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Abstract

The paper is devoted to the mathematical investigation of a general class of electro—
reaction—diffusion systems with nonsmooth data which arises in applications to semi-
conductor technology. Besides of a basic problem, a reduced problem is considered
which is obtained if the kinetics of the free carriers is fast. For two dimensional
domains we prove a global existence and uniqueness result. In addition, asymptotic
properties of solutions are studied. Basic ideas are energy estimates, Moser iteration,
regularization techniques and an existence result for electro—diffusion systems with
weakly nonlinear volume and boundary source terms which is proved in the paper,
too. The relationship between the property that the energy functional decays expo-
nentially in time to its equilibrium value and the existence of global positive lower
bounds for the densities of the species is investigated. We illustrate relations between
the model and its reduced version in general and for concrete examples. Finally, we
discuss the special features of heterostructures for simplified model problems.



1 Introduction

1.1 The basic model

This paper is devoted to the investigation of evolution problems for electro-reaction—diffusion
systems in heterostructures. We start with a more detailed explanation of concrete model
equations which we are interested in.

Let €2 be a bounded domain, I' = I'pUL' y UT'y its boundary, mes Iy = 0, v the outer unit normal.
We consider m mobile, electrically charged species X; with charge numbers g;. Let initial particle
densities U;: @ — R, of these species, fixed charge densities f?: Q = R, fI: 'y — R and
the electrostatic potential v} : I'p — R as data of our problem be given. The particle densities
u;: Ry x Q — Ry of the species X; and their chemical potentials v;: Ry x Q@ — R will vary in
time by diffusion processes, by chemical reactions running in 2 as well as on I' and, finally, by a
drift which is caused by the inner electric field whereby the charge density of the mobile species
up = > ivy giu; will be an additional source term for the electrostatic potential vg: Ry x 2 — R.
All quantities are suitably scaled.

The relations between the densities and the chemical potentials (the so called state equations)
are assumed to be given by the Boltzmann statistics

uzzﬂzevl on&XQ,lZl,,m, (]‘]‘)

where @;: @ — R, is some reference density of the i—th species. In order to describe the
underlying kinetic processes the electrochemical potentials

G=vi+qguyonR, xQ, i=1,...,m, (1.2)
are introduced. Their gradients are assumed to be the driving forces of the particle fluxes
ji:—DiuiVCiODRFXQ,izl,...,m, (13)

with given diffusivities D;: €2 — R, . Finally, a finite number of mass action type reactions of
the form

a1 X1+ FapX;m =0X1+ -+ BnXnm
is considered where a = (ai,...,am), B8 = (B1,...,0m) denote the vectors of stoichiometric
coefficients of such a reaction. Let R® and R denote the sets of all pairs (a, 3) belonging to
all reactions in 2 and on I', respectively. The corresponding reaction rates Rgﬂ and Rgﬂ are
assumed to be given as

RE[‘} = kfﬂ(m)vﬂavla T )vm) (e ;11 il ezzr;lﬂzg)7
(1.4)
z€X, (vo,v1,...,Um) € R™H (a,B) € RE, ©=Q,T,

with kinetic coefficients kfﬁ: Y x R+ 5 R,

Now we are able to formulate the basic equations of our model. Balancing the number of
particles for each species we get the initial boundary value problem

Ou; .
(;i +V-ji+ Z (ai—ﬁi)Rgﬂ = 0 on (0,00) x Q, )
(a,B)ER?
V- Ji — Z (i —Bi)REﬂ = 0 on(0,00)xT, ’ (1.5)
(a,B)ERT
u;(0) = U; onQ, i=1,...,m. |
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The electrostatic potential implicitly here occuring via (1.3), (1.4) and (1.2) is obtained from
the elliptic boundary value problem

~V-(eVwv)) = [P+ qu; on (0,00) x Q,

=1
vo = v on (0,00) x I'p, (1.6)
v-(eVu) +1v9 = fF on (0,00) x 'y

where the dielectric permittivity e: 2 — R, and the capacity 7: I'y — R, are given.

Motivated by problems arising in semiconductor technology we are interested in the investigation
of heterostructures. Then all physical parameters u;, D;, kfﬂ, e and 7 depend on the space
variable z in a nonsmooth way. In general besides of the kinetic coefficients kiﬂ also the
diffusivities D; depend on the state variables. But such a dependency is not considered in this
paper.

If problem (1.5), (1.6) has a sufficiently smooth solution then the relations (1.6) must be fulfilled
for t =0, too. We set Vj = v9(0) and introduce new quantities

vp = wvp — Vo, Ui :=v; +¢;Vo,

~ e N N N (1.7)
u; = w10, kop(x, Vo, i, ) 1= kgg(@, 00 + Vo(z), -, 0 — @iVo(z), - ).

Then after omitting the tilde all relations (1.1) — (1.5) remain unchanged whereas (1.6) has to

be replaced by

-V -(eVyy) +e = Zq,-u,- on (0,00) x €,
=1

v = 0 on (0,00) x I'p, (1.8)
v-(eVu)+71vg = 0 on (0,00) x 'y
where
m
ey = Zqui. (1.9)
i=1

Qualitative properties of the functions w;, kfﬂ as assumed in Section 2 remain valid if the data
e fr, v[l; for the original Poisson equation (1.6) are given in an appropriate way.

A precise formulation of the basic model equations (1.5), (1.8) will be given in Section 2. Here
let us only mention the weak formulation of the Poisson equation (1.8): For fixed ¢ € (0, 00)
find vg € H}(Q2 UTy) such that

/Q{EVUO-Vh—%(qr—ééqnu)h}dx+lAN7wghdF::0

Vh € HY(QUTy).

(1.10)

In general one has to require that each reaction conserves the electric charge what means

m

> gi(ei —B;) =0 VY(a,8) € REUR". (1.11)
i=1
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Then, multiplying the continuity equations in (1.5) by g;, integrating by parts and summing up,
we get

/Zqiui(t,m)dm:/ Zqui(x)dx vVt >0 (1.12)
= =

such that the total electric charge of all mobile species is conserved, too. In our further inves-
tigations of the basic model equations (1.5), (1.8) we do not make explicit use of (1.11). But
this assumption as well as its consequence (1.12) are of interest in deriving some reduced model
equations.

1.2 The reduced model

Again motivated by problems arising in semiconductor technology let us consider the situation
that there are two special species X,,_1 with ¢,,—1 = —1 (electrons) and X,, with ¢,, = +1
(holes) and that in Q there runs among other reactions a generation-recombination reaction of
the form

X1+ X =0 (1.13)

with the reaction rate
R — k (e<m71+Cm _ 1)

This reaction obviously conserves the charge. In addition we assume (1.11) to be fulfilled for all
other reactions, too. The special character of the species X,, 1, X,, consists in the fact, that
their kinetic coefficients D,,_1, D,, and k are large compared with those of the other species.
Therefore it makes sense to consider the limit case

D1, Dm, k — 0. (1.14)

If we want the fluxes j,,_1, jm as well as the reaction rate R to remain bounded we have to
require that
Viém-1=V(m =0, (m—1+¢m=00nR;y xQ.

Then ¢ := (;,_1 depends only on time ¢ and it holds
Um-1 =2+ ¢ vm =—(v0+¢), {m1=¢ Cm=—C (1.15)
Using (1.1) the electron and hole densities are expressed as
Um—1 = 16", Up = Tpme (0F0), (1.16)

All left hand quantities in (1.15), (1.16) will be known if vy and ¢ are known. Therefore we may
omit in (1.5) the continuity equations for ¢ = m — 1,m. Substituting into the reaction rates
occuring in the remaining continuity equations the relations (1.15) and taking into account
(1.11) we obtain

Ry = kgg(@,v0,v1, -+, 0m 2,00 + ¢, —v9 — () X

e—CZ;ﬂ:laz‘Qi(e Z}zai(Ci+qu)_e Z’;zﬂi(@-l-qi())’ (1.4%)

reY, (vo,v1,...,0m2) ER"L ¢eR X =Q,T.
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Thus we get a reduced initial boundary value problem for the first m — 2 species still involving
the variables vy and ¢. These variables may be found from the Poisson equation (1.8) and from
the conservation relation (1.12). Substituting there the relations (1.16) we obtain

m—2
~V-(eVvy) +eo(v0+¢) = D qiug on (0,00) x €,
i=1
v = 0 on (0,00) x I'p,
(1.8%)
v-(eVu)+T1v9 = 0 on (0,00) x Iy,
m—2
/ eo(,v9 +¢)de = / Z giuidz on (0,00)
0 =
where
eo(z,y) = Zqui(ac) +TUm—1(z)e’ —Tp(z)e ™, 2€Q, ye R (1.9%)
i=1

In order to determine vy and ( thus we arrive at a boundary value problem for a nonlinear
Poisson equation constrained by a nonlocal condition. The corresponding weak formulation
reads as follows: For fixed ¢ find (vg,¢) € H}(QUT'y) x R such that

L{EVU()'Vh—i— (eo(.,voﬂ)_tgqiui) (h+8)}de+ [ ruhdr=o (1.10)

V(h,€) € HI(QUTN) x R.

Together with (1.5) (where one has to replace m by m — 2 and (1.4) by (1.4*)) we have found
the reduced model equations for the first m — 2 species which we are interested in. In the
reduced model the real kinetics of the species X, 1, Xy, is neglected with the exception of
the charge conservation relation containing the initial values U,,_1,U,, which besides of the
reference densities U, 1, U, must be given.

Now we want to reformulate the reduced model equations in such a way that their structure
becomes more similar to that of the basic model equations. We set m = m — 2 and introduce
the variables

vo:=vo+C(, U:=u; U; = v, &IZCH-%'C, i=1,...,m. (1.17)
Again as in (1.1), (1.2) it holds

pa— V; g ~ ~ .
u; =uie”, ¢ =v;+qv, i =1,...,m,

and instead of (1.5) we obtain

Ou; ~ L =
VGt Y @-BIRY = 0 m(0o0)x9, |
(a,8)eR®
v ji— > (&i—ﬁi)ﬁgﬁ = 0 on (0,00) xT, ’ (1.5*%)
(a,B)eRT
’INJ,Z(O) = Ui OHQ,iZI,...,ﬁL.J

Here as in (1.3) it holds B B
Jji=—-D;u; V¢, 1 =1,...,m,
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since V¢ = 0 and because of (1.4*) we find that

REE: Egﬁ(m,ﬁo,ﬁl,--- , ,C)( Zz 1al§l ezi=1ﬂi§i),
z €Y, B,0,...,0-) ER™ ¢eR, (&f) cR”, ©=q,T,
Eazfﬂv(x,ﬁo,ﬁl,--- U~,C) = Z kfﬁ (x, 99 — ¢, V1, , 0,00, —TVp) € X L, b (1.4%)

(a,B)ER™

a;=a;,B;=0;,i=1,...,m

75—
{(a,ﬁ)EZfXZTE (a;/g);é(o’o)’ a; = aj, Bizﬁi;izl""’m’ (a,ﬁ) ERE}' )

The only essential difference between (1.4**) and (1.4) is that the kinetic coefficients 7"% addi-

tionally depend on (. The constrained Poisson problem (1.8*) is transformed to

)

=V - (eVy) +eo(-,09) = Zqiﬂi on (0,00) x €,
v = ¢ on (0,00) x I'p,
(1.8%%)
v-(eVo)+71090 = 7€ on (0,00) x 'y,
/ eo(-,vp)de = / Zqiﬂi dz on (0,00)
@ iz

/

with the corresponding weak formulation: Find (9, () € {(h—i—n, n): h € H}(QUTN), n € R} C
(H}(QUT'y) + R) x R such that

/Q {vao Vh + (eo Z%uz) dac + / (v — €) (h £)dl' =0

V(h,€) € {(h+n,n): h € HY(QUTY), 1 € R}.

Under some assumptions which we shall formulate in the next section (see (2.1), (2.2)) the
following equivalent formulation can be derived: Find (vy,{) € H X R such that

L{8V5°'VE+( quu,) }dx—l—

(1.10%*)
/ (@ — (@) (h—w(R)dT =0 Vh e H, ¢ = (@)
'y
where
H=H}(QUTy)+RC HY(Q),
(mesT'p)™! [ wdl' ifmesI'p #0, (1.18)

m(w) = X ' w e H'(Q).
mmmefwa if mesT'p = 0,

Although the variational equation in (1.10**) contains an additional nonlinear term in the
volume integral as well as a nonlocal term in the boundary integral this equation has the same
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principal structure as (1.10). After inserting the relation { = m(vp) into (1.4**) the kinetic
coefficients kgﬁ depend only on the variables vy, ... v (nonlocally with respect to vp). Thus
(07

after introducing new variables our reduced model equations (1.5**) and (1.8**) do not differ
essentially from the basic model equations (1.5) and (1.8) what makes it possible to investigate
both models in a unified way.

1.3 Comments

An essential feature of the model equations (1.5), (1.8) and (1.5**), (1.8**), respectively, is
the fact that they allow thermal equilibria as steady states (see Subsection 5.1). Moreover,
there is a convex functional which can be interpreted from the viewpoint of thermodynamics
as free energy. This functional turns out to be a Lyapunov function of the system and ensures
exponential decay of arbitrary perturbations of thermal equilibria, at least under some additional
structural property of the underlying reaction system (see Section 5). Energy estimates like in
Subsection 3.3 and Subsection 5.3 are the basic key in deriving global estimates and existence
results.

If there are only two kinds of species with opposite sign of their charge (electrons and holes)
we obtain the classical drift-diffusion model of carrier transport in semiconductors (the van
Roosbroeck system, see [53]) as a special case of our model equations (1.5), (1.8). Normally,
here more general boundary conditions are of interest. Then the steady states do not correspond
to thermal equilibria (see e.g. [1, 2, 41, 49, 54]). Starting from first results of Mock (see
[61]) the transient problem has been extensively investigated by Gajewski and Groger (see
[17, 18, 19, 20, 21, 29, 32]).

As already mentioned in the preceding subsections we are mainly interested in electro-reaction—
diffusion problems arising in semiconductor technology. Here more then two kinds of charged
or uncharged species as well as a lot of chemical reactions have to be taken into account. An
overview of corresponding model equations, especially in the reduced form (1.5**), (1.8**), may
be found in [38]. From this field of applications also the choice of our boundary conditions is
motivated. Often the model equations (1.5**), (1.8**) are once more reduced by assuming a
local electroneutrality condition to determine the electrostatic potential (see [38, 54]). Special
cases of this type where (besides of electrons and holes) only one kind of species is electrically
charged have been investigated in [23, 25, 50].

Other applications of electro—reaction—diffusion systems come from the field of electrolysis.
Whereas in papers of Amann (see [3, 4]) and Yu [60] the continuity equations are completed
by an electroneutrality condition in papers of Choi and Lui (see [7, 8, 9, 10, 11]) and Jiingel
[42] the full system of continuity equations coupled with the Poisson equation is considered.
Resulting from the special situation in electrolysis all these authors work with smooth kinetic
coefficients and mainly with smooth domains. The application of some of their techniques to
the case of nonsmooth data in the situation of heterostructures as considered in our paper can
not be expected, such that other techniques are needed.

Our investigation of the multiple species problem is based on methods developed by Gajewski
and Groger for the van Roosbroeck system in heterogeneous semiconductor structures [21].
The main difference to [21] consists in the fact that we have no Dirichlet conditions for the
continuity equations and more general reaction terms. From this arise some complications in
deriving global lower bounds which we shall overcome by using an additional energy estimate
(see Subsection 5.3 and [24, 26]).
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1.4 Contents of the paper

In Section 2 we give a precise formulation of the problems introduced in the preceding sub-
sections (cf. problem (P) below). There we summarize also the assumptions on the data our
further considerations are based on. Besides of assumptions concerning the principal struc-
ture of diffusion, drift and reaction terms there are requirements of a more ore less technical
character (two dimensional domains — cf. (2.1), growth condition for the source terms in the
continuity equations — cf. (2.6), nondegeneracy condition of the reaction system — cf. (5.9)).
Preliminary results concerning estimates for the solution of the possibly nonlinear and nonlocal
Poisson equation, uniqueness of the solution of the evolution problem and first energy estimates
are collected in Section 3. Here we make essential use of assumption (2.1). Section 4 is devoted
to existence results which are obtained by some regularization technique (cf. problem (Py))
if the additional assumption (2.6) is fulfilled. Furthermore under the same assumption global
upper bounds for the densities are established. The existence of global lower bounds as well as
results concerning the asymptotic behaviour are obtained in Section 5 where assumption (5.9)
plays an important role.

Section 6 contains existence and uniqueness results for electro—diffusion systems with weakly
nonlinear source terms (cf. problem (Pg)) which may be of interest by their selves. Here these
results ensure the solvability of the regularized problem (Py) which is considered in Section 4
to construct the solution of problem (P).

In Section 7 we discuss relations between the basic and the reduced models. As was to be
expected we can prove that both models are asymptotically equivalent.

In the last section we present some examples, especially for the case of heterostructures, which
are motivated from applications to semiconductor technology.

1.5 Technicalities

Let us collect some notation and results which are relevant for the paper. We assume that
Q C R? is a bounded (strictly) Lipschitzian domain. The notation of function spaces LP(Q, R¥),
LP(T,R*), HY(Q,RF), k € N, L¥(Q) corresponds to that in [45]. If there is no danger of
misunderstanding we shall write shortly L? instead of LP(Q, R¥), and H' instead of H(Q, R¥).
With regard to the definition of the spaces H}(Q UTy), Wol’p(ﬂ UT'y) we refer to [31] or to
21, Appendix]. Let us note that H} (QUI'y) = H1(Q) if [y = 09Q. By Z%, Rt | L7 we denote
the cones of nonnegative elements. For the scalar product in R* we use a centered dot. In our
estimates positive constants, which depend at most on the data of our problem, are denoted
by c¢. Analogously, d: Ry — R, stands for continuous, monotonously increasing functions with
limy ;o d(y) = oco.

We shall apply Sobolev’s imbedding theorems (see [45]) as well as some further imbedding
results. First, by a modified application of the Hélder inequality from [45, p. 317, formula (5)]
we derive

||w||qu(r) < cLig “w“qL;(lq—l)(Q)“w“Hl(Q) Vw e HI(Q), q > 2 with ¢119 = cqq. (1.19)
For w € HY(Q) N L>®(Q) from (1.19) we find

19 2¢q q||w]| 10 )V
||w||L°°(Q)

[wllzary < lwllze (o) (
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and passing to the limit ¢ — oo we get
[wllzoery < [wllLe(@) Yw € HY(2) N L=(RQ). (1.20)
As a special case of the Gagliardo—Nirenberg inequality (see [16, 52]) we use the following result:
wlze < ep |[w]| 2P |w] 0P Vo € HY(Q), 1< p < . (1.21)
Especially, for p from compact intervals
1/p

1-1 .
[wle < cllw|MF|lw|in P Yw e HY(Q), p1 < p < ps with ¢ < max{cy,, cpy, 1}1/7".

As an extended form of Gagliardo—Nirenberg’s inequality one obtains that for any ¢ > 0 and
any p € (1,00) there exists a c¢p > 0 such that

-1
[wlfe < €llwinfwll|p |wlf +cep wllr Yw € HY (). (1.22)

In [5] this inequality is proved for bounded domains with smooth boundary and p = 3. An
inspection of that proof yields the validity of (1.22) also for bounded Lipschitzian domains and
p € (1,00), since (1.21) is true in this case, too. Finally, from Trudinger’s imbedding theorem
(see [57]) we get

le!lzo < dp(lwll 1) Yw e HY(R), 1< p < oo (1.23)



2 The problem

2.1 Assumptions

In the next subsection we shall formulate a general evolution problem which involves the concrete
model problems discussed in Section 1. Here we summarize all assumptions which our further
considerations are based on:

Q is a bounded Lipschitzian domain in R?, T := 8,
I'p, 'y are disjoint open subsets of I', I' = T'p Uy, ’ (2.1)
I'p NTy consists of finitely many points; J
g € Z, Wi, Ui € L®(Q), W, U; > ¢ >0, )
D;e L), Di>c>0,i=1,...,m; (2.2)
Uo := 321210055
e€L™(Q), e>c>0,7€ L¥('y), mesI'p + 7]y > 0; )
H is a linear closed subspace of H'(Q2), H}(QUTy) C H; \
T € L(H'(Q), R); (23)
v—m(v) € HY(QUTy) Vv € H,
W(h)fFNT(v—W(v))dF:()VhEHé(QUFN), Yv € H; )
ep: 2 X R — R satisfies the Carathéodory conditions, )
leo(z,y)| < ce faa. zeq, VyeR, ¢>0, [ (2.4)
eo(z,y) —ep(z,z) > bo(z) (y — 2) fa.a. z € Q, Vy,z € R withy > z,
bo € LE(Q), [lbollzr > cllx]], ¢ > 0; )
R, R are finite subsets of VA S )
for ¥ =Q, I and (o, B) € R* we define
RYg = kyg(z,y,2) (e =€), 2 €, y = (yo,y1,* ,ym) ER™,
G =Y +qyo, t=1,...,m, z € R, where
kfﬂ: ¥ x R™! x R — R, satisfies the Carathéodory conditions, ’ (2.5)
kfﬁ (z,-,-) is locally Lipschitz continuous uniformly with respect to z,
kfﬁ(m,y,z) < cetWlZ) faa z e X, V(y,2) e R*2,
kfﬁ(x,y,z) > bgﬂ,R(:v) fa.a. z €%, VY(y,z) € R™? with yo,z € [-R, R],
bas,r € L2 (%), [1b3p,llL1(x) > O )
For the proof of existence results we shall additionally suppose that
s, {7 = P9 B madp e (e 1) 2

V¢ e R™, Y(a,B) € RE, ¥ =Q,T, withng =2, np =1, ¢>0.
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Finally, for the investigation of asymptotic properties we need a further assumption on the
structure of the reaction system which will be introduced later on (see (5.9)).

Remark 2.1. The subspace H, see (2.3), equipped with the norm of H'(Q) will be regarded
as a Hilbert space. Then it holds

H* = {uoz uo = ol , T € Hl(n)*}.
If 4g € H'(Q)* may be identified with a function %y € L?(),
(Wo, h) g1 = /(;ﬂghdx Vh € HY(Q),
then for ug = ug|y we obtain
(o, B g1 = (o, h) g1 = /an hdz Vh € H,

and uy may also be identified with the function @y € L?(Q) since H}(Q UT'y) C H and
H}(QUT ) lies dense in L2().

Remark 2.2. By the assumptions (2.2)—(2.4) it follows that there exists a ¢ > 0 such that

[Vvol|22 + /Qbo v3 dz + i 7(vo — m(vp))% dT > ¢||vo || %1 Yoo € H. (2.7)
N

Remark 2.3. We define the function ¢y by

Yy
do(z, y) = oz, y)y — A eo(z,n)dn, z€Q, y R

By (2.4) we easily find the following properties of ey and ¢y:
(eo(@,y) — eo(2,7)) (y — ) = bo() (y —9)°,

cole,9)y —9) — [ eoe,m) dn = 3bo(a) (v — 9,
; 2.8
(ﬁg(l‘,y) > %b[](l') y2’ ( )

y
/ eo(z,n)dn > %bo(l‘) y? +eo(z,0)y faa ze€Q, Vy,gER
0

Often we will write only the second argument of the functions ey and ¢y.
Remark 2.4. For a special realization of H, m and ey we refer to (1.18) and (1.9%).

Remark 2.5. The form of the reaction terms in (2.5) involves some important structural prop-
erties. First, it holds

m

Raﬂ(x’ Y, Z) Zz::l(az Bz)(yz + szO) >0 (2‘9)

faa. z€X, Yy = (yo,...,Ym) €ER™ VzeR

This relation will ensure the energy estimates in Section 3. Furthermore, for i =1,...,m

e % (e*¢ — ) (s — B) < aie{(ai_l)Ci+Zj;&i @G} if a; > 5, (2.10)
e (€ — ) (o — ;) < BBV G i oy < g,

These relations are used for getting lower bounds in Section 4 and Section 5.
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Remark 2.6. For example, the assumption (2.6) is fulfilled for a reaction with stoichiomet-
ric coefficients (o, 3) € R¥ if Yieiaj = 0or 37, B8 = 0. Another possibility is that
max { 37 aj, 3741 Bj} < nx. Let us note that condition (2.6) means only restrictions on
the source terms of the continuity equations whereas sink terms may be of higher order. In the
van Roosbroeck system which is a special case of our more general setting the source terms are
of order zero.

2.2 Formulation of the problem (P)

In order to formulate our general evolution problem we use the variables
v=(vg,v1,...,Um) : Ry x @ —= R™1  (potentials),
u = (up,u,...,un): Ry x Q= R™  (densities).

Analogously we set U = (Uy, Us,...,Uy) where Uy = Y1 q;U; (cf. (2.2)). Since we want to
take into account heterostructures the potentials must belong to a space of sufficiently smooth
functions while the densities are regarded as elements of the corresponding dual space. We work
with the function spaces

X := H x H'(Q,R™), Y := L?(Q,R™"1)
and their duals X*, Y* =Y. In addition, let
W = X N L>®(Q,R™1).

We define the operators A: W x X — X*, Fy: H— H* and E: X — X* by

(A(w,v),ﬁ) ::/ { iDiﬂieWivCi ' sz + Z Rgﬂ("w’ 7"'(7170)) (Ol - /8) : Z} dz

Qi (a, B)ERD
+[ ¥ Etwmw)(@—p)-Tdr, TeX,
(o, B)ERY
where (; = v; + q;v0, {; = Ui +qiVo, i =1,...,m,
<E0’U0,60> ::/ {EV’UO - Voo + 60(',’00)50} dz + 7'(’1)0 — 7('(’00))(50 — 7('(60)) dF, Vg € H,
Q 'y

m
(Ev,v) := (Eyvo, o) + / Zﬂieviﬁi de, v7eX.
iz

Then the problem which we are interested in reads as
u'(t) + A(v(t),v(t)) =0, u(t) = Ev(t) faa. t e Ry, u(0) =T, }

()
w € Hbo(Ri, X*), v € Lhe(Ry, X) N LES(Ry, LZ (2, R™H)).

Remark 2.7. Problem (P) includes the precise weak formulation of the model problems in-
troduced in Section 1. The 0-th components of the equations u' + A(v,v) = 0 and u = Ewv
represent the continuity equation for the charge density and the (possibly nonlinear, nonlocal)
Poisson equation (1.10) and (1.10**), respectively. The other components of these equations are
the weak form of (1.5) and (1.1), respectively.
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Remark 2.8. By test functions of the form (w,—qiw,...,—g¢nw), w € H, we obtain that for
solutions (u,v) of (P) it holds

UO(t) :Zqiui(tﬂH in H* vVt e R;. (2.11)
=1

Remark 2.9. If (u,v) is a solution of (P) then u, v have the following regularity properties:
u € C(Ry,Y), u € Cyr(Ry, L®(Q,R™1)), vy € C(Ry,H), v; € C(Ry,L?), i =1,...,m,
v € Oy (R, L®(Q, R™*1)). These regularity properties imply the relations

uo(t) = Eovo(t) in HY,

ui(t) = ;e in L®(Q), i=1,...,m,

uo(t) = Z giui(t) in L*°(Q)
i=1

Vi e R,. (2.12)

Remark 2.10. Because of (2.7), (2.8) the operator Ey: H — H* is strongly monotone. There-
fore there exists a constant ¢ > 0 such that

ool Im(wo@)] < ¢ (14D lus(t)ll2) vt € Ry (2.13)
=1

if (u,v) is a solution of (P). Finally let us note that the operator E: X — X* is strictly
monotone.
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3 Preliminary results

3.1 Estimates for the solution of the Poisson equation

Lemma 3.1. Let the assumptions (2.1)—(2.4) be fulfilled. Then there exist constants ¢ > 0,
q > 2 and a continuous increasing positive function d such that

lvollzee < e(lluo Injuolllzr + d([[voll 1) + 1), (3.1)

lvollwra < c(lluollp2ar@+ar + dlllvollm2) + 1) (3.2)

if vo € H and Egvg = ug € L?().

Proof. Let vy € H be the solution of Fyvg = ug. Then w := vy — m(vp) € H}(QUT'y) and for
h € H}(QUTy) it holds w(h) Jry Twdl' =0, cf. (2.3). Since H}(QUTy) C H it follows from
the weak formulation of the Poisson equation that

/EVw-Vhdm—i- TwhdF:/(u()—eg(-,vg))hdac Vh € H}(QUTy).
Q 'y Q

Because of the last assumption in (2.2) we can now apply to this equation results of Groger for
elliptic equations [31, Theorem 1] and [30, Theorem 1] and obtain

lvollzee < e(lluo — eo(-,v0)ll e + [lvollz), ¥(s) = (14 s)In(1+s)—s for s >0,

lvollwa < e(lluo — 60(',UO)“(WOI,Q/(G—I)(QLJFN))* + llvollz2)  for some g > 2.
Because of (2.4) and (1.23) we can estimate the Orlicz norm of uy — ey(+, v9) by
luo — €0, vo)llw < e(fluo Infuoll[r2 + d(l[voll 1) + 1),

and the first assertion of the lemma is proved. Moreover, using the Sobolev imbedding theorem
as well as Trudinger’s result (1.23) we get

lluo = €05 v0)l gyr1.a/a-1 g p gy < € (luollp2areea + d(llvollze) +1)

which completes the proof. O

3.2 Uniqueness result

From now up to the end of Section 5 we suppose the assumptions (2.1)—(2.5) to be fulfilled.
Theorem 3.1. There exists at most one solution of (P) .

Proof. Tt suffices to prove uniqueness on every finite time interval S := [0,T]. Let (u/,v?), j =
1,2, be solutions of (P). Then there exists a constant ¢ such that

lu? @)z, [0 () lz, 107 @)=y, [w (@3 @), [0 (O)llwra < c faa. teS, j=1,2,



14 3 Preliminary results

where ¢ > 2 (cf. Lemma 3.1). We set @ := u! — u?, ¥ := v! — v2. Testing the difference of the
Poisson equations Eyvg(t) — Egv3(t) = tp(t) by ’U[)( ) we obtain by the strong monotonicity of
EQ that

oo ()| g2 < CZ llwi(t)||z2 f.a.a. t €S. (3.3)

Let z; := 4/, i = 1,...,m. We use (0,21,...,2m) € L%(S, X) as test function for (P) and
take into account that Rfﬁ(m, -,+) is uniformly locally Lipschitz continuous. The norms of v; in
L?(2) and L?(T') can be estimated by the corresponding norms of z;. With inequality (3.3) and
r:= 2q/(q — 2) we conclude as follows

Zm:{sz'(t)H%z—i— /0 t Jil3prds

i=1

t m
<e [ {laller 1V V2
i=1

+ IVl 221V zill 2 + llzillF2 + l1oll3 + IIZiIIiz(r)} ds

t m

2 2—-2
< /0 > {3zl + (a5 1V v a5 + 1z0132) | ds
=1
< [ {3l + (ol + l2) ) ds
—0__121H1 0llwiall<ill L2 il L2
t m
S/O {2sz’|m—i—cl|zl||m}ds vVt € S.

=1

Gronwall’s lemma yields z; =0on S, i =1,...,m. With (3.3) the assertion follows. [

3.3 Energy estimates

In this subsection we collect results on energy estimates which can be obtained similar to the
techniques in [26, Section 4]. We define the functional ®: X — R

(v) ::/Q{§|Vv0|2+/0voe dy+2u, ~D}de+ [ 5o w(v))dr

INY

Because of (1.23) this functional is continuous, Géateaux differentiable and it holds 0® = E.
Since FE is strictly monotone the functional @ is strictly convex. Its conjugate functional
F: X* — R,

F(u) := sup {(u,v) —@(v)},

is proper, lower semicontinuous and convex. It holds u = Ev = 8®(v) if and only if v € OF (u).
F may be interpreted as the free energy of the reaction—diffusion system.

Lemma 3.2. Ifu € H* x L2 (Q,R™) then the value of F(u) can be calculated as

Fu) = /{2|w0| + do(vo) dm+/ (00 — (o0))2d0 + 3 Fi(us)

=1
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where vy fulfils the relation Eyvy = up and

Fi(u;) = /Q {(ul(ln? —1) —i—ﬂi} dz, wu; € Li(ﬂ)

Uj

Moreover the functional F|H*XL1(97Rm) s continuous.
Proof. 1. We define ®;: H — R, ®;: H'(Q) — R, i =1,...,m, by

Bo(vp) 1= / |Vv0|2+/ y) dy d;c+/  (wp — m(vg))? dT,
®,(v;) .—/Qul(e” —1)de.

Then ®(v) = Y"1 P:i(v;) and obviously F(u) = ®*(u) = Y%y &7 (ui).

2. Since Ej is strongly monotone and hemicontinuous (here Trudinger’s result (1.23) is used)
E) is surjective (see e.g. [22, 47, 62]) such that for ug € H* there exists vy € H with ug = Eyvy
and @ is subdifferentiable in vy. Therefore (cf. [12, 61])

5 (ug) = (Eovo, vo) — Po(vg) = /Q {%|VUO|2 + ¢0(Uo)} dz +L % (vo — m(vo))*dr.

The continuity of ®§ on H now results from the strong monotonicity of Ey and the continuity
of (I)[].

3. Next we prove the continuity of F;. Let wy, w € L2 (Q) and w, — w in L?(2). Because of
Inlnn| <e ! +n? for n > 0 we obtain by Fatou’s lemma that

2/(é+w2)dxSliminf/(2+w2+w,21—|wnlnwn—w1nw|)dx
Q

<2/ (3 +w dx—hmsup/ |w, Inwy, —wlnw|de

n— o0

which ensures that lim,, s [, |wn Inw, — wlnw|dz = 0. Together with w, — w in L*(Q) this
proves the continuity of Fj.

4. It remains to show that ®}(u;) = Fi(u;) if u; € L2(Q), i = 1,...,m. Let u; € L2 () and
let w, € HY(Q), w, > 0 and w,, — u;/%; in L?(Q). Moreover, let § > 0 sufficiently small. We
define v;, := In(w, + 6) € HY(Q) and gy, = @; (w, + ). Then wy, > 04; and ugy, — u; + 63;
in L2(Q). Since the function f(n) := In(n + ), n > 0, is Lipschitz continuous with Lipschitz
constant §~! we find that

(Ui — Uin, Vin) — — /Q 0u; In(u; /u; + d)dz  as n — oo. (3.4)
By the subdifferentiability of ®; in v;, it follows
®7 (win) = (Win, Vin) — Pi(vin) = Fi(win)
which yields

@7 (u;) = sup  {(ui, i) — Pi(Ti)} > (Ui, vin) — Pi(vin) = (Ui — Uin, Vin) + F;(uin).
iiEHl(Q)
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Because of the lower semicontinuity of ®}, the continuity of F; and of (3.4) after passing to the
limit n — co we obtain

®; (ui + %) < liminf ®f (uin) = lim Fi(uin) = Fi(u; + 0%)
< 07 (us) + / 0; In(u; /u; + 6) da.
Q

Again using the lower semicontinuity of ®;, the continuity of F; and the estimate

SIn(y + 8)] < | In 6| if 0<n<1/2,
| s+ if p>1/2

by passing to the limit § — O the assertion follows. [
Along any solution (u,v) of (P) the function ¢ — F'(u(t)) is absolutely continuous and it holds

(see [6])
%F(u(t)) = —D(v(t)) fa.a. t € Ry
where the dissipation rate D is given by

D(v) := (A(v,v),v), v e W.

Note that by the definition of the operator A and by (2.9) the dissipation rate is nonnegative
for all v € W. This ensures the following result.

Theorem 3.2. Let (u,v) be a solution of (P). Then

F(u(t2)) < F(u(ty)) < F(U) for to >t >0,
Jeo(®lls + 3 () Imus(@)lzs + [ Do) ds <o vt € R,
i=1
where ¢ depends only on the data.
The following corollary is a direct consequence of Theorem 3.2, (3.1), (2.11) and (1.20).

Corollary 3.1. There is a constant c35 > 0 depending only on the data such that

lvo ()|, [lvo ()l (), [7(v0(8))| < c35 ViR, (3.5)

if (u,v) is a solution of (P).
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4 Existence

4.1 The regularized problem (Py)

In the sequel we consider a problem on an arbitrarily fixed time interval S := [0, 7] which arises
from (P) by regularizing the reaction terms. Let, for N € Ry, py: R™*2 — [0,1] be a fixed
Lipschitz continuous function such that

0 if [(y,2)le >N,
pN(y;Z) = ’ |(y;z)|00 = max{|y0|,.,. ) |ym|, |Z|}
L if |(y,2)]e0 < N/2

We define the operator Ay: W x X — X* by
(An(w,0),9) = [ { Y- Diwse 96 - VE;
Q0=

+ > pw(w,m(w)) Ris(w, w(wo)) (@ = B) -} do

(o, B)ERD
+[ X pwlwm(we) Rl w,nlwn) (@ — ) -TdT, TEX,
" (a, )err
where (; = v; + q;vo, {; = U; +q;To, i = 1,...,m. The operator E is not changed. Now we are

looking for solutions of the following regularized problem
u'(t) + An(v(t),v(t)) =0, u(t) = Ev(t) fa.a. t €S, u(0) =U, }
(Pn)

u € HY(S,X*), ve L*S,X)N LS, L>®(Q,R™)).

4.2 Solvability of (Py)

Theorem 4.1. For each N € Ry there exists a unique solution of (Pn).

Proof. We intend to apply Theorem 6.1. For fixed N e Ry, ¥ = Q,T', i =1,...,m, we define
functions g7*: ¥ x R™*! x R — R by

giz(x’y’ Z) = pN(y’ Z) Z Rczjﬂ(xayaz)(ai - Bz)
(o, B)ERE

Obviously g¥ satisfies the Carathéodory conditions. Since REﬂ(a:, -,+) are uniformly locally
Lipschitz continuous and py is a Lipschitz continuous function with px(y,z) = 0 for |(y, 2)|eo >
N the function g (z,-,-) is uniformly Lipschitz continuous. The property (2.9) yields

m
> 97 (2, y,2) (yi + qiyo) > 0 for a.a. x € %, V(y,z) € R™?
i=1
since pn(y,z) > 0. Moreover, since pn(y,z) = 0 for |(y, z)|oc > N we find the estimate

Benls Y max RSyl 6 for aa. z e %, ¥y, 2) € RM2
(a, B)ERE (y,2)€[-N,N]
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the right hand side of which is bounded by some constant depending on N. At last using (2.10)
one proves easily that

gr (z,y,2) < ¥ e¥i for aa. z €Y, Y(y,z) € R™? with y; < 0.
Thus the functions g, ¥ = Q,T, i = 1,...,m, fulfil the assumptions (6.1), and we can apply
Theorem 6.1 to obtain the assertion. [
4.3 Estimates for the solution of (Py)
We are going to find estimates for solutions of (Py) which do not depend on N. In this
paper we prove such estimates under the additional assumption (2.6). At first, note that for
the solution of (Py) the relation (2.11) is valid. The dissipation rate corresponding to (Px),

Dy(v) := (An(v,v),v), is nonnegative for all v € W. Therefore the results of Theorem 3.2
remain true for the solution of (Py) and

Fu(t)) <ec, |vo)||gr <c VteS,

(4.1)
lui()llzr, ||lwi(t) Inwu;(t)||gr <ec VEteS, i=1,...,m.
By Lemma 3.1 we find that
lvo(8)l[zee; Nlvo(E)l|ze(ry, |m(vo(t))] < ez,
(4.2)

m
loo@llwra < e 3 lui(®) | 2as@rn +1) VEES.
i=1

All these estimates in (4.1) and (4.2) are independent of N and of the length T' of the time
interval S.

Next we look for upper bounds for the densities. These will not depend on T'. We intend to use
the Moser technique and start with some preliminary estimate.

Lemma 4.1. Additionally we suppose (2.6). Then there exists a constant ¢ > 0 depending only
on the data, but not on N and T, such that for the solution (u,v) of (Px)

S lui(®)p2 <c VEeS.
=1

Proof. Let K := max{l, ||Uy/@1llr=,- - ||Un/Um| >} and z; := (u;j/u; — K)*, i =1,...,m.
We use the test function

2¢%(0, 21, ..., 2m) € L*(S, X)

for (Px). Note that by (2.6) the source terms in the volume and boundary reactions are of at
most second and first order, respectively. Moreover, the factor py in front of the source terms
can be estimated by 1. With the inequalities (4.1) and (4.2) we find by using the trace inequality
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(1.19), the Holder and Young inequalities that for all ¢t € S
m t m
¢ S lm®F < [ e 3 { =l + el + Il + Izl
i=1 i=1

+llzillZe + llaillZs + HVvoHLqHui/mHLrHVziHLz)} ds

m

t
g/o > { = 4laillln +e(lall}s +1

=1

+ (1 2l )zl (23]l e + 1)) } ds
j=1

with r = 2¢/(q — 2), 7' = 2¢/(g + 2), ¢ from (3.2) and some positive constant §. For ||z;||3; we
apply inequality (1.22) with p =3, e := d/(€+8¢3_" |2 In 2il| oo (g,11)). Moreover, from (1.22)
with p = r and p = 7/, respectively, from Gagliardo—Nirenberg’s inequality (1.21) and Young’s
inequality we find a constant ¢ > 0 such that

m m
> (D 2l ) il g (il e + 1)
=1 j=1
m m m 9 ’/( , 1)
< (€ Mgzl + §)llealldn +e(14 D 2oz 77/ D)

with e defined as above. In addition, here we used the relation y < yln |y|+ ¢ for y > 0 and the
fact that 2 < 2r/(r — 1) < 2r'/(r' — 1). Thus we can continue our estimates by

m t m m , T’_
etZHZi(t)H%zSA e > {(2ee Yz Inzill — Dllzilldn +ellzsmzl|7 O +1) } ds.
=1 i=1 j=1

By the choice of € the factor in front of ||z;||%, is nonpositive and we arrive together with (4.1)
at

m t m
2r' [(r'—1
et S (b2, < CA Y (llzstnzlZ /G ) + 1)ds <cet vies
which implies the desired estimate for Y ;" ||ui(¢)||z2. O

Remark 4.1. Since ' = 2¢q/(¢q + 2) < 2, by relation (4.2) and Lemma 4.1 there are constants
¢, c4.3 > 0 depending only on the data, not on N and 7', such that for the solution (u,v) of

(Pn)

m
S sl <, oo@lwre <crs Vi€ S. (4.3)
=1
Theorem 4.2. Additionally we assume (2.6). Then there exists a constant cq4 > 0 depending
only on the data, but not on N and T, such that for the solution (u,v) of (Pn)
“uz(t)/ﬂzHLw <cgqg VEES, i=1,...,m. (4.4)

The same estimate holds for the L*°(I')-norms of u;(t)/u; for a.a. t € S.
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Proof. The proof is based on Moser iteration. In [21] such techniques are used for the van
Roosbroeck equations. But our system contains more general volume and boundary reaction
terms only fulfilling assumption (2.6). Therefore we obtain Moser exponents differing from those

n [21]. Let z; := (u;/u; — K)™ with K defined in the proof of Lemma 4.1, w; := Zf/z where
p > 4. Since v; € L?(S, H') N L*°(S, L*°) we have

et (0,287, ..., 227 e L(S, X)
and we can take it as a test function for (Py). We define
K := ca + 1 where r = 2¢q/(q — 2), ¢ from (3.2). (4.5)

Note that volume and boundary reaction terms satisfy the restrictions (2.6) and |[pnx| < 1. Since
K is a constant defined by the data and u; < z; + K we have for all £t € S

etZ/ @iwi (1) dz
=179
t m
§/ eSZ{/{—5|Vwi|2+cp(|wi|2+ui|Vv0||szfl|—l—(u?—l—l)zf*l)}dac
0 — Q

i=1
+ cp/(ui +1)2P7! dF} ds
r

m

t
< e S { = bl + epIVwolzel Vil il + 1)
=1

(p+1)
i 35 YR + llwill 3oy +1) } ds.

We apply for r and p := 2(p + 1)/p, p > 4, Gagliardo—Nirenberg’s inequality (1.21). Since p €
(2,5/2] for p > 4, the constant ¢; can be estimated from above by means of max{cz, cs/2, 1}1/2,
We continue

m
etZ/ @i wi(t)? dz
i=17%
t m
< [Fe >0 { = Slhwalip + o™ (190 + Dl + 1)
=1

(p+2) 3/2 1/2
o ep(lowil| 7 il o+ s 377 il | 4 4 1) } s
2 2)
/ Z |wl||L1 + ]-) +p “wz“ p/(p= +p4||wi]|%1 + ].} ds

m
2 2) 2)
< [ e anm O 4 1)ds < et 3 (sup [a()IE/E ) + 1)
i=1 $

Therefore we obtain the estimate

anz +1 < cqop” k( Zsupnzz( W2, + )PP vie s, p>a (46
i=1 S€S

with ¢4 6 > 1 depending only on the data. Let

ag —Z:suszz 2k+]-, k=1,2,....
i=1 $€5
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Now we set p = 2¥, k € N, k > 2. From (4.6) we conclude that

{2}
2k—1_1

ar, < (2°)F (k ey, 6)ap 1

N Por S SN Oy L S L B
< (@) T ey 2 ) -
The last inequality can be proved by induction. Note that the product ¢y := ;’il % is finite

and all of its factors are greater than 1. Moreover

k-2 k—2 )
do2i<obl Nk —i)2f <28k >2
1=0 1=0

such that

ar < (2% ke al)cﬂk

Thus we arrive at

Z 2 (&) pr < VM (27 keag (D supllzi(s)l32 +1))° VEE€S, k> 2.

i—1 seS

Passing to the limit ¥ — co we obtain

ZM|m<f(mm2mmmevas

i=1 seS

Writing this inequality in terms of u; and applying the result of Lemma 4.1 we find the desired
estimates in Q. The estimates at the boundary follow from (1.20). O

We intend to estimate the densities from below (or the negative parts of the chemical potentials
from above) by Moser iteration, too. Corresponding estimates for the van Roosbroeck equations
were given in [21, Lemma 4.6]. Our more general reaction and boundary terms do not produce
new difficulties in proving the recursion formula since estimates from above are already known.

Lemma 4.2. Let the estimate (4.4) for the solution (u,v) of (Pn) be fulfilled. Then there ezists
a constant ¢ > 0 such that the recursion formula

t
e'l|(vi + K)~ (1) SC/O e’p” k(||(vi + K)~(s)II},. +1) ds
Vp>2, VtelS, i=1,...,m,

holds where K := max{||[In(Uy/u1)]" ||z, -, |[[In(Un/Tm)] " ||lz=}, &, r from (4.5) and c de-
pends on the data, but not on N, T and p.

Proof. Let z := (In(u;/w;) + K) . For p > 2 we take the test function which has the i-th
component

—pe P71 u;,
the other components shall be zero. Note that from the L*>-estimates for vy, u;/u;, j =

1,...,m, on Q and at I" and from the structure of the volume and boundary reactions (see
(2.10)) it follows that

Rig(ai — Bi)a? 1 = kfﬁ[n (2L etim)® — II (yeqjvo)ﬁj}zp_lﬂ(ai —Bi) <c2Fh
i Uj Uj Uj

j=1 j=1
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Moreover, the factor py in front of the reaction terms can be estimated by 1. Now estimates like
in [21, p. 24] (trace and imbedding results, the Gagliardo—Nirenberg and Hoélder inequalities)
give the recursion formula

t
0l < [ e R(zlE,, +1)ds Vies (4.7)
which proves the lemma. [

Lemma 4.3. Under the assumption of Lemma 4.2 there exists a constant ¢ > 0 depending only
on the data, but not on N and T, such that for the solution (u,v) of (PN)

i + K)~ ()| <ceT VteS, i=1,...,m,

(with K defined in Lemma 4.2).

Proof. Using the notation of Lemma 4.2 we continue the estimate in (4.7) for p = 2 by
e'll2(t) |17 < cellz()72 < C/Otes(HZ(S)H%l +1)ds VteS

and apply Gronwall’s Lemma to obtain that ||z(¢)||z: < ceT,te S. O

Theorem 4.3. For the solution (u,v) of (Pnx) we assume the validity of estimate (4.4). Then
there exists a continuous increasing function dsg > 0 depending only on the data, but not on
N, such that

lv; (O)||pee < dag(T) VEES, i=1,...,m. (4.8)

The same estimate holds for the L>°(I')-norms of v; (t) for a.a. t € S.

Proof. We use the notation of Lemma 4.2 again. Similar as in the proof of Lemma 4.6 in [21]
we find from (4.7) that

|2()]| L= < 04_9n(sug llz(s)||zr +1) VieS. (4.9)
s€

Together with Lemma 4.3 this supplies the estimate ||z(t)||f < d(T). Thus we obtain a lower
bound for Inw;(t)/u; depending only on the data and on 7. This procedure can be done for
i =1,...,m. The estimate for the boundary norms follows from (1.20). O

4.4 Existence result

Theorem 4.4. Under the additional assumption (2.6) there exists a (unique) solution of prob-
lem (P).

Proof. We define a mapping from R, to L>®(2, R™*1) x L°(Q, R™*1) by

(u(t),v(t)) :== (uﬁ(t)(t),vﬁ(t)(t)) for t >0,
(u(0),v(0)) := (U, Ey 'Up,In[Uy /@3], . .., In [Up /Trm])



4.5 Global estimates 23

where (uy,,,v on S :=[0,¢] and

Moy is the solution of (Px

ﬁ(t)) (t))

N(t) = 2max {04_2, 11’1 C4.4, d4_8(t)}. (410)
Since N(t) > N(s) for t > s and since the solution of each problem (Py) is unique we get
~ ~ =(u~ ~ <
(UN(S)(S),’UN(S)(S)) (uN(t)(s),vN(t)(s)), s<t.
Thus we obtain that the pair of time functions (u, v)|o 4 is a solution of (Pﬁ(t)) on [0,¢]. By the

choice of N (t) we guarantee that the operators Ay . and A coincide on the solution of (P

N(t) (t))
(see (4.1), (4.2), Theorem 4.2, Theorem 4.3). Therefore (u,v) defined here is a solution of (P).
Uniqueness has been proved in Theorem 3.1. [

4.5 Global estimates

Theorem 4.5. Under the assumption (2.6) for the solution (u,v) of (P) it holds
H’uz(t)/ﬁlHLoo <cga YEER,, 1=1,...,m. (4.11)

The same estimate is valid for the L*°(I")-norms of u;(t)/u; for a.a. t € Ry. Furthermore it
holds

ess i(rzlfui(t) > ess i(rzlfﬂi e des®) vieR,, i=1,...,m. (4.12)
T€ EaS

Proof. Let (u,v) be the solution of (P) and ¢ € Ry be arbitrarily given. Then (u,v)|j4 is the
solution of (Pﬁ(t)) on S = [0,t] with N(t) defined in (4.10). Thus Theorem 4.2 gives
||ul(t)/ﬂz||Loo < c44, 7= 1,...,m,

which leads to the desired L>°(§2)—estimate in (4.11). The corresponding estimate for the bound-
ary norms again follows from (1.20). Additionally, Theorem 4.3 gives

|(In(ui /@)~ (t)||nee, < dasg(t),i=1,...,m.

This leads to

which proves the last assertion. [

The lower bound obtained in (4.12) depends on ¢, especially it tends to zero if ¢ — oo. Thus it
makes sense to ask if there is a positive constant lower bound for the densities. This question
is closely related to the asymptotic behaviour of the solution of (P) which will be discussed in
the next section.
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5 Global lower bounds and asymptotics

5.1 Invariants and steady states

In this section we suppose the general assumptions (2.1)—(2.5). Further assumptions will be
specified later on. First, we introduce some spaces. By & C R™ we denote the stoichiometric
subspace belonging to all volume and boundary reactions,

S :=spanf{a —8: (o, 8) € REUR'}.

We define
U:= {’LL e X*: Uup = Z QZU'2|H; (<u171>7"')<um)1>) € S}
=1

and Ut := {v € X: (u,v) =0 Vu € X*}. One easily verifies that
Ut ={ve X:V¢(=0, ¢ € S* where ¢; = v; + vy, i = 1,...,m}.
Having in mind Remark 2.8 and using the test function (0,1,...,1) we obtain for a solution
(u,v) of (P) the following invariance property
u(t) eU+U VteR,. (5.1)

Remark 5.1. Let kK € ST and define

m

Ii(u) := Zﬂi(ui, 1), ue X*.
i=1

If (u,v) is a solution of (P) we find by (5.1) that
L(u(t) = I(U) Ve R,.

Thus each x € S* generates an invariant of the reaction-diffusion system. If (1.11) should be
fulfilled then ¢ = (q1,...,qm) € S and the corresponding invariant would represent the total
electric charge.

According to (5.1) it makes sense to look for steady states (u*,v*) of (P) which fulfil the property
ueld+U.

Theorem 5.1. There exists a unique steady state (u*,v*) of (P) in the sense that
A(v*,v*) =0, u* = Ev*, v €U+ U, v* € W. (5.2)

The element u* is the unique minimizer of F' on U + U, while the element v* is the unique
minimizer of ® — (U,-) on Ut. Furthermore

u*, v* € L°°(Q,R™), v* e L=°(I,R™T),

* T ¥ .
uf >c>0ae onQ, af :=e% 4% =const >0,i=1,...,m.

For the proof we refer to [26, Theorem 3.1] or to [24, Theorem 3.2]. Because of (2.2) the
assumption concerning the initial values required there is fulfilled.
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5.2 Asymptotics of the free energy

According to Theorem 3.2 we already know that the free energy along trajectories of (P) remains
bounded and decays monotonously. Now we want to investigate the asymptotic behaviour of
the free energy in more detail. Let (u*,v*) be the steady state (5.2) and let (u,v) be a solution
of (P). Because of v* € U+ and u(t) —u* €U, t € Ry, we get

Uu:
+/ (ea(v0 (1)) — eo(y)) dy + §1V (w0 () — v§) [} de
(5.3)
+ %(vo(t) — v} — w(vo(t) — vg))?dl
>c (Z ly/uit)/ug =132 + oo (t) = v513) ¥t € Ry
Here we used the properties (2.7) and (2.8).
Theorem 5.2. Let (u,v) be a solution of (P) and define
a(t) := (a1(t), ..., am(t)), ai(t) := ui(t)/u; %@ tcR,, i=1,...,m.
Then there exists a sequence {tx}ren, tx € Ry, with ty — +oo such that \/a;(tx) a; in
HY(Q), vo(tr) — v} in H, u(ty) — u® in Y where (a®,v]) belongs to the set
M = {(a,vo) eER! x H: Haf" = Haﬁ’ (o, 8) € REURT,
-1 (5.4)
(Eovo, U1, ..., Un) €U + U where u; :=u;a;e ¥, i=1,... ,m}
and it holds uf = Egv], uf = G;ale %%, i=1,...,m. Moreover, F(u(t)) — F(u®) ast — +oo.

Proof. 1. Let (u,v) be a solution of (P). Then for a; = e% it holds \/a;(t) € H'(Q) for a.a.
t € Ry and by Corollary 3.1 we obtain that

2
> C‘V\/a—,- .

For all (o, 8) € R*URT it holds

(¢ — ) (@ B) - ¢ > o[ [[ vai™ - [[ vai*]
i=1 i=1

and using Corollary 3.1 again we find that

D(v(t)) > ¢D(a(t)) fa.a.te R, with somec>0 (5.5)
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where
lN)(a) / { ‘V\/_Z + Z bgﬁ,R[ﬁ\/a_iai _ﬁ\/a_iﬁi]2}dq;
(a,8)ERS =1 =1 (56)
+/ > bgﬂR[le Hﬂz}
(a,B)ERT
with R = C3.5.

2. Moreover, by the definition of a; and a} (cf. Theorem 5.1)

Vailar — 1= eB 002 ( Juy fur — 1) 4 2002 1,

which yields with (5.3) and Corollary 3.1 that

I/ ai(t)/a} = 17z + oo (t) — will3 < c(lly/uit)/ui = 1l72 + lloo(t) — v5lI7m) (5.7)

< o(F(ut)) — F(u*)) < e(F(U) — F(u*)) VteR,, i=1,...,m.

These estimates will be used in some of the next proofs, too. Here they ensure that
Iai®)lBs + ool <e Vi€ R, (5.8)

3. Because of ’|5((1)“L1(R+) < 00 (cf. Theorem 3.2 and (5.5)) there exists a sequence ty — +00
such that D(a(tz)) — 0. This implies V/a;(tx) — 0 in L?, and since ||v/a;(x)]lz2 < ¢ (cf.
(5.8)) we conclude that /a(ty) — va® in HY(Q,R™) with v/a* € R™. Next, by (5.6) and

Fatou’s lemma we obtain
Hf“’ Hfﬁ’ ﬁa Ha'ﬁ’ (0, 8) e ROURT.

4. By (5.8) it holds |lvg(t)]| g1 < c. Therefore, at least for a subsequence, vy (tx) — v§ in H(Q),
vo(t) — v§ in L2(Q).

— —_a-n®
5. We set u} =w;aje” %% and uf = Y ;= giu!. Since

i () — |2 < e(lly/aite) — ﬁ;né +[ly/ai(te) — /g 2 + llvo(t) — v8l22)

we obtain that u(tx) — u® in Y.

6. It holds Eyvg(txr1) — Eovo(tx) = uo(trsi) — uo(tx). By the strong monotonicity of Fy and
because of up(tx) — u® in H*, vy(tx) — v§ in H(Q) we have vy(tx) — v§ in H(Q), too. Since
Ey is demicontinuous we find

Epv(ty) = Epvy in H*,  Eyvj = ug.

7. Since (Egvo(tg), ui(te),-- -, um(t)) = (Eouvd,ul,...,uy,) in X* and u(ty) € U + U it results
u® = (Epvg,ul,...,un) € U + U. Thus we finally get (a®,v]) € M.

8. Because of u®* € H* x L% (9, R™) and the continuity result in Lemma 3.2 we obtain that
F(u(ty)) — F(u®). The monotonous decay of the free energy (see Theorem 3.2) leads to
F(u(t)) » F(u®) ast — +oo. O
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Remark 5.2. If (u,v) is a steady state in the sense of (5.2) then a; := e¥it%% = const > 0 and
it holds [[;%, a;" = ITi%4 aiﬂ" for all (o, B) € R® URL. Moreover, we have (Eyvo, U1, ..., Un) €
U+ U. Thus (a,v9) € M. On the other hand, let be (a,v9) € M and a; > 0,7 =1,...,m,
then (u,v) defined by ug := Eyvy, u; := @; a;e 4%, v; :=Ina; — givg, i = 1,...,m, is a steady
state in the sense of (5.2). If there are elements (a,vy) € M with a ¢ int RT then we have no
correspondence of such elements to a steady state (u,v) in the sense of (5.2).

In order to exclude the situation which has been mentioned at the end of Remark 5.2 we shall
assume that

M C int R™ x H. (5.9)

Then by Theorem 5.1 M = {(a*,v})} follows.

Remark 5.3. For the van Roosbroeck system assumption (5.9) is fulfilled. But (5.9) can be
verified also for more complicated reaction systems considered in [38] (cf. the examples in
Section 8, to0).

Corollary 5.1. Let the additional assumption ( 9) be fulfilled and let (u,v) be a solution of

(P). Then vy(t) = vg in H, \/ai(t \/T, Vui(t) = y/ul in L2(Q) and a;(t) — af, ui(t) — u}

in LY(Q),i=1,...,m, ast—>+oo

Proof. Continuing the proof of Theorem 5.2 and using assumption (5.9) we now have a* = a*,
vy = vj, u® = u* and F( (t)) = F(u*) as t — +00. By the inequalities (5.3) and (5.7) we find

the assertions for \/u;(t), \/a;(t) and vy(t). With
Jui(t) — uillr < W uilt) = Juillzelly/ui(t) + /uillze, 1y/ui()lze <ecVEe Ry (5.10)

and corresponding estimates for a; we verify the last two assertions. O

5.3 Exponential decay of the free energy

The additional assumption (5.9) leads to sharper asymptotic results. Without the knowledge
of global a priori bounds for the densities from above and below away from zero it is possible
to show that the free energy along trajectories of the system (P) decays exponentially to its
equilibrium value. The proof is based on an estimate of the free energy from above by the
dissipation rate. The following result can be obtained by the same methods as in [26, Theorem
5.2] (or in [24, Theorem 4.2], there the nonlinearity ey of the Poisson equation is included, but
not the nonlocal term 7).

Theorem 5.3. We assume (5.9). Then for every R > 0 there exists a cg > 0 such that
F(Ev) — F(u*) < cgD(v)
for all v € Mg where

Mgr:={veW: F(Ev)— F(u") <R, EvelU+U}.

Theorem 5.3 enables us to improve the global stability results given in Corollary 5.1.
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Theorem 5.4. Let (5.9) be satisfied. Then there exists a A > 0 depending only on the data
such that

F(u(t)) — F(u*) < e ™ (F(U) - F(u*)) VYt>0 (5.11)

if (u,v) is a solution of (P).

For the proof we refer to [26, Theorem 5.3]. Next, we collect some estimates resulting from
(5.11) which will be of importance for the start of global a priori estimates for the densities
from below by positive constants.

Corollary 5.2. Let (u,v) be a solution of (P) and let (5.11) be satisfied. Then there exists a
constant ¢ > 0 depending only on the data such that fori=1,...,m it holds

I/ ui€)/ui = 1|2, Iy ai(®)/a; = 1]z < ce 2, (5.12)
loo(£) = vflle, [lui () = ufllL, lai(t) — afll < ce ™ Ve € Ry..

Moreover there exists a constant cs13 > 0 depending only on the data such that

[[vo — v5 |2 (R4,H1)> lvo — v5 | e (R4,L1)> |vo — v6||L1(R+,L1(F)) < ¢5.13, (5.13)

lwi/u; — Uiy, orys lui/wi — Ulpiw, oy < csas, i =1,...,m.

Proof. The assertions in (5.12) are a consequence of (5.11), (5.7) and (5.10). From (5.12) the
first four estimates in (5.13) follow immediately. By the L*>°-estimates for vy and v§ and since
ui(t)/uf € HY(Q) fa.a. t € Ry we have f.a.a. t € Ry

Jui(t)/ui — 1] < c(lai(t)/ai — 1] + [vo () — v5])

< c(|y/ai(t)/a; — 12 + [\/ai(t) /ar — 1] + |vo(t) —vi]) a.e. inQ,T.

With the trace inequality (1.19) we obtain

2/3
i fui = Ul < eflly/ai/a; = 13 + Iy /as/a; =175 + llvo — vl }-

Since ||D(v)||z1(r,) < ¢ we find by (5.5) and (5.12) that ||,/az/a Ulzewy,m1y < ¢ This
together with (5.12) proves the last assertion in (5 13 )

5.4 Global lower bounds for the chemical potentials

Next we are looking for global lower bounds for the chemical potentials, in other words, for
positive global lower bounds for the densities. We want to do this similarly to Lemma 4.2
and Theorem 4.3. Lemma 4.3 must be improved since now we have to look for a lower bound
which is independent of the length of the time interval. Corresponding estimates for the van
Roosbroeck equations were given in [21, Lemma 4.6]. But the main difference to our problem
is the fact that there essentially Dirichlet boundary conditions for the continuity equations are
used to find a start of the iteration process. This fails in our setting.

In what follows besides of (2.1)—(2.5) we shall suppose that there is a constant c5 14 depending
only on the data such that

willp= &y, L=(@)) 18i/WillLo®, Lo@)) <514, i=1,...,m, (5.14)
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and that (5.11) is satisfied if (u,v) is a solution of problem (P).

At first we prove a lemma which provides a suitable start for the Moser iteration.

Lemma 5.1. Let (u,v) be a solution of (P) and let (5.14) and (5.11) be fulfilled. Then there
ezists a constant ¢ > 0 depending only on the data such that

oy W)l <e, VEER;, i=1,...,m.

Proof. For fixed i € {1,...,m} the functional ®: H' — R, given by

“In(l—y) if y<0,

O(w) := /Qu:‘(x)ﬂ(w(x))dx, Iy) = {—i—oo if y>0

where u} is the i—-th component of the steady state (5.2) is convex and lower semicontinuous.
Its conjugate G := ©*: (H')* — R is proper, convex and lower semicontinuous. If (u,v) is a

solution of (P) then G(u;(t)) may be written as
Glus(®) = [ {uf (In2)7() = (ws =)~ ()} do.

u;

The function z := (1 — u}/u;)~ belongs to L% (R;,H') and for a.a. t € R, we have that
—Z(t) € 0G(u;(t)). Thus the Brézis formula (see [6]) yields

t t
Gui(t)) — G(U;) = —/ (ul(s), Z(s)) g ds = / (A(v,),(0,...,7,...,0))ds ViER,.
0 0
Let z := (In(u;/u})) . Since ¢} =const (see Theorem 5.1) we can evaluate
w;V (v; + qiv0)VZ = w;V[(v; — v} + qi(vo — v3)|VZ = —uf (V2)? + ulf¢;V (v — v) V.

Taking into account the boundedness from above and below of u; we derive for t € R}

t
Glus(®) < [ { =8 19213 + ¢l V(w0 = 05)12]V2]

" B2 e — P (o~ B (1~ ) da
+/ Z kLg[e¢ — 4] (i — Bi)( —Z—;) dr} ds + G(U5)
(o, B)ERT ¢

where 6 > 0. By assumption (2.2) the initial value G(Uj;) is finite. We decompose € into
Qi (s) :={z € Q:ui(s,z) >u;(z)}, Q_(s):={z€Q:ui(s,z) <u(z)}

On Q reaction terms multiplied by the test function vanish. Since (a*,v§) € M, af =

ul/u;et%, i =1,...,m,and a — B € S, {* € S+ we have in Q_
C_ oty (1 - Yy T (%4 oi(v0v5)) 8] (%
et —efY (1 - 1) = [ qu v~ ”0 M — g% (vo—vg j] —+ —1).
( ) (1- %) g T (et )] ()
The expression in the brackets as function of (u; /uj, ..., um/u),, vo—v§) is Lipschitz continuous

on [0,R]™ x [-R,R], R > 0, and at (1,...,1,0) its value is zero. Since u;/%;, j =1,...,m, and
vy are globally bounded (see (5.14) and Corollary 3.1) we get fa.a. s € Ry

o) — P4 oy — Bi] < oD fuj(s)/uj — 1] + [vo(s) — v5]) @ on Q2.
j=1
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Next, for a; > 3; (then o; > 1) we estimate (cf. also (2.10))

(€ — ) oy — ) 4

Uj

m
o ) ) 'C* . ok U; a;—1 u] o ,@ gk u] :3 'U;l
- (az - ﬂz)ea [eqa(vo ”0)(_2() H (E) 7 —ef (vo=v5) H (E) ’ Uz]
VES ) j=1 72
a-¢* ca (vo—v?)  Wiyo;—1 Uj\ oy B (vo—vj 7Y B
< (i — Bi)e™S [eq (vo 0)(u_:)a H(u_i)a]_eqﬁ(o O)H(u_i) J]
i j#i j=1 7
Again the term in the brackets is Lipschitz continuous in (u1 /uj, ..., um/uy,, vo—v§) on [0, R]™ X
—R,R|, R >0, at (1,...,1,0) 1ts value 1s zero and f.a.a. s €
R,R|,R>0 1 1,0) i lue i df
a-((s -((s u; - * *
(<6) _ efC) (0 — ) u.(zs) < e Y lus(s)/uj — 1]+ [vo(s) — v5])  ae. on Q.
(2 ]:1

Similar estimates are obtained for a; < ;. The same arguments hold for the boundary terms.
Applying (5.13) we continue estimate (5.15) by

G(ui(t)) <c {1 + Jvo — w3172 =, a1y + w0 — v5llzrm, oty + llvo — V3 llr, L1y

+ 3 (luifuf = U@y + lui/uf = Ulneopey)} <e FEER,,
j=1

From the definition of G we thus obtain that ||z(-)||z: is bounded on R, . Since

Ui\ — uy

v; (1) = (In=) (t) < 2(t) + (In =)

Uj Uj

the assertion of Lemma 5.1 follows. O

Theorem 5.5. Let (u,v) be a solution of (P) and let (5.14) and (5.11) be fulfilled. Then there
ezists a constant cs.16 > 0 depending only on the data such that

llv; (8)]|z> < cs.16, eszseisrzlfui(t) > eszsei(rzlfﬂi e T VYeR,,i=1,...,m. (5.16)

A corresponding estimate holds for the L*°(I')-norms of v; (t) for a.a. t € Ry.

Proof. Arguing as in the proof of Theorem 4.3 with z(¢) := (In(u,(¢)/w;) + K)~ and K defined
in Lemma 4.2 we obtain inequality (4.9) for allt € Ry, i =1,...,m, since c4.9 does not depend
on the length of the time interval. By Lemma 5.1 we therefore obtain the global boundedness
of ||z(t)||ze=. The estimates for the boundary norms follow from (1.20). O

Corollary 5.3. Let (u,v) be a solution of (P) and let (5.14) and (5.16) be fulfilled. Then by [26,
Theorem 5.1] relation (5.11) is satisfied. Thus, if global upper bounds are known the ezxistence
of global lower bounds is equivalent to the fact that the free energy decays exponentially to its
steady state value F'(u*).
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5.5 Asymptotics of the densities and potentials

Theorem 5.6. Let (u,v) be a solution of (P) and let (5.14) and (5.16) be fulfilled. Then there
exist constants ¢, A, > 0 depending only on the data such that

m
> lui(t) —uf|le < ce Mt VE>0,
=0

m
Z |vi(t) — v}l < ce ™' Yt>0 wherep € [1,+00).
i=0

Proof. Because of Corollary 5.3 the estimates (5.12) are valid. By (5.14), (2.12) and by (5.12)
we obtain for p € [1,400),i=1,...,m

lus(t) = uf 1o < llui(®) = wfllpllus(t) —uillfe < Fe 2 VieR,.

Since by (5.12) |Jvo(t) — v§|lz1 < ce™#2 and by Corollary 3.1 ||vp(t) — vz~ < ¢, t € Ry, we
estimate

loo(t) = w312, < llvo() = villzsllvn(t) — vpIE=E < @ Hlvo(t) — willm < Pe 22 Vi€ R,
Under our assumptions we find
[0i(t) — o l|r = [Inws(t) — Inuillps < ellus(t)/ui — 11 VE€ Ry

which together with the estimates (5.14) and (5.16) proves the second assertion. O

5.6 Summary

Now we summarize our results which we have obtained under the assumptions (2.1)—(2.5) com-
pleted by the growth condition (2.6) and by the nondegeneracy requirement (5.9).

Theorem 5.7. We assume (2.1)—~(2.5), (2.6) and (5.9). Then there is a unique solution of (P).
For this solution global estimates as in (4.11) and (5.16) are satisfied. Moreover the results on
the asymptotic behaviour as in Theorem 5.4 and Theorem 5.6 are valid.
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6 Electro—diffusion systems with weakly nonlinear volume and boundary
source terms

6.1 Formulation of the problem (Pg)

In this section we are looking for a general existence result for a system of continuity equations
with bounded Lipschitz continuous right hand sides and boundary terms coupled with the
(possibly nonlinear, nonlocal) Poisson equation considered on arbitrarily fixed time intervals S.
The purpose of such a result is that the solvability of more general equations of the form (1.5),
(1.8) (for example with reactions of higher order) could be proved by means of our result if it is
possible to regularize the reaction and boundary terms in a suitable way and to derive a priori
estimates for this regularized problem which are independent of the regularization level.

We investigate such problems under the general assumptions (2.1)—(2.4) and replace the as-
sumptions (2.5) and (2.6) by the following ones:

For X =Q,I', i=1,...,m, we have
i) g¥: ¥ x R™*l x R — R satisfies the Carathéodory conditions,
ii) |97 (2,9,2) — 97 (2,7,7)| < Ly max (maxi—o,...m [yi — Fil, |z — )
faa.z € X, Y(y,z2), (¥,2) € R*t2 0 (6.1)
i) Y, g7 (,v,2) (v +qivo) >0 faa.xz €, V(y,2) € R™H2,

iv) |gF(z,y,2)| <c* faa.z e X, V(y,z) € RmH2

v) gr(z,y,2) <c¥e¥ faa.z €Y, Y(y,z) € R™? with y; < 0.

We consider the problem

u'(t) + Ag(v(t),v(t)) =0, u(t) = Ev(t) fa.a. t€ S, u(0) =U, }
(Pe)

u € HY(S,X*), ve L*S,X)NL>(S, L>(Q,R™1))

where FE is defined as in Subsection 2.2 and the operator Ag: W x X — X* now contains
modified volume and boundary terms g{¥, g- and is given by

<AG(’LU,’U),5) :[ZZ {DiﬁiewvaZ ’ VZz +g1§2(’w77r(w0))21} dz
i=1
+ [ 3 o Cw @) Gdr, ex,
Izt
where i = v; + qivo, (; =Ti +qivo, i =1,...,m.

6.2 The regularized problem (Py)

To prove existence for (Pg) we investigate a regularized problem (Py;) which arises from (Pg)
by cutting the nonlinearities in front of the diffusion terms and in the statistics and adding some
regularizing term vanishing under the cutting level. We show the solvability of (Py) and find
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a priori estimates not depending on the cutting level M. Thus a solution of (Py) is a solution
of (Pg) if one had taken the cutting level sufficiently large. We fix M > M* > 1 with

EiefM* <U; < EieM*, t1=1,...,m. (6.2)
We denote by Py the projection from R onto [—M, M],
M if y<-—M,
Py (y) == y if yel[-M, M]
M if y>M,

and define operators Epr: X X X — X*, Fpp: X — X* and Ay: X x X — X* by
(Ey(w,v),v) := (Eyvp, Do) + /Q iﬂiePM"”' vide, ve€X, Epv:=Ey(v,v),
i=1
(Apr(w,0),7) == /Qé{DﬂwPMw’VQ - V¢ + Cu (G — Pywi — Par(giwo)) €
+ g Cow () S de + [ S gF (w m(un)) Gar, T X
i=1

where (; = v; + qvo, {; =; + q;Ug, i = 1,...,m, and
Cuy :=2 max{Lo(m + 1) + 2¢1.192 L2 (m + 1)25M71,5M},
c1.19 comes from the trace inequality (1.19), and dp; > 0 is fixed such that
o < Diuge M faa. ze€Q,i=1,...,m.
We are looking for solutions of the regularized problem
u'(t) + Ap(v(t),v(t)) =0, u(t) = Epo(t) faa. t €S, u(0) =U,
u € HY(S, X*), v € L*(S, X). }

6.3 A priori estimates for solutions of (Py)
First, let us note that assertions like in Remark 2.8 and Remark 2.9 are valid. Especially it

holds wu;(t) = we™v®) in L>°(Q) for all t € R,. Energy estimates as in Section 3.3 can be
obtained, too. We define regularized energy functionals ®5;: X — R

vo m Uy
®pr(v) ::/Q{§|Vv0|2+/0 eg(y)dy+zm/0 ePMydy} dm—i—/r %(’UO—TI'(U[]))ZdF,
i=1 N

and Fyy := ®},. It holds 0®ys(v) = Epv. Thus, if u = Eyv, v € X, then
Fyr(u) =(Epyv,v) — @pr(v)

:/Q {%|Vv0|2 + ¢o(vo) + i (Ui(lng —1) +m)} dz + 7 (vo — ”(”0))2dr'

i=1 i Iy



34 6 Electro—diffusion systems with weakly nonlinear source terms

Let (u,v) be a solution of (Py) with M fulfilling (6.2). Then v(t) € dFn(u(t)) for a.a. t € S.
Because of (¢; — Pasv; — Ppr(givo))¢; > 0 and the property (6.1), iii) of g we have (A (v,v),v) >
0 and we can conclude by the Brézis formula (see [6]) that

Far(u(t)) + /(:(AM(v,v),v) ds < Fy(U) = FU)<c Vt€S

independently of M. Note, that by Lemma 3.2 and (6.2) the values for F(U) and Fj(U)
coincide. With (2.7), (2.8) we find by the definition of Fj; that the norms ||vg(t)||z1 and
|lui(t) Inw;(t)|| 1 for ¢ € S are bounded independently of M. Thus ||ug(¢)In |ug(t)|]|z: < ¢ for
t € S and the relations (3.1) and (3.2) guarantee independently of M the estimates

lvo () llz== [lvo(E)l[ Lo (), [ (vo ()] < ce.3,

m (6.3)
loo () llwre < (D i)l p2as vy + 1) VEE S.
i=1

Lemma 6.1. We suppose the assumptions (2.1)—(2.4) and (6.1) to be fulfilled. Let M >
max{cg.3 Max;=1,..m |qi|, M*}. Then there exists a constant ¢ > 0 not depending on M such
that

lus@)lpe < VEES,im1,...,m,

for any solution (u,v) of (Py).

Proof. The proof is based on the ideas of Lemma 4.1. Since we have for any solution (u,v) of
(PM) and for K > max{l, “UI/EIHL"O; Ceey ||Um/ﬂm“L°°} that

U U
(G = Parvi — Par(givo)) (= — K)" = (v — Pyv)) (== — K)" >0

i Uj

we can omit this term in our estimates. Additionally, taking into account that now u; = w;efMv:
and that by assumption (6.1), iv) all volume and boundary source terms may be estimated by
c” times the test function. According to relation (6.3) || Vuo||z« can be estimated in exactly the
same way as in Lemma 4.1. [

Lemma 6.2. We suppose the assumptions (2.1)—(2.4) and (6.1) to be fulfilled. Let M >
max{ce.3 maxi—1,..m|qi|, M*}. Then there exists a constant ce.4 > 0 depending on the data,
but not on M, such that

llui(t)/Til|lpe <cea VEES,i=1,...,m, (6.4)
for any solution (u,v) of (Py).
Proof. Having in mind the remarks in the proof of Lemma 6.1 concerning the regularized

terms and the boundedness of the source terms g (cf. (6.1), iv)) the proof is the same as in
Theorem 4.2. [

Lemma 6.3. We suppose the assumptions (2.1)—(2.4) and (6.1) to be fulfilled. Let M >
max{ce 3 max;—1,. m |¢l|,In(cea +1),M*}. Then there exists an increasing function des de-
pending on the data, but not on M, such that

Hln (’uz(t)/ﬂz)“[/oo < d6_5(T) Vt € S, t1=1,...,m, (65)

for any solution (u,v) of (Py).
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Proof. We apply the techniques of the proofs of Theorem 4.3, Lemma 4.2 and Lemma, 4.3.
Again we set z = (In(u;/%;) + K)~ with K from Lemma 4.2. Due to the choice of M for any
solution of (Pyp) it holds g;vg = Pa(givg) and v; < Pyo; (see (6.3) and (6.4)). Therefore it
follows that .
Ui o,
—(¢i — Pyvi — Pu(gi vo))u—z_z” 1>0
(2

and this term can be omitted in the estimates. If z > 0 then it holds e¥i < efMVi = y; /u; and
v; < 0. Therefore we obtain from (6.1), v) the relation

gr 2Pl < Peti LTl < Bl ¥ =Q, I
U; U;
Thus the estimates of Lemma 4.2 remain true, and we can continue to argue as in the proofs of
Theorem 4.3 and Lemma 4.3. O

6.4 Solvability of (Py)

For fixed M, we use a time discretization scheme to show the existence of a solution of (Py).
For n € N let h,, := T/n and S) :=|(j — 1)h,,jhs]. If V is any Banach space we denote by
Cr(S,V) the space of all functions u: ]0,7] — V which are constant on each of the intervals
Si. The value of u € C,,(S,V) on S is denoted by u/. We define the operators

An i Co(S,X*) —s Ca(S,X*), Kn: Co(S, X*) —s C(S, X*),
. 1
(Anu)] = h_(uJ - U’J_l)’

1,/ . . . . .
(Kno)(t) := h_((tg —tyd T (- ) Ve e s]
where u® := U is the initial value of problem (Pg). Obviously, (K,u)' = Aj,u. For n € N we
investigate the problem

Apun(t) + Apr(vn(t),vn(t)) =0, un(t) = Epon(t) Vit € (0,71, ( )
PMn
v € Cn(S, X).
Remark 6.1. As in Remark 2.8 for solutions of (Pyyy) it holds that
Uno(t) = Z qiuni(t)|y in H* VteS. (6.6)
=1

Lemma 6.4. We assume (2.1)—(2.4) and (6.1). Then for every n € N there exists at least one
solution of (Pwym). Furthermore

sup {[[onl12(5,x) + [Kntinllogs,v) + [ Kntnllirs s,y § < 00 (6.7)

Proof. 1. We show that for given w/~! € X*, h,, € Ry, there exists a solution (u/,v7) € X* x X
of the problem

W A hp Ay (v, 07) = Wl = By (6.8)
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Let B: X — X* be defined by B(v) := Epv + hy, Apr(v,v). Using the decomposition B(v) =
B(v,v) with

B(w,v) = SM(U),’U) + hn AM(’lU,’U), (w,v) € X x X,

we easily find that B is a coercive operator of variational type (cf. [48]). By [48, p. 182] the
problem (6.8) has at least one solution.

2. Next, we prove estimates for the solutions (un,v,) of (Pyyu). Since for ¢ > 0 it holds
Un(t) = Eprvn(t) € 0Par(vn(t)) we have v, (t) € OF(un(t)) and

(un(t) — @, vn(t) > Far(un(t)) — Far(@) Vae X* Vte (0,T).

Therefore, for [ = 1,...,n,

1 [
Fy(uh) — Fy(U) =Y Fag(ud) — Fa(uimh) < (ud — ud ™t ol)
: =
[

:—hnz Apr (v, vi),vl) < —hy, Z (e ZHC il — Cu)-

Because of the definition of Fys, (2.7) and (2.8) we obtain that

SUPHUnOHLoo S,H)) SuP “CnHL2 S,(HY)™)» SuP||Un||L2(S,X) < o0.
neN neN

Thus, from Aju, = —Ap(vn, vn) we get

sup || Anun||2(s,x+) < 00
neN

The equation u, = Epvy, forces that u,; = w;ef™i in L> (S, L?), i = 1,...,m. Having in
mind (6.6) we state u,o = Y 1", qitni in L™ (S, L?) and we find that K,u, € C(S,Y) and

sup ||Knun“C(S,Y) < 0o.
neN

Since || Knun||z2(s,x+) < cl[Knunlz2(s,y) < cl|Knunllc(s,y) and Apu, = (Knuy,)' we obtain

sup||K Un || g1(s,x+) < 00
neN

which completes the proof. O
Lemma 6.5. We assume (2.1)—(2.4) and (6.1). Then there exists at least one solution of (Pyp).

Proof. 1. Let, for n € N, (up,v,) be a solution of (Pyp). Because of (6.7) there exist v €
L?(S,X), u € H'(S,X*) N L2(S,Y) such that, at least for subsequences, v, — v in L? (S, X),
Knu, — uin HY(S,X*), L?(S,Y). In particular, Kpu, — u, Aju, — o' in L2(S, X*). If
t €S, v € X are fixed the mapping

w— (w(t),)x forw e HY(S,X*)
defines a continuous linear functional on H'(S, X*). Therefore

Kpup(t) = u(t) in X* Vte S. (6.9)
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We find that
[un — Kntn|22(s,x+y < hallAnunlZo(s x+) = 0.

Thus, without loss of generality, we may assume that
(Knup —up)(t) > 0in X*,  wup(t) = u(t) in X* fa.a. tesS.
Since || Kpun(t)||y, ||un(t)|ly < cforall t € S (see (6.7)) we conclude that
Koun(t) 2 u(t) in Y VEES, u,(t) mu(t)inY faa teS. (6.10)

Because of K,u,(0) = U we have u(0) = U.

2. From u,; = @; e’ we find by (6.7) that the sequences (upn;/W;)nen, @ = 1,...,m, are
bounded in L? (S, H'). From (6.10) we have that

Uni(t) /T — wi(t)/u; in L? faa. t €S, i=1,...,m. (6.11)
Thus, applying Lebesgue’s theorem
Uni/U; — u;/T; in L2(S,L?), i=1,...,m. (6.12)
Now we use the inequality (6.40) in [46, p. 529]:

For all € > 0 there is an N, > 0 such that

Ne
2 .
lwlfe <D (w,95) 7. +ellwllfn Ywe H(Q)  ({t;}jen ON-base in L?).
i=1

We integrate this inequality for w := un; /u; — uy; /u; over [0,T]. Using (6.11), the boundedness
of u,(t) inY for t € S, n € N, Lebesgue’s theorem and the boundedness of uy;/@; in L? (S, H'),
we find that {u,;/%;} is a Cauchy sequence in L2(S, L?). By (6.12) we get

Uni/Ti = Ui [T, Upi — u; In L*(S, L), i=1,...,m. (6.13)
Together with K,u, —u, — 0 in L? (S, X*) this leads to
(Kpun)i = u; in L2(S, (HY)*), i=1,...,m. (6.14)
3. Because of (6.6) and (6.13) we obtain from u,g — ug in L?(S,H*) and 31", qitn; —
S™ . qiug in L2(S, (H')*) that

Upy — Uy = Z giti| gy in L%*(S,H*), u, — u, Knpu, — uin L? (S, X*).
i=1

4. Let & € Y with Fy(a) < 400 and S; be any subinterval of S. Since for ¢ € (0,71,
un(t) = Eprvg(t) we have v, (t) € OFpr(un(t)). Using v, — v in L? (S, X), u, — u in L% (S, X*)
and the lower semicontinuity of Fjs on X* we conclude that

/51 (i —u(t),v(t))dt = lim | (it — un(t), vn(t)) dt

n— o0 S1

<limsup [ {Fum(@)— Fp(un(t))}dt

T—00 S1

< Js, {Fum(a) — Fu(u(t))} dt.
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Because S; was an arbitrary subinterval we obtain
(@ —u(t),v(t)) < Fy(a) — Fy(u(t)) faa. teS

which means v(t) € 0Fy(u(t)) f.a.a. t € S. Thus u(t) € 0Py (v(t)) = Emo(t) faa. t € S and
Fuy(u(t)) — Fy(U) = /Ot(u'(s),v(s)) ds VteS. (6.15)
5. By the Lipschitz continuity of Eal and by u, — v in L%(S, X*) we find
[vno — Eg M uol|32(s, g1y = 1B uno — Ej M oll72(s gy < elluno — ollZzs gy — O-

On the other hand, we have v, — v in L? (S, X) which implies Eo_luo = vy and v,9 — vy In
L% (S,HY), vy € L* (S, H).

6. In what follows f,, denotes terms with lim,, ;o f = 0. Since v,, — v in L2 (S, X), Apu, — o'
in H'(S, X*) we obtain from (Pyr,) and (6.15)

0= /S(Anun + Apr(Vn,vn), v — v) ds
=fn+ /S(Anun,vn) — (U, v) + (A (vn, vn) — Apr(v,0), v, —v)ds (6.16)
—f 4 Far (un(T)) — Far(u(T)) + /S(AM(vn, vn) — Ant(0,), v — v) ds.
We split the terms with Aj; in two parts and estimate each part separately. Firstly,

<AM('Un;vn) - AM(vn;v);vn - ’U>

_m 7. oM Un . )2 )2

> 3 {8l ¥ 6o~ G+ Corlos = Gl
Secondly, _
/S(AM(vn,v) — Ay (v,0), 0 — v} ds =
L/ i {Diltns = w) VGV (Gui = 6) + (92, vy w(0a0)) = 92,0, 7(00)) G = )
— Cat(Parvns — Prrvi + Par(9ivno) — Par(gi00)) (Gui — Gi) } do
+ 3006 G m(onn)) = oF v, m(un))) G = G T ) .

By (6.13) and v, — v in L? (S, X) we conclude that Pyvn; — Pavi, Par(givno) — Par(givo)
in L2 (S, L?), Cni — ¢ in L2 (S, HY), (uni — u)V¢ — 0in L2 (S,L?), i = 1,...,m. Thus we
find that the gradient terms as well as the terms with Cjs tend to zero if n — oo. Moreover,
since by assumption (6.1), ii) the functions g*(z,-,-) are uniformly Lipschitz continuous and



6.5 Existence and uniqueness result 39

|Uni — vi| < |Cni — G| + 1gillvno — vol, |7(vno) — T(v0)| < exllvno — vollg1, we obtain by the
boundedness of ||(ni — (il 12(s,51) and vpo — o in L?(S,H') that

[ (A (0, 0) = Ans (0,0), 00 = v ds > £,
[ 3 {Balm 4+ 1)l6us = Gl + k10 L (m + 1) 6ot — Gl + 5 Gus — Gl ds
i=1

Because of the choice of Cjs from (6.17) and the last inequality we get
[ At ta) — Ase(0,0),00 ) ds > o+ i“Cm’ Gy (618)
Inserting this in (6.16) we obtain
Far(u(T)) — Fos(un(T)) > fou + % Z [Gus — GillZa(s, 1

Since F)y is weakly lower semicontinuous on X*, K,u,(t) — u(t) in X* for all t € S (see (6.9))
and K,u,(T) = u,(T), n € N, we find
lim inf Fys (un(T)) > Fag (u(T)).

Thus, passing to the limit we obtain
m
limsup Y [|¢ni — Gill F2(s, 71y <O

This means (,; — ¢ in L?(S,H'), i = 1,...,m. Combining this result with v,y — v in
L?(S, H) we get v, — v in L? (S, X).

7. The last convergence result implies immediately that Ans(v,,v,) = Ap(v,v) in L2 (S, X*).
From the first step we know that Aps(vn,vn) = —Apu, — —u' in L?(S,X*). Thus u' +
Apr(v,v) =0 a.e. on Ry, the validity of u = Epv a.e. on Ry was stated in step 4, and so the
proof is complete. [

6.5 Existence and uniqueness result

Theorem 6.1. We assume (2.1)—(2.4) and (6.1). Then there ezists a unique solution of (Pg).

Proof. Let (u,v) be a solution of (Py) (see Lemma 6.5) with M satisfying

M > max {cg.3 _max |gi|,In (ce.4 + 1), de.5(T), M*}

(see (6.3), Lemma 6.2, Lemma 6.3, (6.2)). Then we have v; = Ppv;, ¢;vo = Par(qivp) a.e. on
SxQ,i=1,...,m, and therefore (u,v) is a solution of (Pg), too. Uniqueness can be proved as
in Theorem 3.1 now using the uniform Lipschitz continuity of g7 (z,-,-), 3 =Q, [, i=1,...,m
O
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7 Relations between the basic model and the reduced model

7.1 Preliminaries

In this section we investigate relations between the basic model (1.5), (1.8) introduced in Sub-
section 1.1 (where the kinetic coefficients in (1.14) are finite, but very large) and the reduced
model (1.5**), (1.8**) derived in Subsection 1.2 (under the assumption that these kinetic coef-
ficients tend to infinity). For this purpose all quantities, spaces and operators for the reduced
model are marked by a ‘~’ whereas all quantities belonging to the basic model have the same
notation used in the previous sections. The common weak formulation of both problems has
been given in Subsection 2.2. In Table 1 we summarize once more, how relevant quantities have
to be chosen in order to get the basic model and the reduced model, respectively. As in the
previous sections we suppose that for the data of the basic model (P) at least the assumptions
(2.1)—(2.5) are fulfilled. From this one easily obtains corresponding properties for the data of
the reduced problem (P) what is summarized in the following lemma.

Lemma 7.1. The assumptions (2.1)-(2.5) for (P) ensure the validity of the corresponding prop-
erties (2.1)—(2.5) for (P). If for (P) additionally (2.6) is fulfilled this property is carried over
to the reduced problem.

basic problem (P) reduced problem (P)

number of species m m=m — 2

densities Up = Y iy Qi Ug = Y iy il

ui, t=1,...,m ui, 1=1,...,m

potentials vy, v, t=1,...,m | vy, v, t=1,...,m

Hilbert spaces

H = H}QUTy)

X = H x H'(Q,R™)

H=H}QUIy)+R

X = H x H'(Q,R™)

continuity equations

RE C ZT x LT

R,3 asin (1.4)

RE C Z’_T_‘ X Z’_T_‘ as in (1.4*)

R~

55 asin (1.4*)

Poisson equation

60(”0) = 2211 q:U;

€0(Vo) = 2it1 QUi + Upm—1€"° —Up e

|FD|—1/ v dI, ITp| #0
ﬂ'(’l)()) =0 7?(170) = I'p
1 ~
||THL1(I‘N) /I‘N T Vo dF, |FD| =0
initial values Uo = > i qiU; Uy = Zil aiU;
U;y, i=1,...,m (NIZ:Uiz—l, .,m

Table 1: Overview on relevant quantities for the basic and the reduced model, respectively.
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Remark 7.1. The result concerning the validity of (2.6) for (P) can be improved as follows.
Assume that for (P) the reaction terms have the more general property

1=1,...,m—2

m—2
max {(ea-C — eﬁ-C)(ﬁi _ ai)} < cec(|§m*1|+\Cm\)( Z 56 N 1)
j=1

V¢ eR™, Y(a,B) e RE, E=Q,T, withng=2,np=1,¢>0

then for (P) the assumption (2.6) is fulfilled. Thus, for models including some special higher
order reactions (of higher order with respect to electrons and holes) existence results can be
obtained by the methods of this paper if the corresponding reduced form of the model is used.

Let us remember that the reduction of the model equations was carried out under the assump-
tions that for the basic model the relations (1.11) are fulfilled, that ¢,,—1 = —1, ¢ = 1 and
that the special reaction (1.13) is present. These assumptions imply

0,...,0,1,1) €S, ¢g=(q1,---,qm_2,—1,1) € S* (7.1)

and we shall suppose the properties (7.1) to be fulfilled in this section, too. By (7.1) we easily
find that

if K = (K1,.-.,Km) € ST then Ky 1 = —Km, (7.2)
K=fkmq+& with® € S, Rn_1 = R = 0. '
From the definition of R®, R in (1.4**) we obtain
S = {ﬁERﬁb: ﬁi:pi,izl,...,ﬁl,pES},
St = {% € R™: (%,0,0) € SL}
and (7.2) ensures that
k € 8t if and only if k = £ ¢ + (%, 0,0) and & € S*. (7.3)

Finally, this implies that dimS+ = dimS+ — 1 and dimS = dimS — 1.

7.2 Reconstructed quantities

We do not expect that the kinetics of the reduced problem (P) and of the basic problem (P)
coincide, but we shall show that some important properties are preserved nevertheless and that
both problems are asymptotically equivalent in some sense. By (1.15), (1.16) and (1.17) we have

a rule, how to compute from quantities related to the reduced model (P) new quantities related
to the basic model (P). We will mark these reconstructed quantities with a ‘—’. Thus we define

the vectors & = (%o, ..., um), 0 = (V0,...,0m) and ¢ = (Cq,..., Co)y @ = (a1,...,am) by
1=0 t=1,....m—2 |i=m—1m
uo = Eyvg Ui = U; U :ﬂiefqifvvo
50 = ’170 — 77'(’(70) 51 = 51' 51 = —qiﬁo (74)

Ci =G — (@) | C; = —qiw (%)

a; = fdie*qi;(fao) Eil — efqi;(ao)
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and obtain that the so defined quantities fulfill the relations
u; = e’ :ﬂiaie_qﬁ;o, a; :eCi, Ez = \’Ei—l-qiio, 1=1,...,m. (75)

We apply the formulas (7.4) not only to solutions (u,v) of (P) but also to the corresponding
initial value ( V) = (@(0),5(0)) and steady state (@*,7*). These reconstructed quantities are

denoted by (U, V) and (z*,7"), respectively.

Lemma 7.2. Let o € H, & € H* x L% (Q,R™2) be given and let Vo, u be defined as in (7.4).
Then vy € H, u € H* x Lﬁ_(Q,Rm). Moreover, the following assertions are valid:

i) If Egvy = U then F(V) = ﬁ(a).

i) If Eyto = 1y and Gy = Z q;u; in L2(Q) then ug = Z%Uz in L?(Q).
i=1

iii) If Eyty = g andueu+U then w € U +U.

Proof. Essentially the proof is based on the definition of the spaces H, H and on properties of
the functional 7 (see Table 1 and (2.3)).
i) Taking into account that Fyvg = ug, Eyvy = 49, we obtain

F(a):ﬁ(a)-/ﬁ{qs0 %) i {uz(ln%—l)+ﬂi}}dm:ﬁ(fi)
i=m—1 ¢
since (see Remark 2.3)
doi) = — 30 {ame 4w P -n)= Y (@ (1w 1) +m).
i=m—1 i=m—1 4

i) For arbitrary h € H C H we find that

(o, h)m = (Eovo, h)u
= (Eo¥io,h)  + /Q(eo — &o(0)) hdz

_ (&0,h>§+/ﬂ(eg — &(@)) hdz
m—2 m
:/Q{ ;qiui—i-eg—eg(vg)}hdm:/ﬂgqiuihdm

and thus g = 7% ¢;u; in L?(9).
iii) @ — U € U means that

G-~ Up= Y qi(@ —U;) in L*(Q), > &i(@ — Ui, 1)y =0 VR € S*.
Since Uy = ;’;12 qiUi, Up = 31" q;U; (see Table 1) because of ii) we obtain

g —Up =Y qi(u; — U;) in L*(Q)
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and it remains to show that

ZK/AEZ - U, 1>H1 =0Vk € St
First we set kK = q. Then

Zqz u; — Ui, 1 H1 /Z% u; — U dm—/{z%uz_ }dm_<u0_E0v0a >H:0

For arbitrary x € S* by using the decomposition (7.3), & = (&,0,0) + K,q, & € S, we ensure
that

m m—2 m
ZK/AEZ — Ui, 1>H1 = Z Ez('ﬁz — Ui, 1>H1 + Km Zqz(ﬁz - Ui, 1>H1 =0. O
i=1 =1 =1

Lemma 7.3. Let (i, 5) be a solution and (", 0") the steady state of (P). Let (@, ) and (3", 3")
be defined by (7.4). Then

Vo € C(Ry, HY(R)), &, € C(Ry, L2(Q,R™1)), w(0)=U, 5(0)=V.

Moreover, there is a constant ¢ depending only on the data of (P) such that for all t € Ry the
following relations are fulfilled:

[oo@lla; [vo®)llz= <,

Z (@)= < e Z ()= + 1),
Z 15:(0) 1= < e Z [:(t)llp> + 1),

IIvo( ) = Vol < CIlvo(t) — 0|1,

m m—2
S lai(t) = w5l < e (D s(t) — @l + 150(t) = 5 lzs ),
=1 =1

m m—2
Yo lTat) = o3 llee < c Z 19:(t) = 5 |lLe, P € [L,+00).

Proof. We know that 9y € C(Ry, HY(Q)) (see Remark 2.9) and ||7g(t)|| 1, |90(t)||L~ < c for
all t € Ry (see Theorem 3.2, Corollary 3.1). Then because of (7.4) we obtain for i =m — 1,m

lui(ty) — wi(t2)llz2 < cllvo(t1) — vo(t2)llr2, t1,t2 € Ry

and thus U, 1, um € C(Ry,L?). Again taking into account Remark 2.9 and (7.4) all other
assertions are easily verified. [

The results of Lemma 7.2 and Lemma 7.3 show that further properties which can be derived
for the ‘~’—quantities of the reduced problem (P) like the global estimates in (4.11) and (5.16)
and the results on the asymptotic behaviour of Theorem 5.4 and Theorem 5.6 carry over to the
—’—quantities. For example, if (P) is solvable and for its solution (&, ) it holds for all ¢ € R,

F(a(t)) - F(@*) < e M (F(U) — F(@")), Z [@i(8) = @fl| s + 150 (t) — TGl s < ce 2
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then for the reconstructed quantities (u, v) we obtain

F(a(t) — F(a") <e ™ FO) - F(@"), S llai(t) —uillp + |50(t) — vgllm < ce 2.
i=1

7.3 Invariants, steady states and asymptotic behaviour
An immediate consequence of Lemma 7.2,iii) is the following result.

Theorem 7.1. Let (@,7) be a solution of (P). Then

W) EU+U VtER,.

This result means that up to the transformation (7.4) both problems (P) and (P) have the same
invariants: If I,,, K € S, is given as in Remark 5.1 then

Ie(u(t)) = Iu(u(t)) = I(U) VteRy

for any solution of (P) and (f’),Nrespectively. Next we show that again up to the transformation
(7.4) both problems (P) and (P) have the same steady state.

Lemma 7.4. Let (a,5) € M be given and let (a,v) be defined according to (7.4). Then
(a,vy) € M. Moreover, if a € int RT_Z then a € int RT, too.

Proof. (a,vy) € M means that @ € R’f‘z, v € H,

m—2 -2 < _ _ ~

[MTax-]a =0 v@&p) eREURE,

i=1 i=1 (7.6)
@ € U + U where @iy = Egdy, U = Uzae ¥, i=1,...,m—2.

Now define (@, vo) as well as u according to (7.4). Obviously, we have a € R}, vq € H. For

arbitrary (a,3) € R2URE we set @ = (o1, ...,am—2), 8= (B1,--.,Bm—2). Then because of
(1.4**) and (7.6)

m m P . _.m—2 m—2 E

~ —~Pi __ —qan(vg ~ O ~Pi| __
[[a"-]]ai" =e ()[Hai’—Hai’]—O
=1 =1 i=1 =1

is obtained if (&, 8) # (0,0). Otherwise this relation is trivially satisfied. Finally, we have
Uy = Egvoy, u; =T;aie LU0 i=1,...,m,

and by (7.6) and Lemma 7.2,iii) we conclude that u € U + U. Thus (a,vy) € M. The last
assertion of the lemma, follows immediately from the construction of a from @ and 75. O

Theorem 7.2. There are unique steady states (u*,v*) of (P) and (a*,v*) of (P) and it holds
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Proof. The existence of the unique steady states for (P) and (P) (in the sense of (5.2)) follows
with Lemma 7.1 from Theorem 5.1 applied to the corresponding problems. If (u*,v*) is the

steady state of ( ) then the related quantities (a*,vg) with a; = € z+‘1’”0 i=1,...,m — 2,
belong to M and a* € int R ? (see Remark 5.2). Because of Lemma 7.4 the pair (a”,v;)
lies in M and @ € int RT. Again using Remark 5.2 the pair (u",?") with a5 = Eyv,,

Ui =wia;e %Y, o) =1In(u;/u),i=1,...,m, is a steady state of (P). The uniqueness of the
steady state of (P) now ensures that u* =2, v* =2". [

Now we are able to prove the announced asymptotic equivalence of both the problems (P)
and (P), at least under the additional assumption that (5.9) for problem (P) is fulfilled. From
Lemma 7.4 one easily obtains the following assertion.

Lemma 7.5. If the additional assumption (5.9) for problem (P) is fulfilled, then the property
(5.9) is valid for the set M corresponding to the reduced problem (P), too.

Theorem 7.3. Let the assumption (5.9) for (P) be fulfilled. If (u,v) and (u, ) are solutions of
(P) and of (P), respectively, then the following estimates are satisfied:

|[F(u(t)) - F(a(t)| < ce™ VteR,,

Z lus(#) = @)l s + oo (t) — To()ll g < ce™? Vie R,

where the constants ¢, A > 0 depend only on the data. If additionally assumption (2.6) for (P)
is fulfilled then there are unique globally bounded solutions (u,v) of (P) and (u,v) of (P) and
for p € [1,400) it holds

S (i) = @@z + loi(t) = Di(t)llze) < ce™' Ve R,
=0

where again the constants A, > 0, ¢ depend only on the data.

Proof. Applying Theorem 5.4 to (P) and (f’), respectively, we find

F(u(t)) — F(u*), F(u(t)) — F(@*) <ce™ VieR,.
From Lemma 7.2,i) and Theorem 7.2 we conclude that

F(u(t)) — F(u") = F(u(t)) — F(u*) <ce ™ VteR,

and by using the triangle inequality the first assertion is verified. The second one follows analo-
gously from Corollary 5.2, Lemma 7.3 and Theorem 7.2. Under the additional assumption (2.6)
the existence of unique solutions of (P) and (P) and their global boundedness are established
in Theorem 5.7. Using now Theorem 5.6, Lemma 7.3 and Theorem 7.2 the last estimate is
obtained. [
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8 Examples

8.1 Example 1

First we are looking for a simple example of a class of model equations different variants of which
have been applied in order to simulate technological processes in the fabrication of semiconductor
devices and integrated circuits (see e.g. [14, 15, 28, 36, 37, 38, 43, 55]). Especially we will discuss
the validity of our assumptions (5.9) and (2.6).

We consider a homogeneous semiconductor material with m = 6 species as outlined in Fig. 1,
Table 2 and four volume reactions' as listed in the upper part of Table 3 and Table 4.

semiconductor boundary gas
o O host atoms on
lattice sites
@ o host atoms on
® interstices — X3
® [J vacancies — X4
® ® dopant atoms on
lattice sites — Xy
@ ® dopant atoms on
® interstices — X;
@ .
® @ dopant atoms in
A gas phase

Fig. 1: Species considered in the example.

species | name of the species charge number
X1 dopant atoms on interstices 0
X5 dopant atoms on lattice sites -1
X3 self-interstitial host atoms 0
X4 vacancies in the host lattice 0
X5 electrons -1
X6 holes +1

Table 2: Species, their names and charges.

In the third column of Table 4 we have written the rate formulas as usual starting from the
mass action law. The coefficients Ej, Ej, j=1,...,4, are assumed to be positive constants. We
require that there exists a simultaneous equilibrium to all reactions under consideration with
strictly positive densities. To ensure this some necessary and sufficient conditions (the so called

1 . . . . .
In this section we use a more convenient numbering of the reactions.
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Reaction | name of the reaction reaction equation
Ry Kick-out reaction X1 = X9+ X3+ X5
Ry Frank-Turnbull mechanism X1+ Xy =X+ X
R3 defect generation and recombination X3+X4=0
Ry electron-hole generation and recombination | X5 + Xg = 0
R infiltration of dopants to interstitial sites X =
R surface recombination of self-interstitials X3=0
Ry surface recombination of vacancies X4=0
Table 3: Volume and boundary reactions between the different species.
Reaction a—f0 rate formulas
R1 (1, —1, —1, 0, 0, —1) El(ul — k1U2’LL3’LL5) kl (eCl — eCZ+C3+C6)
Ry (1,-1, 0, 1, 0,—1) | ko(urus — koupug) | ko(etés — e2ts)
R3 (07 07 ]-7 ]-7 07 0) E3(u3u4 - k3) ka(eC3+C4 - 1)
Ry (0, 0, 0, 0, 1, 1)| ka(usug—Fa) ka(ebC —1)
RS (]-7 07 07 07 07 0) E5(’LL1 E ) k5 (GC1 )
Rg | (0, 0, 1, 0, 0, 0)| ke(us—Fs) kg (e — 1)
Ry (0, 0, 0, 1, 0, 0)| kr(us—Fkr) kr(et — 1)
Table 4: Reactions and their rate formulas.
Wegscheider conditions [59]) must be fulfilled. In our example (R; =0, j = 1,...,4) there is
only one condition, namely
k1 k3 = ko.
Then choosing arbitrary constants %, U4, Us > 0 and setting
1 k k
Up = —— WUTs, U3 = —, Up = — (8.1)
kaoky Uy us

we obtain that w; = const > 0,7 = 1,...

,6,and Rj = 0,7 = 1,...

,4. Choosing these w; as

reference densities, introducing the electrostatic potential? o, the chemical potentials y;, as well

as the electrochemical potentials ; and activities a; according to

pi = (w; /@), G =pi+qp, ai=-e",

and finally defining R R R
ki1 = ki1, ko = ky Uy Uy, kj = kjEj,

i=1,..

'767

Jj =34,

’In our examples we do not make use of the transformation (1.7) and denote the potentials vy, v; before

applying (1.7) by ¢, p..
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we obtain the reaction rates as written in the last column of Table 4. On the other hand, we
could firstly introduce electrochemical potentials

szln(uz/ﬂz)—i_qﬁo) i:]-)"'76)
and rate formulas as in the last column of Table 4 (see [33, 44]). Now the coefficients k;,

j=1,...,4, and w;, ¢« = 1,...,6, are given positive constants. Then we easily obtain rate
formulas as written in the third column of Table 4. The equilibrium constants are
_ [ — U1Ug = _
ki =——, ka = ——, k3 =usu4, ks = Usus, (8.2)
U2U3 UG U2Ug

and the Wegscheider condition is obviously fulfilled.

We denote by ¢ := (0,—1,0,0,—1,1) € RS the vector of charge numbers. Then (a,3) corre-
sponding to the reactions R; to R4 fulfill the relation (1.11). Moreover, in our example it holds
a-q = F-q=0. Finally, the stoichiometric subspace belonging to this reaction system and its
orthogonal complement are given by

S = Span{(l’ _1’ _1’ 0; 0’ _1)’ (0’ 0; 1; 1; 0’ 0)’ (0; 0; 0; 0; 1’ 1)}’
S+ = span{g, (1,1,0,0,0,0), (0,1,—1,1,0,0)}, (8.3)
dim & = dim S+ = 3.

The system of continuity equations reads as

s
81;’+V-ji+R? — 0 on(0,00) X Q,
ji-v = 0 on (0,00) xT, (8.4)
uZ(O) = Ui OHQ,iZI,...,G,

R® = (R, + Ry,—R; — Ry, — Ry, + R3, Ry + R3, Ry, —R; — Ry + Ry).

For the sake of simplicity we use homogeneous boundary data for the Poisson equation (1.6),
thus (see footnote 2 on page 47)

6

~V-(eVp) = [+ qu; on (0,00) x €,
i—1

p =0 on (0,00) x I'p, (8.5)

v-(eVe)+1p = 0 on (0,00) x 'y

where f = f© denotes a fixed background doping. For the data we assume that U; € L>(f),
Ui>c>0,i=1,...,6, f € L>*(Q). Especially we are interested in the case that in addition

A{f+§:qui}dw=L{f—Uz—U5+U6}dx:0. (8.6)
i=1

Because of Remark 5.1 and (8.3), (8.6) we have three invariants the values of which are given
by the initial state, namely

L0 = [ (= ua®) = us(t) + us(t)) do = O,
L(t) = /Q(ul(t) +ug(t))dz = /Q(U1 +Us) de, (8.7)

L(t) = /Q(uz(t) ~ ug(t) + ua(f)) de = /Q(U2 Uy +Uy)de, t>0.
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In applications to semiconductor technology precise initial data Us, Ug for electrons and holes,
respectively, are hardly known. Mostly they are determined by one of the two following proce-
dures.

Lemma 8.1. Let Uz € L>®(R2) and f € L>(Q) be given. Then there exist unique Us, Us such
that

U5U6 = E4, f - U2 - U5 + U6 = 0, U5, U6 > 0 a.e. on €. (88)

Furthermore, U; € L>*(Q), U; > ¢ >0, i =5, 6, and (8.6) is satisfied.

Proof. The unique solution of (8.8) is given by

U5:_U22_f+\/[U22_f}2+E4, U6=U22_f+\/[U22_f]2+E4.

From this the other assertions follow. O

Lemma 8.2. Let Uy € L*°(Q) and f € L>®(N) be given. Then there ezist a unique weak solution
e € HY(QUTY), CER to

-V (8 VQO) + ﬁ5e‘/’+4 - ﬂﬁef(lerC) = f—Us on {2, )
p = 0 onI'p,
> (8.9)
v-(eVe)+1p = 0 on 'y,
use?t —uge (PO ldy = / — Uy dzx,
/Q { 5 6 } o {f 2} J

and for

Uy = E5€<p+§, Ug = ﬁﬁe_((’ﬁ_o

it holds U; € L*(R2), U; > ¢ >0, i =5, 6, and (8.6) is satisfied.

Proof. Problem (8.9) is equivalent to the nonlinear nonlocal Poisson equation (8.15) below for
t = 0, and since the corresponding operator Ej is strongly monotone and hemicontinuous all
assertions are easily obtained. [

The situation in Lemma 8.1 means that Us, Ug are chosen such that R4 = 0 and the local
electroneutrality condition is fulfilled. In Lemma 8.2 it is assumed that the initial electrochem-
ical potentials of electrons and holes are constant, that R4 = 0 and the global electroneutrality
condition (8.6) is satisfied.

Next we shall discuss properties of the set M (see (5.4)). In our new notation this set is
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characterized as follows
M={(a,¢) € RS x HY(QUTy):
a1 = aza3as, A1a4 = A20a6, A304 = 1, asag — 1, (8.10)

[0 ==+ us)do =0, )

/Q(m +uz) dz = I5(0), 0 (8.11)

[ (w2~ ua + ug)do = 15(0), |
Q

where u; = u;a;e” % and ¢ is the unique weak solution
to the nonlinear Poisson equation

—V - (eVp) + T2aze? + usaze? —ugage ¥ = f on Q (8.12)
with boundary conditions as in (8.9)}.

Of course, this set depends on the choice of the initial values U;. But it is easy to see that M
does not depend on the concrete choice of Us, Ug so far as (8.6) is fulfilled.

Lemma 8.3. Let Uy,...,Us € L>®() be fized and consider different initial values Ug, Ug €
L>(Q), j = 1,2, satisfying

/Q{f—Ug—UngUg}dx:O.

Then for the corresponding sets M3 it holds M = M?2.

Proof. The assertion follows from the obvious relation
{/(Uil ~ U?)dz} = / (UL — U2)dz (0,0,0,0,1,1) € S. O
Q i=1,...,6 (9]

Especially, initial values Uy, Ug chosen as in Lemma 8.1 and Lemma 8.2, respectively, generate
the same set M.

Lemma 8.4. Assumption (5.9) is fulfilled.
Proof. Let (a,¢) € M. From (8.10) it follows that as, a4, as, ag > 0, (8.11) yields

/ (ﬂlal + usga2 e‘P) dz = / (Ul + Ug)dm > 0.
Q Q

Therefore at least a; > 0 or ag > 0. Using the first (or the second) relation in (8.10) we conclude
that a1, as > 0. O

Now let us summarize the results of Theorem 5.1 and Remark 5.2 for the present example.
There exists a unique steady state (in the sense of (5.2))

* * *
Ui @y Ky, Z:]-)"')67

and it holds
M = {(a*,¢")}, a} = u}/w;e%®" , i=1,...,6.

Moreover, the energy estimates of Theorem 5.4 are valid in this example.
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Lemma 8.5. If f = const then ¢* =0, uf =const, i =1,...,6, and f —uj —uf +uf =0.

Proof. We ask for constant densities u; > 0 such that
urug = kaugus, usug = k3, usug = kq

and (see (8.7))

15(0 I3(0
f-us—us+us=0, i +us=c2 = 2(0) >0, ug —uz +uqg =c3 = 3( ).
mes 2 mes Q
Then
U — Uy — 2 _ E
ug = P(ug) = 22f+ [22 f] tka, us = —,
_ ue (8.13)
_ 1 ks
u4:k2u2u6 , U3 = —, U] = C2 — U2,
Co2 — U Ug

and we arrive at an equation for us, namely

k3w —2U2¢(U2)
ko uztp(uz) cy — U2

x(u2) = us =c3, 0 < ug < ca.

Since x € C1(0,¢2), x'(uz) > 0 for all uz € (0,c2) and limy, o x(u2) = —00, limy, ¢, x(u2) =
+00, this equation has a unique solution ug € (0,cz) for any c3 € R and the other densities u;
are found by (8.13). Now setting a; = u;/%i, ¢ = 0 we get (a,p) € M, thus a* =a, p* = =0.
O

Under the assumption of Lemma 8.5 the local electroneutrality condition is fulfilled in the steady
state but this condition can be violated during the evolution process even if the initial state is
chosen according to Lemma 8.1.

Finally we discuss the assumption (2.6) which would ensure global estimates and the existence
result (see Theorem 5.7). In our example the kick-out reaction R; contains terms of third order
which occur as source terms in the continuity equation for the species X; such that assumption
(2.6) is violated. Thus global estimates and existence can not be proved by the methods used in
this paper. But exploiting the concrete form of the reactions Ry, ..., R4y we can investigate this
example in the framework of a more general class of electro-reaction—diffusion systems including
some specific (cluster) reactions of higher order which we have studied in [27] (X; has to be
interpreted as a cluster species and R; as a cluster reaction). Thus all assertions concerning
global estimates and existence remain valid for our example, too. Let us note that omitting the
reaction R; the remaining system would fulfil both assumptions (2.6) and (5.9) and all desired
results could be obtained by means the methods of the present paper.

8.2 The reduced version of example 1

Now we discuss the situation for the reduced model® introduced in Subsection 1.2. According
to (1.5**) here we have only continuity equations for the species X; to X4

o? .
81;’+V-ji+R? — 0 on(0,00) X Q,
jicv = 0 on(0,00) xT, (8.14)
’INJ,Z(O) = Ui 0nQ,i=1,...,4,

3Using the notation of this section the transformation (1.17) reads as follows: ¢ = @ + (, w; = ui, i = pi,

Z,- = +q,1=1,...,4, where ( = (5 denotes the electrochemical potential of the electrons.
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EQ = (El + EZ; _él - }~22, _Rl + E;;,}sz + R;;),

coupled with the corresponding nonlinear nonlocal Poisson equation (1.8**)

V- (eVP) +TUse” —Tge ¥ = f— iy on (0,00) x Q,
p = ¢ on (Oa OO) x I'p,
b (8.15)
v-(eVe)+1p = 1¢ on (0,00) x 'y,
/ {ﬂ5e$ — ﬁﬁe_‘;} de = / {f - 172} dz on (0,00).
Q Q J

The reaction terms R; are obtained via (1.4**),

R1 = kl (ea — egz—l_é’), R2 = /Cz(ez:l-'_al — ez;), E;; = k3(€§3+§4 — 1).

For the reduced stoichiometric subspace it holds

S = span{(l, -1, -1, 0)) (Oa 0,1, 1)}7 SVL = Span{(la 1,0, 0)) (Oa 1,-1, 1)}a

dim § = dim St = 2.
Now the structure of S ensures only two invariants, namely I and I3 (cf. (8.7)). The first
invariant I is guaranteed by the nonlocal constraint in (8.15).

Lemma 7.5 ensures the property (5.9) for the reduced model. Finally, the volume reactions
ﬁl, Rg, Rj5 are of at most second order, such that assumption (2.6) is fulfilled for the reduced
model (cf. Remark 7.1). Therefore all results of the paper can be applied to this version of our
example. Similar examples we have studied in [23, 25] where the Poisson equation has been
replaced by the local electroneutrality condition.

8.3 Example 1 with boundary reactions

Now we include into our model the boundary reactions Rs, ..., R7 as described in the lower
part of Table 3 and Table 4. We assume that

kj = const > 0, k; € LT(I), “EjHLl(F) >0, j=5,...,7.
Here the Wegscheider conditions read as follows
kiks =ky, kekr=ks. (8.16)
As reference densities fulfilling all volume and boundary reactions we choose
Uy = ks, Uy = k7, Us = const > 0, Uy, U3, Ug as in (8.1).

By setting
kj =kjkj, j=5,...,7,

we obtain the reaction rates as written in the the last column of Table 4. The stoichiometric
subspace belonging to this reaction system is given by

S={peRl :p-q=0}, SL:span{q},

8.17
dim § =5, dim S+ = 1. (8.17)
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In the continuity equations (8.4) the boundary conditions have to be replaced by
ji-v—RY =0on (0,00) xT', i=1,...,6, with R" = (Rs,0, R, R7,0,0)

whereas the Poisson equation (8.5) remains unchanged. For this model we have only the invari-
ant ;. In the definition of the set M in Subsection 8.1 the relations (8.10) must be replaced
by

a1 = apa3ae, A104 = A206, A3a4 =1, asas =1, a1 = a3 = a4 = L.
If (a, p) € M then obviously a; > 0,7 = 1,...,6, which ensures the validity of (5.9). With regard
to the validity of (2.6) we have the same situation as described at the end of Subsection 8.1.

Now we consider the reduced model. For the reduced stoichiometric subspace it holds
S=R, S'={0}, dimS=4, dimS*=0. (8.18)

Note that in this setting the stoichiometric structure gives no invariants and the invariant I
is a consequence of the corresponding reduced Poisson equation, again. Because of Lemma 7.5
the property (5.9) for M is fulfilled and as in Subsection 8.2 the growth condition (2.6) is valid,
too.

8.4 Example 1 in a heterostructure

Fig. 2: Example of a heterostructure consisting of
two materials A and B, Q = int(Q4 U Qp) where
Q4, Qp are bounded open domains with Q4NQg = 0
and I'4p = Q4 N Qp has positive (surface) measure.

Now let us consider Example 1 in a heterostructure consisting of two different homogeneous
materials as outlined in Fig. 2. The state equations in 24 and g, respectively, are

u; = N; ¢ ehi—Fic — N;c eCi_qi(’a_Ei’C, i=1,...,6, C=A,B,

with given constants V; ¢ > 0 and E; ¢. Crossing the interface I'4p the electrochemical poten-
tials should be continuous while the chemical and electrostatic potentials could jump (see [33]).
We choose functions

0 , €Ny
Ap; =const , x € Qp

0 , L €Ny
Ap=const ,x € Qp

piaB(x) = { , pap(z) = {

representing the discontinuities of the functions ¢, p; and set
Wi = [bi + i AB, Y = @ + ©aAB

such that the functions ¢, fi; remain continuous. The potential ¢ has to satisfy the Poisson equa-
tion with boundary conditions which are modified by the double layer potential ¢ 4p5. Because
of the continuity of (; we get Au; = —¢;Ap. Defining reference densities

_ . _E:
Ti(z) = Uija = Njae 7oA , L €Ny
(2 . — -
u;p = N; B e BiB—aidy g cQp
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and omitting now the tilde we obtain state equations in our standard form,
u; =u; et =7 eli— %y

It is obvious that @; € L*>(Q), u; > ¢ > 0. Because of the jumps of @; across the interface the
densities u; will have discontinuities, too. The ratio

lim  w(z') _
'eQq, 2’z Ui, A
8; = : n=—"",c€l4p
lim  wui(z') wp
' eQp,z' >z ’

is called the segregation coefficient of the species X; at the interface. In general we have s; # 1.

Next, the reaction rates are written as in the last column of Table 4 with kinetic coefficients k;
which are different in Q4 and Qp, respectively. This gives formulas as in the third column of
Table 4 but now the equilibrium ‘constants’ k; in (8.2) will depend on z. Also the diffusivities
D; and the permittivity € have different values in 4 and Qp, respectively. Thus we arrive
at an example for our basic model in a heterostructure which can be further discussed as in
Subsection 8.1. Especially, there exists a unique steady state but the assertion of Lemma 8.5
is wrong in general. Even in the case that f = const, near the interface boundary layers are
formed where the space charge density does not vanish (cf. Fig. 6, too).

Now let us ask if there are steady states for a modified model where the local electroneutrality
condition is used instead of the Poisson equation. For this purpose let us define the set

MrEN = { (a,9) € RS x L®(Q) :
a; = a2a3a6, A1a4 = 206, A304 — ]_, a5ae — ]_, (819)

/ (w1 + u) dz = I5(0),
Q

(8.20)
/ (uz — us + ug) de = I3(0),
Q
where u; = u;a;e ¥ and
usa2e? + Usase’ — Ugage™ ¥ = f a.e. on (8.21)

is fulﬁued}.

As in Lemma 8.4 we find that a; > 0, ¢ = 1,...,6, if (a,p) € Mpgn. Furthermore, for given
constants ag, as, ag > 0 equation (8.21) has a unique solution ¢ € L>*().

Lemma 8.6. The set MygN is not empty. If (a™,¢") € MrgN, n = 1,2, then

a3 a? a?
al =a?, a3 = a2, aj =ad?, ' —p? = In—§ = ln—? = —ln—fli = const,
a3z a5 a6

but the corresponding densities u; and chemical potentials p; are uniquely determined,

1_ .2 1,2 . __
U'—Ui,ﬂi—ﬂi;l—l;---;&

(2

Proof. Using the notation aa = a2/as equation (8.21) is written as

us 1 1
(1 + ?N—)ug — UgUea2— = f a.e. on €.
Uz a2 Uz
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For any as > 0 the solution of this equation is given by

asf +\/1[ asf ]2+ Uslad3

1
2 a9 +ﬁ5/ﬁ2 as +ﬁ5/ﬁ2 as +ﬁ5/ﬂ2

UQ(I) = ¢($,62), "p('aa?) = 4

and thus
io = [ de = V@), V@) = [ v do.
Q Q

It is easy to check that ¥ € C*(R,), ¥'(az) > 0 for all a3 € R, and ¥(0) = 0. Because f.a.a.
z € Q and for all as >0

_ cas . = —- . us(x)
wie,a2) > o2 min k(@) f@)/2 +F@/2F +Rala)}, e =essipt 25,
we find that limgz, ,  ¥(a2) = +oo such that U !:R, - R, exists. From (8.19),(8.20) we
derive an equation for is, namely
) ) I5(0) — g Ul(ip) )
i — 27— 1,(0), 0 1>(0
x(i2) =12 —c1 T 1(3y) +c2 5(0) — i 3(0), 0 <z < I3(0),
uz dz
01:%, ngfﬂﬂgldl‘ fgﬂldm
Q

Again we have x € C(0,15(0)), x'(i2) > 0 for all i3 € (0,13(0)) and lim;, o x(iz) = —oo,
lim, _, 1,0y X(f2) = 400 such that x =" : R — (0, I5(0)) exists. Therefore we can state that (a, ¢)
belongs to MygN if and only if

1 _ ~ ~ 1,
a1 = T dz [12(0) - X 1(13(0))], a2 = Gza5, a2 =¥ ' (x ' (I3(0))),
Q
1 1 - a
a3:gl,a4:—, as > 0, asz—,wzlnw—ln%.
az as as U2a2

From this statement all assertions of the lemma follow. We see that a5 (or {5 = lnas, the so
called Fermi level of the electrons) is not fixed by the relations defining the set Mygn. O

Finally, let us note that the densities and chemical potentials obtained from elements of M and
MULEN, respectively, will not coincide in general.

8.5 Example 2

Our second example is devoted to the diffusion of boron in strained Si/SiGe/Si heterostructures
(see [34, 35, 39, 40]). We use the reduced version of a simplified model where we have only the
species Xo = B, X5, X (see Table 2) and only the reaction R4 (see Table 3, Table 4). Mainly
we are interested here in the presentation of some numerical results concerning the nonlocal
nonlinear Poisson equation.

We start with state equations for the electrons and holes based on Boltzmann statistics ([13, 56]),

Er — Ec+ep

Er+ Ey + ego]
kT

], p:NVexp[— oT

n:NCexp[

where n, p denote the densities of electrons and holes, respectively, No, Ny are the effective
densities of states in the conduction and valence band, E¢, Ey the corresponding energy band
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edges, Er is the Fermi level, e the elementary charge, k the Boltzmann constant and 7' the
absolute temperature. Introducing the bandgap F,, the intrinsic carrier density n; and the
intrinsic Fermi level E;,

E E, + E,
E, = E¢ — Ey, ni:\/NCNVeXp[—%—;], By = =" + kT In\/Ny/Nc

the state equations can be written as

Er — E; +ep

Er — E; + 690]
kT '

n:niexp[ ], p:niexp[— T

The band energies E¢, Ey, E, and E; have different values in Si and SiGe (or more precisely,
in Si;_xGey). We assume that F; lies always in the middle of the bandgap and that ([34, 58])

AEc = Ecsi — Ecsige = 0, AEy = Eygi — Eygsige = AE,,
AEg = Eg,Si — Eg,SiGe = 0.6585 x Eg,Si; AFE; = Ei,Si — Ei,SiGe =0.5 AEg.

Using Ey = E;s; as reference value the state equation are finally written in the form*

_ EF—E[)-{—@QD _ EF—E()-FGQO
n = nexp [—kT ], p = pexp [_—kT },
_ Ey - E; _ Ey — E;
n:niexp[kT], p:nzexp[—kT]

For x = 0.2 and different values of T" all necessary data are summarized in Table 5.

800° C 950° C 1100° C

nisi [cm?] 1.92510'8 | 5.52410'® | 1.292109

E4si [eV] 0.8513 0.7894 0.7261

nisice [cm ™3] | 3.52910'8 | 9.046 10'8 | 1.935 1017

Eg sige [€V] 0.7392 0.6854 0.6305
AFE; [eV] 0.0561 0.0520 0.0478
T SiGe /i Si 1.833 1.638 1.498
MSiGe/Tsi 1.000 1.000 1.000
DsiGe/Psi 3.361 2.681 2.244
Erel,Si 12.0
Erel,SiGe 12.8

Table 5: Data for the materials Si and Sig gGey.o.

“The scaling used in the previous sections reads as follows: ¢ := (Er — Eo)/kT, ¢ := ep/kT.
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For an one dimensional situation the reduced model equations are (see (8.14), (8.15))

4vVej o= 0, t>0, ze(0,L),
5 TV z € (0,L)
= 0, t>0, =0, L,

J
w0) = U,  ze€(0L),
Erp — Ey+
—V - (erere0 Vo) + €€ (F—W)

= _ L

T eu, t>0, z€(0,L),
e = 0, t>0, z=1L,
0
Y — 0, t>0, z=0,

L Ep — Ey + o
F— LT €ep _
A e{eg(k—T)—i—u}dx = 0, t> 0.

Here u denotes the density of boron, 7 the boron flux density, €y is the permittivity in vacuum
and eg(y) =me¥ —pe Y. The SiGe layer has a thickness of 30 nm and lies between z = 0.07 yum

and £ = 0.1 gm. The depth of the structure is assumed to be L = 500 pm. Besides of the global
charge conservation we have yet the invariant

L L
/ u(t)dm:/ Udz, t>0.
0 0

First, we present some results concerning the reconstructed initial electron and hole densities
(cf. Lemma 8.2, too). For the initial density of boron we assume a Gaussian distribution,

— R.)?
exp (—%) , No=35 1013 cm_z, R, = 0.085 um.
P

1
U =N,
D\/27rap

For different values of the standard deviation o, such boron profiles are plotted in Fig. 3.

Corresponding energy band diagrams and reconstructed initial electron and hole densities are
shown in Fig. 4a (for 7' = 800° C) and in Fig. 4b (for T' = 1100° C).

Initial boron density
1020

10" — o,=4nm

I --=- 0,=18nm

=

o
.
®

_3]

X N il cp:SOnm b

Density [cm

0 0.1 0.2
Depth [um]

Fig. 3: Doping.
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Fig. 4a: Initial state for 7' = 800° C. Variation of standard deviation.
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Fig. 4b: Initial state for 7" = 1100° C. Variation of standard deviation.
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Since we have assumed that AEg = 0 the electron density remains continuous when crossing the
interfaces but not the hole density. In Fig. 5 we have plotted the limit values of the hole density
at the right interface taken from the left hand side and from the right hand side, respectively.
This figure shows also corresponding results based on the local electroneutrality approximation
(cf. Lemma 8.1, too).

>——> PEQ from left
<+——=<IPEQ from right
1.2e+19 T T ——— LEN from left

_3]

—— LEN from right

1.0e+19

8.0e+18

6.0e+18

4.0e+18

2.0e+18

Hole density at the right interface [cm

S, [nm]

Fig. 5: Hole densities at the right interface from left and from right
as function of the standard deviation (7" = 800° C).

Finally, we have computed steady state solutions for different values of the boron segregation
coefficient s. The equilibrium boron density u* and the space charge density —n* + p* — u* are
shown in Fig. 6. These results do not essentially depend on the standard deviation of the initial
boron distribution.

Equilibrium boron density Equilibrium space charge density
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Fig. 6: Steady state for " = 800° C.
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