2 L1(
) be given. Then there exist a unique weak solution

' 2 H1
0 (
 [ �N ), � 2 R to

�r � ("r') + u5e
'+� � u6e

�('+�) = f � U2 on 
;

' = 0 on �D;

� � ("r') + �' = 0 on �N ;Z



n
u5e

'+� � u6e
�('+�)

o
dx =

Z



n
f � U2

o
dx;

9>>>>>>>>>=>>>>>>>>>;
(8.9)

and for

U5 = u5e
'+�

; U6 = u6e
�('+�)

it holds Ui 2 L1(
); Ui � c > 0, i = 5; 6, and (8.6) is satis�ed.

Proof. Problem (8.9) is equivalent to the nonlinear nonlocal Poisson equation (8.15) below for

t = 0, and since the corresponding operator eE0 is strongly monotone and hemicontinuous all

assertions are easily obtained. �

The situation in Lemma 8.1 means that U5, U6 are chosen such that R4 = 0 and the local

electroneutrality condition is ful�lled. In Lemma 8.2 it is assumed that the initial electrochem-

ical potentials of electrons and holes are constant, that R4 = 0 and the global electroneutrality

condition (8.6) is satis�ed.

Next we shall discuss properties of the set M (see (5.4)). In our new notation this set is
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characterized as follows

M =
n
(a; ') 2 R6+ �H

1
0 (
 [ �N ) :

a1 = a2a3a6; a1a4 = a2a6; a3a4 = 1; a5a6 = 1; (8.10)Z


(f � u2 � u5 + u6) dx = 0;Z



(u1 + u2) dx = I2(0);Z



(u2 � u3 + u4) dx = I3(0);

9>>>>>>>=>>>>>>>;
(8.11)

where ui = uiaie
�qi' and ' is the unique weak solution

to the nonlinear Poisson equation

�r � ("r') + u2a2e
' + u5a5e

' � u6a6e
�' = f on 
 (8.12)

with boundary conditions as in (8.9)
o
:

Of course, this set depends on the choice of the initial values Ui. But it is easy to see that M
does not depend on the concrete choice of U5; U6 so far as (8.6) is ful�lled.

Lemma 8.3. Let U1; : : : ; U4 2 L
1(
) be �xed and consider di�erent initial values U

j
5 ; U

j
6 2

L
1(
), j = 1; 2, satisfying Z




n
f � U2 � U

j
5 + U

j
6

o
dx = 0:

Then for the corresponding sets Mj it holds M1 =M2.

Proof. The assertion follows from the obvious relationn Z


(U1

i � U
2
i ) dx

o
i=1;:::;6

=

Z


(U1

5 � U
2
5 ) dx (0; 0; 0; 0; 1; 1) 2 S: �

Especially, initial values U5; U6 chosen as in Lemma 8.1 and Lemma 8.2, respectively, generate

the same set M.

Lemma 8.4. Assumption (5.9) is ful�lled.

Proof. Let (a; ') 2M. From (8.10) it follows that a3; a4; a5; a6 > 0, (8.11) yieldsZ


(u1a1 + u2a2 e

') dx =

Z


(U1 + U2) dx > 0:

Therefore at least a1 > 0 or a2 > 0. Using the �rst (or the second) relation in (8.10) we conclude

that a1; a2 > 0. �

Now let us summarize the results of Theorem 5.1 and Remark 5.2 for the present example.

There exists a unique steady state (in the sense of (5.2))

u
�
i ; '

�
; �

�
i ; i = 1; : : : ; 6;

and it holds

M = f(a�; '�)g; a�i = u
�
i =ui e

qi'
�

; i = 1; : : : ; 6:

Moreover, the energy estimates of Theorem 5.4 are valid in this example.
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Lemma 8.5. If f = const then '� = 0, u�i = const, i = 1; : : : ; 6, and f � u
�
2 � u

�
5 + u

�
6 = 0.

Proof. We ask for constant densities ui > 0 such that

u1u4 = k2u2u6; u3u4 = k3; u5u6 = k4

and (see (8.7))

f � u2 � u5 + u6 = 0; u1 + u2 = c2 =
I2(0)

mes

> 0; u2 � u3 + u4 = c3 =

I3(0)

mes

:

Then

u6 =  (u2) =
u2 � f

2
+

sh
u2 � f

2

i2
+ k4 ; u5 =

k4

u6
;

u4 = k2u2u6
1

c2 � u2
; u3 =

k3

u4
; u1 = c2 � u2;

(8.13)

and we arrive at an equation for u2, namely

�(u2) = u2 �
k3

k2

c2 � u2

u2 (u2)
+ k2

u2 (u2)

c2 � u2
= c3; 0 < u2 < c2:

Since � 2 C1(0; c2), �
0(u2) > 0 for all u2 2 (0; c2) and limu2!0 �(u2) = �1, limu2!c2 �(u2) =

+1, this equation has a unique solution u2 2 (0; c2) for any c3 2 R and the other densities ui
are found by (8.13). Now setting ai = ui=ui, ' = 0 we get (a; ') 2M, thus a� = a, '� = ' = 0.

�

Under the assumption of Lemma 8.5 the local electroneutrality condition is ful�lled in the steady

state but this condition can be violated during the evolution process even if the initial state is

chosen according to Lemma 8.1.

Finally we discuss the assumption (2.6) which would ensure global estimates and the existence

result (see Theorem 5.7). In our example the kick-out reaction R1 contains terms of third order

which occur as source terms in the continuity equation for the species X1 such that assumption

(2.6) is violated. Thus global estimates and existence can not be proved by the methods used in

this paper. But exploiting the concrete form of the reactions R1; : : : ; R4 we can investigate this

example in the framework of a more general class of electro{reaction{di�usion systems including

some speci�c (cluster) reactions of higher order which we have studied in [27] (X1 has to be

interpreted as a cluster species and R1 as a cluster reaction). Thus all assertions concerning

global estimates and existence remain valid for our example, too. Let us note that omitting the

reaction R1 the remaining system would ful�l both assumptions (2.6) and (5.9) and all desired

results could be obtained by means the methods of the present paper.

8.2 The reduced version of example 1

Now we discuss the situation for the reduced model3 introduced in Subsection 1.2. According

to (1.5��) here we have only continuity equations for the species X1 to X4

@eui
@t

+r � eji + eR

i = 0 on (0;1) � 
;

eji � � = 0 on (0;1) � �;

eui(0) = Ui on 
; i = 1; : : : ; 4;

9>>>>>=>>>>>;
(8.14)

3Using the notation of this section the transformation (1.17) reads as follows: e' = ' + �, eui = ui, e�i = �i,e�i = �i + qi�, i = 1; : : : ; 4, where � = �5 denotes the electrochemical potential of the electrons.
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eR
 = ( eR1 + eR2;� eR1 � eR2;� eR1 + eR3;
eR2 + eR3);

coupled with the corresponding nonlinear nonlocal Poisson equation (1.8��)

�r � ("r e') + u5e
e' � u6e

�e' = f � eu2 on (0;1)� 
;

e' = � on (0;1)� �D;

� � ("r e') + � e' = �� on (0;1)� �N ;Z



n
u5e

e' � u6e
�e'odx =

Z



n
f � eu2o dx on (0;1):

9>>>>>>>>>=>>>>>>>>>;
(8.15)

The reaction terms eRi are obtained via (1.4��),

eR1 = k1(e
e�1 � e

e�2+e�3); eR2 = k2(e
e�1+e�4 � e

e�2); eR3 = k3(e
e�3+e�4 � 1):

For the reduced stoichiometric subspace it holds

eS = spanf(1;�1;�1; 0); (0; 0; 1; 1)g; eS? = spanf(1; 1; 0; 0); (0; 1;�1; 1)g;
dim eS = dim eS? = 2:

Now the structure of eS? ensures only two invariants, namely I2 and I3 (cf. (8.7)). The �rst

invariant I1 is guaranteed by the nonlocal constraint in (8.15).

Lemma 7.5 ensures the property (5.9) for the reduced model. Finally, the volume reactionseR1, eR2, eR3 are of at most second order, such that assumption (2.6) is ful�lled for the reduced

model (cf. Remark 7.1). Therefore all results of the paper can be applied to this version of our

example. Similar examples we have studied in [23, 25] where the Poisson equation has been

replaced by the local electroneutrality condition.

8.3 Example 1 with boundary reactions

Now we include into our model the boundary reactions R5; : : : ; R7 as described in the lower

part of Table 3 and Table 4. We assume that

kj = const > 0; bkj 2 L1+ (�); kbkjkL1(�) > 0; j = 5; : : : ; 7:

Here the Wegscheider conditions read as follows

k1 k3 = k2; k6 k7 = k3: (8.16)

As reference densities ful�lling all volume and boundary reactions we choose

u1 = k5; u4 = k7; u5 = const > 0; u2; u3; u6 as in (8.1):

By setting

kj = bkj kj ; j = 5; : : : ; 7;

we obtain the reaction rates as written in the the last column of Table 4. The stoichiometric

subspace belonging to this reaction system is given by

S = f� 2 R6 : � � q = 0g; S? = spanfqg;
dim S = 5; dim S? = 1:

(8.17)



8.4 Example 1 in a heterostructure 53

In the continuity equations (8.4) the boundary conditions have to be replaced by

ji � � �R
�
i = 0 on (0;1) � �; i = 1; : : : ; 6; with R� = (R5; 0; R6; R7; 0; 0)

whereas the Poisson equation (8.5) remains unchanged. For this model we have only the invari-

ant I1. In the de�nition of the set M in Subsection 8.1 the relations (8.10) must be replaced

by

a1 = a2a3a6; a1a4 = a2a6; a3a4 = 1; a5a6 = 1; a1 = a3 = a4 = 1:

If (a; ') 2M then obviously ai > 0, i = 1; : : : ; 6, which ensures the validity of (5.9). With regard

to the validity of (2.6) we have the same situation as described at the end of Subsection 8.1.

Now we consider the reduced model. For the reduced stoichiometric subspace it holds

eS = R
4
; eS? = f0g; dim eS = 4; dim eS? = 0: (8.18)

Note that in this setting the stoichiometric structure gives no invariants and the invariant I1
is a consequence of the corresponding reduced Poisson equation, again. Because of Lemma 7.5

the property (5.9) for fM is ful�lled and as in Subsection 8.2 the growth condition (2.6) is valid,

too.

8.4 Example 1 in a heterostructure

ΩA

ΩB

ΓAB

Fig. 2: Example of a heterostructure consisting of

two materials A and B, 
 = int(
A [ 
B ) where


A, 
B are bounded open domains with 
A\
B = ;
and �AB = 
A \ 
B has positive (surface) measure.

Now let us consider Example 1 in a heterostructure consisting of two di�erent homogeneous

materials as outlined in Fig. 2. The state equations in 
A and 
B, respectively, are

ui = Ni;C e
�i�Ei;C = Ni;C e

�i�qi'�Ei;C ; i = 1; : : : ; 6; C = A;B;

with given constants Ni;C > 0 and Ei;C . Crossing the interface �AB the electrochemical poten-

tials should be continuous while the chemical and electrostatic potentials could jump (see [33]).

We choose functions

�i;AB(x) =

(
0 ; x 2 
A

��i = const ; x 2 
B

; 'AB(x) =

(
0 ; x 2 
A

�' = const ; x 2 
B

representing the discontinuities of the functions ', �i and set

�i = e�i + �i;AB; ' = e'+ 'AB

such that the functions e', e�i remain continuous. The potential e' has to satisfy the Poisson equa-

tion with boundary conditions which are modi�ed by the double layer potential 'AB . Because

of the continuity of �i we get ��i = �qi�'. De�ning reference densities

ui(x) =

(
ui;A = Ni;A e

�Ei;A ; x 2 
A

ui;B = Ni;B e
�Ei;B�qi�' ; x 2 
B
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and omitting now the tilde we obtain state equations in our standard form,

ui = ui e
�i = ui e

�i�qi':

It is obvious that ui 2 L
1(
), ui � c > 0. Because of the jumps of ui across the interface the

densities ui will have discontinuities, too. The ratio

si =

lim
x02
A; x0!x

ui(x
0)

lim
x02
B ; x0!x

ui(x
0)
=
ui;A

ui;B
; x 2 �AB

is called the segregation coeÆcient of the species Xi at the interface. In general we have si 6= 1.

Next, the reaction rates are written as in the last column of Table 4 with kinetic coeÆcients kj
which are di�erent in 
A and 
B, respectively. This gives formulas as in the third column of

Table 4 but now the equilibrium `constants' kj in (8.2) will depend on x. Also the di�usivities

Di and the permittivity " have di�erent values in 
A and 
B, respectively. Thus we arrive

at an example for our basic model in a heterostructure which can be further discussed as in

Subsection 8.1. Especially, there exists a unique steady state but the assertion of Lemma 8.5

is wrong in general. Even in the case that f = const, near the interface boundary layers are

formed where the space charge density does not vanish (cf. Fig. 6, too).

Now let us ask if there are steady states for a modi�ed model where the local electroneutrality

condition is used instead of the Poisson equation. For this purpose let us de�ne the set

MLEN =
n
(a; ') 2 R6+ � L

1(
) :

a1 = a2a3a6; a1a4 = a2a6; a3a4 = 1; a5a6 = 1; (8.19)Z


(u1 + u2) dx = I2(0);Z



(u2 � u3 + u4) dx = I3(0);

9>>=>>; (8.20)

where ui = uiaie
�qi' and

u2a2e
' + u5a5e

' � u6a6e
�' = f a. e. on 
 (8.21)

is ful�lled
o
:

As in Lemma 8.4 we �nd that ai > 0, i = 1; : : : ; 6, if (a; ') 2 MLEN. Furthermore, for given

constants a2; a5; a6 > 0 equation (8.21) has a unique solution ' 2 L1(
).

Lemma 8.6. The set MLEN is not empty. If (an; 'n) 2MLEN; n = 1; 2; then

a
1
1 = a

2
1; a

1
3 = a

2
3; a

1
4 = a

2
4; '

1 � '
2 = ln

a
2
2

a12

= ln
a
2
5

a15

= � ln
a
2
6

a16

= const;

but the corresponding densities ui and chemical potentials �i are uniquely determined,

u
1
i = u

2
i ; �

1
i = �

2
i ; i = 1; : : : ; 6:

Proof. Using the notation ea2 = a2=a5 equation (8.21) is written as�
1 +

u5

u2

1ea2
�
u2 � u6u2ea2 1

u2
= f a. e. on 
:
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For any ea2 > 0 the solution of this equation is given by

u2(x) =  (x; ea2);  (�; ea2) = 1

2

ea2fea2 + u5=u2
+

s
1

4

h ea2fea2 + u5=u2

i2
+

u6u2ea22ea2 + u5=u2

and thus

i2 =

Z


u2 dx = 	(ea2); 	(ea2) = Z



 (x; ea2) dx :

It is easy to check that 	 2 C
1(R+), 	

0(ea2) > 0 for all ea2 2 R+ and 	(0) = 0. Because f.a.a.

x 2 
 and for all ea2 � 0

 (x; ea2) � cea2p
cea2 + 1

min
nq

k4(x); f(x)=2 +

q
[f(x)=2]2 + k4(x)

o
; c = ess inf

x2


u2(x)

u5(x)
;

we �nd that limea2!+1	(ea2) = +1 such that 	�1 : R+ ! R+ exists. From (8.19), (8.20) we

derive an equation for i2, namely

�(i2) = i2 � c1
I2(0)� i2

	�1(i2)
+ c2

	�1(i2)

I2(0)� i2
= I3(0); 0 < i2 < I2(0);

c1 =

R

 u3 dxR

 u1 dx

; c2 =
R

 u4 dx

R

 u1 dx:

Again we have � 2 C
1(0; I2(0)), �

0(i2) > 0 for all i2 2 (0; I2(0)) and limi2!0 �(i2) = �1,

limi2!I2(0) �(i2) = +1 such that ��1 : R ! (0; I2(0)) exists. Therefore we can state that (a; ')

belongs to MLEN if and only if

a1 =
1R


 u1 dx

h
I2(0)� �

�1(I3(0))
i
; a2 = ea2 a5; ea2 = 	�1(��1(I3(0)));

a3 =
a1ea2 ; a4 = 1

a3
; a5 > 0; a6 =

1

a5
; ' = ln

 (�; ea2)
u2ea2 � lna5:

From this statement all assertions of the lemma follow. We see that a5 (or �5 = lna5, the so

called Fermi level of the electrons) is not �xed by the relations de�ning the set MLEN. �

Finally, let us note that the densities and chemical potentials obtained from elements ofM and

MLEN, respectively, will not coincide in general.

8.5 Example 2

Our second example is devoted to the di�usion of boron in strained Si/SiGe/Si heterostructures

(see [34, 35, 39, 40]). We use the reduced version of a simpli�ed model where we have only the

species X2 = B; X5; X6 (see Table 2) and only the reaction R4 (see Table 3, Table 4). Mainly

we are interested here in the presentation of some numerical results concerning the nonlocal

nonlinear Poisson equation.

We start with state equations for the electrons and holes based on Boltzmann statistics ([13, 56]),

n = NC exp
h
EF �EC + e'

kT

i
; p = NV exp

h
� EF +EV + e'

kT

i
where n, p denote the densities of electrons and holes, respectively, NC , NV are the e�ective

densities of states in the conduction and valence band, EC , EV the corresponding energy band
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edges, EF is the Fermi level, e the elementary charge, k the Boltzmann constant and T the

absolute temperature. Introducing the bandgap Eg, the intrinsic carrier density ni and the

intrinsic Fermi level Ei,

Eg = EC �EV ; ni =
p
NCNV exp

h
� Eg

2kT

i
; Ei =

Ec +Ev

2
+ kT ln

q
NV =NC

the state equations can be written as

n = ni exp
h
EF �Ei + e'

kT

i
; p = ni exp

h
� EF �Ei + e'

kT

i
:

The band energies EC , EV , Eg and Ei have di�erent values in Si and SiGe (or more precisely,

in Si1�xGex). We assume that Ei lies always in the middle of the bandgap and that ([34, 58])

�EC = EC;Si �EC;SiGe = 0; �EV = EV;Si �EV;SiGe = �Eg;

�Eg = Eg;Si �Eg;SiGe = 0:6585 xEg;Si; �Ei = Ei;Si �Ei;SiGe = 0:5�Eg:

Using E0 = Ei;Si as reference value the state equation are �nally written in the form4

n = n exp
h
EF �E0 + e'

kT

i
; p = p exp

h
� EF �E0 + e'

kT

i
;

n = ni exp
h
E0 �Ei

kT

i
; p = ni exp

h
� E0 �Ei

kT

i
:

For x = 0:2 and di�erent values of T all necessary data are summarized in Table 5.

800 o C 950 o C 1100 o C

ni;Si [cm
�3] 1:925 1018 5:524 1018 1:292 1019

Eg;Si [eV] 0.8513 0.7894 0.7261

ni;SiGe [cm
�3] 3:529 1018 9:046 1018 1:935 1019

Eg;SiGe [eV] 0.7392 0.6854 0.6305

�Ei [eV] 0.0561 0.0520 0.0478

ni;SiGe=ni;Si 1.833 1.638 1.498

nSiGe=nSi 1.000 1.000 1.000

pSiGe=pSi 3.361 2.681 2.244

"rel;Si 12.0

"rel;SiGe 12.8

Table 5: Data for the materials Si and Si0:8Ge0:2.

4The scaling used in the previous sections reads as follows: � := (EF �E0)=kT , ' := e'=kT .
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For an one dimensional situation the reduced model equations are (see (8.14), (8.15))

@u

@t
+r � j = 0; t > 0; x 2 (0; L);

j = 0; t > 0; x = 0; L;

u(0) = U; x 2 (0; L);

�r � ("rel "0r') + e e0

�
EF �E0 + e'

kT

�
= �e u; t > 0; x 2 (0; L);

' = 0; t > 0; x = L;

@'

@x
= 0; t > 0; x = 0;Z L

0
e

n
e0

�
EF �E0 + e'

kT

�
+ u

o
dx = 0; t > 0:

Here u denotes the density of boron, j the boron ux density, "0 is the permittivity in vacuum

and e0(y) = n ey� p e�y. The SiGe layer has a thickness of 30 nm and lies between x = 0:07�m

and x = 0:1�m. The depth of the structure is assumed to be L = 500�m. Besides of the global

charge conservation we have yet the invariantZ L

0
u(t) dx =

Z L

0
U dx; t � 0:

First, we present some results concerning the reconstructed initial electron and hole densities

(cf. Lemma 8.2, too). For the initial density of boron we assume a Gaussian distribution,

U = N�
1p
2��p

exp

 
�(x�Rp)

2

2�2p

!
; N� = 3:5 1013 cm�2

; Rp = 0:085�m:

For di�erent values of the standard deviation �p such boron pro�les are plotted in Fig. 3.

Corresponding energy band diagrams and reconstructed initial electron and hole densities are

shown in Fig. 4a (for T = 800 o C) and in Fig. 4b (for T = 1100 o C).
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Fig. 4a: Initial state for T = 800 o C. Variation of standard deviation.
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Fig. 4b: Initial state for T = 1100 o C. Variation of standard deviation.
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Since we have assumed that �EC = 0 the electron density remains continuous when crossing the

interfaces but not the hole density. In Fig. 5 we have plotted the limit values of the hole density

at the right interface taken from the left hand side and from the right hand side, respectively.

This �gure shows also corresponding results based on the local electroneutrality approximation

(cf. Lemma 8.1, too).
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Fig. 5: Hole densities at the right interface from left and from right

as function of the standard deviation (T = 800 o C).

Finally, we have computed steady state solutions for di�erent values of the boron segregation

coeÆcient s. The equilibrium boron density u� and the space charge density �n�+ p
� � u

� are

shown in Fig. 6. These results do not essentially depend on the standard deviation of the initial

boron distribution.
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