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Balanced-Viscosity solutions to
infinite-dimensional multi-rate systems

Alexander Mielke, Riccarda Rossi

Abstract

We consider generalized gradient systems with rate-independent and rate-dependent dissipa-
tion potentials. We provide a general framework for performing a vanishing-viscosity limit leading
to the notion of parametrized and true Balanced-Viscosity solutions that include a precise de-
scription of the jump behavior developing in this limit. Distinguishing an elastic variable u having a
viscous damping with relaxation time εα and an internal variable z with relaxation time ε we obtain
different limits for the three cases α ∈ (0, 1), α = 1 and α > 1. An application to a delami-
nation problem shows that the theory is general enough to treat nontrivial models in continuum
mechanics.
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List of symbols

U,Z state spaces (1.1)

Q = U×Z overall state space

Ue ⊂ U, Ze b Z energy spaces Hyp. 4.1

Zri ⊃ Z space for 1-homogeneous dissipation potential Hyp. 4.1

R : Zri → [0,∞) 1-homogeneous dissipation potential Hyp. 4.2

Vu:U→[0,∞), Vz:Z→[0,∞) viscous dissipation potentials Hyp. 4.2

V∗x:X
∗→[0,∞), X ∈ {U,Z} Legendre-Fenchel conjugate of Vx for x ∈ {u, z} Def. 3.1

W∗z : Z∗ → [0,∞) conjugate of R+Vz (4.17)

Vλx , x ∈ {u, z}, λ ∈ (0,∞) rescaled viscous dissipation potentials (1.5a)
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Ψε,α = Vε
α

u + R + Vεz overall viscous potential (1.7)

E:[0,T ]×U×Z→ (−∞,∞] driving energy functional Hyp. 4.3

SE , E > 0 energy sublevels (4.8)

∂qE Fréchet subdifferential of E(t, ·) (4.10)

S ∗
x : [0,T ]×D→ [0,∞] generalized slope functional for x ∈ {u, z} (4.19)

A∗x(t, q), (t, q) ∈ [0,T ]×D set of minimizers for the slope S ∗
x (t, q), x ∈ {u, z} (4.21)

G α[t, q], (t, q) ∈ [0,T ]×D sets of positivity for the slopes at (t, q) (5.19)

Bψ B-function associated with a dissipation potential ψ (3.1)

bψ vanishing-viscosity contact potential assoc. with ψ (3.4)

Bα
ε , ε ≥ 0, rescaled joint B-function (3.14)

Mα
ε , ε > 0, rescaled joint M-function (5.1)

Mα
0 (limiting) rescaled joint M-function (5.7)

Mα,red
0 reduced rescaled joint M-function (5.11)

A ([a, b]; [0,T ]×Q) admissible parametrized curves from [a, b] to [0,T ]×Q Def. 5.6
At(q0, q1) admissible transition curves betw. q0 and q1 at time t Def. 5.6
Σα contact set (5.40)
AuCz = Au ∩ Cz evolution regimes, A ∈ {E, V, B}, C ∈ {R, V, B} (5.43)
VarR R-variation (6.2)
J[q] jump set of a true BV solution Def. 6.4
costMα

0
Finsler cost induced by Mα

0 (6.6)
VarMα

0
total variation induced by Mα

0 (6.8)

1 Introduction

In this paper we address rate-independent limits of viscous evolutionary systems that are motivated
by applications in solid mechanics. These systems can be described in terms of two variables u ∈ U
and z ∈ Z; throughout, we shall assume that the state spaces

U and Z are (separable) reflexive Banach spaces. (1.1)

Typically, u is the displacement, or the deformation of the body, whereas z is an internal variable
specific of the phenomenon under investigation, in accordance with the theory of generalized standard
materials, see [HaN75].

1.1 Rate-independent systems

Under very slow loading rates, one often assumes that u satisfies a static balance law that arises as
Euler-Lagrange equation from minimizing the energy functional E with respect to u. The evolution of
z is governed by a (doubly nonlinear) subdifferential inclusion featuring the z-derivative of the energy
and the viscous force in form of the subdifferential ∂R of a dissipation potential R:

DuE(t,u(t), z(t)) = 0 in U∗, t ∈ (0,T ), (1.2a)

∂R(z′(t)) + DzE(t,u(t), z(t)) 3 0 in Z∗, t ∈ (0,T ) . (1.2b)
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If R : Z → [0,∞] is positively homogeneous of degree 1, i.e. R(λz′) = λR(z′) for all λ > 0, then
the system (1.2) is called rate-independent, and the triple (U×Z,E,R) is called a rate-independent
system, cf. [MiR15].

Here, ∂R : Z ⇒ Z∗ denotes the subdifferential of convex analysis for the nonsmooth functional R,
whereas, throughout this introduction, for simplicity we will assume that the (proper) energy functional
E : [0,T ]×U×Z → (−∞,∞], which is smooth with respect to time, is additionally smooth with
respect to both variables u and z. System (1.2) reflects the ansatz that energy is dissipated through
changes of the internal variable z only: in particular, the doubly nonlinear evolution inclusion (1.2b)
balances the dissipative frictional forces from ∂R(z′) with the restoring force DzE(t,u, z). Despite
the assumed smoothness of (u, z) 7→ E(t,u, z), system (1.2) is only formally written: due to the
1-homogeneity of R, one can in general expect only BV-time regularity for z. Thus z may have jumps
as a function of time and the pointwise derivative z′ in the subdifferential inclusion (1.2b) need not be
defined. This has motivated the development of various weak solution concepts for system (1.2).

Energetic solutions were advanced in the late ’90s in [MiT99, MTL02, MiT04] for abstract
rate-independent systems, and in the context of phase transformations in solids. In the realm of crack
propagation, an analogous notion of evolution was pioneered in [FrM98] and later further developed
in [DaT02] with the concept of ‘quasistatic evolution’. Due to its flexibility, the energetic concept has
been successfully applied to a wide scope of problems, see e.g. [MiR15] for a survey.

1.2 The vanishing-viscosity approach

However, it has been observed that the energetic notion may fail to provide a feasible description of
the system behavior at jumps, in the case of a nonconvex driving energy. This fact has motivated the
introduction of an alternative weak solvability concept, first suggested in [EfM06] and based on the
vanishing-viscosity regularization of the rate-independent system as a selection criterion for mechan-
ically feasible weak solutions. In the context of system (1.2), this ‘viscous regularization’ involves a
second (lower semicontinuous, convex) dissipation potential Vz : Z → [0, +∞), with superlinear
growth at infinity; to fix ideas, we may think of a quadratic potential. The vanishing-viscosity approach
then consists in performing the asymptotic analysis of solutions to the rate-dependent system

DuE(t,u(t), z(t)) = 0 in U∗, t ∈ (0,T ), (1.3a)

∂R(z′(t)) + ∂Vz(εz
′(t)) + DzE(t,u(t), z(t)) 3 0 in Z∗, t ∈ (0,T ) , (1.3b)

as the viscosity parameter ε → 0+. System (1.3) now features two rates: in addition to that of
the external loading, scaling as ε0 = 1, the internal rate of the system, set on the faster scale ε,
is revealed. In diverse (finite-dimensional, infinite-dimensional, and even metric) setups, cf. [EfM06,
MRS09, MRS12a, MiZ14, MRS16a] (see also [KnZ21] and [RSV21]), solutions to the ‘viscous sys-
tem’ have been shown to converge to a different type of solution of (1.2), which we shall refer to as
Balanced-Viscosity solution, featuring a better description of the jumps of the system. In parallel, the
vanishing-viscosity approach has proved to be a robust method in manifold applications, ranging from
plasticity (cf. e.g. [DDS11, BFM12, FrS13]), to fracture [KMZ08, LaT11, Neg14], damage and fatigue
[KRZ13, CrL16, ACO19], and to optimal control [SWW17] to name a few.

This paper revolves around a different, but still of vanishing-viscosity type, solution notion for system
(1.2). Indeed, we are going to regularize it by considering a viscous approximation of (1.2a), besides
the viscous approximation (1.3b) of (1.2b). Therefore, we will address the asymptotic analysis as
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ε→ 0+ of the system of doubly nonlinear differential inclusions

∂Vε
α

u (u′(t)) + DuE(t,u(t), z(t)) 3 0 in U∗ for a.a. t ∈ (0,T ), (1.4a)

∂R(z′(t)) + ∂Vεz(z
′(t)) + DzE(t,u(t), z(t)) 3 0 in Z∗ for a.a. t ∈ (0,T ), (1.4b)

where for x ∈ {u, z} we have set

Vλx (w) :=
1

λ
Vx(λw) for λ ∈ (0,∞) and V∞x (w) :=

{
0 for w = 0,

∞ for w 6= 0
(1.5a)

(the functional V∞x will indeed come into play later on, cf. (1.13)). Throughout we assume that Vx

satisfies Vx(0) = 0, ∂Vx(0) = {0}, and has superlinear growth, which implies that V0
x and V∞x

are indeed the Mosco limits of Vλx for λ → 0+ and λ → ∞, respectively. We will use that the
subdifferentials take the form

∂Vλx (w) = ∂Vx(λw) for λ ∈ [0,∞) and ∂V∞x (w) =

{
X∗ for w = 0,

Ø for w 6= 0.
(1.5b)

The parameter α in (1.4a) determines which of the two variables u and z relaxes faster to equilibrium
and rate-independent evolution, respectively. Hence, following the finite-dimensional work [MRS16b]
we shall refer to (1.4) as a multi-rate system, with the time scale ε0 = 1 of the external loading and
the (possibly different) relaxation times ε and εα of the variables z and u.

From a broader perspective, with our analysis we aim to contribute to the investigation of coupled
rate-dependent/rate-independent phenomena, a topic that has attracted some attention over the last
decade. In this connection, we may mention the study of systems with a mixed rate-dependent/rate-
independent character (typically, a rate-independent flow rule for the internal variable coupled with
the momentum balance, with viscosity and inertia, for the displacements, and possibly with the heat
equation), see the series of papers by T. Roubíček [Rou09, Rou10, Rou13a, Rou13b, RoT15b], among
others. There, a weak solvability notion, still of energetic type, was advanced, cf. also [RoT17, MaM16].

However, unlike in those contributions, in our ‘modeling’ approach the balanced interplay of rate-
dependent and rate-independent behavior does not stem from coupling equations with a rate-dependent
and a rate-independent character. Instead, it emerges through the asymptotic analysis as ε→ 0+ of
the ‘viscous’ system (1.4), which leads to a solution of the rate-independent one (1.2) that is ‘reminis-
cent of viscosity’, in both variables u and z, in the description of the system behavior at jumps. This
‘full’ vanishing-viscosity approach, also involving the displacement variable u, has been already carried
out for a model for fracture evolution with pre-assigned crack path in [Rac12], as well as in the context
of perfect plasticity [DaS14, Ros18] and delamination [Sca17]. With different techniques, based on an
alternating minimization scheme, the emergence of viscous behavior both for the displacement and
for the internal variable is demonstrated in [KnN17] for a phase-field type fracture model.

In this mainstream, in [MRS16b] we have addressed the vanishing-viscosity analysis of (1.4) in a
preliminary finite-dimensional setting, with U = Rn and Z = Rm, and for a smooth energy E ∈
C1([0,T ]×Rn×Rm), with the aim of emphasizing the role of viscosity in the description of the jump
behavior of the limiting rate-independent system. Even in this significantly simplified setup, the analysis
in [MRS16b] conveyed how the balanced interplay of the different relaxation rates in (1.4) enters in the
description of the jump dynamics of the rate-independent system. In particular, it showed that viscosity
in u and viscosity z determine the jump transition path in different ways depending on whether the
parameter α is strictly bigger than, or equal to, or strictly smaller than 1.
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The aim of this paper is to thoroughly extend the results from [MRS16b] to an infinite-dimensional and
non-smooth setting, suited for the application of this vanishing-viscosity approach to models in solid
mechanics. What is more, we will also broaden the analysis in [MRS16b], which is confined to the
case of quadratic ‘viscous’ dissipation potentials, to a fairly general class of potentials Vu and Vz.

1.3 Our results

Throughout most of this paper, we will confine the discussion to the abstract rate-independent system
(U×Z,E,Vε

α

u +R+Vεz)ε↓0 arising in the vanishing-viscosity limit of (1.4). The notation looks a bit
extensive, but has the advantage of emphasizing the dependence of the solution concept on the
energy functional E, the three different types of dissipation Vu, R, and Vz, and the parameter α > 0.
This also explains the name “Balanced-Viscosity solution” that suggests the appearance of the viscous
effects by balancing the influence of R, Vx, and Vz in such a way that the energy-dissipation balance
remains true. Of course, using the abbreviation “BV solution” should remind us about the fact that
these solutions may not be continuous but may have jumps as functions of time.

In our opinion, in that general framework the main ideas underlying the vanishing-viscosity approach
are easier to convey. Indeed, we aim to provide some possible recipes for the application of this
approach to concrete rate-independent limiting processes, where of course the ‘abstract techniques’
may have to be suitably adjusted to the specific situation. For this, we will strive to work in a fairly
general setup,

1 encompassing nonsmoothness of the energies u 7→ E(t,u, z) and z 7→ E(t,u, z) through the
usage of suitable subdifferentials ∂uE : [0,T ]×U×Z⇒ U∗ and ∂zE : [0,T ]×U×Z⇒ Z∗ in
place of the Gâteau derivatives DuE and DzE, and

2 allowing for a wide range of ‘viscous dissipation potentials’ Vu and Vz. In particular, we shall allow
for a much broader class of dissipation potentials Vz than those considered in [MRS16a].

The first cornerstone of our vanishing-viscosity analysis is the observation that the viscous system
(1.4) has the structure of a generalized gradient system (cf. [Mie16]): indeed, it rewrites as

∂Ψε,α(q′(t)) + DqE(t, q(t)) 3 0 in Q∗ for a.a. t ∈ (0,T ) (1.6)

with q = (u, z) ∈ Q = U×Z and

Ψε,α(q′) = (Vε
α

u ⊕(R+Vεz))(q
′) := Vε

α

u (u′) + R(z′) + Vεz(z
′). (1.7)

In turn, (1.6) can be equivalently formulated using the single energy-dissipation balance

E(t, q(t)) +

∫ t

s

M̃α
ε (r, q(r), q′(r)) dr = E(s, q(s)) +

∫ t

s

∂tE(r, q(r)) dr (1.8)

for all 0 ≤ s ≤ t ≤ T , featuring the M-function

M̃α
ε (t, q, q′) := Ψε,α(q′) + Ψ∗ε,α(−DqE(t, q)) (1.9)

with the Legendre-Fenchel conjugate Ψ∗ε,α of Ψε,α. This reformulation is often referred to energy-
dissipation principle; the germs of this idea trace back to E. De Giorgi’s variational theory for gradient
flows in [Amb95], see also [AGS08, Prop. 1.4.1] and [Mie16, Thm. 3.2]. In our setup, it is based on
the validity of a suitable chain rule for E, which will be thoroughly discussed in the sequel. From (1.8)
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we obtain the basic a priori estimates on a sequence (uε, zε)ε of solutions to (1.4). Together with the
additional bound ∫ T

0

‖u′ε(t)‖U dt ≤ C, (1.10)

we are able to reparametrize the curves (qε)ε = (uε, zε)ε by their “dissipation arclength” sε : [0,T ]→
[0, Sε] given by

sε(t) :=

∫ t

0

(
1+M̃α

ε (r, qε(t), q
′
ε(r))+‖u′ε(r)‖U

)
dr .

Reparametrization was first advanced in [EfM06] as a tool to capture the viscous transition paths, at
jumps, in the rate-independent limit. With this aim, first of all we observe that, setting tε := s−1

ε :
[0, , Sε] → [0,T ] and uε := uε ◦ tε, zε := zε ◦ tε, the rescaled curves (tε, uε, zε)ε satisfy a
reparametrized version of (1.8). Using the first main results of this paper presented in Theorems 5.11
and 5.14, we are able to pass to the limit in this reparametrized energy balance as ε→ 0+ and obtain
a triple (t, q) = (t, u, z) : [0, S]→ [0,T ]×U×Z satisfying the energy-dissipation balance

E(t(s2), q(s2)) +

∫ s2

s1

Mα
0 (t(s), q(s), t′(s), q′(s)) ds

= E(t(s1), q(s1)) +

∫ s2

s1

∂tE(s, q(s), t′(s)) ds for all 0 ≤ s1 ≤ s2 ≤ S ,

(1.11)

which encodes all the information on the behavior of the limiting rate-independent system in the ex-
pression of the ‘time-space dissipation function’ Mα

0 , thoroughly investigated in Section 5.1. We shall
call a triple (t, u, z) complying with (1.11) a parametrized Balanced-Viscosity (pBV, for short) solution
to the rate-independent system (U×Z,E,Vε

α

u +R+Vεz)ε↓0.

We highlight two main properties of this solution concept that follow from the special form of Mα
0 :

• When a solution does not jump, i.e. when the function t of the artificial time s, recording the (slow)
external time scale, fulfills t′(s) > 0, the term Mα

0 (t, q, t′, q′) is finite if and only if u is stationary
and z is locally stable, i.e.

−DuE(t(s), u(s), z(s)) = 0 in U∗ and −DzE(t(s), u(s), z(s)) ∈ ∂R(0) in Z∗.

Because of the local character of the second condition, the unfeasible jumps that may occur in
‘energetic solutions’ via their ‘global stability’ are thus avoided.
• The function Mα

0 in (1.11) comprises the contributions of the dissipation potentials R, Vu and Vz

by condensing the viscous effects into a description of the limiting jump behavior that can occur
only if t′(s) = 0, i.e. the slow external time is frozen. For example, if the dissipation potentials Vu

and Vz are p-homogeneous (i.e. Vx(λx
′) = λpVx(x

′) for λ > 0), then for α = 1 and t′ = 0 we
have

M1
0(t, (u, z), 0, (u′, z′)) = R(z′)

+ ĉp
(
Vz(z

′)+Vu(u
′)
)1/p (

V∗u(−DuE(t, u, z))+W∗z(−DzE(t, u, z))
)1−1/p (1.12)

(see Example 5.3). The symmetric role of Vu and Vz in (1.12) arises because of α = 1 and
reflects the fact that, at a jump, the system may switch to a viscous regime where both dissipation
mechanisms intervene in the evolution of u and z, respectively. In contrast, for α > 1 and α < 1,
the M -function Mα

0 shows the different roles of Vu and Vz, cf. (5.12).

These features are even more apparent in the characterization of a suitable class of pBV solutions
in terms of a system of subdifferential inclusions that has the very same structure as the original
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viscous system (1.4) as provided by Theorem 5.20. This result shows that a triple (t, u, z) : [0, S]→
[0,T ]×U×Z is an enhanced pBV solution if and only if there exist measurable functions λu,λz :
[0, S]→ [0,∞] such that for almost all s ∈ (0, S) we have

∂Vλu(s)
u (u′(s)) + DuE(t(s), u(s), z(s)) 3 0 in U∗,

∂R(z′(s)) + ∂Vλz(s)z (z′(s)) + DzE(t(s), u(s), z(s)) 3 0 in Z∗,
(1.13a)

t′(s)
λu(s)

1+λu(s)
= 0 and t′(s)

λz(s)

1+λz(s)
= 0, (1.13b)

λu(s)
1

1+λz(s)
= 0 for α > 1,

λu(s) = λz(s) for α = 1,

1

1+λu(s)
λz(s) = 0 for α ∈ (0, 1).

(1.13c)

In (1.13b) and (1.13c) we use the obvious conventions ∞
1+∞ = 1 and 1

1+∞ = 0, respectively. Condi-
tion (1.13b) entails that the coefficients λu(s) and λz(s) of the ‘viscous terms’ in (1.13a) are allowed
to be nonzero only when t′(s) = 0, i.e. viscous behavior may manifest itself only at jumps happening
now at a fixed time t∗ = t(s) for s ∈ [s0, s1]. Conditions (1.13c) reveal that the onset of viscous
effects in u and/or in z depends on whether u relaxes to equilibrium faster (case α > 1), with the
same speed (case α = 1), or more slowly (case α < 1), than z relaxes to local stability. In particular,
the case λx = ∞ leads to a blocking of the variable x ∈ {u, z}, i.e. x′(s) = 0 and ∂V∞x (0) = Z∗e .
These aspects will be thoroughly explored in Sections 2 and 5.5.

Finally, in analogy with the case of the ‘single-rate’ vanishing-viscosity approach developed in [MRS12a,
MRS16a], here as well we introduce “true Balanced-Viscosity solutions” (shortly referred to as BV so-
lutions) as the non-parametrized counterpart to pBV solutions, see Definition 6.5. These solutions are
functions of the original time variable t ∈ [0,T ] and fulfill an energy balance that again encompasses
the contribution of the viscous dissipation potentials Vu and Vz to the description of energy dissipation
at jump times of the solution. We are going to show that true BV solutions are related to pBV solutions
in a canonical way, see Theorem 6.15. What is more, in Theorems 6.8 and 6.12 we provide general
assumptions that guarantee that all pointwise-in-time limits of a family of (non-parametrized) viscous
solutions qεk : [0,T ]→ Q, for εk → 0+, is indeed a BV solution.

We emphasize that the definition of BV solutions is independent of the vanishing-viscosity approach.
This independence guarantees that the solution concept is indeed stable under parameter variations in
the way shown in [MRS13, Thm. 4.8] for generalized gradient systems (cf. also [MRS12b, Thm. 4.2]).
Otherwise, doing the limit ε → 0+ first and then a parameter limit δ → δ∗ it is not possible to show
that the obtained limit curve is a vanishing-viscosity limit for fixed δ∗, see Remark 6.9. In principle, our
general definition of (parametrized) BV solutions for limiting rate-independent systems can be used
and analyzed independently of the vanishing-viscosity approach. However, to avoid overburdening
the present work we do not following this line and restrict ourselves to situations where existence of
solutions can be established exactly by these methods. After all, this is the mechanical motivation for
considering such solution classes.

1.4 Application to a model for delamination

In Section 8 we show that our existence results for pBV solutions, characterized by (1.13), and (true)
BV solutions apply to a rate-independent process modeling delamination between two elastic bodies
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in adhesive contact along a prescribed interface. For a first approach to energetic solutions for this
delamination problem, we refer to [KMR06]. A systematic approach to BV solutions for a multi-rate
system involving elastoplasticity and damage is given in [CrR21].

The vanishing-viscosity analysis for the viscously regularized delamination model poses nontrivial
challenges due to the presence of various maximal monotone nonlinearities, in the displacement
equation and in the flow rule for the delamination variable z, which for instance render the constraints
z(t,x) ∈ [0, 1] and the unidirectionality of the evolution. In particular, the main challenge is to obtain
the a priori estimate (1.10) uniformly in ε when taking the vanishing-viscosity limit. For this, it is nec-
essary to carefully regularize the viscous system. Because of the relatively weak coupling between
the displacement equation and the flow rule for z, the smoothened system possesses a semilinear
structure that allows us to apply the techniques developed in [Mie11, Sec. 4.4] and [MiZ14, Sec. 2],
see Section 8.4.

1.5 Plan of the paper

In Section 2 we introduce a prototype of the coupled systems that we aim to mathematically model
through the Balanced-Viscosity concept. In this simplified context, avoiding technicalities we illustrate
the notion of (parametrized) BV solution and its mechanical interpretation.

Section 3 contains some auxiliary tools on that will be central for the rest of the paper. It revolves
around the construction of vanishing-viscosity contact potential that will be relevant for describing the
dissipative behavior of the viscously regularized system in the multi-rate case with 1, ε, and εα. In
fact, it will enter into the definition of the function Mα

0 in (1.11). Since in this paper we will extend
the analysis of [MRS16b] to general viscous dissipation potentials, we will not be able to explicitly
calculate the related vanishing-viscosity contact potential except for particular cases. Thus, a large
part of Section 3 will focus on the derivation of general properties of contact potentials that will lay the
ground for the study of the dissipation function Mα

0 .

In Section 4 we thoroughly establish the setup for our analysis, specifying the basic conditions on the
spaces, on the energy functional, and on the dissipation potentials. Moreover, Theorem 4.8 recalls the
existence result from [MRS13] for the viscous system (1.4). Section 4.6 is devoted to the derivation of
a priori estimates for the solutions (uε, zε)ε to (1.4) that are uniform with respect to the parameter ε.

Section 5.1 entirely revolves around the functional Mα
0 that has a central role in the definition of

both pBV and true BV solutions. In particular, (i) we motivate its definition as the Mosco limit of the
family of the time-integrated dissipation functional appearing in (1.8), and (ii) relying on the results
from Section 3 we compute the limit Mα

0 explicitly and investigate its properties. In the subsequent
subsections we give the definition of parametrized Balanced-Viscosity solution to the rate-independent
system (U×Z,E,Vε

α

u +R+Vεz)ε↓0, state our existence results in Theorem 5.11 (and Theorem 5.14
for enhanced pBV solutions), and present the characterizations of pBV in terms of the subdifferential
inclusions (1.13), cf. Theorem 5.20.

In Section 6 we introduce true BV solutions and state our existence result Theorem 6.8 (and Theorem
6.12 for enhanced BV solutions). In particular, we show that these solutions are obtained by taking
the vanishing-viscosity limit in system (1.4) written in the real time variable t ∈ [0,T ]. We also gain
further insight into the description of the jump dynamics provided by true BV solutions.

The proofs of the main results of Sections 5 and 6 are carried out in Section 7.

Section 8 shows that our abstract setup is suitable to handle a concrete application to in solid me-
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chanics. In particular, in Theorem 8.1 we prove the existence of enhanced parametrized and true BV
solutions for a viscoelastic model with delamination along a prescribed interface.

1.6 General notations

Throughout the paper, for a given Banach space X , we will denote its norm by ‖ · ‖X . For product
spaces X× · · ·×X , we will often (up to exceptions) simply write ‖ · ‖X in place of ‖ · ‖X×···×X . By
〈·, ·〉X we shall denote both the duality pairing between X and X∗ and the scalar product in X , if X
is a Hilbert space.

We shall use the symbols c, c′, C, C ′, etc., whose meaning may vary even within the same line, to
denote various positive constants depending only on known quantities. Furthermore, the symbols Ii,
i = 0, 1, ..., will be used as place-holders for terms involved in the various estimates: we warn the
reader that we will not be self-consistent with the numbering, so that, for instance, the symbol I1 will
occur several times with different meanings.

2 A prototypical class of coupled systems

In this section we illustrate the notion of parametrized BV solution for a prototypical and simple class
of coupled systems to which the existence and characterization results obtained in the sequel will
apply. In particular, it contains a model combining linearized viscoelasticity and viscoplasticity. We
shall confine the discussion to the particular case in which the ambient spaces

U and Z are Hilbert spaces, (2.1a)

the viscous dissipation potentials are quadratic, namely

Vu : U→ [0,∞); u′ 7→ 1

2
〈Vuu

′,u′〉, Vz : Z→ [0,∞); z′ 7→ 1

2
〈Vzz

′, z′〉, (2.1b)

with bounded linear and symmetric operators Vx : Ze → Z∗e , and the driving energy functional is of
the form

E(t,u, z) :=
1

2
〈Au,u〉U + 〈Bu, z〉Z +

1

2
〈Gu,u〉U− 〈f(t),u〉U− 〈g(t), z〉Z, (2.1c)

where A : U → U∗ and G : Z → Z∗ are linear, bounded and self-adjoint, B : U → Z∗ is linear
and bounded, and (f , g) : [0,T ] → U∗×Z∗ are smooth time-dependent applied forces. Moreover,
we assume that the block operator

(A B∗
B G

)
is positive semidefinite. Together with the 1-homogeneous

potential R : Z→ [0,∞) the viscous system (1.4) reads

εαVuu
′ + Au+ B∗z = f(t) in U for a.a. t ∈ (0,T ), (2.2a)

∂R(z′) + εVzz
′ + Bu+ Gz = g(t) in Z for a.a. t ∈ (0,T ), (2.2b)

with Vx from (2.1b). It will be important to allow for coercivity of R on a Banach space Zri such that
Z ⊂ Zri continuously and R(z′) ≥ c‖z′‖Zri

for all z′ ∈ Zri.

Example 2.1 (Linearized elastoplasticity with hardening). Let the elastoplastic body occupy a bounded
Lipschitz domain Ω ⊂ Rd: linearized elastoplasticity is described in terms of the displacement u :
Ω → Rd with u(t) ∈ U = H1

0(Ω) for simplicity and in terms of the symmetric, trace-free plastic
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strain tensor z : Ω → Rd×d
dev :=

{
z ∈ Rd×d

sym

∣∣ tr(z) = 0
}

. The driving energy functional E :

[0,T ]×U×Z→ R with Z = L2(Ω;Rd×d
dev ) is defined by

E(t,u, z) :=

∫
Ω

(
1
2
(e(u)−z):C(e(u)−z)+1

2
z:Hz

)
dx− 〈f(t),u〉H1

0 (Ω;Rd)

with e(u) the linearized symmetric strain tensor, C ∈ Lin(Rd×d
sym) and H ∈ Lin(Rd×d

devm) are the
positive definite and symmetric elasticity and hardening tensors, respectively, and f : [0,T ] →
H−1(Ω;Rd) a time-dependent volume loading. The dissipation potentials are

R(z′) =

∫
Ω

σyield|z′| dx, Vu(u
′) :=

∫
Ω

1
2
e(u′) : De(u′) dx, Vz(z

′) :=

∫
Ω

1
2
z′ : Vz′ dx

where σyield > 0 is the yield stress and D ∈ Lin(Rd×d
sym) and V ∈ Lin(Rd×d

devm) are the symmetric
and positive definite viscoelasticity and viscoplasticity tensors, respectively.

Hence, system (2.2) translates into

−div
(
εαDe(u′) + C(e(u)−z)

)
= f(t) in Ω×(0,T ),

σyield Sign(z′) + εVz′ + dev
(
C(z−e(u))

)
+ Hz 3 0 in Ω×(0,T ).

where “dev” projects to the deviatoric part, namely devA = A− 1
d
(trA) I .

For the system (U×Z,E,Vε
α

u +R+Vεz)ε↓0 from (2.1), featuring 2-positively homogeneous dissipation
potentials, the time-space dissipation function Mα

0 that enters into the definition of (parametrized)
Balanced-Viscosity solution can be explicitly computed (cf. Example 5.3 ahead). Nonetheless, here
we can give an even more transparent illustration of (parametrized) pBV solutions in terms of their
differential characterization (1.13). The upcoming Theorem 5.20 states that a triple (t, u, z) is an
(enhanced) parametrized BV solution if and only if it solves, for almost all s ∈ (0, S),

λu(s)Vuu
′(s) + Au(s) + B∗z(s) 3 f(t(s)) in U∗,

∂R(z′(s)) + λz(s)Vzz
′(s) + B u(s) + G z(s) 3 g(t(s)) in Z∗,

(2.3)

joint with the ‘switching conditions’ (1.13b)–(1.13c) on the measurable functions λu, λz : (0, S) →
[0,∞]. Here “∞Vzz

′ ” has to be interpreted in the sense of ∂V∞z (z′), see (1.5b).

We recall that (1.13b) simply ensures that, if the system is not jumping (i.e., t′(s) > 0), then viscosity
does not come into action, i.e. λu(s) = λz(s) = 0. This means that u(s) is in ‘E’quilibrium with
respect to z(s) and the loading f(t(s)), whereas z evolves according to the truly ‘R’ate-independent
evolution ∂R(z′) +Bu+Gz 3 g, hence we will denote this evolution regime by EuRz in Section 5.5.

Conditions (1.13c) differ in the three cases α = 1, α > 1 and α ∈ (0, 1) and indeed show how the
(possibly different) relaxation rates of the variables u and z influence the system behavior at jumps,
see Section 5.5 for a full discussion of the occurring evolution regimes.

For α = 1 the variables u and z relax with the same rate: at a jump, the system may switch to a
viscous regime where the viscosity in u and in z are involved equally, since the coefficients λu and λz
modulating the ‘V’iscosity terms Vuu

′ and Vzz
′ coincide. This evolution regime will be denoted Vuz.

For α > 1 the switching condition (1.13c) imposes that either λz = ∞ (i.e. z′ = 0) or that λu = 0
(so that u is at equilibrium). Indeed, since u relaxes ‘V’iscously faster to equilibrium than z to rate-
independent evolution, z is ‘B’locked until u has reached the equilibrium: and we call this evolution
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regime VuBz. After that u is in ‘E’quilibrium and z may have a ‘V’iscous transition with λz > 0, a
regime denoted by EuVz. Moreover, under suitable conditions on the operators A, B, and G which
in particular ensure that the functional E(t, ·, z) from (2.1c) is uniformly convex, the arguments from
[MRS16b, Prop. 5.5] may be repeated for the system (U×Z,E,Vε

α

u +R+Vεz)ε↓0 defined via (2.1).
Hence, it is possible to show that the regime VuBz can only occur once in the initial phase, while u
never leaves equilibrium afterwards, i.e. only EuRz and EuVz are possible.

For α ∈ (0, 1) the variable z relaxes faster than u, which leads to the two viscous regimes: (i) BuVz

where u is blocked (λu = ∞) while z evolves viscously, and (ii) VuRz where u relaxes to equilibrium
while z stays in locally stable states (λz = 0). For α ∈ (0, 1) these two regimes and EuRz may occur
more than once in the evolution of the system.

3 Some auxiliary tools for dissipation potentials

In this section we prepare a series of useful tools for handling the balanced effect of the different dissi-
pation potentials. They will be essential for the upcoming analysis and may be interesting elsewhere.

Definition 3.1 (Primal and dual dissipation potentials). Let X be a reflexive Banach space. Then, a
function ψ : X → [0,∞] is called a (primal) dissipation potential, if

ψ is convex, lower semicontinuous (lsc, for short) and ψ(0) = 0.

The dual dissipation potential ψ∗ : X∗ → [0,∞] is defined via Legendre-Fenchel conjugation as

ψ∗(ξ) := sup
{
〈ξ, v〉 − ψ(v)

∣∣ v ∈ X }.

Note that ψ∗ is indeed again a dissipation potential, and we have (ψ∗)∗ = ψ. In this section, we allow
for functionals ψ taking the value∞ as well as degenerate functionals such that ψ(v) = 0 for v 6= 0.
With ψ we associate the B-function

Bψ : (0,∞)×X×[0,∞)→ [0,∞], Bψ(τ , v,σ) := τψ
(v
τ

)
+ τσ . (3.1)

We highlight the rescaling properties of Bψ as follows

Bψ(τ , v,σ) = τ Bψ(1,
1

τ
v,σ) =

1

δ
Bψ(δτ , δv,σ) for all δ > 0. (3.2)

We will use that the functional Bψ(·, ·,σ) is convex for all σ ≥ 0. To see this, we consider τ0, τ1 ∈
(0,∞), v0, v1 ∈ X , and θ ∈ [0, 1] and set τθ := (1−θ)τ0 + θτ1 > 0 and vθ := (1−θ)v0 + θv1.
With this we find

Bψ(τθ, vθ,σ) = τθ ψ

(
vθ
τθ

)
+ τθσ = τθ ψ

((1−θ)τ0

τθ

1

τ0

v0 +
θτ1

τθ

1

τ1

v1

)
+ τθσ

(1)

≤ τθ

((1−θ)τ0

τθ
ψ

(
v0

τ0

)
+
θτ1

τθ
ψ

(
v1

τ1

))
+
(
1−θ)τ0σ + θτ1σ

= (1−θ)Bψ(τ0, v0,σ) + θBψ(τ1, v1,σ),

(3.3)

where in
(1)

≤ we used the convexity of ψ. We next define the functional

bψ : X×[0,∞)→ [0,∞]; bψ(v,σ) := inf
{
Bψ(τ , v,σ)

∣∣ τ > 0
}

. (3.4)

We shall refer to the functional bψ as vanishing-viscosity contact potential associated with ψ, in ac-
cordance with the terminology used in [MRS12a]. As we will see, bψ will be handy for describing the
interplay of vanishing viscosity and time rescaling upon taking the limit of (1.4).
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3.1 Properties of vanishing-viscosity contact potentials bψ

For arbitrary dissipation potentials ψ, we define the rate-independent part ψri : X → [0,∞] via

ψri(v) = lim
γ→0+

1

γ
ψ(γv) = sup

{
〈η, v〉X

∣∣ η ∈ ∂ψ(0)
}

. (3.5)

The following results are slight variants of the results in [MRS12a, Thm. 3.7].

Proposition 3.2 (Properties of vanishing-viscosity contact potentials). Assume that the dissipation
potential ψ : X → [0,∞] is superlinear, i.e.

lim
‖v‖X→∞

ψ(v)

‖v‖X
=∞ . (3.6)

Then, bψ has the following properties:

(b1) bψ(v,σ) = 0 implies σ = 0 or v = 0. Moreover, bψ(0,σ) = 0 for all σ ≥ 0.
(b2) For all v ∈ X the function bψ(v, ·) : [0,∞) → [0,∞] is nondecreasing and concave. For

v 6= 0 and σ > 0 the infimum in the definition of bψ is attained at a value τv,σ ∈ (0,∞).
Moreover, for all v 6= 0 and σ > 0 we have bψ(v,σ) > bψ(v, 0) = ψri(v).

(b3) For all σ ≥ 0 the function bψ(·,σ) : X → [0,∞) is positively 1-homogeneous, lsc, and convex.
(b4) If ψ = φ+ ϕ where φ is 1-homogeneous, then bφ+ϕ(v,σ) = φ(v) + bϕ(v,σ).
(b5) For all (v, η) ∈ X×X∗ we have bψ(v,ψ∗(η)) ≥ 〈η, v〉X .

Proof. The main observation is that the function gv,σ : (0,∞) 3 τ 7→ τψ( 1
τ
v) + τσ is convex (cf.

(3.3)) and takes only nonnegative values. For σ > 0 we have gv,σ(τ) → ∞ for τ → ∞, and for
v 6= 0 we have gv,σ(τ)→∞ for τ → 0+ due to superlinearity of ψ.

Part (b1): If bψ(v,σ) = inf gv,σ(·) = 0, the infimum must either be realized for τ → 0+ or for τ →
∞. In the first case, the value of σ does not matter, but the superlinearity of ψ gives τψ( 1

τ
v) → ∞,

unless v = 0. In the second case we have τσ → ∞, unless σ = 0. The relation bψ(0,σ) = 0 is
obvious.

Part (b2): The first two statements follow because bψ(v, ·) is the infimum of a family of functions that
are increasing and concave in σ. For v 6= 0 and σ > 0 the minimum of gv,σ(τ) is achieved at a
τv,σ ∈ (0,∞) as gv,σ(τ) → ∞ on both sides (i.e., as τ → 0+ and τ → ∞). Thus, bψ(v,σ) ≥
bψ(v, 0) + στv,σ > bψ(v, 0) as desired. The relation bψ(v, 0) = ψri(v) follows easily from the
convexity of ψ.

Part (b3): The positive 1-homogeneity bψ(γv,σ) = γbψ(v,σ) for all γ > 0 follows by replacing τ by
τγ. Convexity is obtained as follows. For fixed v0, v1 ∈ X , θ ∈ (0, 1), and σ ≥ 0, we choose ε > 0
and find τ0, τ1 > 0 such that for j ∈ {0, 1} we have

τj ψ
( 1

τj
vj,σ

)
+ τjσ ≤ bψ(vj,σ) + ε. (3.7)

Here we assumed without loss of generality bψ(vj,σ) < ∞ since otherwise there is nothing to be
shown. Now we set vθ = (1−θ)v0 + θv1 and τθ = (1−θ)τ0 + θτ1 > 0. Using the convexity (3.3) of
the functional Bψ(·, ·,σ), we obtain

bψ(vθ,σ) ≤ Bψ(τθ, vθ,σ) ≤ (1−θ)Bψ(τ0, v0,σ) + θBψ(τ1, v1,σ)

≤ (1−θ)bψ(v0,σ) + θbψ(v1) + ε,

DOI 10.20347/WIAS.PREPRINT.2902 Berlin 2021



A. Mielke, R. Rossi 14

with the last inequality due to (3.7). Since ε > 0 was arbitrary, this is the desired result.

To prove lower semicontinuity, we use the special way bψ is constructed and that ψ is lsc. For all
sequences vj → v∗ and σj → σ∗ we have to show

bψ(v∗,σ∗) ≤ α := lim inf
j→∞

bψ(vj,σj)

We may assume α <∞ and bψ(v∗,σ∗) > 0, since otherwise the desired estimate is trivial.

The case σ∗ = 0 is simple, as we have

α = lim inf
j→∞

bψ(vj,σj) ≥ lim inf
j→∞

bψ(vj, 0) ≥ lim inf
j→∞

ψri(vj) ≥ ψri(v∗) = bψ(v∗, 0) = bψ(v∗,σ∗).

It remains to consider the case v∗ 6= 0 and σ∗ > 0. Since ‖vj‖ ≥ ‖v∗‖/2 > 0 and σj ≥ σ∗/2 > 0
for sufficiently large j, we see that the optimal τj = τvj ,σj lie in a set [1/M ,M ] b (0,∞). Thus,
choosing a subsequence (not relabeled), we may assume τj → τ◦ and obtain lower semicontinuity
by using 1

τj
vj → 1

τ◦
v∗ as follows:

α = lim inf
j→∞

bψ(vj,σj) = lim inf
j→∞

(
τjψ
( 1

τj
vj
)

+ τjσj

)
≥ τ◦ψ

( 1

τ◦
v∗
)

+ τ◦σ∗ ≥ bψ(v∗,σ∗).

Part (b4): The formula for bφ+ϕ follows from a direct calculation.

Part (b5): We have gτ (v,ψ∗(η)) = τ
(
ψ
(

1
τ
v
)

+ ψ∗(η)
)
≥ τ

(
〈η, 1

τ
v〉
)

= 〈η, v〉, and taking the

infimum over τ > 0 gives the result. Thus, Proposition 3.2 is proved.

There is a canonical case in which bψ can be given explicitly, namely the case that bψ(v) only depends
on the Banach-space norm ‖v‖. In that case we have an explicit expression for bψ and the functional
X ×X∗ 3 (v, η) 7→ bψ(v,ψ∗(η)).

Lemma 3.3 (Dissipation potentials depending on the norm). Assume that ψ is given in the form
ψ(v) = ζ(‖v‖), where ζ : [0,∞) → [0,∞] satisfies ζ(0) = 0 and is lsc, nondecreasing, con-
vex, and superlinear. Setting ζ ′(0) = limh→0+

1
h
ζ(h) we have the identities

bψ(v,σ) = ‖v‖κζ(σ) with κζ(σ) := inf
{
τζ(1/τ) + τσ

∣∣ τ > 0
}

,

bψ(v,ψ∗(ξ)) = ‖v‖ max
{
ζ ′(0) , ‖ξ‖∗

}
.

(3.8)

Proof. The first statement is trivial for v = 0. For v 6= 0 we can replace τ by τ‖v‖ and obtain the
desired product form with ‖v‖ as the first factor.

To obtain the second statement in (3.8) we first observe that ψ∗(ξ) = ζ∗(‖ξ‖∗) with ζ∗(r) =
sup

{
rρ − ζ(ρ)

∣∣ ρ ≥ 0
}

. As ζ is superlinear ζ∗(r) is finite for all r ≥ 0, and ζ∗(r) = 0 for
r ∈ [0, ζ ′(0)]. Secondly, we characterize κζ by using the following estimate

κζ(ζ
∗(r)) = inf

{
τ
(
ζ( 1

τ
)+ζ∗(r)

) ∣∣ τ > 0
}
≥ inf

{
τ
(

1
τ
r
) ∣∣ τ > 0

}
= r.

The inequality is even an identity if the infimum is attained, which is the case of 1
τ
∈ ∂ζ∗(r) for some

τ . Thus, we have attainment whenever ζ∗(r) > 0, whereas for r ∈ [0, ζ ′(0)], where ζ∗(r) = 0, we
have non-attainment but find κζ(0) = ζ ′(0). Together we arrive at κζ(ζ∗(r)) = max{ζ ′(0), r} (see
also [LMS18, Sec. 2.3]), and b(v,ψ∗(ξ)) = ‖v‖κζ(ζ∗(‖ξ‖∗)) gives the desired result.
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The above result shows that the estimate bψ(v,ψ∗(ξ)) ≥ 〈ξ, v〉 in (b4) improves to

bψ(v,ψ∗(ξ)) ≥ ‖ξ‖∗‖v‖ (3.9)

in certain cases, in particular in the metric approach used in [RMS08, MRS09]. As some of the fol-
lowing examples show, the latter estimate is not true in general, and that is why we will derive general
lower bounds on the vanishing-viscosity contact potential bψ in Section 3.3.

Example 3.4 (The function bψ for some special cases). The following cases give some intuition about
the vanishing-viscosity contact potential bψ.

(A) Assume that ψ is positively p-homogeneous with p ∈ (1,∞), i.e. ψ(γv) = γpψ(v) for all γ > 0
and v ∈ X . Then, we have

bψ(v,σ) =
(
ψ(v)

)1/p
ĉp σ

1/p′ , where ĉp = p1/p(p′)1/p′ and
1

p
+

1

p′
= 1. (3.10)

In particular, for ψ(v) = 1
p
‖v‖p we find

bψ(v,σ) = ‖v‖
(
p′σ
)1/p′

and bψ(v,ψ∗(η)) = ‖v‖‖η‖∗ .

(B) On X = R2 consider ψ(v) = 1
2
(av2

1 + bv2
2) with a, b > 0. Then,

bψ(v,σ) =
(
av2

1+bv2
2

)1/2
(2σ)1/2 and bψ(v,ψ∗(ξ)) =

(
av2

1+bv2
2

)1/2(1

a
ξ2

1+
1

b
ξ2

2

)1/2
.

If R2 is equipped with the Euclidean norm ‖ · ‖, then bψ(v,ψ∗(ξ)) ≥
(min{a,b}

max{a,b}

)1/2‖ξ‖∗‖v‖, but

estimate (3.9) fails, while bψ(v,ψ∗(ξ)) ≥ 〈ξ, v〉 obviously holds.

(C) Again for X = R2 consider ψ(v) = 1
2
v2

1 + φ(v2) with

φ(s) =

{
1
2
s2 for |s| ≤ 1,

1
4
(|s|+1)2 − 1

2
for |s| ≥ 1,

and φ∗(r) =

{
1
2
r2 for |r| ≤ 1,

r2 − |r|+ 1
2

for |r| ≥ 1.

An explicit calculation leads to the expression

bψ(v,σ) =

{
‖v‖
√

2σ for v2
1 ≥ (2σ−1)v2

2,
1
2

√
2v2

1+v2
2

√
4σ−1 + |v2|

2
for σ ≥ 1/2 and v2

1 ≤ (2σ−1)v2
2.

Using ψ∗(ξ) = 1
2
ξ2

1 + φ∗(ξ2) we find bψ(v,ψ∗(ξ)) = ‖ξ‖∗‖v‖ whenever ‖ξ‖∗ ≤ 1. However, the
explicit form of bψ shows that, in general, bψ(v,ψ∗(ξ)) cannot be expressed in terms of ‖v‖ and
‖ξ‖∗ alone. With ψ∗(ξ) ≥ 1

2
‖ξ‖2

∗ and bψ(v,σ) ≥ 1
2

(√
4σ−1 + 1)‖v‖ for σ ≥ 1/2 we obtain

bψ(v,ψ∗(ξ)) ≥ ‖v‖1
2

(√
2‖ξ‖2

∗−1 + 1
)

for ‖ξ‖∗ ≥ 1.

(D) We still look at the case X = R2 with the Euclidean norm ‖v‖ =
(
v2

1+v2
2

)1/2
and

ψ(v) =
1

2
v2

1 +
1

4
v4

2 and ψ∗(ξ) =
1

2
ξ2

1 +
4

3
|ξ2|4/3.

In principle, we can calculate bψ(v1, v2,σ) explicitly, however, it suffices to use (A) giving

bψ(v1, 0,σ) = |v1|(2σ)1/2 and bψ(0, v2,σ) = |v2|
(

4
3
σ
)3/4

.
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Inserting σ = ψ∗(ξ1, ξ2) and inserting the “wrong directions” with 〈ξ, v〉 = 0 we find

bψ(v1, 0,ψ∗(ξ1, ξ2)) =
(

8
3

)1/2|v1| |ξ2|2/3 and bψ(0, v2,ψ∗(ξ1, ξ2)) =
(

2
3

)3/4|v2| |ξ1|3/2.

Clearly, there cannot be a constant c0 > 0 such that bψ(v,ψ∗(ξ)) ≥ c0‖v‖ ‖ξ‖ for all v, ξ ∈ R2. Of
course, the relations are compatible with (b4) in Proposition 3.2, i.e. bψ(v,ψ∗(ξ)) ≥ 〈ξ, v〉.

As we will see, the vanishing-viscosity contact potentials bψ, which were developed for the case of
two-rate problems (with time scales 1 and ε) in [MRS12a], are also relevant to describe the limiting
behavior of B-functions in the multi-rate case with time scales 1, ε, and εα. For this, we will use
the concept of (sequential) Mosco convergence, which we recall here for a sequence of functionals
Fn : X → (−∞, +∞] defined in a Banach space X .

Definition 3.5 (Mosco convergence). We say that F : X → (−∞, +∞] is the Mosco limit of the

functionals (Fn)n as n→∞, and write Fn
M→ F in X , if the following two conditions hold:

Γ- lim inf estimate : xn ⇀ x weakly in X =⇒ F (x) ≤ lim inf
n→∞

Fn(xn); (3.11a)

Γ- lim inf estimate :

∀x ∈ X ∃ (xn)n ⊂ X : xn → x strongly in X and F (x) ≥ lim sup
n→∞

Fn(xn).

(3.11b)

3.2 Mosco convergence for the joint B-functions Bα
ε

In view of the vanishing-viscosity analysis of (1.4), we now work with two dissipation potentials ψu :
U→ [0,∞] and ψz : Z→ [0,∞], with U and Z the state spaces from (1.1). In Section 5.1, we will
indeed confine the discussion to the choices ψu := Vu and ψz := R + Vz, but here we want to keep
the discussion more general and in particular allow for ψu to have a nontrivial rate-independent part,
too.

When constructing the associated B-function we have to take care of the different scalings namely
ψε

α

u and ψεz in the sense of (1.5a), i.e. ψλ(v) = 1
λ
ψ(λv). Indeed, since the conjugate function (ψλ)∗

satisfies the simple scaling law (ψλ)∗(ξ) = 1
λ
ψ∗(ξ), the B-function Bψλ obeys the scaling relations

Bψλ(τ , v,
1

λ
σ) = Bψ(

τ

λ
, v,σ) =

1

λ
Bψ(τ ,λv,σ), (3.12)

where we used (3.2) for the last step. Our definition of the associated B-function for the sum

Ψε,α : U×Z→ [0,∞]; Ψε,α(u′, z′) :=
1

εα
ψu(ε

αu′) +
1

ε
ψz(εz

′)

will be denoted by the symbol BΨε,α , see (3.13) below. We emphasize that we deviate from the
construction set forth in (3.1), since (3.13) applies (3.12) for each component individually. Hence, we
introduce

BΨε,α(τ ,u′, z′,σu,σz) :=
1

εα
Bψu(τ , εαu′,σu) +

1

ε
Bψz(τ , εz′,σz) (3.13a)

= Bψu

( τ
εα

,u′,σu
)

+ Bψz

(τ
ε

, z′,σz
)
. (3.13b)
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BV solutions to infinite-dimensional multi-rate systems 17

Subsequently, we will use the short-hand notation Bα
ε in place of BΨε,α and extend Bα

ε to allow for
the value τ = 0, defining rescaled joint B-function Bα

ε : [0,∞)×U×Z×[0,∞)2 → [0,∞] via

Bα
ε (τ ,u′, z′,σu,σz) :=


τ

εα
ψu

(εα
τ
u′
)

+
τ

εα
σu +

τ

ε
ψz

( ε
τ
z′
)

+
τ

ε
σz for τ > 0,

∞ for τ = 0.
(3.14)

We highlight that Bα
ε is relevant for the coupled system (1.4), hence the name rescaled joint B-

function.

The next result shows that the Mosco limit Bα
0 of the B-functions (Bα

ε )ε always exists and can
be expressed in terms of the potentials bψu , bψz , and bψu⊕ψz . We emphasize that (τ ,u′, z′) 7→
Bα

0 (τ ,u′, z′,σu,σz) is 1-homogeneous, which reflects the rate-independent character of the limit-
ing procedure.

Proposition 3.6 (Mosco limit Bα
0 of the family Bα

ε ). Let ψu and ψz satisfy (3.6) and assume α > 0.
Then, Bα

ε Mosco converge to the limit Bα
0 : [0,∞)×U×Z×[0,∞)2 → [0,∞] that is given as

follows:

τ > 0 : Bα
0 (τ ,u′, z′,σu,σz) =

{(
ψu

)
ri
(u′) +

(
ψz

)
ri
(z′) for σu = σz = 0,

∞ otherwise;

τ = 0, α > 1: Bα
0 (0,u′, z′,σu,σz) =


(
ψu

)
ri
(u′) + bψz(z

′,σz) for σu = 0,

bψu(u
′,σu) for σu > 0 and z′ = 0,

∞ otherwise;

τ = 0, α = 1: B1
0(0,u′, z′,σu,σz) = bψu⊕ψz((u

′, z′),σu+σz);

τ = 0, α < 1: Bα
0 (0,u′, z′,σu,σz) =


bψu(u

′,σu) +
(
ψz

)
ri
(z′) for σz = 0,

bψz(z
′,σz) for σz > 0 and u′ = 0,

∞ otherwise,

where ψ := ψu ⊕ ψz : (u′, z′) 7→ ψu(u
′)+ψz(z

′). Thus, the functional Bα
0 (·, ·, ·,σu,σz) is convex

and 1-homogeneous for all (σu,σz) ∈ [0,∞)2.

Proof. Case τ > 0. Using ψx(v) ≥
(
ψx

)
ri
(v) we have

Bα
ε (τ ,u′, z′,σu,σz) ≥

(
ψu

)
ri
(u′) +

τ

εα
σu +

(
ψz

)
ri
(z′) +

τ

ε
σz,

which easily provides the desired liminf estimate. The limsup estimate follows with the constant recov-
ery sequence (u′ε, z

′
ε,σu,ε,σz,ε) = (u′, z′,σu,σz).

Case τ = 0 and α = 1. By definition of bψ = bψu⊕ψz we have

B1
ε(τ ,u′, z′,σu,σz) =

τ

ε
ψ
( ε
τ

(u′, z′)
)

+
τ

ε
(σu+σz) ≥ bψ((u′, z′),σu+σz) for all τ > 0.

Hence, the liminf estimate follows from Proposition 3.2.

For the limsup estimate for B1
0(0,u′, z′,σu,σz) we choose λε such that λεψ( 1

λε
(u′, z′))+λε(σu+σz)

→ bψ((u′, z′),σu+σz), where we may assume λε ≤ 1/
√
ε. Then, it suffices to set τε = λεε → 0

to conclude B1
ε(τ ,u′, z′,σu,σz)→ bψ((u′, z′),σu+σz) = B1

0(0,u′, z′,σu,σz).
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Case τ = 0 and α > 1. For the lower bound in the liminf estimate we only need to consider the case
σu = 0 and the case σu > 0 and z′ = 0. In the latter situation we may drop the two last terms in
the definition of Bα

ε and the lower bound is established by the lower semicontinuity of bψu . In the case
σu = 0, we have the lower bound

Bα
ε (τ ,u′, z′,σu,σz) ≥

(
ψu

)
ri
(u′) + bψz(z

′,σz)

and the liminf again follows by the lsc.

For the limsup estimates we use the recovery sequence (τε,u
′, z′,σu,σz) converging strongly with

τε → 0, as in the previous case. For σ = 0 we choose τε = λεε where λε realizes the infimum in
bψz(z

′,σz). In the case σu > 0 and z′ = 0 we choose τε = λ̂εε
α, where λ̂ε realizes the infimum in

bψu(u
′,σ). In the remaining case, which has σ > 0, we may choose τε = ε.

Case τ = 0 and α < 1. This case is similar to the case α > 1 if we interchange the role of u′ and z′.
Thus, Proposition 3.6 is proved.

3.3 Lower bounds for the B-function Bα
ε

In the subsequent convergence analysis for the vanishing-viscosity limit we will need ε-uniform a pri-
ori bounds for the time derivatives of the solutions qε = (uε, zε). They are derived by lower bounds
for the B-functions, however, we have already observed in Example 3.4 that the simple lower bound
bψ(v,ψ∗(ξ)) ≥ ‖ξ‖∗‖v‖ in (3.9) cannot be expected. The following result provides suitable surro-
gates of such estimate. They will play a crucial role in the vanishing-viscosity analysis, specifically in
controlling ‖z′‖ along jump paths, see Lemma 5.4. For this it will be important that the function κ
occurring in (3.15) is strictly increasing, which implies κ(σ) > 0 for σ > 0.

Lemma 3.7 (Lower bound on Bα
ε ). Let ψu and ψz satisfy (3.6) and let Bα

ε be given as in (3.14). Then,
there exists a continuous, convex, nondecreasing, and superlinear function ϕ : [0,∞) → [0,∞)
such that

∀α > 0 ∀ ε ∈ [0, 1] ∀ (τ ,u′, z′,σu,σz) ∈ [0,∞)×U×Z×[0,∞)2 :

ψu(u
′) ≥ ϕ(‖u′‖U) and ψz(z

′) ≥ ϕ(‖z′‖Z), (3.15a)

Bα
ε (τ ,u′, z′,σu,σz) ≥ ‖u′‖U κ(σu) + ‖z′‖Z κ(σz), (3.15b)

where κ ∈ C([0,∞); [0,∞)) is given by κ(σ) = (ϕ∗)−1(σ), is concave, and strictly increasing
with κ(0) = 0 and κ(σ)→∞ for σ →∞. We additionally have

α < 1 : Bα
ε (τ ,u′, z′,σu,σz) ≥ ‖u′‖U κ

(
σu+σz

)
, (3.15c)

α = 1 : B1
ε(τ ,u′, z′,σu,σz) ≥

(
‖u′‖U+‖z′‖Z

)
κ
(1

2
(σu+σz)

)
, (3.15d)

α ≥ 1 : Bα
ε (τ ,u′, z′,σu,σz) ≥ ‖z′‖Z κ

(
σu+σz

)
. (3.15e)

Proof. Step 1: Construction of ϕ. Since ψu and ψz are superlinear, for each K ≥ 0 there exists
SK ≥ 0 such that

∀(u′, z′) ∈ U×Z : ψu(u
′) ≥ K‖u′‖U − SK and ψz(z

′) ≥ K‖z′‖Z − SK .

Hence, the estimates in (3.15a) hold for the nonnegative, convex function ϕ given by

ϕ(r) := sup
{
Kr − SK

∣∣K ≥ 0
}

.
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From ϕ(0) = 0 and non-negativity we conclude that ϕ is nondecreasing. Moreover, it is superlinear
by construction.

Step 2: Lower bound on bψx . In the definition of bψ the dependence on ψ is monotone (because of
τ > 0) so that ψ1 ≤ ψ2 implies bψ1 ≤ bψ2 . Setting ϕ̃(v) = ϕ(‖v‖) we obtain bψx ≥ bϕ̃, and using
Lemma 3.3 and the definition of κ yields

bψx(v,σ) ≥ ‖v‖κ(σ) for x ∈ {u, z}.

Step 3: Lower bound on Bα
ε . The definitions of Bα

ε in (3.13b) and of bψ give, for ε > 0,

Bα
ε (τ ,u′, z′,σu,σz) = Bψu(

τ

εα
,u′,σu) + Bψz(

τ

ε
, z′,σz)

≥ bψu(u
′,σu) + bψz(z

′,σz) ≥ ‖u′‖U κ(σu) + ‖z′‖Z κ(σz),

where Step 2 was invoked for the last estimate. This proves (3.15b).

Estimate (3.15d) follows from the simple observation that, because of α = 1, the rescaled B-function
B1
ε only depends σu+σz, such that each of σu and σz can be replaced by their arithmetic mean.

For α ≥ 1 and ε ∈ (0, 1], we have τ/εα ≥ τ/ε so that

Bα
ε (τ ,u′, z′,σu,σz) ≥

τ

εα
σu + Bψz(

τ

ε
, z′,σz) ≥ Bψz(

τ

ε
, z′,σu+σz) ≥ ‖z′‖Z κ(σu+σz).

This shows estimate (3.15e), and (3.15c) follows similarly.

All estimates remain true for ε = 0 because Bα
0 is the Mosco limit of Bα

ε .

4 Setup and existence for the viscous system

In Section 4.1 we will introduce our basic conditions on the ambient spaces, the energy, and the
dissipation potentials, collected in Hypotheses 4.1, 4.2, 4.3, and 4.5, which will be assumed throughout
the paper. Let us mention in advance that we will often omit to explicitly recall these assumptions in
the various intermediate statements, with the exception of our main results in Theorems 5.11, 5.14,
6.8, and 6.12.

Then, in Section 4.4 we will address the existence of solutions to the viscous system (1.4). Its main
result, Theorem 4.8 shows that, under two additional conditions on the driving energy functional, the
existence result from [MRS13, Thm. 2.2] can be applied to deduce the existence of solutions for the
doubly nonlinear system (1.4). It will be crucial to our analysis that we are able to show that these
solutions satisfy the (Ψ, Ψ∗) energy-dissipation balance (1.8).

4.1 Function spaces

Here we state our standing assumptions on the function spaces for the energy functionals and for the
dissipation potentials.

Hypothesis 4.1 (Function spaces). In addition to conditions (1.1) on the ambient spaces U and Z,
our (coercivity) conditions on the energy E will involve two other reflexive spaces Ue and Ze, such
that

Ue ⊂ U continuously and densely, and Ze b Z compactly and densely.
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The subscript e refers to the fact that the latter are ‘energy spaces’ relating to E. Furthermore, the
1-homogeneous dissipation potential R will be in fact defined on a (separable) space Zri (where the
subscript ri accordingly refers to rate-independence), such that

Z ⊂ Zri continuously and densely.

We refer to (4.9) for some examples of relevant ambient spaces. In what follows, we will often use the
notation

q := (u, z) ∈ Q := U×Z. (4.1)

4.2 Assumption on the dissipation potentials

We will develop the general theory under the condition that the viscous dissipation potentials Vu and
Vz as well as the 1-homogeneous potential R take only finite values in [0,∞) and are thus continuous.
Recall that V∗x is the Legendre-Fenchel conjugate of Vx, see Definition 3.1.

Hypothesis 4.2 (Conditions on Vu, Vz, R). Let Vu : U → [0,∞) and Vz : Z → [0,∞) be
dissipation potentials with the following additional conditions:

lim
‖v‖U→∞

Vu(v)

‖v‖U
= lim
‖µ‖U∗→∞

V∗u(µ)

‖µ‖U∗
=∞ = lim

‖η‖Z→∞

Vz(η)

‖η‖Z
= lim
‖ζ‖Z∗→∞

V∗z(ζ)

‖ζ‖Z∗
, (4.2a)

lim
λ→0+

1

λ
Vu(λv) = 0 for all v ∈ U, and lim

λ→0+

1

λ
Vz(λη) = 0 for all η ∈ Z . (4.2b)

Let R : Zri → [0,∞] be a 1-homogeneous dissipation potential, i.e.

R(λη) = λR(η) for all η ∈ Zri and λ > 0, (4.3a)

that is additionally Z-bounded and Zri-coercive for Z ⊂ Zri, i.e.

∃CR, cR > 0 :

{
∀ η ∈ Z : R(η) ≤ CR‖η‖Z,
∀ η ∈ Zri : R(η) ≥ cR‖η‖Zri

.
(4.3b)

Due to the superlinear growth of Vx and V∗x, x ∈ {u, z}, both ∂Vx : X ⇒ X∗ and ∂V∗x : X∗ ⇒ X,
X ∈ {U, Z}, are bounded operators, so that, ultimately, both Vu and V∗u are continuous. Likewise, R
is continuous. Indeed, restricting our analysis to the case in which R takes only finite values in [0,∞)
excludes the direct application of our results to systems modeling unidirectional processes in solids
such as damage or delamination. In those cases the existence theory (both for the rate-dependent,
‘viscous’ system and for BV solutions of the rate-independent process) relies on additional estimates
not considered here, see e.g. [KRZ19]. Nevertheless, a broad class of models is still described by
continuous dissipation functionals. For instance, the coercivity and growth conditions (4.3b) are com-
patible with the following example of dissipation potential, in the ambient spaces Zri = L1(Ω) and
Z = L2(Ω) (with Ω ⊂ Rd a bounded domain):

R : L1(Ω)→ [0,∞]; R(η) :=

{
‖η+‖L2(Ω) + ‖η−‖L1(Ω) if η+ ∈ L2(Ω),

∞ otherwise.
(4.4)

Dissipation potentials with this structure occur, for instance, in models for damage or delamination
allowing for possible healing, cf. e.g. [MiR15, Sec. 5.2.7] and Section 8.
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Subsequently, ∂Vu : U ⇒ U∗, ∂Vu : Z ⇒ Z∗, and ∂R : Z ⇒ Z∗ will denote the convex
subdifferentials of Vu, Vz, and R, respectively. By the 1-homogeneity (4.3a) we have

∂R(η) =
{
ω ∈ ∂Z∗

∣∣ ∀ v∈Z: R(v) ≥ R(η)+〈ω, v−η〉Z
}

=
{
ω ∈ ∂R(0)

∣∣R(η) = 〈ω, η〉
}

.
(4.5)

Thanks to Hypothesis 4.1, we have Z∗ri ⊂ Z∗ densely and continuously. As a consequence of (4.3b)
∂R(0) turns out to be a bounded subset in Z∗, viz.

∂R(η) ⊂ ∂R(0) and B
Z∗ri
cR

(0) ⊂ ∂R(0) ⊂ B
Z∗

CR
(0). (4.6)

4.3 Assumptions on the energy E

We now collect our basic requirements on the energy functional E : [0,T ]×U×Z → (−∞,∞].
With slight abuse of notation, we will often write E(t, q) in place of E(t,u, z), in accordance with (4.1).
Recall the embeddings Ue ⊂ U and Ze b Z ⊂ Zri and the choice Q = U×Z.

Hypothesis 4.3 (Lower semicontinuity, coercivity, time differentiability of E). The energy functional
E : [0,T ]×U×Z → (−∞,∞] has the proper domain dom(E) = [0,T ]×D with D ⊂ Ue×Ze.
Moreover, we require that

∀ t ∈ [0,T ] : the map q 7→ E(t, q) is weakly lower semicontinuous on Q, (4.7a)

and E is bounded from below:

∃C0 > 0 ∀ (t, q) ∈ [0,T ]×D : E(t, q) ≥ C0 . (4.7b)

We set E(q) := supt∈[0,T ] E(t, q) and require that

the map q 7→ E(q) + ‖q‖U×Zri
has sublevels bounded in Ue×Ze. (4.7c)

Finally, we require that t 7→ E(t, q) is differentiable for all q ∈ D satisfying the power-control estimate

∃C# > 0 ∀ (t, q) ∈ [0,T ]×D : |∂tE(t, q)| ≤ C#E(t, q). (4.7d)

Concerning our conditions on dom(E), the crucial requirement is that dom(E(t, ·)) ≡ D is indepen-
dent of time. Let us introduce the energy sublevels

SE := {q ∈ D : E(q) ≤ E} for E > 0. (4.8)

Applying Grönwall’s lemma we deduce from (4.7d) that

∀ (t, q) ∈ [0,T ]×D : E(q) ≤ eC#T E(t, q) .

Hence, E(t, q) ≤ E for some t ∈ [0,T ] and E > 0 guarantees q ∈ SE′ with E ′ = eC#T E. Finally,
observe that (4.7c) implies the separate coercivity properties of the functionals E(·, z) and E(u, ·),
perturbed by the norm ‖ · ‖U and ‖ · ‖Zri

, respectively.

Since we are only requiring that Ue ⊂ U continuously, our analysis allows for the following two cases:
(i) the energy E(t, ·, z) and the dissipation potential Vu have sublevels bounded in the same space
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and (ii) the energy E(t, ·, z) has sublevels compact in the space U of the dissipation Vu. To fix ideas,
typical examples for the pairs (U, Ue) and the triples (Ze, Z, Zri) are

(i) U = Ue = H1(Ω;Rd) or (ii) Ue = H1(Ω;Rd) b U = L2(Ω;Rd),

and Ze = H1(Ω;Rm) b Z = L2(Ω;Rm) ⊂ Zri = L1(Ω;Rd).
(4.9)

As mentioned in the introduction, in our analysis we aim to allow for nonsmoothness of the energy
functional q = (u, z) 7→ E(t, q). Accordingly, we will use the Fréchet subdifferential of E with respect
to the variable q, i.e. the multivalued operator ∂qE : [0,T ]×Q ⇒ Q∗ defined for (t, q) ∈ [0,T ]×D
via

∂qE(t, q) :=
{
ξ ∈ Q∗

∣∣E(t, q̂) ≥ E(t, q)+ 〈η, q̂−q〉Q +o(‖q̂−q‖Q) as q̂ → q in Q
}

(4.10)

with domain dom(∂qE) :=
{

(t, q) ∈ [0,T ]×D
∣∣ ∂qE(t, q) 6= Ø

}
.

Thus, our aim is to solve the subdifferential inclusion

∂Ψε,α(q′(t)) + ∂qE(t, q(t)) 3 0 in Q∗ for a.a. t ∈ (0,T ) (4.11)

where the scaled dissipation potential Ψε,α is defined in (1.7).

Remark 4.4 (Partial Fréchet subdifferentials). Observe that

∂qE(t,u, z) ⊂ ∂uE(t,u, z)×∂zE(t,u, z) for all (t, q) = (t,u, z) ∈ [0,T ]×D, (4.12)

where ∂uE(t, q) ⊂ U∗ and ∂zE(t, q) ⊂ Z∗ are the ‘partial’ Fréchet subdifferentials of E with respect
to the variables u and z, which are defined as Fréchet subdifferentials of E(t, ·, z) : U → R and
E(t,u, ·) : Z→ R, respectively. However, equality in (4.12) is false, in general, e.g. for U = Z = R
and E(t,u, z) = |u−z|.
In view of the inclusion (4.12), any curve t 7→ q(t) = (u(t), z(t)) solving (4.11) also solves the
system

∂Vε
α

u (u′(t)) + ∂uE(t,u(t), z(t)) 3 0 in U∗ for a.a. t ∈ (0,T ), (4.13a)

∂R(z′(t)) + ∂Vεz (z′(t)) + ∂zE(t,u(t), z(t)) 3 0 in Z∗ for a.a. t ∈ (0,T ). (4.13b)

Nonetheless, let us stress that the ‘reference viscous system’ for the subsequent discussion will be
the one with the smaller solution set, namely (4.11) or (4.18a) below.

The existence result from [MRS13] can be applied provided that E fulfills two further conditions, stated
in the following Hypotheses 4.5 and 4.7.

Hypothesis 4.5 (Closedness of (∂qE, ∂tE) on sublevels). For all sequences
(
(tn, qn, ξn)

)
n∈N in

the space [0,T ]×Q×Q∗ with tn → t, qn ⇀ q in Q, ξn ⇀ ξ in Q∗, supn E(qn) < ∞, and
ξn ∈ ∂qE(t, qn), we have

ξ ∈ ∂qE(t, q) and ∂tE(tn, qn)→ ∂tE(t, q). (4.14)

Remark 4.6. For cases in which the energy space Ue is compactly embedded into U, the sequences
(qn)n fulfilling the conditions of Hypothesis 4.5 converge strongly in Q in view of the coercivity (4.7c).
Therefore, in such cases Hypothesis 4.5 turns out to be a closedness condition on the graph of ∂qE
with respect to the strong-weak topology of Q×Q∗.
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We also mention that, in contrast to what we did in [MRS13] (cf. (2.E5) therein), here in Hypothe-
sis 4.5 we omit the requirement of energy convergence E(tn, qn) → E(t, q) along the sequence
(tn, qn, ξn)n. In fact, that additional property was not strictly needed in the proof of the existence re-
sult [MRS13, Thm. 2.2], to which we will resort later on to conclude the existence of solutions for our
viscous system (4.11). Rather, in [MRS13] the energy-convergence requirement was encompassed
in the closedness assumption in order to pave the way for a weakening of the chain-rule condition, cf.
the discussion in [MRS13, Rmk. 4.6]. Such a weakening is outside the scope of this paper.

Our final condition on E is an abstract chain rule that has a twofold role: First, it is a crucial ingredient
in the proof of Theorem 4.8, and secondly, it ensures the validity of the energy-dissipation balance
(4.18). The latter will be the starting point in the derivation of our a priori estimates uniformly with
respect to the viscosity parameter ε. We refer to Proposition A.1 in Appendix A for a discussion of
conditions on E yielding the validity of Hypothesis 4.7.

Hypothesis 4.7 (Chain rule). For every absolutely continuous curve q ∈ AC([0,T ]; Q) and all
measurable selections ξ : (0,T )→ Q∗ with ξ(t) ∈ ∂qE(t, q(t)) for a.a. t ∈ (0,T ),

sup
t∈(0,T )

|E(t, q(t))| <∞, and

∫ T

0

‖ξ(t)‖Q∗‖q′(t)‖Q dt <∞, (4.15)

we have the following two properties:

the map t 7→ E(t, q(t)) is absolutely continuous on [0,T ] and

d

dt
E(t, q(t))− ∂tE(t, q(t)) = 〈ξ(t), q′(t)〉Q for a.a. t ∈ (0,T ).

(4.16)

4.4 An existence result for the viscous problem

We are now in the position to state our existence result for the viscous system (4.11). It is based on the
(Ψ, Ψ∗)-formulation of the energy-dissipation balance (cf. (1.8) for the case q 7→ E(t, q) is smooth),
which we now apply to (4.11) using the Fréchet subdifferential ∂qE(t, q) and the scaled dissipation
potential Ψε,α defined in (1.7). The Legendre-Fenchel conjugate is given by

Ψ∗ε,α(µ, ζ) =
1

εα
V∗u(µ) +

1

ε
W∗z(ζ) with W∗z(ζ) := min

σ∈∂R(0)
V∗z(ζ−σ) for ζ ∈ Z∗. (4.17)

It can be straightforwardly checked that the infimum in the definition of W∗z is attained.

Theorem 4.8 (Existence of viscous solutions). Assume Hypotheses 4.2, 4.3, 4.5, and 4.7. Then, for
every ε ∈ (0, 1] and q0 = (u0, z0) ∈ D there exists a curve q = (u, z) ∈ AC([0,T ]; Q) and
a function ξ = (µ, ζ) ∈ L1(0,T ; U∗×Z∗) fulfilling the initial condition q(0) = q0, solving the
generalized gradient system (4.11) in the sense that for a.a. r ∈ (0,T )

(µ(r), ζ(r)) ∈ ∂qE(r, q(r)) and

{
−µ(r)∈ ∂Vεαu (u′(r)),
−ζ(r) ∈ ∂R(z′(r))+∂Vεz(z

′(r)),
(4.18a)

Moreover, for 0 ≤ s < t ≤ T , these functions satisfy the energy-dissipation balance

E(t, q(t)) +

∫ t

s

(
Vε

α

u (εαu′(r)) + R(z′(r)) + Vεz(ε z
′(r))

)
dr (4.18b)

+

∫ t

s

( 1

εα
V∗u(−µ(r)) +

1

ε
W∗z(−ζ(r))

)
dr = E(s, q(s)) +

∫ t

s

∂tE(r, q(r)) dr.

where Vλx is defined in (1.5a).
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Proof. Since we are in the simple setting of [MRS13, Sec. 2], where the dissipation potential Ψε,α

does not depend on the state q, we can appeal to [MRS13, Thm. 2.2]. Thus, it suffices to check
the assumptions (2.Ψ1)–(2.Ψ3), (E0), and (2.E1)–(2.E4) therein. Our Hypothesis 4.2 clearly implies
(2.Ψ1) and (2.Ψ2). Hypothesis 4.3 implies the assumptions (E0) via (4.7a) and (4.7b), and assump-
tion (2.E1) follows via (4.7c) and Hypotheses 4.2. Assumption (2.E2) follows from Hypothesis 4.5 via
[MRS13, Prop. 4.2]. Assumption (2.E3) equals (4.7d) in Hypothesis 4.3. Finally, leaving out the energy-
convergence requirement assumption (2.E5) follows from Hypothesis 4.5.

Thus, all assumptions are satisfied except for (2.Ψ3) and (2.E4). Concerning (2.Ψ3), we observe that
this technical condition was used for the proof of [MRS13, Thm. 2.2] only in one place, namely in the
proof of Lemma 6.1 there. In [Bac21, Thm. 3.2.3] or in [MiR21] it is shown that Lemma 6.1, which is
also called “De Giorgi’s lemma”, is also valid if the condition [MRS13, Eqn. (2.Ψ3)] is replaced by the
condition that the underlying space Banach space Q is reflexive, but this is true by our Hypothesis
4.1. As for the chain rule [MRS13, (2.E4)], a close perusal of the proof of [MRS13] shows that our
Hypothesis 4.7 can replace it, allowing us to conclude the existence statement.

Remark 4.9 (Energy-dissipation inequality). The analysis from [MRS13] in fact reveals that, under the
chain rule in Hypothesis 4.7, a curve q ∈ AC([0,T ]; Q) fulfills (4.18a) if and only if the pair (q, ξ)
satisfies the energy-dissipation balance (4.18b) which, again by the chain rule, is in turn equivalent to
the upper energy-dissipation estimate≤. This characterization of the viscous system will prove handy
for the analysis of the delamination system from Section 8.

4.5 Properties of the generalized slopes

For the further analysis it is convenient to introduce the generalized slope functionals S ∗
x : [0,T ]×D→

[0,∞], x ∈ {u, z} via

S ∗
u (t, q) := inf

{
V∗u(−µ)

∣∣ (µ, ζ) ∈ ∂qE(t, q)
}

and

S ∗
z (t, q) := inf

{
W∗z(−ζ)

∣∣ (µ, ζ) ∈ ∂qE(t, q)
}

,
(4.19)

where the infimum over the empty set is always +∞. These functionals play the same key role as
(the square of) the metric slope for metric gradient systems, hence from now on we shall refer to S ∗

u

and S ∗
z as generalized slopes. Clearly, energy balance (4.18b) entails the validity of the following

energy-dissipation estimate featuring the slopes S ∗
u and S ∗

z :

E(t, q(t)) +

∫ t

s

(
Vε

α

u (u′(r))+R(z′(r))+Vεz(z
′(r)) +

S ∗
u (r, q(r))

εα
+

S ∗
z (r, q(r))

ε

)
dr

≤ E(s, q(s)) +

∫ t

s

∂tE(r, q(r)) dr for all 0 ≤ s ≤ t ≤ T .

(4.20)

Note that (4.20) is weaker than (4.18b), but it has the advantage that the selections ξ = (µ, ζ) in
(4.18a) are no longer needed. Moreover, (4.20) will be still strong enough to handle the limit passage
ε→ 0+. For this, we will assume that the infima in (4.19) are attained. We set

dom(∂qE) :=
{

(t, q) ∈ [0,T ]×Q
∣∣ ∂qE(t, q) 6= Ø

}
and

dom(∂qE(t, ·)) :=
{
q ∈ Q

∣∣ ∂qE(t, q) 6= Ø
}

.

In fact, it can be checked (e.g. by resorting to [MRS13, Prop. 4.2]), that dom(∂qE(t, ·)) is dense in D.
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Hypothesis 4.10 (Attainment and lower semicontinuity). For every (t, q) ∈ dom(∂qE) the infima in
(4.19) are attained, namely

A∗u(t, q) := Argmin
(µ,ζ)∈∂qE(t,q)

V∗u(−µ) 6= Ø and A∗z(t, q) := Argmin
(µ,ζ)∈∂qE(t,q)

W∗z(−ζ) 6= Ø, (4.21)

where W∗z is defined in (4.17). Furthermore, for all sequences (tn, qn)n ⊂ [0,T ]×Q with tn → t,
qn ⇀ q in Q, and supn∈N E(qn) ≤ C <∞ there holds

lim inf
n→∞

S ∗
x (tn, qn) ≥ S ∗

x (t, q) for x ∈ {u, z} . (4.22)

We are going to show in Lemma 4.11 below that a sufficient condition for Hypothesis 4.10 is that (4.12)
improves to an equality, namely

∂qE(t, q) = ∂uE(t, q)×∂zE(t, q) for all (t, q) = (t,u, z) ∈ [0,T ]×D. (4.23)

Observe that (4.23) does hold if, for instance, E is of the form

E(t, q) := U(t,u) + Z(t, z) + F(t,u, z) for all (t, q) = (t,u, z) ∈ [0,T ]×Q

with U(t, ·) : U→ (−∞,∞] and Z(t, ·) : Z→ (−∞,∞] proper and lsc,

and F(t, ·) : U×Z→ R Fréchet differentiable.

Lemma 4.11. Assume Hypotheses 4.2, 4.3, 4.5, as well as (4.23). Then,

S ∗
u (t, q) = inf

µ∈∂uE(t,q)
V∗u(−µ) and S ∗

z (t, q) = inf
ζ∈∂zE(t,q)

W∗z(−ζ) (4.24)

for all (t, q) ∈ [0,T ]×dom(∂qE), and properties (4.21) and (4.22) hold.

Proof. Obviously, for (t, q) ∈ dom(∂qE) we have (4.24) as a consequence of (4.23). We will just
check the attainment (4.21) and the lower semicontinuity (4.22) for S ∗

z , as the properties for S ∗
u

follow by the same arguments.

Suppose that (tn, qn) ⇀ (t, q) and lim infn→∞S ∗
z (tn, qn) < ∞. Using (4.24), up to a subse-

quence, there exist (ζn) ⊂ Z∗ with ζn ∈ ∂zE(tn, qn) and (σn)n ⊂ ∂R(0) ⊂ Z∗ for all n with

lim
n→∞

V∗z(−ζn−σn) = lim
n→∞

S ∗
z (tn, qn) ≤ C .

It follows from (4.2) that the sequence (σn+ζn)n is bounded in Z∗. Since, in view of (4.6), (σn)n is
bounded in Z∗, (ζn)n turns out to be bounded in Z∗, too. Then, up to a subsequence we have σn ⇀ σ
in Z∗ and ζn ⇀ ζ in Z∗. Since ∂R(0) is sequentially weakly closed in Z∗, we find σ ∈ ∂R(0). By
Hypothesis 4.5 we also have ζ ∈ ∂zE(t, q), hence

lim
n→∞

S ∗
z (tn, qn) = lim

n→∞
V∗z(−ζn−σn) ≥ V∗z(−ζ−σ)

≥W∗z(−ζ) ≥ inf
ζ̃∈∂zE(t,q)

W∗z(−ζ̃) = S ∗
z (t, q),

which is the desired lsc (4.22) for S ∗
z .

With similar arguments we deduce the attainment (4.21).
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In the above proof we have used in an essential way that ∂R(0) is bounded in Z∗ by our assumption
(4.3b). Without this property, the argument still goes through provided that, given a sequence (qn)n ⊂
Q as in Hypothesis 4.10, all sequences (ζn)n with ζn ∈ A∗z(tn, qn) for all n ∈ N happen to be
bounded in U∗×Z∗, which can be, of course, an additional property of the subdifferential ∂zE.

Throughout the rest of this paper, we will always tacitly assume the validity of Hypotheses 4.1, 4.2,
4.3, 4.5, 4.7, and 4.10 and omit any explicit mentioning of them in most of the upcoming results (with
the exception of our main existence theorems).

4.6 A priori estimates for the viscous solutions

Let (qε)ε be a family of solutions to the viscously regularized systems (1.4) in the stricter sense of
(4.18), which includes the energy-dissipation balance (4.18b). By Theorem 4.8 the existence of so-
lutions qε = (uε, zε) is guaranteed, and in this subsection we discuss some a priori estimates on
(uε, zε)ε that are uniform with respect to the parameter ε and that form the core of our vanishing-
viscosity analysis.

The starting point is the energy-dissipation estimate (4.20) that follows directly from (4.18b). Recalling
the constant C# from (4.7d) in Hypothesis 4.3 and cR in Hypotheses 4.2, we see that the following
basic a priori estimates, are valid under the sole assumptions of Hypotheses 4.2 and 4.3.

Lemma 4.12 (Basic a priori estimates). For all ε > 0 and all solutions qε = (uε, zε) : [0,T ]→ Q =
U×Z of (4.18) with E(0, qε(0)) <∞ we have the a priori estimates∫ T

0

( 1

εα
Vu(ε

αu′ε(t)) + R(z′ε(t)) +
1

ε
Vz(εz

′
ε(t)) (4.25a)

+
S ∗

u (t, qε(t))

εα
+

S ∗
z (t, qε(t))

ε

)
dt ≤ eC#TE(0, qε(0)),

0 ≤ E(t, qε(t)) ≤ eC#tE(0, qε(0)) for all t ∈ [0,T ]. (4.25b)

whence, in particular,

‖z′ε‖L1(0,T ;Zri) ≤
eC#T

cR
E(0, qε(0)) and sup

t∈[0,T ]

E(qε(t)) ≤ e2C#TE(0, qε(0)) . (4.26)

Proof. The proof follows as in the purely rate-independent case treated in [Mie05, Cor 3.3]. We start
from (4.18b) and drop the nonnegative dissipation to obtain

E(t, qε(t)) ≤ E(0, qε(0)) +

∫ t

0

∂sE(s, qε(s)) ds ≤ E(0, qε(0)) +

∫ t

0

C#E(s, qε(s)) ds,

where we used (4.7d). Thus, Grönwall’s estimate gives (4.25b) and this we find

E(0, qε(0))+

∫ T

0

∂sE(s, qε(s))ds ≤ E(0, qε(0))+

∫ T

0

C#eC#sE(0, qε(0))ds = eC#TE(0, qε(0))

and (4.25a) is established as well, as E(T ; qε(T )) ≥ C0 > 0 by (4.7b).

Since Vx and S ∗
x are nonnegative, assumption (4.3b) leads to the first estimate in (4.26). The last

assertion follows from (4.25b) and applying (4.7d) once again.
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Clearly, (4.26) provides a uniform bound on the total variation of the solution component zε in the space
Zri. A similar bound cannot be expected for the components uε, unless we add further assumptions.
To see the problem consider U = R2 and the ordinary differential equation

εαu′ε(t) + Dϕ(uε(t)) = zε(t) = a

(
cos(ωt)

sin(ωt)

)
, where ϕ(u) =

λ

2
|u|2 +

1

2
max{|u|−1, 0}2

with λ ≥ 0. Note that ϕ is uniformly coercive for all λ ≥ 0. However, the equation is linear for |u| ≤ 1
and has an exact periodic solution of the form

u(t) =
(
ReU(t), ImU(t)

)
with U(t) =

a

λ+iωεα
eiωt ∈ C,

as long as |U(t)| ≤ 1, i.e. a2 ≤ λ2+ω2ε2α. In this case, the derivatives satisfy the following L1-
estimates

‖u′ε‖L1(0,T ) = |ω|T ‖uε‖L∞ =
∣∣ aω

λ+iωεα
∣∣T =

1

(λ2+ω2ε2α)1/2
‖z′ε‖L1(0,T ).

For λ > 0 we thus obtain a bound on ‖u′ε‖L1(0,T ) from a bound on ‖z′ε‖L1(0,T ) as in (4.26). However,
in the case λ = 0 the value ‖u′ε‖L1(0,T ) may blow up while ‖z′ε‖L1(0,T ) remains bounded (or even
tends to 0) and a2 ≤ ω2ε2α, e.g. choosing ω = ε−α/2 and a = ε2α/α.

In the main part of this subsection, we provide sufficient conditions for the validity of a uniform bound
on ‖u′ε‖L1(0,T ;U). In the spirit of the above ODE example we assume that u 7→ E(t,u, z) is uniformly
convex (i.e. λ > 0) and that z 7→ DuE(t,u, z) is Lipschitz. Moreover, we need to assume that Vu

is quadratic. More precisely, we have to confine the discussion to a special setup given by conditions
(4.27) and (4.28):

(1) the dissipation potential Vu is quadratic:

U is a Hilbert space and Vu(v) :=
1

2
‖v‖2

U =
1

2
〈Vuv, v〉, (4.27)

where Vu : U→ U∗ is Riesz’ norm isomorphism;

(2) the energy functional E has domain D = Du×Dz and admits the decomposition

E(t,u, z) = E1(u) + E2(t,u, z) with (4.28a)

∃Λ > 0 : E1 is Λ-convex, (4.28b)

∀ (t, z) ∈ [0,T ]×Dz : u 7→ E2(t,u, z) is Fréchet differentiable on Du, (4.28c)

∃Cu ∈ (0, Λ) ∀E > 0 ∃CE > 0 ∀ t1, t2 ∈ [0,T ] ∀ (u1, z1), (u2, z2) ∈ SE :

‖DuE2(t1,u1, z1)−DuE2(t2,u2, z2)‖U∗
≤ CE (|t1−t2|+ ‖z1−z2‖Zri

) + Cu‖u1−u2‖U
(4.28d)

where SE denotes the sublevel of E, cf. (4.8).

Hence, the possibly nonsmooth, but uniformly convex functional E1 is perturbed by the smooth, but
possibly nonconvex, functional u 7→ E2(t,u, z). However, by Cu < Λ the mapping u 7→ E(t,u, z) is
still uniformly convex.

Unfortunately condition (4.28) is rather restrictive, because in concrete examples the driving energy
functional features a coupling between the variables u and z that is more complex. Nevertheless the
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desired a priori estimate derived in Proposition 4.13 may still be valid. Indeed, for our delamination
model examined in Section 8 we establish the corresponding estimate via an ad hoc approach for the
specific system.

The proof of the following results follows the technique for the a priori estimate developed in [Mie11,
Prop. 4.17]. We emphasize that the two additional assumptions (4.27) and (4.28) yield that the solution
uε for Vuu

′+∂E1(u)+DE1(t,u, zε(t)) 3 0 is unique as long as zε is kept fixed, since it is a classical
Hilbert-space gradient flow for a time-dependent, convex functional.

Proposition 4.13 (L1 bound on u′ε). In addition to Hypotheses 4.2 and 4.3 assume (4.27) and (4.28)
and consider initial conditions (q0

ε)ε such that

∃Cinit > 0 ∀ ε ∈ (0, 1) : E(0, q0
ε) + ε−α‖∂0

uE(0, q0
ε)‖U∗ ≤ Cinit <∞,

where ∂0
uE(0, q0

ε) ⊂ U∗ denotes the unique element of minimal norm in ∂uE(0, q0
ε) ⊂ U∗. Then,

there exists a C > 0 such that for all ε ∈ (0, 1) all solutions qε = (uε, zε) of system (4.18) with
qε(0) = q0

ε satisfy

‖u′ε‖L1(0,T ;U) ≤
1

Λ−Cu

(
Cinit + CET + CE‖z′ε‖L1(0,T ;Zri)

)
≤ 1

Λ−Cu

(
Cinit + CET +

CECinit

cR
eC#T

)
.

(4.29)

Proof. By Lemma 4.12 all curves qε : [0,T ] → Q lie in SE =
{
q ∈ Q

∣∣E(q) ≤ E
}

for E =
e2C#TCinit. Throughout the rest of this proof we drop the subscripts ε at qε = (uε, zε), but keep all
constant explicitly to emphasize that they do not depend on ε.

Setting κ = Λ−Cu > 0, the uniform convexity of E(t, ·, z) gives 〈µ1−µ2,u1−u2〉 ≥ κ‖u1−u2‖2
U

for all µj ∈ ∂uE(t,uj, z). We write the equation for u in the form 0 = εαVuu
′(t) + µ(t) with

µ(t) ∈ ∂uE(t,u(t), z(t)). For small h > 0 and t ∈ [0,T−h] we find

εα

2

d

dt
‖u(t+h)−u(t)‖2

U =
〈
εαVu(u

′(t+h)− u′(t)),u(t+h)− u(t)
〉

= −〈µ(t+h)− µ(t),u(t+h)− u(t)〉
≤ −〈µ̃h(t)− µ(t),u(t+h)− u(t)〉+ ‖µ̃h(t)−µ(t+h)‖U∗‖u(t+h)− u(t)‖U,

where µ̃h(t) ∈ ∂uE(t,u(t+h), z(t)). The uniform convexity and (4.28d) give

εα

2

d

dt
%h(t)

2 ≤ −κ%h(t)2 + CE
(
h+ ‖z(t+h)−z(t)‖Zri

)
%h(t),

where %h(t) := ‖u(t+h)−u(t)‖U. Choosing δ > 0 and setting νh(t) := %h(t)
2+δ yields

εαν̇h =
εα d

dt
%2

H

2νh
≤ −κν

2
n − δ
νh

+ CE
(
h+ ‖z(·+h)−z‖Zri

)%h
νh

≤ −κνh + κδ1/2 + CE
(
h+ ‖z(·+h)−z‖Zri

)
.

Integrating this inequality in time we arrive at

κ
T−h∫
0

%h(t) dt ≤ κ
T−h∫
0

νh(t) dt ≤ εανh(0) + δ1/2T + CEhT + CE
∫ T−h

0
‖z(t+h)−z(t)‖Zri

dt.
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Taking the limit δ → 0+, dividing by h > 0, and using ‖z(t+h)−z(t)‖Zri
≤
∫ t+h
t
‖z′(s)‖Zri

ds
gives

κ

∫ T−h

0

∥∥1

h

(
u(t+h)−u(t)

)∥∥
U

dt ≤ εα
∥∥1

h

(
u(0+h)−u(0)

)∥∥
U

+ CET + CE

∫ T

0

‖z′(t)‖Zri
dt.

Since the equation for u is a Hilbert-space gradient flow we can apply [Bré73, Thm. 3.1], which shows
that 1

h
(u(h)−u(0))→ ∂0

uE(0,u(0), z(0)) for h→ 0+. Thus, in the limit ε→ 0+ we find

κ
T∫
0

‖u′(t)‖U dt = lim
h→0+

κ
T−h∫
0

∥∥ 1
h

(
u(t+h)−u(t)

)∥∥
U

dt ≤ Cinit + CET + CE
∫ T

0
‖z′(t)‖Zri

dt,

which is the desired result, when recalling κ = Λ− Cu.

The above result is valid for all solutions of the viscous system (4.18), but it relies on the rather strong
assumptions (4.27) and (4.28). While the uniform convexity of u 7→ E(t,u)z in (4.28) seems to be
fundamental, it is expected that the rather strong assumption that Vu is the square of a Hilbert space
norm, see (4.27), can be relaxed, but then the solution uε may no longer be uniquely determined for
fixed zε. In that case it may be helpful to restrict the analysis to specific solution classes satisfying
better a priori estimates, e.g. to minimizing movements obtained via time-incremental minimization
problems as in [MRS16a, Thm. 3.23] or to solutions obtained as limit of Galerkin approximations as in
[MiZ14, Def. 4.3 & Thm. 4.13]. We also refer to our delamination model in Section 8 for a derivation of
the additional a priori estimate (4.29) in a more difficult case.

5 Parametrized Balanced-Viscosity solutions

In this section we will give the definition of Balanced-Viscosity solution to the rate-independent sys-
tem (U×Z,E,Vε

α

u +R+Vεz)ε↓0 in a parametrized version. For this, we study instead of the vis-
cous solutions qε : [0,T ] → Q suitable reparametrizations (tε, qε) : [0, Sε] → [0,T ]×Q, i.e.,
qε(s) = qε(tε(s)), see Section 5.1. While quite general reparametrizations are possible, we will
perform the vanishing-viscosity limit ε → 0+ for the one given in terms of the energy-dissipation ar-
clength s = sε(t) defined in terms of the rescaled joint M-function Mα

ε arising from the rescaled joint
B-function Bα

ε , see (5.2). The Γ-limit Mα
0 of Mα

ε , which is called the limiting rescaled joint M-function,
will then be used, to introduce the concept of admissible parametrized curves, see Definition 5.6 in
Section 5.2. This is the basis of our notion of for parametrized Balanced-Viscosity (pBV) solutions, de-
fined in Section 5.3. Theorem 5.11 states our main existence result for pBV solutions, which is based
on the convergence in the vanishing-viscosity limit ε → 0+. However, we emphasize that the notion
of ‘pBV solutions’ is independent of the limiting procedure. Finally, in Section 5.5 we provide a char-
acterization of (enhanced) pBV solutions showing that they are indeed solutions of the time-rescaled
generalized gradient system (1.13).

5.1 Reparametrization and rescaled joint M-functions

This subsection revolves around the concept and the properties of the limiting rescaled joint M-function
Mα

0 that will be introduced in the Definition 5.1. First, we will prove that Mα
0 is the Γ-limit of the family

of M-functions (Mα
ε )ε that appear naturally in the reparametrized version of the energy-dissipation
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estimate (4.20) and that are given by a composition of the rescaled joint B-function Bα
ε and the slopes

S ∗
x . Namely, the rescaled joint M-functions are defined by

Mα
ε : [0,T ]×D×[0,∞)×Q→ [0,∞],

Mα
ε (t, q, t′, q′) :=

{
Bα
ε (t′,u′, z′, S ∗

u (t, q), S ∗
z (t, q)) for ∂qE(t, q) 6= Ø,

∞ otherwise;

(5.1)

where Bα
ε is the rescaled joint B-function from (3.14) associated with the dissipation potentials ψu =

Vu and ψz = R+Vz.

The basis for the construction of parametrized BV solutions is the reparametrization of the the viscous
solutions qε : [0,T ] → Q in the form qε(s) = qε(tε(s)) such that the behavior of the function
(tε, qε) : [0, Sε] → [0,T ]×Q is advantageous. In particular, the formation of jumps in qε with
‖q′ε(t)‖ ≈ 1/ε can be modeled by a plateau-like behavior of tε with t′ε(s) ≈ ε and a soft transi-
tion of qε with ‖q′ε(s)‖ ≈ 1. The first usage of such reparametrizations for the vanishing-viscosity
limit goes back to [EfM06], but here we stay close to [MRS16a, Sec. 4.1] in using an ‘energy-based
time reparametrization’. Hence, for a family (qε)ε = (uε, zε)ε of solutions to (1.4) for which the es-

timates from Lemma 4.12 hold, as well as the additional a priori estimate (4.29) on
∫ T

0
‖u′ε‖U dt,

we reparametrize the functions qε using the energy-dissipation arclength sε : [0,T ] → [0, Sε] with
Sε := sε(T ) (cf. [MRS16a, (4.3)]) defined by

sε(t) :=

∫ t

0

(
1 + Vε

α

u (u′ε(t)) + R(z′ε(t)) + Vεz(z
′
ε(t))

+
S ∗

u (t, qε(t))

εα
+

S ∗
z (t, qε(t))

ε
+ ‖u′ε(t)‖U

)
dt ,

(5.2)

such that estimates (4.25) and (4.29) yield that supε>0 Sε ≤ C . Below we consider the reparametrized
curves (tε, qε) : [0, Sε] → [0,T ]×Q defined by tε := s−1

ε , qε := qε ◦ tε and show in Section 5.3
that they have an absolutely continuous limit (t, q), up to choosing a subsequence.

We first remark that the quantities involved in the definition of sε rewrite as

R(z′ε) + Vε
α

u (u′ε) + Vεz(z
′
ε) +

S ∗
u (t, qε)

εα
+

S ∗
z (t, qε)

ε
= Mα

ε (t, qε, 1, q′ε). (5.3)

With this, the energy-dissipation estimate (4.20) can be rewritten in terms of the parametrized curves
(tε, qε) in the form (for all 0 ≤ s1 < s2 ≤ Sε)

E(tε(s2), qε(s2)) +

∫ s2

s1

Mα
ε (tε(σ), qε(σ), t′ε(σ), q′ε(σ)) dσ

≤ E(tε(s1), qε(s1)) +

∫ s2

s1

∂tE(tε(σ), qε(σ)) t′ε(σ) dσ .

(5.4)

Moreover, the definition of sε in (5.2) is equivalent to the normalization condition

t′ε(s) + Mα
ε (tε(s), qε(s), t

′
ε(s), q

′
ε(s)) + ‖u′ε(s)‖U = 1 for a.a. s ∈ (0, Sε) . (5.5)

Of course, the reparametrized solutions qε inherit the energy estimate (4.26), namely

sup
s∈[0,Sε]

E(qε(s)) ≤ e2C#T sup
ε∈(0,1)

E(0, qε(0)) . (5.6)

DOI 10.20347/WIAS.PREPRINT.2902 Berlin 2021



BV solutions to infinite-dimensional multi-rate systems 31

The a priori estimates (5.5) and (5.6) for the reparametrized curves (tε, qε)ε will be strong enough
to ensure their convergence along a subsequence, as ε → 0+, to a curve (t, q) : [0, S] →
[0,T ]×Q, with S = limε→0+ Sε. The basic properties of (t, q) are fixed in the concept of admis-
sible parametrized curve, see Definition 5.6.

For studying the limit ε→ 0+, we need to bring into play the limiting rescaled joint M-function Mα
0 .

Definition 5.1. We define Mα
0 : [0,T ]×D×[0,∞)×Q→ [0,∞] via

Mα
0 (t, q, t′, q′) :=


Bα

0 (t′,u′, z′, S ∗
u (t, q), S ∗

z (t, q)) for ∂qE(t, q) 6= Ø,

0 for t′ = 0, q′ = 0 and

(t, q) ∈ dom(∂qE)
w,S
\dom(∂qE),

∞ otherwise,

(5.7)

where Bα
0 is defined in Proposition 3.6 and dom(∂qE)

w,S
is the weak closure of dom(∂qE) confined

to energy sublevels:

dom(∂qE)
w,S

:=
{

(t, q)
∣∣ ∃ (tn, qn)n ⊂ dom(∂qE): (tn, qn) ⇀ (t, q), sup

n
E(qn) <∞

}
. (5.8)

It follows from Proposition 3.6 that

(t′, q′) 7→Mα
0 (t, q, t′, q′) is convex and 1-homogeneous for all (t, q) ∈ [0,∞)×Q. (5.9)

Relying on Proposition 3.6 and Hypothesis 4.10, we are ready to prove the following Γ-convergence
result, which straightforwardly gives that Mα

0 is (sequentially) lower semicontinuous with respect to
the weak topology of R×Q×R×Q along sequences with bounded energy.

Proposition 5.2 (Weak Γ-convergence of M-functions). The limiting M-function
Mα

0 : [0,T ]×D×[0,∞)×Q → [0,∞] is the Γ-limit of the M-functions (Mα
ε )ε, with respect to the

weak topology, along sequences with bounded energy, namely the following assertions hold:

(a) Γ-lim inf estimate:(
(tε, qε, t

′
ε, q
′
ε) ⇀ (t, q, t′, q′) in R×Q×R×Q as ε→ 0+ with sup

ε>0
E(qε) <∞

)
=⇒ Mα

0 (t, q, t′, q′) ≤ lim inf
ε→0+

Mα
ε (tε, qε, t

′
ε, q
′
ε);

(5.10a)

(b) Γ-lim sup estimate:

∀ (t, q, t′, q′) ∈ [0,T ]×D×[0,∞)×Q ∃ (tε, qε, t
′
ε, q
′
ε)ε such that

(i) (tε, qε, t
′
ε, q
′
ε) ⇀ (t, q, t′, q′) in R×Q×R×Q as ε→ 0+,

(ii) supε>0 E(qε) <∞, and

(iii) Mα
0 (t, q, t′, q′) ≥ lim supε→0+ Mα

ε (tε, qε, t
′
ε, q
′
ε) .

(5.10b)

Proof. Concerning (a), let (tε, qε, t
′
ε, q
′
ε)ε be a sequence as in (5.10a). Of course we can suppose that

lim infε→0+ Mα
ε (tε, qε, t

′
ε, q
′
ε) < ∞, and thus that supεM

α
ε (tε, qε, t

′
ε, q
′
ε) < ∞. Then, there exists
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ε̄ > 0 such that for all ε ∈ (0, ε̄) there holds t′ε > 0, the Fréchet subdifferential ∂qE(tε, qε) is non-
empty, and Mα

ε (tε, qε, t
′
ε, q
′
ε) = Bα

ε (t′ε,u
′
ε, z
′
ε, S

∗
u (tε, qε), S ∗

z (tε, qε)). In order to apply Proposition
3.6 we now need to discuss the boundedness of the slopes (S ∗

u (tε, qε))ε, (S ∗
z (tε, qε))ε. Indeed, If

t′ > 0, then t′ε ≥ c > 0 for all ε ∈ (0, ε̄) (up to choosing a smaller ε̄), so that, by the definition
(3.12) of Bα

ε we infer that S ∗
u (tε, qε) ≤ Cεα and S ∗

z (tε, qε) ≤ Cε for all ε ∈ (0, ε̄). In the case
t′ = 0, suppose e.g. that lim infε→0 S ∗

u (tε, qε) = +∞ while lim infε→0 S ∗
z (tε, qε) < +∞. Then,

from the coercivity estimate (3.15b) we deduce (up to extracting a not relabeled subsequence) that
u′ε → 0. Thus,

lim inf
ε→0

Bα
ε (t′ε,u

′
ε, z
′
ε, S

∗
u (tε, qε), S

∗
z (tε, qε)) ≥ lim inf

ε→0
BVz

(t′ε
ε

, z′ε, S
∗
z (tε, qε)

)
≥ Bα

0 (0, 0, z′, S ∗
u (t, q), S ∗

z (t, q)) ,

with the latter estimate due to Proposition 3.6, Hypothesis 4.10, and the monotonicity of
Bα

0 (τ , q′,σu,σz) in σu and σz. We may argue similarly in the case lim infε→0 S ∗
u (tε, qε) < +∞

and lim infε→0 S ∗
z (tε, qε) = +∞ and when both limits are finite.

The Γ-lim sup estimate (b) is trivial for all (t, q, t′, q′) ∈ [0,T ]×D×[0,∞)×Q withMα
0 (t, q, t′, q′) =

∞. If Mα
0 (t, q, t′, q′) = Bα

0 (t′,u′, z′, S ∗
u (t, q), S ∗

z (t, q)) < ∞, then the lim sup estimate imme-
diately follows via the constant recovery sequence (tε, qε, t

′
ε, q
′
ε) ≡ (t, q, t′, q′) with the same ar-

guments as in the proof of Proposition 3.6. Let us now suppose that (t′, q′) = (0, 0) with (t, q) ∈
dom(∂qE)

w,S
\dom(∂qE), so that Mα

0 (t, q, t′, q′) = 0. We observe that there exists a sequence
(tn, qn)n ⊂ dom(∂qE) with (tn, qn) ⇀ (t, q) and supn E(qn) < ∞. We will show that for every
null sequence (εk)k∈N there exists a recovery sequence for (t, q, 0, 0). For this, we first fix n ∈ N
and associate with (tn, qn, 0, 0) the recovery sequence (tεk,n, qεk,n, t′εk,n, q′εk,n) = (tn, qn, t′εk,n, 0),
where we choose t′εk,n > 0 such that

t′εk,n ≤ εk ,
t′εk,n

εαk
S ∗

u (tn, qn) ≤ εk , and
t′εk,n

εk
S ∗

z (tn, qn) ≤ εk .

Setting n = k we obtain the sequence (t̃εk , q̃εk , t̃
′
εk

, q̃′εk) = (tk, qk, t
′
εk,k, 0) ⇀ (t, q, 0, 0), which

gives (i). By construction we also have supk∈N E(q̃εk) ≤ supn∈N E(qn) < ∞, which gives (ii).
Moreover, because of t̃′εk > 0 and q̃′εk = 0 we have

Mα
εk

(t̃εk , q̃εk , t̃
′
εk

, q̃′εk) = Bα
εk

(t̃′εk , 0, S ∗
u (tk, qk), S

∗
z (tk, qk))

=
t′εk,k

εαk
S ∗

u (tk, qk) +
t′εk,k

εk
S ∗

z (tk, qk) ≤ 2εk → 0 = Mα
0 (t, q, 0, 0) .

Thus, condition (iii) in (5.10b) holds as well. With this, Proposition 5.2 is established.

For later use we also introduce the ‘reduced’ rescaled joint M-function

Mα,red
0 : [0,T ]×D×[0,∞)×Q→ [0,∞], Mα,red

0 (t, q, t′, q′) := Mα
0 (t, q, t′, q′)− R(z′).

(5.11)
We observe that the dissipation potentials ψu := Vu and ψz := R+Vz have rate-independent parts
null and equal to R, respectively, and that bψz = R + bVz thanks to (4.2b). Thus, from (5.7) and
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Proposition 3.6 we infer that the following representation formula for Mα,red
0 :

for ∂qE(t, q) 6= Ø we have

t′ > 0 : Mα,red
0 (t, q, t′, q′) =

{
0 for S ∗

u (t, q) = S ∗
z (t, q) = 0,

∞ otherwise;

t′ = 0, α > 1: Mα,red
0 (t, q, 0, q′) =


bVz(z

′, S ∗
z (t, q)) for S ∗

u (t, q) = 0,

bVu(u
′, S ∗

u (t, q)) for S ∗
u (t, q) > 0, z′ = 0,

∞ otherwise;

t′ = 0, α = 1: M 1 ,red
0 (t, q, 0, q′) = bVu⊕Vz(q

′, S ∗
u (t, q)+S ∗

z (t, q)) (5.12a)

t′ = 0, α < 1: Mα,red
0 (t, q, 0, q′) =


bVu(u

′, S ∗
u (t, q)) for S ∗

z (t, q) = 0,

bVz(z
′, S ∗

z (t, q)) for S ∗
z (t, q) > 0, u′ = 0,

∞ otherwise,

for ∂qE(t, q) = Ø we have

Mα,red
0 (t, q, t′, q′) =

{
0 for t′ = 0, q′ = 0 and (t, q) ∈ dom(∂qE)

w,S
\dom(∂qE),

∞ otherwise.

(5.12b)

The expressions in (5.12) reflect the fact that Mα
ε only depends on the three cases given by α ∈

(0, 1), α = 1, or α > 1.

We emphasize that Mα,red
0 depends on R as well, namely through S ∗

z which is defined via W∗z . In
particular, for t′ > 0 finiteness of Mα,red

0 (t, q, t′, q′) enforces that 0 = S ∗
u (t, q) = S ∗

z (t, q) and
hence, taking into account Hypothesis 4.10,{

the stationarity of u: ∃ (µ, ζ) ∈ ∂qE(t, q) : µ = 0 ,

the local stability of z: ∃ (µ̃, ζ̃) ∈ ∂qE(t, q) : ζ̃ ∈ ∂R(0) .
(5.13)

In the specific cases of dissipation potentials Vu and Vz considered in Example 3.4, we even have the
explicit expression of the respective contact potentials bVu and bVz , and thus of the (reduced) rescaled
joint M-function Mα,red

0 . In particular, let us revisit the p-homogeneous case:

Example 5.3 (The p-homogeneous case). Suppose that the dissipation potentials Vu and Vz are
positively p-homogeneous with the same p ∈ (1,∞). Then, combining (3.10) with (5.12) we conclude
that for t′ = 0 and ∂qE(t, q) 6= Ø we have (where ĉp = p1/p(p′)1/p′)

α > 1: Mα,red
0 (t, q, 0, q′) =


ĉp (Vz(z

′))1/p (S ∗
z (t, q))1/p′ for S ∗

u (t, q) = 0,

ĉp (Vu(u
′))1/p (S ∗

u (t, q))1/p′ for S ∗
u (t, q) > 0, z′ = 0,

∞ otherwise;

α = 1: Mα,red
0 (t, q, 0, q′) = ĉp (Vu(u

′)+Vz(z
′))

1/p
(S ∗

u (t, q)+S ∗
z (t, q))1/p′ (5.14)

α < 1: Mα,red
0 (t, q, 0, q′) =


ĉp (Vu(u

′))1/p (S ∗
u (t, q))1/p′ for S ∗

z (t, q) = 0,

ĉp (Vz(z
′))1/p (S ∗

z (t, q))1/p′ for S ∗
z (t, q) > 0, u′ = 0,

∞ otherwise.

The M-functions Mα
ε enjoy suitable coercivity properties that will play a key role in the compactness

arguments for proving the existence of BV solutions. These estimates are direct consequences of the
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the lower bounds on Bα
ε derived in Lemma 3.7 and the definition of Mα

ε . The importance here is the
uniformity in ε ∈ [0, 1].

We also emphasize that we are stating a result that is focusing on z′ and ignoring u′, which reflects
the fact that we always assume the bound on ‖u′ε‖L1(0,T ;U) whereas for z′ε we only have a bound in
L1(0,T ; Zri), but we need the derivative z′(s) ∈ Z at least in points where S ∗

z (t(s), q(s)) > 0.

Lemma 5.4. The following estimates hold for all c > 0 and ε ∈ [0, 1] with κ from Lemma 3.7:

α ∈ (0, 1) : S ∗
z (t, q) ≥ c =⇒ ‖z′‖Z ≤

Mα
ε (t, q, t′, q′)

κ(c)
, (5.15a)

α ≥ 1 : S ∗
u (t, q)+S ∗

z (t, q) ≥ c =⇒ ‖z′‖Z ≤
Mα

ε (t, q, t′, q′)

κ(c)
. (5.15b)

The proof of (5.15a) and (5.15b) follows directly from the definition of Mα
ε and the corresponding

estimates (3.15b) and (3.15e) for Bα
ε in Lemma 3.7, respectively.

The following result is an immediate consequence of the definition of Mα
ε and of Proposition 3.2(b5),

if we recall the definitions of A∗,0x from (4.21).

Lemma 5.5. For all α > 0 and all ε ∈ [0, 1] we have that

Mα
ε (t, q, t′, q′) ≥ − 〈µ,u′〉U− 〈ζ, z′〉Z (5.16)

for all (t, q, t′, q′) ∈ [0,T ]×Q×[0,∞)×Q and all ξ = (µ, ζ) ∈ A∗u(t, q), ζ ∈ A∗z(t, q).

5.2 Admissible parametrized curves

The concept of admissible parametrized curve is tailored in such a way that it is able to describe limiting
curves (t, q) : [a, b]→ [0,T ]×Q of a family of parametrized viscous curves (tε, qε)ε satisfying

sup
ε∈(0,1)

∫ b

a

Mα
ε (tε(s), qε(s), t

′
ε(s), q

′
ε(s)) ds < ∞.

Since Proposition 5.2 guarantees that Mα
0 is the Γ-limit of Mα

ε it seems natural that such curves can
be characterized by the condition∫ b

a

R(z′(s)) ds+

∫ b

a

Mα,red
0 (t(s), q(s), t′(s), q′(s)) ds <∞. (5.17)

However, this expression is not well-defined, since we are not able to define the derivatives q′(s) =
(u′(s), z′(s)) almost everywhere. To reformulate (5.17) in a proper way, we take advantage of the
special form of Mα,red

0 given in (5.12) by observing that z′(s) is only needed on the special sets
G α[t, q] to be defined below. Hence, condition (5.17) can be replaced by (5.20) in Definition 5.6
ahead, which relies on the fact that absolutely continuous curves z with values in (the possibly non-
reflexive space) Zri need not be differentiable with respect to time. Therefore, the pointwise derivative
z′ is replaced by a scalar surrogate, cf. (5.18) below, whose definition involves the dissipation potential
R and generalizes the concept of metric derivative from the theory of gradient flows in metric spaces
[AGS08].
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(1) We say that a curve z : [a, b] → Zri is R-absolutely continuous if there exists a nonnegative
function m ∈ L1(a, b) such that

R(z(s2)−z(s1)) ≤
∫ s2

s1

m(s) ds for every a ≤ s1 ≤ s2 ≤ b,

and we denote by AC([a, b]; Zri,R) the space of R-absolutely continuous curves.

(2) For a curve z ∈ AC([a, b]; Zri,R) we set

R[z′](s) := lim
h→0

R
(1

h

(
z(s+h)−z(s)

))
for a.a. s ∈ (a, b). (5.18)

We are now in a position to give our definition of admissible parametrized curve, which adapts [MRS16a,
Def. 4.1] to the present multi-rate system. We recall that the slope functions S ∗

x are lsc according to
Hypothesis 4.10. Hence, along continuous curves (t, q) : [a, b] → [0,T ]×Q the following sets are
relatively open:

G α[t, q] :=

{{
s ∈ [a, b]

∣∣S ∗
u (t(s), q(s))+S ∗

z (t(s), q(s)) > 0
}

for α ≥ 1,{
s ∈ [a, b]

∣∣S ∗
z (t(s), q(s)) > 0

}
for α ∈ (0, 1).

(5.19)

The difference between the cases α > 1 and α ∈ (0, 1) in the definition of the set G α[t, q] is
commented after the following definition.

Definition 5.6 (A ([a, b]; [0,T ]×Q)). A curve (t, q) = (t, u, z) : [a, b] → [0,T ]×Q is called an
admissible parametrized curve if

(1) t is non-decreasing, t ∈ AC([a, b];R), u ∈ AC([a, b]; U) and z ∈ AC([a, b]; Zri,R);

(2) S ∗
u (t, q) = 0 and S ∗

z (t, q) = 0 on the set
{
s ∈ (a, b)

∣∣ t′(s) > 0
}

;

(3) z is locally Z-absolutely continuous on the open set G α[t, q], and t is constant on every connected
component of G α[t, q];

(4) sups∈[a,b] E(q(s)) ≤ E for some E > 0;

(5) there holds∫ b

a

R[z′](s) ds+

∫
Gα[t,q]

Mα,red
0 (t(s), u(s), z(s), 0, u′(s), z′(s)) ds <∞ . (5.20)

We will denote by A ([a, b]; [0,T ]×Q) the collection of all admissible parametrized curves from [a, b]
to [0,T ]×Q. Furthermore, we say that (t, q) ∈ A ([a, b]; [0,T ]×Q) is

(*) non-degenerate, if

t′(s) + R[z′](s) + ‖u′(s)‖U > 0 for a.a. s ∈ (a, b); (5.21)

(*) surjective, if t(a) = 0 and t(b) = T .
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Finally, in the case in which the function t, defined on the canonical interval [0, 1], is constant with
t(s) ≡ t for some t ∈ [0,T ], we call q an admissible transition curve between q0 := q(0) and
q1 := q(1) at time t, and we will use the notation

At(q0, q1) := {q : [0, 1]→ Q : (t, q) ∈ A ([0, 1]; [0,T ]×Q), t(s) ≡ t, q(0) = q0, q(1) = q1}.

The requirement that z has to be locally Z-absolutely continuous on the set G α[t, q], and the different
definition of G α[t, q] in the cases α ≥ 1 and α ∈ (0, 1), are clearly motivated by properties (5.15)
(which, in turn, derive from Lemma 3.7). Indeed, in the case α ∈ (0, 1), in view of (5.15a), once
Mα

0 (t, q, t′, q′) is estimated and S ∗
z (t, q) is strictly positive, then Mα

0 (t, q, t′, q′) provides a control
on ‖z′‖Z. Because of this, parametrized curves are required to be absolutely continuous on the set
S ∗

z (t, q) > 0. In the case α ≥ 1, in view of estimate (5.15b), the z-component of admissible
parametrized curves is expected to be absolutely continuous on the larger set where S ∗

u (t, q) +
S ∗

z (t, q) > 0.

Hence, on the one hand, in (5.20) we integrate only over the set G α[t, q], because it is in G α[t, q]
where the pointwise derivative z′ ∈ Z exists, which makes the term Mα,red

0 (t(s), q(s), 0, q′(s)) well
defined. On the other hand, the specific form of Mα,red

0 in (5.12) and the fact that bψ(v, 0) = 0 for all
v show that z′ ∈ Z is only needed on the set G α[t, q].

Hereafter, along an admissible parametrized curve (t, q) we shall use the notation

Mα
0 [t, q, t′, q′](s) := R[z′](s) + 1Gα[t,q](s)M

α,red
0 (t(s), q(s), 0, q′(s)) (5.22)

with R[z′] from (5.18), and 1Gα[t,q] is the indicator function of the set G α[t, q]. Let us stress that the
above notation makes sense only along an admissible curve. If the admissible curve (t, q) has the
additional property z ∈ AC([a, b]; Z) and thus z′(s) is well defined as an element of Z ⊂ Zri for
almost all s ∈ (a, b), then R[z′](s) = R(z′(s)) a.e. in (a, b). Hence, for an admissible curve with
z ∈ AC([a, b]; Z) we have Mα

0 [t, q, t′, q′](s) = Mα
0 (t(s), q(s), t′(s), q′(s)) for a.a. s ∈ (a, b).

5.3 Definition of parametrized Balanced-Viscosity solutions

We are now in a position to precisely define parametrized Balanced-Viscosity (pBV) solutions to the
rate-independent system (U×Z,E,Vε

α

u +R+Vεz)ε↓0, see Definition 5.9. At the core of this concept
there lies a (parametrized) chain-rule inequality, cf. Hypothesis 5.7 that will be imposed as an additional
property of the rate-independent system, while Proposition 5.16 will provide sufficient conditions for
the validity of Hypothesis 5.7.

We will also introduce an enhanced version of the pBV concept, in which we additionally require z
to be absolutely continuous with values in Z. In [MRS16a, Sec. 4.2] this notion had been already
introduced, using a different terminology that might create slight confusion in the present multi-rate
context and has thus been changed here. We believe the enhanced concept to be significant as well
because, for some examples (cf. e.g. the applications discussed in Section 8), the vanishing-viscosity
analysis will directly lead to enhanced BV solutions.

The definition of pBV solutions relies on the validity of the following assumption on the rate-independent
system (U×Z,E,Vε

α

u +R+Vεz)ε↓0.

Hypothesis 5.7 (Chain rule along admissible parametrized curves). For every admissible parametrized
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curve (t, q) ∈ A ([a, b]; [0,T ]×Q)

the map s 7→ E(t(s), q(s)) is absolutely continuous on [a, b] and

d

ds
E(t(s), q(s))− ∂tE(t(s), q(s))t′(s) ≥ −Mα

0 [t, q, t′, q′](s) for a.a. s ∈ (a, b).
(5.23)

Remark 5.8. In general, the chain-rule inequality (5.23) along a given admissible parametrized curve
(t, q) does not follow from the chain rule of Hypothesis 4.7, because for these curves the pointwise
derivative z′ exists as an element in Z only on the set G α[t, q] from (5.19). That is why, Proposition
5.16 provides a sufficient condition under which Hypothesis 4.7 ensures the validity of Hypothesis 5.7,
albeit restricted to admissible curves satisfying additionally z ∈ AC([a, b]; Z).

We are now ready to introduce the exact notion of pBV solutions.

Definition 5.9 (pBV and enhanced pBV solutions). In addition to Hypotheses 4.1, 4.2, 4.3, 4.5, and
4.10, let the rate-independent system (U×Z,E,Vε

α

u +R+Vεz)ε↓0 satisfy Hypothesis 5.7. We call a
curve (t, q) ∈ A ([a, b]; [0,T ]×Q) a parametrized Balanced-Viscosity (pBV) solution to the rate-
independent system (U×Z,E,Vε

α

u +R+Vεz)ε↓0 if (t, q) satisfies the parametrized energy-dissipation
balance

E(t(s2), q(s2)) +

∫ s2

s1

Mα
0 [t, q, t′, q′](s) ds = E(t(s1), q(s1)) +

∫ s2

s1

∂tE(t(s), q(s))t′(s) ds

(5.24)
for every a ≤ s1 ≤ s2 ≤ b, where Mα

0 is defined in (5.22).

A pBV solution (t, q) = (t, u, z) is called enhanced pBV solution, if additionally z ∈ AC([a, b]; Z).

For an enhanced pBV solution (t, q) we have q ∈ AC([a, b]; Q), since q ∈ A ([a, b]; [0,T ]×Q)
already implies u ∈ AC([a, b]; U). As a consequence of the chain-rule inequality (5.23) from Hypoth-
esis 5.7, we have the following characterization.

Lemma 5.10 (Characterization of pBV solutions). Let Hypothesis 5.7 hold additionally. Then for an ad-
missible parametrized curve (t, q) ∈ A ([a, b]; [0,T ]×Q), the following three properties are equiva-
lent:

(1) (t, q) is a pBV solution of the rate-independent system (U×Z,E,Vε
α

u +R+Vεz)ε↓0;

(2) (t, q) fulfills the upper energy estimate ≤ in (5.24) on for s1 = a and s2 = b;

(3) (t, q) fulfills the pointwise identity for a.a. s ∈ (a, b)

d

ds
E(t(s), q(s))− ∂tE(t(s), q(s))t′(s) = −Mα

0 [t, q, t′, q′](s) . (5.25)

The proof is a simple adaptation of the arguments for [MRS12a, Prop. 5.3] and [MRS16a, Cor 3.5] and
is thus omitted.

5.4 Existence results for pBV solutions

Our first main result states that any family (tε, uε, zε)ε obtained by suitably rescaling (cf. Remark 5.15
ahead) a family of solutions to the viscous system (1.4) converges along a subsequence, as ε→ 0+,
to a parametrized solution of the rate-independent system (U×Z,E,Vε

α

u +R+Vεz)ε↓0.
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Theorem 5.11 (Existence of pBV solutions). Under Hypotheses 4.1, 4.2, 4.3, 4.5, 4.10, and 5.7,
let (qεk)k = (uεk , zεk)k ⊂ AC([0,T ]; Q) be a sequence of solutions to the generalized viscous
gradient system (1.4) with (εk)k ⊂ (0,∞) a null sequence. Suppose that

qεk(0)→ q0 in Q and E(0, qεk(0))→ E(0, q0) as k →∞, (5.26)

for some q0 = (u0, z0) ∈ D. Let tεk : [0, S] → [0,T ] be non-decreasing surjective time-rescalings
such that qεk = (uεk , zεk) defined via qεk(s) = qεk(tεk(s)) satisfies

∃C > 0 ∀ k ∈ N for a.a. s ∈ (0, S) :

t′εk(s) + R(z′εk(s)) + Mα,red
εk

(tεk(s), qεk(s), t
′
εk

(s), q′εk(s)) + ‖u′εk(s)‖U ≤ C.
(5.27)

Then, there exist a (not relabeled) subsequence and a curve (t, q) ∈ A ([0, S]; [0,T ]×Q) such that

(1) t ∈ C0
lip([0, S]; [0,T ]), q = (u, z) ∈ C0

weak([0, S]; Ue×Ze),

u ∈ C0
lip([0, S]; U), z ∈ C0

lip([0, S]; Zri) ∩ C0([0, S]; Z);
(5.28)

(2) the following convergences hold as k →∞

tεk → t in C0([0, S]), (5.29a)

uεk
∗
⇀ u in W 1,∞(0, S; U), zεk → z in C0([0, S]; Z), (5.29b)

uεk(s) ⇀ u(s) in Ue and zεk(s) ⇀ z(s) in Ze for all s ∈ [0, S]; (5.29c)

(3) (t, q) fulfills the upper energy-dissipation estimate ≤ in (5.24) on [0, S], hence (t, q) is a pBV
solution to the rate-independent system (U×Z,E,Vε

α

u +R+Vεz)ε↓0.

Moreover, (t, u, z) is surjective and there hold the additional convergences

E(tεk(s), qεk(s))→ E(t(s), q(s)) for all s ∈ [0, S], (5.30a)∫ s2

s1

Mα
εk

(tεk(σ), qεk(σ), t′εk(σ), q′εk(σ)) dσ →
∫ s2

s1

Mα
0 [t,q, t′, q′](σ) dσ (5.30b)

for all 0 ≤ s1 ≤ s2 ≤ S.

We postpone the proof of Theorem 5.11 to Section 7.2, but point out here that the core of the limit
passage in the parametrized energy-dissipation estimate (5.4), leading to (5.24), lies in the following
straightforward consequence of Ioffe’s theorem [Iof77] (see also [Val90, Thm. 21]). A ‘metric version’
of Proposition 5.12 below was proved in [MRS09, Lemma 3.1].

Proposition 5.12. Let S be a weakly closed subset of Q, and let (Mε)ε, M0 : R×S×R×Q →
[0,∞] be measurable and weakly lower semicontinuous functionals fulfilling the Γ-lim inf estimate(

(tε, qε, t
′
ε, q
′
ε) ⇀ (t, q, t′, q′) in R×S×R×Q as ε→ 0+

)
(5.31)

=⇒M0(t, q, t′, q′) ≤ lim inf
ε→0+

Mε(tε, qε, t
′
ε, q
′
ε) .

Suppose that, for ε ≥ 0, the functional Mε(t, q, ·, ·) is convex for every (t, q) ∈ R×S. Let (tε, qε),
(t, q) ∈ AC([a, b];R×S) fulfill

tε(s)→ t(s), qε(s) ⇀ q(s) for all s ∈ [a, b], (t′ε, q
′
ε) ⇀ (t′, q′) in L1(a, b;R×Q) . (5.32)

Then,

lim inf
ε→0+

∫ b

a

Mε(tε(s), qε(s), t
′
ε(s), q

′
ε(s)) ds ≥

∫ b

a

M0(t(s), q(s), t′(s), q′(s)) ds . (5.33)
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Proof. It is sufficient to introduce the functional M̄ : R×S×R×Q×[0,∞]→ [0,∞] defined by

M̄ (t, q, t′, q′, ε) :=

{
Mε(t, q, t

′, q′) if ε > 0,
M0(t, q, t′, q′) if ε = 0,

and to observe that M is lower semicontinuous with respect to the weak topology ofR×S×R×Q×[0,∞]
and convex for every (t, q) ∈ R×Q and ε ≥ 0. Then, by Ioffe’s theorem we conclude that

lim inf
ε→0+

∫ b

a

M̄ (tε(s), qε(s), t
′
ε(s), q

′
ε(s), ε) ds ≥

∫ b

a

M̄ (t(s), q(s), t′(s), q′(s), 0) ds ,

i.e., (5.33) is established.

Remark 5.13. Theorem 5.11 does not guarantee that the pBV solution is non-degenerate even if the
quantity in (5.27) has a uniform positive lower bound. Nonetheless, any (possibly degenerate) solution
(t, q) can be reparametrized to a non-degenerate one (̃t, q̃) : [0, S̃]→ [0,T ]×Q, fulfilling

t̃′(σ) + R[̃z′](σ) + ‖ũ′(σ)‖U = 1 for a.a. σ ∈ (0, S̃). (5.34)

For this, we proceed as in [EfM06] and associate with (t, q) the rescaling function σ̃ defined by σ̃(s) =∫ s
0

(t′(r)+R[z′](r)+‖u′(r)‖U) dr and set S̃ = σ(S). We then define (̃t(σ), q̃(σ)) := (t(s), q(s))
for σ = σ̃(s). The very same calculations as in [Mie11, Lem. 4.12] (or based on the reparametrization
result [AGS08, Lem. 1.1.4]), yield (5.34).

Our next result, whose proof is omitted (cf. also Remark 5.15), addresses the existence of enhanced
pBV solutions.

Theorem 5.14 (Existence of enhanced pBV solutions). Assume Hypotheses 4.1, 4.2, 4.3, 4.5, 4.10,
and 5.7. Suppose that there exist rescaled solutions (tεk , qεk)k to the viscous system (1.4)εk such
that, in addition to (5.27), there also holds the estimate

∃C > 0 ∀ k ∈ N for a.a. s ∈ (0, S) : ‖z′εk(s)‖Z ≤ C . (5.35)

Then, up to a (not relabeled) subsequence the curves (tεk , qεk)k converge to an admissible parametrized
curve (t, q) ∈ A ([0, S]; [0,T ]×Q) such that (5.28), (5.29), (5.30) hold and additionally z ∈ C0

lip([0, S];
Z), i.e., (t, q) is an enhanced pBV solution to the rate-independent system (U×Z,E,Vε

α

u +R+Vεz)ε↓0.

Remark 5.15. In the statement of Theorem 5.11, the reparametrization t = tεk(s) yielding the
rescaled solutions qεk can be chosen arbitrarily, provided it guarantees the Lipschitz bound (5.27). Un-
der Hypotheses 4.1, 4.2 and 4.3, all viscous solutions (uεk , zεk) satisfy the uniform bound
‖z′εk‖L1(0,T ;Zri) ≤ C , see (4.26). If, additionally ‖u′εk‖L1(0,T ;Zri) ≤ C holds (i.e. (4.29) from Corollary
4.13), then a reparametrization yielding (5.27) is easily obtained, for instance, by using the energy-
dissipation arclength in (5.2).

Similarly, under the stronger a priori estimate

∃C > 0 ∀ k ∈ N :
∥∥z′εk∥∥L1(0,T ;Z)

=

∫ T

0

‖z′εk(t)‖Z dt ≤ C, (5.36)

one easily obtains rescaled solutions satisfying the stronger Lipschitz bound (5.35). Hence, one gains
enhanced compactness information for the sequence (zεk)k, and the proof of Theorem 5.11 immedi-
ately yields a proof of Theorem 5.14.
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We conclude this section with some sufficient conditions for the validity of (a stronger form of) the
parametrized chain rule in Hypothesis 5.7. It will be derived as a consequence of the non-parametrized
chain rule in Hypothesis 4.7.

Proposition 5.16 (Sufficient conditions for parametrized chain rule). Assume that Hypothesis 4.7
holds and that the vanishing-viscosity contact potentials associated with Vu and Vz satisfy

∃ cx > 0 ∀ (v, η) ∈ X×X∗ : bVx(v,V∗x(η)) ≥ cx‖v‖X‖η‖X∗ (5.37)

for x ∈ {u, z} and X ∈ {U, Z}.
Then, the parametrized chain rule (5.23) holds along all admissible curves (t, q) ∈ A ([a, b]; [0,T ]×Q)
with q ∈ AC([a, b]; Q). In particular, we have

d

ds
E(t, q)− ∂tE(t, q)t′ = 〈µ, u′〉U + 〈ζ, z′〉Z ≥ −M

α
0 (t, q, t′, q′) a.e. in (a, b) (5.38)

for all measurable selections (a, b) 3 s 7→ (µ(s), ζ(s)) ∈ U∗×Z∗ satisfying for almost all s ∈ (a, b)
(µ(s), ζ(s)) ∈ A∗u(t(s), q(s))×A∗z(t(s), q(s)).

The proof will be carried out in Appendix A.

5.5 Differential characterization of enhanced pBV solutions

The main result of this section is Theorem 5.20, which provides a further characterization of enhanced
pBV solutions in terms of solutions of a system of subdifferential inclusions, see (5.46). This differential
form has the very same structure as the viscous system (4.13), except that the small parameters εα

and ε multiplying the viscous terms are replaced by coefficients λu and λz satisfying the switching
conditions (5.47c). For this, we use the optimality in the energy-dissipation balance.

In Lemma 5.5 we have established the estimate

Mα
0 (t, q, t′, q′) ≥ − 〈µ,u′〉U− 〈ζ, z′〉Z for all (µ, ζ) ∈ A∗u(t, q)×A∗z(t, q), (5.39)

which is valid for all (t, q, t′, q′) ∈ [0,T ]×Q×[0,∞)×Q and which is a generalization of the classi-
cal Young–Fenchel inequality ψ(v) + ψ∗(−ξ) ≥ − 〈ξ, v〉. With the first result of this section we will
show that, in analogy to the characterization of generalized gradient-flow equations via the energy-
dissipation principle, we are able to characterize pBV solutions via the optimality condition that esti-
mate (5.39) holds as an equality. Thus, we define the contact set Σα (cf. [MRS13, Def. 3.6]) via

Σα :=
{

(t, q, t′, q′) ∈ [0,T ]×Q×[0,∞)×Q
∣∣∣ ∃ (µ, ζ) ∈ A∗u(t, q)×A∗z(t, q) : (5.40)

Mα
0 (t, q, t′, q′) = − 〈µ,u′〉U− 〈ζ, z′〉Z

}
.

Proposition 5.17 below makes the relation between enhanced pBV solutions and the contact set Σα

rigorous. We emphasize here that we need to exploit the stronger version (5.38) of the parametrized
chain rule from Hypothesis 5.7, in addition to Hypotheses 4.1, 4.2, 4.3, 4.5, and 4.10, always tacitly
assumed. Recall that a sufficient condition for such a chain rule is provided by Proposition 5.16.

Proposition 5.17 (Enhanced pBV solutions lie in Σα). Suppose that the parametrized chain rule
(5.38) holds along all admissible curves (t, q) ∈ A ([a, b]; [0,T ]×Q) with q ∈ AC([a, b]; Q). Then,
a curve (t, q) ∈ A ([a, b]; [0,T ]×Q) is an enhanced pBV solution of (U×Z,E,Vε

α

u +R+Vεz)ε↓0 if
and only if q ∈ AC([a, b]; Q) and (t, q, t′, q′) ∈ Σα a.e. in (a, b).
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Proof. Let us consider an admissible parametrized curve (t, q) ∈ A ([a, b]; [0,T ]×Q) with q ∈
AC([a, b]; Q). By the characterization provided in Lemma 5.10, (t, q) is a pBV solution if and only
if −Mα

0 (t, q, t′, q′) = d
ds
E(t, q) − ∂tE(t, q)t′ almost everywhere in (a, b). Combining this with the

chain-rule inequality (5.38) we in fact conclude that

d

ds
E(t, q)− ∂tE(t, q)t′ = 〈µ, u′〉U + 〈ζ, z′〉Z = −Mα

0 (t, q, t′, q′) a.e. in (a, b),

for all measurable selections ξ = (µ, ζ) : (a, b) → A∗u(t(s), q(s))×A∗z(t(s), q(s)), hence
(t, q, t′, q′) ∈ Σα a.e. in (a, b). The converse implication follows by the same argument.

The final step in relating enhanced pBV solutions to the solutions of the subdifferential system (5.46)
is obtained by analyzing the structure of Σα. For this, we exploit the exact form on Mα

0 and use the
definition of the set A∗x(t, q) in terms of the Fréchet subdifferential ∂xE(t, q), x ∈ {u, z}. To formulate
this properly, we recall the definition of the rescaled viscosity potentials Vλx and their subdifferentials
∂Vλx from (1.5) for λ ∈ [0,∞]. In particular, we have

∂Vλx (v) = ∂Vx(λv) for all λ ∈ [0,∞), and ∂V∞x (v) =

{
X∗ for v = 0,
Ø otherwise.

(5.41)

Observe that, thanks to (4.2b) we have ∂Vx(0) = {0} for x ∈ {u, z}.
We now consider the system of subdifferential inclusions for the quadruple (t, q, t′, q′) = (t,u, z, t′,u′, z′)
including the two parameters λu,λz ∈ [0,∞]:

∂Vλuu (u′) + ∂uE(t, q) 3 0 in U∗, (5.42a)

∂R(z′) + ∂Vλzz (z′) + ∂zE(t, q) 3 0 in Z∗, (5.42b)

t′
λu

1+λu
= t′

λz
1+λz

= 0 . (5.42c)

Here we use the usual convention∞/(1+∞) = 1 and emphasize that, at this stage, system (5.42)
is not to be understood as a system of subdifferential inclusions. Instead, (t′, q′) ∈ [0,∞)×Q
are treated as independent variables. With this we are able to introduce the following subsets of
[0,T ]×Q×[0,∞)×Q, called evolution regimes, thus providing a basis for the informal discussion
at the end of Section 2:

Eu :=
{

(t, q, t′, q′)
∣∣ ∃λz ∈ [0,∞]: (5.42) holds with λu = 0

}
,

Rz :=
{

(t, q, t′, q′)
∣∣ ∃λu ∈ [0,∞]: (5.42) holds with λz = 0

}
,

Vu :=
{

(t, q, t′, q′)
∣∣ ∃λz ∈ [0,∞]: (5.42) holds with λu ∈ (0,∞)

}
,

Vz :=
{

(t, q, t′, q′)
∣∣ ∃λu ∈ [0,∞]: (5.42) holds with λz ∈ (0,∞)

}
,

Vuz :=
{

(t, q, t′, q′)
∣∣ (5.42) holds with λu = λz ∈ (0,∞)

}
,

Bu :=
{

(t, q, t′, q′)
∣∣ ∃λz ∈ [0,∞]: (5.42) holds with λu =∞

}
,

Bz :=
{

(t, q, t′, q′)
∣∣ ∃λu ∈ [0,∞]: (5.42) holds with λz =∞

}
.

(5.43)

The letters E, R, V, B, stand for Equilibrated, Rate-independent, Viscous, and Blocked, respectively.
We will discuss the meaning of the names of the evolution regimes below. It will be efficient to use the
notation

AuCz := Au ∩ Cz for A ∈ {E, V, B} and C ∈ {R, V, B};
nonetheless, note that the set Vuz is different from (indeed, strictly contained in) VuVz. We also
remark that any set involving ‘V’ of ‘B’ is necessarily restricted to the subspace with t′ = 0 because
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Figure 5.1:
The switching conditions and the
different regimes are displayed in the
space for (t′,λu,λz) ∈ [0,∞]3.
For t′ > 0 the only admissible regime
is given by the intersection
EuRz = Eu ∩ Rz.
For t′ = 0 the different admissible
regimes depend on α > 0:
α > 1: Eu ∪ Bz

α = 1: EuRz ∪ Vuz ∪ BuBz

α ∈ (0, 1): VuRz ∪ Bu

Rz

Eu

λz
1+λz

λu
1+λu

t′

1+t′

Bu

Bz

VuV uz

Vz︷ ︸︸ ︷
α ∈ (0, 1)

α
=

1

α > 1

of (5.42c). With this, we are now in a position to state our result for the contact sets Σα, under the
additional condition (4.23) on the product form of the Fréchet subdifferential ∂qE. Proposition 5.18
below will be proven in Section 7.3.

Proposition 5.18 (Σα and evolution regimes). If, in addition, the Fréchet subdifferential ∂qE has the
product structure (4.23), then we have the following inclusions for the contact set Σα:

α > 1 : Σα ⊂ EuRz ∪ EuVz ∪ Bz, (5.44a)

α = 1 : Σ1 ⊂ EuRz ∪ Vuz ∪ BuBz, (5.44b)

α ∈ (0, 1) : Σα ⊂ EuRz ∪ VuRz ∪ Bu , (5.44c)

where in all cases the three sets on the right-hand side are disjoint.

Remark 5.19. In the characterization of (enhanced) pBV solution provided by Proposition 5.17, the
contact condition Mα

0 (t, q, t′, q′) = − 〈µ,u′〉U− 〈ζ, z′〉Z holds for all (µ, ζ) ∈ A∗u(t, q)×A∗z(t, q).

Hence, it seems possible to define a smaller contact set Σ̃α by replacing “∃” in (5.40) by “∀”. Because
of Σ̃α ⊂ Σα inclusions (5.44) would remain true. However, using our larger set Σα is sufficient to
deduce that pBV solutions satisfy the system of subdifferential inclusions (5.46) ahead.

The different evolution regimes characterized by the right-hand sides in (5.44) can be visualized by
considering the three real parameters (t′,λu,λz) ∈ [0,∞)×[0,∞]2, since the rate-independent
regimes Eu and Rz are given by λu = 0 and λz = 0 respectively. Similarly, the viscous regimes Vx,
x ∈ {u, z}, are defined via λx ∈ (0,∞), and the blocking regime Bx is determined by λx =∞. The
sets on the right-hand sides in (5.44) are then defined in terms of the switching conditions

(5.42c) holds and


λu = 0 or λz =∞ for α > 1,

λu = λz ∈ [0,∞] for α = 1,

λu =∞ or λz = 0 for α ∈ (0, 1).

(5.45)

The corresponding sets in the (t′,λu,λz) space are depicted in Figure 5.1.

The inclusions (5.44) that relate the contact sets to the different evolution regimes AuCz have a clear
and immediate interpretation in terms of the evolutionary behavior of an enhanced pBV solution (t, q):

• Eu encodes the regime where u = u(s) stays in equilibria, which may depend on s. Indeed,
inserting λu(s) = 0 in (5.42a) leads to the equilibrium condition 0 ∈ ∂uE(t(s), q(s)). This
means that u(s) follows z(s) that may evolve rate-independently when t′ > 0, and may follow a
viscous jump path, or may be blocked, when t′(s) = 0.
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• Rz denotes the rate-independent evolution for z(s), where λz(s) = 0. The component u(s) either
follows staying in equilibria, evolves viscously, or is blocked.
• In the case t′ > 0 only the rate-independent regime EuRz is admissible. This is the regime with
λu = λz = 0 where the viscous dissipation potentials Vu and Vz do not come into action.
• In the regime Vx, the variable x(s) evolves viscously with λx(s) ∈ (0,∞), and necessarily
t′(s) = 0.
• Vuz is the special case occurring only for α = 1, where λu(s) = λz(s) ∈ (0,∞), i.e. both

components have a synchronous viscous phase.
• The blocked regime Bx, occurring when t′(s) = 0, encodes the situation that λx(s) =∞, which

means that on the given time scale the viscosity is so strong that the x-component cannot move,
i.e. it is blocked with x′(s) = 0.
• Buz = BuBz means that both components are blocked, namely q′(s) = 0. This can occur, for

instance, if we set (t(s), q(s)) = (t∗, q∗) for s ∈ (s1, s2). Then, λu(s) = λz(s) =∞ still gives
a trivial, constant solution. Such a behavior may occur after taking a limit like ε → 0+, but of
course the interval can be cut out by defining a pBV solution on [0, S−s2+s1].

We are now in a position to prove a characterization of enhanced pBV solutions in terms of the
following system of subdifferential inclusions

∂Vλu(s)
u (u′(s)) + ∂uE(t(s), u(s), z(s)) 3 0 in U∗,

∂R(z′(s)) + ∂Vλz(s)z (z′(s)) + ∂zE(t(s), u(s), z(s)) 3 0 in Z∗,
(5.46)

where the balanced interplay of viscous and rate-independent behavior in the equations for u and z,
respectively, is determined by the (arclength-dependent) parameters λu(s) or λz(s). We emphasize
that the so-called switching conditions for t′ ≥ 0 and λu, λz ∈ [0,∞], cf. (5.47c) below, are different
for the three cases α > 1, α = 1, and α ∈ (0, 1).

Theorem 5.20 (Differential characterization of enhanced pBV solutions). Assume Hypotheses 4.1,
4.2, 4.3, 4.5, and 4.10 and let the parametrized chain rule (5.38) hold. In addition, suppose that the
Fréchet subdifferential ∂qE has the product structure from (4.23). Let (t, q) ∈ A ([0, S]; [0,T ]×Q)
be an admissible parametrized curve with q ∈ AC([0, S]; Q).

(1) If (t, q) : (0, S)→ Q is a enhanced pBV solution of (U×Z,E,Vε
α

u +R+Vεz)ε↓0, then there exist
measurable functions (λu,λz) : (0, S)→ [0,∞]2 and ξ = (µ, ζ) : (0, S)→ U∗×Z∗ with

µ(s) ∈ ∂uE(t(s), u(s), z(s)) and ζ(s) ∈ ∂zE(t(s), u(s), z(s)) for a.a. s ∈ (0, S) (5.47a)

satisfying for almost all s ∈ (0, S) the subdifferential inclusions

−µ(s) ∈ ∂Vλu(s)
u (u′(s)) in U∗,

−ζ(s) ∈ ∂R(z′(s)) + ∂Vλz(s)z (z′(s)) in Z∗,
(5.47b)

and the switching conditions

t′(s)
λu(s)

1+λu(s)
= 0 = t′(s)

λz(s)

1+λz(s)
and


λu(s)

1
1+λz(s)

= 0 for α > 1,

λu(s) = λz(s) for α = 1,
1

1+λu(s)
λz(s) = 0 for α ∈ (0, 1).

(5.47c)

(2) Conversely, if there exist measurable functions (λu,λz) : (0, S) → [0,∞]2 and ξ = (µ, ζ) :
(0, S)→ U∗×Z∗ satisfying (5.47) and, in addition,

sup
s∈(0,S)

|E(t(s), q(s))| <∞, and

∫ S

0

(
‖µ(s)‖U∗‖u′(s)‖U+‖ζ(s)‖Z∗‖z′(s)‖Z

)
ds <∞,

(5.48)
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then (t, q) is an enhanced pBV solution.

Proof. Part (1) basically follows from combining the characterization of enhanced pBV solutions from
Proposition 5.17 in terms of the contact set, with Proposition 5.18. Only the measurability of the coeffi-
cients λu, λz : [0, S]→ [0,∞] and of the selections ξ = (µ, ζ) : (0, S)→ U∗×Z∗ deserves some
discussion that is postponed to Appendix B.

Let us now carry out the proof of Part (2). After cutting out possible intervals where (t, q) may be
constant (i.e. in the blocking regime BuBz), we may suppose that the admissible parametrized curve
(t, q) fulfills the non-degeneracy condition (5.21). In what follows, we will use the short-hand notation

(0, S) ∩ AuCz := {s ∈ (0, S) : (t(s), q(s), t′(s), q′(s)) ∈ AuCz} (5.49)

for A ∈ {E, V, B} and C ∈ {R, V, B}. We will discuss at length the case α > 1; the very same
arguments yield the thesis also in the cases α = 1 and α ∈ (0, 1). It follows from the switching

conditions (5.47c) that the integral I :=
∫ S

0

(
〈−µ, u′〉U + 〈−ζ, z′〉U

)
ds decomposes as

I = I1 + I2 + I3 with I1 :=

∫
(0,S)∩EuRz

(
〈−µ(s), u′(s)〉U + 〈−ζ(s), z′(s)〉Z

)
ds , (5.50)

I2 :=

∫
(0,S)∩EuVz

(
〈−µ, u′〉U + 〈−ζ, z′〉Z

)
ds, and I3 :=

∫
(0,S)∩Bz

(
〈−µ, u′〉U + 〈−ζ, z′〉Z

)
ds ,

where we use that the three regimes EuRz, EuVz, and Bz are disjoint. Now, on (0, S) ∩ EuRz we
have that µ(s) ≡ 0, while ζ(s) ∈ ∂R(z′(s)), so that

I1 =

∫
(0,S)∩EuRz

R(z′(s)) =

∫
(0,S)∩EuRz

Mα
0 (t(s), q(s), t′(s), q′(s)) ds

where we used (5.11) and (5.12), taking into account S ∗
u (t(s), q(s)) = S ∗

z (t(s), q(s)) ≡ 0 on
(0, S) ∩ EuRz. On (0, S) ∩ EuVz we have S ∗

u (t(s), q(s)) ≡ 0 and the z-equation in (5.46) holds
with λz(s) > 0, so that

I2 =

∫
(0,S)∩EuVz

1

λz(s)
〈−ζ(s),λz(s)z

′(s)〉U ds

(1)
=

∫
(0,S)∩EuVz

1

λz(s)

(
R
(
λz(s)z

′(s)
)
+Vz

(
λz(s)z

′(s)
)
+W∗z(−ζ(s))

)
ds

(2)

≥
∫

(0,S)∩EuVz

1

λz(s)

(
R
(
λz(s)z

′(s)
)
+Vz

(
λz(s)z

′(s)
)
+S ∗

z (t(s), q(s))
)

ds

(3)

≥
∫

(0,S)∩EuVz

(
R
(
z′(s)

)
+bVz(z

′(s), S ∗
z (t(s), q(s)))

)
ds

(4)
=

∫
(0,S)∩EuVz

Mα
0 (t(s), q(s), t′(s), q′(s)) ds,

where (1) follows from (5.47b) via Fenchel-Moreau conjugation, (2) is a consequence of the definition
of S ∗

z (t, q), (3) is due to the definition of bVz , and (4) again ensues from (5.11) and (5.12). Finally, with
the very same arguments we find that

I3 =

∫
(0,S)∩Bz

〈−µ(s), u′(s)〉U =

∫
(0,S)∩Bz

1

λu(s)
〈−µ(s),λu(s)u

′(s)〉U

≥
∫

(0,S)∩Bz

bVu(u(s), S ∗
u (t(s), q(s))) ds =

∫
(0,S)∩Bz

Mα
0 (t(s), q(s), t′(s), q′(s)) ds .
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Combining the above estimates with (5.50) and with the chain-rule (4.16) (which applies thanks to
(5.48)), we ultimately conclude that

E(t(0), q(0)) +

∫ S

0

∂tE(t(s), q(s)) ds ≥ E(t(S), q(S)) +

∫ S

0

(
〈−µ(s), u′(s)〉U + 〈−ζ(s), z′(s)〉Z

)
ds

≥ E(t(S), q(S)) +

∫ S

0

Mα
0 (t(s), q(s), t′(s), q′(s)) ds ,

namely (t, q) fulfills the upper energy-dissipation estimate. Therefore, by Lemma 5.10 we conclude
that (t, q) is an (enhanced) pBV solution.

6 True Balanced-Viscosity solutions

This section is devoted to the the concept of true Balanced-Viscosity (BV) solutions, i.e. solutions
defined on the original time interval [0,T ] instead via the artificial arc length s ∈ [0, S]. This concept
will be introduced in Section 6.1 in Definition 6.5. The central ingredient in this notion is a Finsler-
type transition cost that measures the energy dissipated at jumps of the curve (u, z), see Definition
6.2. In Section 6.2 we will gain further insight into the fine properties of true BV solutions, while
Section 6.3 states our two existence results, Theorems 6.8 and 6.12, in which BV solutions to the
rate-independent system (U×Z,E,Vε

α

u +R+Vεz)ε↓0 are obtained by taking the vanishing-viscosity
limit of system (1.4) in the real process time, without reparametrization. Section 6.4 addresses the
non-parametrized counterpart of enhanced pBV solutions called enhanced BV solutions, and Section
6.5 provides how parametrized and true BV solutions are related.

We start with some notations for functions having well-defined jumps.

Notation 6.1 (Regulated functions). Given a Banach space B, we denote by

R(0,T ; B) :=
{
f : [0,T ]→ B

∣∣∣ ∀ t ∈ [0,T ] : f(t−) := lim
s→t−

f(s) exists in B,

f(t+) := lim
r→t+

f(r) exists in B
} (6.1)

the space of (everywhere defined) regulated functions on [0,T ] with values in B, where we use
f(0−) := f(0) and f(T+) := f(T ). The symbol BV([0,T ]; B) denotes the space of everywhere
defined functions of bounded B-variation such that BV([0,T ]; B) ⊂ R(0,T ; B) with continuous
embedding.

Note that for f ∈ R(0,T ; B) the three values f(t−), f(t), f(t+) may all be different for t ∈ (0,T ),
and that distinguishing these values will be crucial for our notion of BV solutions.

For a given z ∈ BV([0,T ]; Zri) we also introduce the R-variation

VarR(z; [a, b]) := sup
{ N∑

i=1

R(z(ti)−z(ti−1))
∣∣∣N ∈ N, a = t0 < t1 < . . . < tN = b

}
(6.2)

for [a, b] ⊂ [0,T ], and we observe that

VarR(z; [a, b]) =

∫ b

a

R[z′](t) dt for z ∈ AC([a, b]; Zri,R). (6.3)
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We mention in advance that true BV solutions are curves q = (u, z), with u ∈ BV([0,T ]; U) and
z ∈ R(0,T ; Z) ∩ BV([0,T ]; Zri). For such q = (u, z) we introduce the jump set

J[q] = J[u] ∪ J[z] with J[w] :=
{
t ∈ [0,T ]

∣∣w(t−) 6= w(t) or w(t+) 6= w(t)
}

; (6.4)

we record that J[q] consists of at most countably many points. Note that for J[z] the left and the right
limits are considered with respect to the norm topology of Z. For later use, we finally observe that

L∞(0,T ; Ze) ∩ BV([0,T ]; Zri) ⊂ R(0,T ; Z), (6.5)

which can be easily checked exploiting the (compact) embeddings Ze b Z ⊂ Zri.

6.1 Definition of true BV solution

The (possibly asymmetric) Finsler cost function is obtained by minimizing an ‘infinitesimal cost’, de-
pending on the fixed process time t ∈ [0,T ] and defined in terms of the rescaled joint M-function
Mα

0 , along admissible transition curves q : [0, 1]→ Q. From now on, for better clarity we will denote
a generic transition curve by Θ in place of q.

Definition 6.2 (Admissible transition curves, Finsler cost). For given t ∈ [0,T ] and q0 = (u0, z0), q1 =
(u1, z1) ∈ U×Z, we define the Finsler cost induced by Mα

0 by

costMα
0
(t; q0, q1) := inf

Θ∈At(q0,q1)

∫ 1

0

Mα
0 [t, Θ, 0, Θ′] dr (6.6)

with the short-hand notation Mα
0 [·, ·, ·, ·] from (5.22) and At(q0, q1) the set of all admissible transition

curves at time t between q0 and q1, see Definition 5.6.

Thanks to the 1-positive homogeneity of the functional Θ′ 7→ Mα
0 [t, Θ, 0, Θ′], we observe that it is

not restrictive to suppose that all transition curves are defined on [0, 1].

We are now ready to define a new variation called the Mα
0 -total variation of a curve q = (u, z) :

[0,T ] → Q. It consists, cf. (6.8) below, of the R-variation of z as defined in (6.2) plus extra con-
tributions at jump points t∗ ∈ J(q) that may arise through rate-independent or viscous transition
costs between q(t−∗ ), q(t∗), and q(t+∗ ). These extra contributions are given by the Finsler cost (6.6),
from which the R-variation is subtracted to avoid that it is counted twice in the Mα

0 -variation. The re-
sulting terms are positive because we always have costMα

0
(t; (u0, z0), (u1, z1)) ≥ R(z1−z0) since

Mα
0 [t, q, 0, q′] ≥ R(z′) (using Mα,red

0 (t, q, 0, q′) ≥ 0).

Definition 6.3 (Mα
0 -variations). Let q = (u, z) : [0,T ] → Q with u ∈ BV([0,T ]; U) and z ∈

R([0,T ]; Z)∩ BV([0,T ]; Zri)) be a curve with supt∈[0,T ] E(q(t)) ≤ E <∞ and jump set J[q]. For
closed subintervals [a, b] ⊂ [0,T ] we define

(1) the extra Viscous Jump Variation of q induced by Mα
0 on [a, b] via

eVJVMα
0
(q; [a, b]) :=

(
costMα

0
(a; q(a), q(a+))− R(z(a+)−z(a))

)
+

∑
t∈J[q]∩(a,b)

(
costMα

0
(t; q(t−), q(t))− R(z(t)−z(t−))

+ costMα
0
(t; q(t), q(t+))− R(z(t+)−z(t))

)
+
(
costMα

0
(b; q(b−), q(b))− R(z(b)−z(b−))

)
;

(6.7)
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(2) the Mα
0 -total variation

VarMα
0
(q; [a, b]) := VarR(z; [a, b]) + eVJVMα

0
(q; [a, b]) . (6.8)

With slight abuse of notation, here we will use the symbol VarMα
0

for the Mα
0 -total variation, although

this is not a standard form of total variation, cf. [MRS12a, Rem. 3.5].

Just like for its parametrized counterpart, our definition of (true) BV solutions will rely on a suitable
chain-rule requirement, enhancing Hypothesis 4.7 to curves q = (u, z) having just a BV-time regu-
larity. For consistency, we will formulate this BV-chain rule as a hypothesis.

Hypothesis 6.4 (Chain rule in BV). For every curve q = (u, z) : [0,T ]→ Q with u ∈ BV([0,T ]; U)
and z ∈ R([0,T ]; Z)∩ BV([0,T ]; Zri) and satisfying

S ∗
u (t, q(t)) + S ∗

z (t, q(t)) = 0 for all t ∈ [0,T ] \ J[q]

the following chain-rule estimate holds, for all closed subset [t0, t1] ⊂ [0,T ]:

the map t 7→ E(t, q(t)) belongs to BV([0,T ]) and

E(t1, q(t1))− E(t0, q(t0))−
∫ t1

t0

∂tE(s, q(s)) ds ≥ −VarMα
0
(q; [t0, t1]).

(6.9)

In Lemma A.2 in Appendix A we to show that the parametrized chain rule from Hypothesis 5.7 also
guarantees the validity of Hypothesis 6.4. Hence, subsequently we will directly assume Hypothesis
5.7.

Let us now give our definition of BV solutions q : [0,T ]→ U×Z, i.e. BV solutions without parametriza-
tion. We sometimes use the word ‘true BV solution’ to distinguish BV solutions from ‘parametrized BV
solutions’, hence there is no difference between BV solutions and true BV solutions. Definition 6.5 be-
low is a natural extension of the concept of BV solutions introduced in [MRS16a, Def. 3.10], now taking
care of the equilibrium condition (6.10a) for u corresponding to the regime Eu, the local stability condi-
tion (6.10b) for z corresponding to the regime Rz, and an energy-dissipation balance (6.10c). Hence,
all jump behavior is compressed into the definition of the Finsler cost costMα

0
, the total Mα

0 -variation,
and the validity of the energy-dissipation balance.

Definition 6.5 (BV solutions). Let the rate-independent system (U×Z,E,Vε
α

u +R+Vεz)ε↓0 fulfill Hy-
pothesis 6.4. A curve q = (u, z) : [0,T ] → Q is called a Balanced-Viscosity solution
to (U×Z,E,Vε

α

u +R+Vεz)ε↓0 if satisfies the following conditions:

• u ∈ BV([0,T ]; U) and z ∈ R([0,T ]; Z) ∩ BV([0,T ]; Zri);

• the stationary equation

S ∗
u (t, q(t)) = 0 for all t ∈ [0,T ] \ J[q]; (6.10a)

• the local stability condition

S ∗
z (t, q(t)) = 0 for all t ∈ [0,T ] \ J[q]; (6.10b)

• the energy-dissipation balance

E(t, q(t))+VarMα
0
(q; [s, t]) = E(s, q(s))+

∫ t

s

∂tE(r, q(r))dr for 0 ≤ s ≤ t ≤ T . (6.10c)

We postpone to Section 6.4 a result comparing parametrized and true BV solutions. With the exception
of our existence results Theorems 6.8 and 6.12, in the following statements we will omit to explicitly
recall the assumptions of Section 4; we will only invoke the chain rule from Hyp. 5.7.
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6.2 Characterization and fine properties of BV solutions

In the same way as for their parametrized version, thanks to the chain rule (6.9) we have a charac-
terization of BV solutions in terms of the upper energy estimate ≤ in (4.18), on the whole interval
[0,T ]. We also have a second characterization in terms of a simple energy-dissipation balance like for
energetic solutions as in [MiT99, DaT02, Mie05, MiR15], combined with jump conditions that balance
the different dissipation mechanics that may be active at a jump point. The proof of Proposition 6.6
follows, with minimal changes, from the arguments for [MRS16a, Cor. 3.14, Thm. 3.15], to which the
reader is referred.

Proposition 6.6. Let the rate-independent system (U×Z,E,Vε
α

u +R+Vεz)ε↓0 fulfill Hypothesis 5.7.
For a curve q = (u, z) ∈ BV([0,T ]; U)×(R([0,T ]; Z)∩BV([0,T ]; Zri)) fulfilling the stationary
equation (6.10a), and the local stability (6.10b), the following three assertions are equivalent:

(1) q is a BV solution of system (U×Z,E,Vε
α

u +R+Vεz)ε↓0;

(2) q fulfills

E(T , q(T )) + VarMα
0
(q; [0,T ]) ≤ E(0, q(0)) +

∫ T

0

∂tE(r, q(r)) dr; (6.11)

(3) q fulfills the R-energy-dissipation inequality

E(t, q(t)) + VarR(q; [s, t]) ≤ E(s, q(s)) +

∫ t

s

∂tE(r, q(r)) dr (6.12)

with VarR from (6.2), and the jump conditions at every t ∈ J[q] :

E(t, q(t−))− E(t, q(t)) = costMα
0
(t; q(t−), q(t)),

E(t, q(t))− E(t, q(t+)) = costMα
0
(t; q(t), q(t+)).

(6.13)

Conditions (6.13) provide a fine description of the behavior of BV solutions (u, z) at jumps. However,
the inf in the definition of costMα

0
need not be attained, as the functional Mα

0 does not control the
norm of the space where we look for the ϑu-component of admissible transition curves. Nonetheless,
in certain situations (cf. the proof of Theorem 6.15 below) the existence of transitions attaining the
optimal cost will play a key role. In fact, it will be sufficient to require the existence of these curves
in cases in which the Finsler cost equals the energy release, which happens at the jump points of a
true BV solution as in (6.13). That is why, hereafter we will refer to such transitions as optimal jump
transitions, a notion that will be made precise in Definition 6.7. Therein we restrict to transition curves,
defined on [0, 1], connecting points q− = (u−, z−) and q+ = (u+, z+) such that the u-components
u− and u+ are at equilibrium, and the z-components z− and z+ are locally stable.

Definition 6.7. Given t ∈ [0,T ] and q− = (u−, z−), q+ = (u+, z+) ∈ Q fulfilling S ∗
u (t, q±) =

S ∗
z (t, q±) = 0, we call an admissible curve Θ ∈ At(q−, q+) an optimal transition between q− and

q+ at time t if it fulfills

E(t, q−)− E(t, q+) = costMα
0
(t; q−, q+) = Mα

0 [t, Θ, 0, Θ′] a.e. in (0, 1) .

Furthermore, we say that Θ = (θu, θz) is of

• sliding type if S ∗
u (t, Θ(r)) = S ∗

z (t, Θ(r)) = 0 for all r ∈ [0, 1];
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• viscous type S ∗
u (t, Θ(r)) + S ∗

z (t, Θ(r)) > 0 for all r ∈ (0, 1).

Observe that an optimal transition of viscous type can be governed by viscosity either in u, or in z, or
in both variables. With the very same argument as for the proof of [MRS16a, Prop. 3.19], to which we
refer for all details, we can also show that every optimal transition can be decomposed in a canonical
way into an (at most) countable collection of sliding and viscous transitions. We also refer to [RSV21,
Sec. 2.3] for the concept of so-called two-speed solutions, which are defined in terms of slow rate-
independent parts connected by jumps which themselves a concatenation of at most countable ‘jump
resolution maps’.

6.3 Existence of BV solutions

A most interesting feature of BV solutions, already observed in [MRS16a], is that it is possible to prove
their existence by directly taking the vanishing-viscosity limit of the viscous system (4.11), without
reparametrization. In the following result, we take a slightly different viewpoint and in fact prove that
every limit point q (in the sense of pointwise weak convergence) of a sequence of viscous solutions
(qεk)k = (uεk , zεk)k, starting from well-prepared initial data and such that the BV([0,T ]; U)-norm
of (uεk)k is a priori bounded (cf. (6.15) below), is in fact a true BV solution. In fact, the existence
of limit points can be proved, based on the energy estimates from Lemma 4.12 and on (6.15), via a
standard compactness argument and the Helly Theorem.

The statement of Theorem 6.8 below mirrors that of Theorem 5.11:

� First, (6.15) corresponds exactly to the a priori estimate for ‖u′εk‖U in (5.27), and to estimate
(4.29) established in Proposition 4.13. Sufficient conditions for this estimate have been discussed
in Section 4.6; alternatively, in concrete examples this estimate could be verified by direct calcu-
lations.

� Secondly, in the same way as with (5.30) for parametrized solutions, with (6.17b)–(6.17c) ahead
we are stating the convergence of the left-hand side terms in the viscous energy-dissipation esti-
mate (4.20) - in particular, (6.17c) ensures the convergence for εk → 0+ of∫ t

s

Mα
εk

(r, qεk(r), 1, q′εk(r)) dr

=

∫ t

s

(
V
εαk
u (u′εk(r))+R(z′εk(r))+Vεkz (z′εk(r))+

S ∗
u (r, qεk(r))

εkα
+

S ∗
z (r, qεk(r))

εk

)
dr

(6.14)
to the corresponding terms in the energy-dissipation balance (6.10c). We emphasize here that,
for (6.17c) to hold it is crucial that the definition of the total variation functional VarMα

0
, in the

general closed subinterval [s, t] ⊂ [0,T ], takes into account the appropriate contributions at
the jump points. In particular, we point out that, by (6.7), also the jumps occurring at the ex-
trema s and t are taken into account exactly, in the sense that costMα

0
(s; q(s), q(s+)) =

limσ→s+ limεk→0

∫ σ
0
Mα

εk
(·) dr.

Theorem 6.8 (Convergence to BV solutions). Let the rate-independent system (U×Z,E,Vε
α

u +R+Vεz)ε↓0
fulfill Hypotheses 4.1, 4.2, 4.3, 4.5, 4.10, and 5.7. For any null sequence (εk)k let (qεk)k = (uεk , zεk)k ⊂
AC([0,T ]; Q) be a sequence of solutions to the generalized gradient system (4.11), such that con-
vergences (5.26) to a pair (u0, z0) ∈ D hold at the initial time t = 0, and such that, in addition,

Ŝ = sup
k
‖uεk‖BV([0,T ];U) <∞. (6.15)
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Let q : [0,T ]→ Q be such that, along a not relabeled subsequence, there holds as k →∞

qεk(t) ⇀ q(t) in Q for all t ∈ [0,T ] (6.16)

(every sequence in the above conditions possesses at least one limit point in the sense of (6.16)).
Then,

(1) q = (u, z) ∈ BV([0,T ]; U)×(R(0,T ; Z) ∩ BV([0,T ]; Zri)), and q is a true BV solution to the
rate-independent system (U×Z,E,Vε

α

u +R+Vεz)ε↓0;

(2) there hold the additional convergences as k →∞

uεk(t) ⇀ u(t) in Ue, zεk(t) ⇀ z(t) in Ze for all t ∈ [0,T ], (6.17a)

E(t, qεk(t))→ E(t, q(t)) for all t ∈ [0,T ], (6.17b)

lim
k→∞

∫ t

s

Mα
εk

(r, qεk(r), 1, q′εk(r)) dr = VarMα
0
(q; [s, t]) for all 0 ≤ s ≤ t ≤ T . (6.17c)

The proof will be carried out in Section 7.2.

Remark 6.9 (Vanishing-viscosity approximation versus BV solutions). We emphasize that the concept
of BV solutions enjoys better closedness properties than defining solutions simply as all the limiting
points in the vanishing-viscosity approximation. Such solutions are called ‘approximable’ in [Mie11]
and there, in Examples 2.5 and 2.6, it is shown in a simple model with Z = R that there are more
BV solutions than approximable solutions. It is also made apparent that, for systems with δ-dependent
energy Eδ, approximable solutions qδ : [0,T ] → R may have a limit qδ∗ for δ → δ∗ that is no longer
an approximable solution, but qδ∗ is still a BV solution. Thus, BV solutions seem to have better stability
properties, see e.g. [MRS13, Thm. 4.8].

Remark 6.10 (Existence of BV solutions by time discretization). Another interesting features of true
BV solutions is that they can be obtained as limits of discrete solutions of the time-incremental scheme

qnτ ,ε ∈ Argmin
q∈Q

{
τΨε,α

(q−qn−1
τ ,ε

τ

)
+ E(tnτ , q)

}
, n = 1, . . . ,Nτ (6.18)

with Ψε,α from (1.7), as the viscosity parameter ε and the time-step τ jointly tend to 0. (Of course,
fixing ε > 0 and letting τ → 0+ in (6.18) gives rise to solutions qε : [0,T ] → Q of the generalized
gradient system (1.6)). This alternative construction of BV solutions in the joint discrete-to-continuous
and vanishing-viscosity limit of the time-incremental scheme for viscous solutions was carefully ex-
plored in [MRS12a, Thm. 4.10] and [MRS16a, Thm. 3.12]. Following these lines it is possible to show
convergence to BV solutions along (a subsequence of) any sequence (τk, εk) as long as τk tends to
0 faster than the time scales in our system, i.e.

lim
k→∞

τk
min{εαk , εk}

= 0 . (6.19)

To avoid overburdening of the exposition here we refrain from giving a precise convergence statement,
but refer to [MRS16a, Thm. 3.12], which can adapted to our setup using condition (6.19). The same
applies to the convergence of time-discrete solutions to enhanced BV solutions introduced below.
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6.4 Enhanced BV solutions

This solution concept is to be compared with the notion introduced in [MRS16a, Def. 3.21] and, of
course, with enhanced pBV solutions. In particular, recall that for an enhanced pBV solution (t, q) =
(t, u, z) we required the additional regularity z ∈ AC([0, S]; Z). Accordingly, an enhanced BV solution
q = (u, z) is required to fulfill z ∈ BV([0,T ]; Z). Moreover, enhanced BV solutions enjoy the
additional regularity property that at all jump points the left and right limits are connected by optimal
transitions with finite length in U×Z, such that the total length of the connecting paths ϑ = (ϑu,ϑz)
is finite. In contrast, for general BV solutions it is only required that length of the ϑu-component of an
optimal jump transition is finite in U.

Definition 6.11 (Enhanced BV solutions). A curve q : (u, z) : [0,T ] → Q is called an enhanced
BV solution of (U×Z,E,Vε

α

u +R+Vεz)ε↓0, if it is a BV solution and it satisfies the following additional
properties:

(i) q ∈ BV([0,T ]; Q);

(ii) for all t ∈ J[q] there exists an optimal jump transition ϑt = (ϑtu,ϑ
t
z) ∈ At(q(t

−), q(t+)) such
that ϑt ∈ AC([0, 1]; Q) and q(t) = ϑt(r̂t) for some r̂t ∈ [0, 1];

(iii)
∑

t∈J[q]

∫ 1

0
‖(ϑt)′(r)‖Q dr =

∑
t∈J[q]

∫ 1

0
(‖(ϑtu)′(r)‖U+‖(ϑtz)′(r)‖Z) dr <∞.

Our existence result for enhanced BV solutions can be again proved by our vanishing-viscosity ap-
proach without reparametrizing the trajectories, by taking the vanishing-viscosity limit of viscous solu-
tions that satisfy an additional estimate on supk∈N ‖zεk‖BV([0,T ];Z).

Theorem 6.12 (Convergence of viscous solutions to enhanced BV solutions). Assume Hypotheses
4.1, 4.2, 4.3, 4.5, 4.10, and 5.7. Let (qεk)k ⊂ AC([0,T ]; Q) be a sequence of solutions to the
generalized gradient system (1.4) such that convergences (5.26) hold at t = 0, as well as

∃S > 0 ∀ k ∈ N : ‖qεk‖BV([0,T ];Q) ≤ Ŝ. (6.20)

Let q : [0,T ] → Q be a limit point for (qεk)k in the sense of (6.16). Then, q is an enhanced BV
solution of (U×Z,E,Vε

α

u +R+Vεz)ε↓0, and the additional convergences (6.17) hold.

Since the proof of Theorem 6.12 follows from combining the argument for Theorem 6.8 with that
developed for [MRS16a, Thm. 3.22], it is omitted.

6.5 Comparing pBV and true BV solutions

In this final subsection we explore the relations between parametrized and true BV solutions, also
in the enhanced case. Indeed, there is a very natural transition between parametrized and true BV
solutions. The converse passage will be obtained by ‘filling the graph’ of a true BV solution at its jump
points, by means of an optimal jump transition, under the additional assumption that it exists. This
condition is codified in the following

Hypothesis 6.13. For every t ∈ [0,T ] and q−, q+ ∈ Q such that S ∗
u (t, q±) = S ∗

z (t, q±) = 0 and

E(t, q−)− E(t, q+) = costMα
0
(t; q−, q+)

there exists an optimal jump transition Θopt ∈ At(q
−, q+).
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Remark 6.14. Let us emphasize that Hypothesis 6.13 plays no role in proving the existence of BV
solutions. It only serves the purpose of showing that a true BV solution gives rise to a parametrized
one. In this connection, let us mention in advance that, in the statement of Theorem 6.15, Hypothesis
6.13 will not be required for relating enhanced BV solutions to their parametrized analogues, as the
definition of enhanced BV solutions already encompasses the information that optimal jump transitions
exist.

We are now ready to state the following relations between true and parametrized BV solutions.

Theorem 6.15 (pBV versus true BV solutions). Let (U×Z,E,Vε
α

u +R+Vεz)ε↓0 fulfill Hypothesis 5.7.
Then the following statements are true:

(1) If (t, q) : [0, S] → [0,T ]×Q is a non-degenerate pBV solution of (U×Z,E,Vε
α

u +R+Vεz)ε↓0
with t(0) = 0 and t(S) = T , then every q : [0,T ]→ Q satisfying

q(t) ∈
{
q(s)

∣∣ t(s) = t
}

(6.21)

is a (true) BV solution that enjoys, moreover, the following property: for every t ∈ J[q] there
exists an optimal jump transition Θopt ∈ At(q(t

−), q(t+)) such that q(t) = Θopt(r̂) for some
r̂ ∈ [0, 1]. Furthermore, there holds

VarMα
0
(q; [t0, t1]) =

∫ s(t1)

s(t0)

Mα
0 [t, q, t′, q′](s) ds for all 0 ≤ t0 ≤ t1 ≤ T . (6.22)

(2) Conversely, assume additionally Hypothesis 6.13. Then, for every BV solution q : [0,T ] → Q,
there exists a non-degenerate, surjective pBV solution (t, q) ∈ A ([0, S]; [0,T ]×Q) such that
(6.21) and (6.22) hold.

(3) If (t, q) : [0, S] → [0,T ]×Q is a (non-degenerate) enhanced pBV solution with t(0) = 0 and
t(S) = T , then every q : [0,T ] → Q given by (6.21) is an enhanced BV solution, and (6.22)
holds.

(4) Conversely, for any enhanced BV solution q : [0,T ] → Q, there exists a (non-degenerate,
surjective) enhanced pBV solution (t, q) ∈ A ([0, S]; [0,T ]×Q) such that (6.21) and (6.22)
hold.

Remark 6.16 (Greater generality of true BV solutions). Theorem 6.15 seems to suggest that true
BV solutions are more general than their parametrized analogues. Indeed, while, under the standing
assumptions of Section 4, parametrized solutions always give rise to true BV ones, the converse
passage is possible under the additional Hypothesis 6.13. Hence, the set of true BV solutions is
apparently bigger.

To emphasize this, we have chosen to prove that any limit curve q for a sequence (qεk)k of (non-
parametrized) viscous solutions is a true BV solution, as stated in Theorem 6.8, by resorting to
Theorem 5.11 for parametrized solutions. Namely, in Sec. 7.2 we will use that the graphs of a se-
quence (qεk)k of viscous solutions are contained in the image sets of their parametrized counterparts
(tεk , qεk)k and apply Theorem 5.11 to the latter curves, guaranteeing their convergence to a pBV so-
lution (t, q). We will then proceed to showing that q and (t, q) are related by (6.21) and thus conclude,
by Thm. 6.15(1), that q is a true BV solution.
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Proof. Step 1: From pBV to BV solutions. First, we show that, given a pBV solution (t, q) = (t, u, z),
formula (6.21) defines a curve q = (u, z) ∈ BV([0,T ]; U)×(R(0,T ; Z)∩BV([0,T ]; Zri). Indeed,
let s : [0,T ] → [0, S] be any inverse of t, with jump set J[s]. It can be easily checked that, since
(t, q) = (t, u, z) is non-degenerate,

t ∈ J[q] = J[u] ∪ J[z] ⇐⇒ t ∈ J[s] and t(s) ≡ t for all s ∈ [s(t−), s(t+)] .

If for t ∈ J[s] we have q(t) = q(s∗) for some s∗ ∈ [s(t−), s(t+)], then defining s(t) := s∗ gives the
identity

q(t) = (u(t), z(t)) = q(s(t)) = (u(s(t)), z(s(t))) for all t ∈ [0,T ]. (6.23)

From this, we deduce u ∈ BV([0,T ]; U) and z ∈ BV([0,T ]; Zri). Since supt∈[0,T ] E(q(t)) ≤ E
for some E > 0 and the functional E + ‖ · ‖U + ‖ · ‖Zri

has sublevels bounded in Ue×Ze, we also
have z ∈ L∞(0,T ; Ze), which gives z ∈ R(0,T ; Z) thanks to (6.5).

From (6.23) we easily deduce that

VarR(z; [t0, t1]) =

∫ s(t1)

s(t0)

R[u′](s) ds for all 0 ≤ t0 ≤ t1 ≤ T . (6.24)

Furthermore, we mimic the argument from the proof of [MRS16a, Prop. 4.7] and observe that for every
t ∈ J[q] the curve q = (u, z) : [s(t−), s(t+)] → U×Z, reparametrized in such a way that it is
defined on the interval [0, 1], is an admissible transition curve between q(t−) and q(t+). Hence,

costMα
0
(t; q(t−), q(t)) ≤

∫ s(t)

s(t−)

Mα
0 [t, q, 0, q′](s) ds,

costMα
0
(t; q(t), q(t+)) ≤

∫ s(t+)

s(t)

Mα
0 [t, q, 0, q′](s) ds .

Combining this with (6.24) we conclude that

VarMα
0
(q; [t0, t1]) ≤

∫ s(t1)

s(t0)

Mα
0 [t, q, t′, q′](s) ds (6.25)

for all [t0, t1] ⊂ [0,T ]. Ultimately, we infer that q fulfills the energy-dissipation estimate (6.11).

In order to show that q complies with the stationary equation (6.10a) and the local stability condition
(6.10b), we argue in the following way. Recalling the definition of the sets G α from (5.19), we introduce

H α[q] :=

{
{t ∈ [0,T ] : S ∗

u (t, q(t)) = S ∗
z (t, q(t)) = 0} if α ≥ 1,

{t ∈ [0,T ] : S ∗
z (t, q(t)) = 0} if α ∈ (0, 1).

Observe that the set H α[q] is dense in [0,T ]. Indeed, its complement [0,T ]\H α[q] = t(G α[t, q])
has null Lebesgue measure, since t is constant on each connected component of the open set
G α[t, q]. Therefore, by the lower semicontinuity properties of S ∗

u and S ∗
z ensured by Hypothesis

4.10, in the case α ≥ 1 we immediately conclude (6.10a) and (6.10b). For α ∈ (0, 1), the above
argument only yields (6.10b), and for the validity of (6.10a), we observe that for any t /∈ J[q], then

t = t(s̄) and q = q(s̄) for s̄ ∈ {s ∈ [0, S] : t′(s) > 0} .

Then, since S ∗
u (t, q) ≡ 0 on the set {s ∈ (0, S) : t′(s) > 0} as prescribed by Definition 5.6, we

conclude that S ∗
u (t, q(t)) = 0.
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Since q complies with (6.10a), (6.10b), and (6.11), by Proposition 6.6 we conclude that it is a true BV
solution. In order to conclude (6.22), we observe that, for all 0 ≤ t0 ≤ t1 ≤ T and s0 ≤ s1 ∈ [0, S]
such that t(si) = ti for i ∈ {0, 1}, there holds

VarMα
0
(q; [t0, t1])

(6.10c)
= E(t0, q(t0))− E(t1, q(t1)) +

∫ t1

t0

∂tE(r, q(r)) dr

= E(t(s0), q(s0))− E(t(s1), q(s1)) +

∫ s1

s0

∂tE(t(s), q(s))t′(s) ds

(5.24)
=

∫ s1

s0

Mα
0 [t, q, t′, q′](s) ds .

(6.26)

It is immediate to see that the above arguments also yield an enhanced BV solution from any enhanced
pBV solution. Hence, assertions (1) and (3) are proved.

Step 2: From BV to pBV solutions First of all, we show that, under the additional Hypothesis 6.13, with
any true BV solution q ∈ BV([0,T ]; U)×(R(0,T ; Z)∩BV([0,T ]; Zri)) we can associate a non-
degenerate, surjective curve (t, q) = (t, u, z) ∈ A ([0, S]; [0,T ]×Q) such that (6.21) holds and

VarMα
0
(q; [0,T ]) =

∫ S

0

Mα
0 [t, q, t′, q′](s) ds . (6.27)

Indeed, along the lines of [MRS16a, Prop. 4.7] we introduce the parametrization s, defined on [0,T ]
by

s(t) := t+ VarMα
0
(q; [0, t]), S := s(T ) with

J[s] = J[u] ∪ J[z] = (tm)m∈M and M a countable set.

We set I := ∪m∈MIm with Im = (s(t−m), s(t+m)). Hence, we define (t, q) = (t, u, z) on [0, S] \ I
by t := s−1 : [0, S] \ I → [0,T ] and q := q◦t. In order to extend t and q to I , we need to use the
fact that, by Hypothesis 6.13, for every m ∈M there exists an optimal jump transition jump transition
Θopt
m ∈ At(q(t

−
m), q(t+m)), defined on the canonical interval [0, 1] and such that Θopt

m (r̂m) = q(tm)
for some r̂m ∈ [0, 1]. We may then define t and q on I = ∪m∈MIm by

t(s) ≡ tm, q(s) := Θopt
m (rm(s)) for s ∈ Im, where rm(s) = s − s(t−m)

s(t+m)−s(t−m)
.

It can be easily checked that (t, q) ∈ A ([0, S]; [0,T ]×Q). By construction, the curves q and (t, q)
satisfy (6.21). Furthermore, recalling (6.24) and the fact that Θopt

m ∈ At(q(t
−
m), q(t+m)), it is not difficult

to check that (6.27) holds. Therefore, since q is a BV solution, we infer that (t, q) is a pBV solution,
and we obtain (6.22) by repeating the argument in (6.26).

This argument also allows us to prove that any enhanced BV solution gives rise to an enhanced pBV
solution. Hence, the proof of Theorem 6.15 is finished.

7 Proof of major results

This section focuses on the proofs of our main existence results for pBV and true BV solutions, i.e.
Theorems 5.11 and 6.8. They will be carried out in Sections 7.1 and 7.2, respectively. Moreover,
Section 7.3 provides the proof of Proposition 5.18.

Throughout this section and, in particular, in the statement of the various auxiliary results, we will
always tacitly assume the validity of Hypotheses 4.1, 4.2, 4.3, 4.5, 4.10, and of the parametrized chain
rule from Hyp. 5.7: recall that, by Lemma A.2 it implies the BV-chain rule (6.4).
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7.1 Proof of Theorem 5.11

Our first result lays the ground for the vanishing-viscosity analysis of Theorem 5.11 by settling the
compactness properties of a sequence of parametrized curves enjoying the a priori estimates (5.27).
We have chosen to extrapolate such properties from the proof of Theorem 5.11, since we believe them
to be of independent interest.

Prior to stating Proposition 7.1, let us specify the meaning of the third convergence in (7.2b) below.
Indeed, the sequence (uk)k is contained in a closed ball BR ⊂ U by virtue of estimate (7.1) (cf.
Hypothesis 4.7). Now, since U is reflexive and separable, it is possible to introduce a distance dweak

inducing the weak topology on BR. Hence, convergence in C0([0, S]; Uweak) means convergence in
C0([0, S]; (U, dweak)).

Proposition 7.1. Let (tk, qk)k ⊂ AC([0, S]; [0,T ]×Q), with tk non-decreasing and qk = (uk, zk),
enjoy the following bounds, along a null sequence (εk)k:

∃C∗ ≥ 1 ∀ k ∈ N :


sups∈[0,S] E(qk(s)) ≤ C∗,

t′k(s)+R(z′k(s))+Mα,red
εk

(tk(s), qk(s), t
′
k(s), q

′
k(s))

+‖u′k(s)‖U ≤ C∗ for a.a. s ∈ (0, S).

(7.1)

Then, there exist an admissible parametrized curve (t, q) = (t, u, z) ∈ A ([0, S]; [0,T ]×Q) with

t ∈ C0
lip([0, S]; [0,T ]), u ∈ C0

lip([0, S]; U), z ∈ C0
lip([0, S]; Zri) ∩ C0([0, S]; Z), (7.2a)

and a (not relabeled) subsequence such that the following convergences hold as k →∞:

tk → t in C0([0, S]) and t′k
∗
⇀ t′ in L∞(0, S),

uk
∗
⇀ u in W 1,∞(0, S; U),

uk → u in C0([0, S]; Uweak)

zk → z in C0([0, S]; Z),

uk(s) ⇀ u(s) in Ue and zk(s) ⇀ z(s) in Ze for all s ∈ [0, S],

(7.2b)

∫ S

0

Mα
0 [t, q, t′, q′](σ) dσ ≤ lim inf

k→∞

∫ S

0

Mα
εk

(tk(σ), qk(σ), t′k(σ), q′k(σ)) dσ . (7.2c)

Proof. We split the proof in three steps.

Step 1. Compactness: From (7.1) we infer the following compactness information.

(1.A) By the Ascoli-Arzelà Theorem, there exists a non-decreasing t ∈ W 1,∞(0, S) such that tk → t
uniformly in [0, S] and weakly∗ in W 1,∞(0, S).

(1.B) Since the sequence (uk)k is bounded inW 1,∞(0, S; U) we conclude that there exists u with the
regularity from (7.2a) such that, along a not relabeled subsequence, the second convergence in (7.2b)
hold for (uk)k. The convergence in C0([0, S]; Uweak) follows from an Ascoli-Arzelà type theorem, see
e.g. [AGS08, Prop. 3.3.1]).

(1.C) From sups∈[0,S] E(qk(s)) ≤ C we deduce that there exists a ball

B
Ze

M ⊂ Ze b Z such that zk(s) ∈ B
Ze

M for all s ∈ [0, S] and all k ∈ N. (7.3a)

Using Ze b Z ⊂ Zri and the coercivity (4.3b) of R, Ehrling’s lemma gives that

∀ω > 0 ∃Cω > 0 ∀ z ∈ BZe

M ‖z‖Z ≤ ω + CωR(z).
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Hence, defining ΩM(r) := infω>0(ω+Cωr) and noting that ΩM(λr) ≤ λΩM(r) for all λ ≥ 1, we
find

‖zk(s1)−zk(s2)‖Z ≤ ΩM(R(z(s1)−zk(s2))) ≤ C∗ΩM(|s1−s2|) for all 0 ≤ s1 ≤ s2 ≤ S,
(7.3b)

where the last estimate follows from the bound for R(z′k) in (7.1). We combine the compactness infor-
mation provided by (7.3a) with the equicontinuity estimate (7.3b) and again apply, [AGS08, Prop. 3.3.1]
to deduce that there exists z ∈ C0([0, S]; Z) such that, along a not relabeled subsequence, (zk)k
converges to z in the sense of (7.2b).

Let us denote by q the curve (u, z).

Step 2. q is an admissible parametrized curve: Combining the previously found convergences with the
first estimate in (7.1), we obtain sups∈[0,S] E(q(s)) ≤ C . Using the second estimate in (7.1) and (4.3b)
we have ‖z(s2)−z(s1)‖Zri

≤ C∗|s2−s1|/cR. With (7.3b) we also infer that z ∈ C0
lip([0, S]; Zri).

We will now show that z is locally absolutely continuous in the set G α[t, q] from (5.19). Let us first
examine the case α ∈ (0, 1). Since the function s 7→ S ∗

z (t, q(s)) is lower semicontinuous thanks
to Hypothesis 4.10, for every [ς, β] ⊂ G α[t, q] there exists c > 0 such that S ∗

z (t, q(s)) ≥ c for all
s ∈ [ς, β]. This estimate bears two consequences:

1 Exploiting the uniform convergence of zk to z and again relying on Hypothesis 4.10,

∃ k̄ ∈ N ∀ k ≥ k̄ ∀ s ∈ [ς, β] : S ∗
z (t, qk(s)) ≥

c

2
. (7.4)

This implies that, for k ≥ k̄, the sets G α[t, qk] = {s : S ∗
z (t, qk(s)) > 0} contain the interval

[ς, β].
2 Since, by (7.1), C∗ ≥ Mα,red

εk
(tk(s), qk(s), t

′
k(s), q

′
k(s)) for almost all s ∈ (ς, β), we are in a

position to apply estimate (5.15a) from Lemma 5.4 and deduce that

∃C > 0 ∃ k̄ ∈ N ∀ k ≥ k̄ for a.a. s ∈ (ς, β) : ‖z′k(s)‖Z ≤ C . (7.5)

The discussion of the case α ≥ 1 follows the very same lines: for every [ς, β] ⊂ G α[t, q] we find
c̃ > 0 and k̃ ∈ N such that for every k ≥ k̃ we have S ∗

u (t, qk(s))+S ∗
z (t, qk(s)) ≥ c̃

2
for every

s ∈ [ς, β]. Then, estimate (7.5) follows from (5.15b) in Lemma 5.4.

All in all, for all α > 0 the curves zk are uniformly Z-Lipschitz on [ς, β]. This entails that z is ultimately
Z-Lipschitz on any subinterval [s1, s2] ⊂ G α[t, q], and reflexivity of Z gives us

zk
∗
⇀ z in W 1,∞(ς, β; Z) for all [s1, s2] ⊂ G α[t, q]. (7.6)

Step 3. Proof of (7.2c): In order to conclude that (t, q) ∈ A ([0, S]; [0,T ]×Q), it remains to show
that it fulfills property (5.20), which will a consequence of (7.2c). By the lower semicontinuity we have

lim inf
k→∞

∫ S

0

R(z′k(s)) ds
(1)
= lim inf

k→∞
VarR(zk; [0, S]) ≥ VarR(z; [0, S])

(2)
=

∫ S

0

R[z′](s) ds,

(7.7)

with
(1)
= and

(2)
= due to (6.3). Furthermore, we have

lim inf
k→∞

∫ S

0

Mα,red
εk

(tk, qk, t
′
k, q
′
k) ds ≥ lim inf

k→∞

∫
(0,S)∩Gα[t,q]

Mα,red
εk

(tk, qk, t
′
k, q
′
k) ds

(3)

≥
∫

(0,S)∩Gα[t,q]

Mα,red
0 (t, q, 0, q′) ds .

(7.8)
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Here,
(3)

≥ follows from Proposition 5.12, applied to the functionals Mα,red
εk

and Mα,red
0 , which we con-

sider restricted to the (weakly closed, by assumption (4.7a)) energy sublevel S = {q ∈ Q : E(q) ≤
C}. Combining (7.7) and (7.8), we infer (7.2c) and thus conclude the proof of Proposition 7.1.

We are now in the position to conclude the

Proof of Theorem 5.11. Let (tεk , qεk)k be a sequence of rescaled viscous trajectories satisfying (5.27).
We apply Proposition 7.1 and conclude that there exist a limit parametrized curve (t, q) ∈
∈ A ([0, S]; [0,T ]×Q), fulfilling (5.28), and a (not relabeled) subsequence along which conver-
gences (5.29) hold.

We now show that the curves (t, q) fulfill the upper energy-dissipation estimate≤ in (5.24) by passing
to the limit as εk → 0+ in (5.4) for s1 = 0 and s2 = s ∈ (0, S]. The key lower semicontinuity estimate

∫ s

0

Mα
0 [t, q, t′, q′](σ) dσ ≤ lim inf

k→∞

∫ s

0

Mα
ε (tεk(σ), qεk(σ), t′εk(σ), q′εk(σ)) dσ for all s ∈ [0, S]

(7.9)
follows from (7.2c) in Proposition 7.1. Convergences (5.29), the lower semicontinuity (4.7b) of E, and
the continuity (4.14) of ∂tE give for all s ∈ [0, S] that

lim inf
k→∞

E(tεk(s), qεk(s)) ≥ E(t(s), q(s)) and

∫ s

0

∂tE(tεk , qεk)t
′
εk

dσ →
∫ s

0

∂tE(t, q)t′ dσ .

(7.10)
For the last convergence we use t′k

∗
⇀ t′ in L∞(0, S) and |∂tE(tεk(σ), qεk(σ))|

≤ C#E(tεk(σ), qεk(σ)) ≤ C by (4.7d) and (4.26), which together with (4.14) gives ∂tE(tεk , qεk)→
∂tE(t, q) strongly in L2(0, S).

Taking into account the convergence of the initial energies guaranteed by (5.26), we complete the limit
passage in (5.4). Thanks to Lemma 5.10, the validity of the upper energy-dissipation estimate in (5.24)
ensures that (t, q) = (t, u, z) is a pBV solution.

The enhanced convergences (5.30a) and (5.30b) are a by-product of this limiting procedure. Although
the argument is standard, we recap it for the reader’s convenience and later use, and introduce the
following place-holders for every s ∈ [0, S]:

Es
εk

:= E(tεk(s), qεk(s)), Es
0 := E(t(s), q(s))

M s
εk

:=
∫ s

0
Mα

εk
(tεk(σ), qεk(σ), t′εk(σ), q′εk(σ)) dσ M s

0 :=
∫ s

0
Mα

0 [t, q, t′, q′](σ) dσ
E0
εk

:= E(tεk(0), qεk(0)) E0
0 := E(t(0), q(0))

P s
εk

:=
∫ s

0
∂tE(tεk(σ), qεk(σ)) t′εk(σ) dσ P s

0 :=
∫ s

0
∂tE(t(σ), q(σ)) t′(σ) dσ .

Hence, the parametrized energy-dissipation estimate (5.4) rephrases as Es
εk

+ M s
εk
≤ E0

εk
+ P s

εk
,

and the limiting energy-dissipation balance rewrites as Es
0 +M0 = E0

0 + P s
0 . So far, we have shown

that

Es
0 +M s

0 ≤ lim inf
k→∞

(
Es
εk

+M s
εk

)
≤ lim sup

k→∞
(Es

εk
+M s

εk
)

≤ lim sup
k→∞

(E0
εk

+ P s
εk

) = E0
0 + P s

0 = Es
0 +M s

0 .

Since we have lim infk→∞E
s
εk
≥ Es

0 and lim infk→∞M
s
εk
≥ M s

0 , we thus conclude that
lim infk→∞E

s
εk

= Es
0 and limk→∞M

s
εk

= M s
0 for all s ∈ [0, S], which means (5.30). Thus,

Theorem 5.11 is established.
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7.2 Proof of Theorem 6.8

Proof. We split the argument in three steps.

Step 1. Construction of a suitable pBV solution. Let (qεk)k, q be as in the statement of Theorem 6.8.
Lemma 4.12 ensures the validity of the basic energy estimates (4.25) and (4.26) for the sequence
(qk)k = (uεk , zεk)k. The additional estimate for (uεk)k in BV([0,T ]; U) is assumed in (6.15), such
that the arc-length functions sεk from (5.2) fulfill supk∈N sεk(T ) ≤ C . We reparametrize the curves qεk
by means of the rescaling functions tεk := s−1

εk
by setting qεk := qεk◦tεk . Without loss of generality

we may suppose that (tεk , qεk) is surjective and defined on a fixed interval [0, S].

Now, for the sequence (tεk , qεk)k the a priori estimate (5.27) holds. Hence, we are in a position to
apply Thm. 5.11 to the curves (tεk , qεk)k and we conclude that (tεk , qεk)k convergence along a (not
relabeled) subsequence to a pBV solution (t, q) : [0, S] → [0,T ]×Q. In what follows, we will prove
that q is related to the parametrized curve (t, q) via (6.21).

Step 2. Every limit point q is a true BV solution: We first prove that

q(t) ∈ {q(s) : t(s) = t} for all t ∈ [0,T ]. (7.11)

For this we fix t∗ ∈ [0,T ] and choose sk ∈ [0, S] such that tεk(sk) = t∗. After choosing a (not
relabeled) subsequence we may assume sk → s∗. As (tεk , qεk)k converges uniformly to (t, q) in
C0([0, S];R×Qweak) we obtain

tεk(sk)→ t(s∗) and qεk(sk) ⇀ q(s∗).

However, by construction we have

tεk(sk) = t∗ and qεk(sk)
Step 1
= qεk(tεk(sk)) = qεk(t∗) ⇀ q(t∗),

where the last convergence is the assumption in (6.16). Hence we conclude t(s∗) = t∗ and q(s∗) =
q(t∗) which is the desired relation (7.11).

Thanks to (7.11), we can apply Theorem 6.15(1), which ensures that q is a true BV solution.

Step 3. Proof of convergences (6.17): Since (qεk)k is bounded in L∞(0,T ; Ue×Ze) by estimate (4.26)
and Hypothesis 4.3, the pointwise weak convergence in Q improves to convergences (6.17a). Next,
we observe that for every 0 ≤ s0 ≤ s1 ≤ S there holds

lim
k→∞

∫ t(s1)

t(s0)

Mα
εk

(r, qεk(r), 1, q′εk(r)) dr = lim
k→∞

∫ s1

s0

Mα
εk

(tεk(σ), qεk(σ), t′εk(σ), q′εk(σ)) dσ

(1)
=

∫ s1

s0

Mα
0 [t, q, t′, q′](σ) dσ

(2)
= VarMα

0
(q; [t(s0), t(s1)]),

with (1) due to (5.30b) and (2) due to (6.22). Hence, (6.17c) follows.

Finally, the lower semicontinuity of E, the continuity (4.14) of ∂tE, give that

lim inf
k→∞

E(t, qk(t)) ≥ E(t, q(t)) for all t ∈ [0,T ] and

∫ t

0

∂tE(s, qk(s)) ds→
∫ t

0

∂tE(s, q(s)) ds.

Hence, with similar arguments as in the proof of Theorem 5.11 (cf. the end of Section 7.1), we conclude

E(t, q(t))+VarMα
0
(q; [0, t]) = lim

k→∞
E(t, qεk(t))+ lim

k→∞

∫ t

0

Mα
εk

(r, qεk(r), 1, q′εk(r))dr for t ∈ [0,T ],

and (6.17b) ensues from the previously obtained (6.17c). This finishes the proof of Theorem 6.8.
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7.3 Proof of Proposition 5.18

Our task is to show inclusions (5.44) for the contact sets Σα and the flow regimes AuCz for the three
different cases for α. We rely on the explicit form of Mα

0 = R + Mα,red
0 from (5.12).

Proof of Proposition 5.18. Step 1: The case t′ > 0. We start by showing that for all α > 0 we have

Σ>0
α :=

{
(t, q, t′, q′) ∈ Σα

∣∣ t′ > 0
}

= EuRz = Eu ∩ Rz.

Indeed, in the case t′ > 0 we have Mα
0 (t, q, t′, q′) <∞ if and only if S ∗

u (t, q) = S ∗
z (t, q) = 0 and

thenMα
0 (t, q, t′, q′) = R(z′). From the former we obtain that, in fact, every (µ, ζ) ∈ A∗u(t, q)×A∗z(t, q)

satisfies µ = 0 and −ζ ∈ ∂R(0). From the contact condition R(z′) = Mα
0 (t, q, t′, q′) = − 〈ζ, z′〉Z

and the 1-homogeneity of R we infer that−ζ ∈ ∂R(z′), see (4.5). Taking into account that A∗x(t, q) ⊂
∂xE(t, q) for x ∈ {u, z}, we ultimately infer

∂uE(t, q) 3 0, ∂R(z′) + ∂zE(t, q) 3 0, (7.12)

namely system (5.42) holds with λu = λz = 0, i.e. (t, q, t′, q′) ∈ EuRz. Hence, we have shown
Σ>0
α ⊂ EuRz. In fact, reverting the arguments the opposite inclusion holds as well.

Step 2. The case t′ = 0. We define Σ0
α :=

{
(t, q, t′, q′) ∈ Σα

∣∣ t′ = 0
}

and treat the three cases
α = 1, α > 1, and α ∈ (0, 1), separately.

Step 2.A. t′ = 0 and α = 1. We want to show the inclusion

Σ0
α=1 ⊂

(
EuRz ∩ {t′ = 0}

)
∪ Vuz ∪ BuBz . (7.13)

From (5.12) we have Mα
0 (t, q, 0, q′) = R(z′) + bVu⊕Vz(q

′, S ∗
u (t, q)+S ∗

z (t, q)).
Hence, for S ∗

u (t, q)+S ∗
z (t, q) = 0 we argue as in Step 1 and obtain (t, q, 0, q′) ∈ EuRz∩{t′ = 0}.

We may now suppose that S ∗
u (t, q)+S ∗

z (t, q) > 0 and q′ = (u′, z′) = 0. Clearly, the contact con-
dition Mα=1

0 (t, q, t′, q′) = − 〈µ,u′〉U− 〈ζ, z′〉Z holds for all (µ, ζ) ∈ A∗u(t, q)×A∗z(t, q). However,
S ∗

u (t, q)+S ∗
z (t, q) > 0 gives

(
{0}×∂R(0)

)
∩∂qE(t, q) = Ø, and because ofA∗u(t, q)×A∗z(t, q) ⊂

∂qE(t, q) we conclude that (t, q, 0, (0, 0)) fulfills system (5.42) with λu = λz = ∞. Hence,
(t, q, 0, q′) = (t, q, 0, 0) ∈ BuBz as desired.

Suppose now Vz(z
′)+Vu(u

′) > 0 in addition to S ∗
u (t, q)+S ∗

z (t, q) > 0. According to Proposition
3.2(b2) there exists ` = `(t, q, q′) > 0 with

bVu⊕Vz(q
′, S ∗

u (t, q)+S ∗
z (t, q)) = `

(
Vu

(1

`
u′
)
+Vz

(1

`
z′
)
+S ∗

u (t, q)+S ∗
z (t, q)

)
.

Now, (t, q, 0, q′) ∈ Σ0
1 means that there exists (µ, ζ) ∈ A∗u(t, q)×A∗z(t, q) fulfilling the contact

condition

M1
0(t, q, 0, q′) = R(z′) + bψu⊕ψz(q

′, S ∗
u (t, q)+S ∗

z (t, q)) = − 〈µ,u′〉U− 〈ζ, z′〉Z .

Moreover, the definition of A∗x(t, q) gives S ∗
u (t, q) = V∗u(−µ) and S ∗

z (t, q) = W∗z(−ζ). Together
with the definition of ` we find the identity

Vu

(1

`
u′
)
+R
(1

`
z′
)
+Vz

(1

`
z′
)
+V∗u(−µ)+W∗z(−ζ)

=
1

`
M1

0(t, q, 0, q′) = −1

`

(
〈µ,u′〉U + 〈ζ, z′〉Z

)
= 〈−µ,

1

`
u′〉

U
+ 〈−ζ,

1

`
z′〉

Z
.
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Since V∗u ⊕W∗z is is the Legendre-Fenchel dual of Vu ⊕ (R+Vz) we conclude

−µ ∈ ∂Vu

(1

`
u′
)

= ∂V1/`
u (u′) and −ζ ∈ ∂R

(1

`
z′
)
+∂Vz

(1

`
z′
)

= ∂R(z′)+∂V1/`
z (z′).

From this we see that (t, q, 0, q′) system (5.42) holds with λu = λz = 1/` ∈ (0,∞), i.e. we have
(t, q, 0, q′) ∈ Vuz, and the inclusion (7.13) is established.

Step 2.B. t′ = 0 and α > 1. Let us now examine the case α > 1 and prove that

Σ0
α ⊂

(
EuRz ∩ {t′ = 0}

)
∪ EuVz ∪ Bz . (7.14)

Using the explicit expression for Mα,red
0 (t, q, 0, q′) in (5.12), we see that Mα

0 (t, q, 0, q′) <∞ implies
that either (i) S ∗

u (t, q) = 0 or (ii)
(
S ∗

u (t, q) > 0 and z′ = 0
)
.

In case (i), which means Eu, the contact condition reads

S ∗
u (t, q) = 0 and ∃ ζ ∈ A∗z(t, q) : R(z′) + bψz(z

′, S ∗
z (t, q)) = − 〈ζ, z′〉Z .

If S ∗
z (t, q) = 0, we have bψz(z

′, S ∗
z (t, q)) = 0 and infer R(z′) + 〈ζ, z′〉Z = 0. Moreover,

S ∗
z (t, q) = 0 implies ζ ∈ A∗z(t, q) = ∂R(0), and we conclude ∂R(z′) + ζ 3 0 by (4.5). Hence, we

can choose λz = 0 in (5.42b) and obtain (t, q, 0, q′) ∈ EuRz.

If z′ = 0 holds but not S ∗
z (t, q) > 0, then (5.42b) holds for λz =∞ and (t, q, 0, q′) ∈ Bz.

Finally, if z′ 6= 0 and S ∗
z (t, q) > 0, then the very same discussion as in the last part of Step 2.A

provides λz ∈ (0,∞) such that ∂R(z′) + ∂Vλzz (z′) + ∂zE(t, q) 3 0, which means (t, q, 0, q′) ∈
EuVz.

The discussion of the case (ii) with S ∗
u (t, q) > 0 and z′ = 0 proceeds along the same lines, relying

on the contact condition

∃µ ∈ A∗u(t, q) : Mα
0 (t, q, 0,u′, 0) = R(0) + bψz(u

′, S ∗
u (t, q)) = − 〈µ,u′〉U .

For u′ 6= 0 we find λu ∈ (0,∞) with ∂Vλuu (u′) +µ 3 0, which gives (t, q, 0, q′) ∈ VuBz. For u′ = 0
we can choose λu = ∞ such that ∂V∞u (0) + µ = U∗ + µ 3 0. Hence (5.42) holds with λz = ∞
and λu ∈ (0,∞], i.e. (t, q, 0, q′) ∈ Bz.

Thus, in both cases, (i) and (ii), we conclude (7.14), and Step 2.B is completed.

Step 2.C. t′ = 0 and α ∈ (0, 1). This case works similarly as the case α > 1 in Step 2.B, but with
the roles of u and z interchanged, where Eu is interchanged with Rz. Thus, in analogy to (7.14) we
obtain Σ0

α ⊂
(
EuRz ∩ {t′ = 0}

)
∪ VuRz ∪ Bu.

This concludes the proof of Proposition 5.18.

8 Application to a model for delamination

In this section we discuss the application of our vanishing-viscosity analysis techniques to a PDE
system modeling adhesive contact. A previous vanishing-viscosity (and vanishing-inertia, in the mo-
mentum balance) analysis was carried out for a delamination model in [Sca17] where, however, an
energy balance only featuring defect measures, in place of contributions describing the dissipation of
energy at jumps, was obtained in the null-viscosity limit.

DOI 10.20347/WIAS.PREPRINT.2902 Berlin 2021



BV solutions to infinite-dimensional multi-rate systems 61

Ω+

Γ+ ΓCΓ−

Ω−

ΓD

ΓD

Figure 8.1:
The two domains Ω+ and Ω−

touch along the delamination
hypersurface ΓC.

After introducing the viscous model and discussing its structure as a generalized gradient system in
Section 8.1, we are going to state the existence of enhanced BV and parametrized solutions to the
corresponding rate-independent system (U×Z,E,Vε

α

u +R+Vεz)ε↓0 in Theorem 8.1. This result will
be proved throughout Sections 8.2–8.5 by showing that the ‘abstract’ Theorems 5.14 and 6.12 apply.

As we will emphasize later on, our analysis crucially relies on the fact that, in the delamination system,
the coupling between the displacements and the delamination parameter only occurs through lower
order terms.

8.1 The ‘viscous’ system for delamination

We consider two bodies located in two bounded Lipschitz domains Ω± ⊂ R3 and adhering along a
prescribed interface ΓC, on which some adhesive substance is present. We denote that part of Ω± that
coincides with ΓC by Γ±, see Figure 8.1, thus being able to talk about one-sided boundary conditions.
In what follows, for simplicity we will assume that ΓC is a ‘flat’ interface, i.e., ΓC is contained in a
plane, so that, in particular, H 2(ΓC) = L 2(ΓC) > 0. While the generalization to a smooth curved
interface is standard, this restriction will allow us to avoid resorting to Laplace-Beltrami operators in
the flow rule for the delamination parameter.

The state variables in the model are indeed the displacement u : Ω → R3, with Ω := Ω+ ∪ Ω−,
and the delamination variable z : ΓC → [0, 1], representing the fraction of fully effective molecular
links in the bonding. Therefore, z(t,x) = 1 (z(t,x) = 0, respectively) means that the bonding is
fully intact (completely broken) at a given time instant t ∈ [0,T ] and in a given material point x ∈ Γ.
We denote by n± the outer unit normal of Ω± restricted to Γ± and by [[u]] the jump of u across ΓC,
namely [[u]] = u|Γ+ − u|Γ− , but now defined as function on ΓC.

For simplicity, we impose homogeneous Dirichlet boundary conditions u = 0 on the Dirichlet part ΓD

of the boundary ∂Ω, with H 2(ΓD) > 0. We consider a given applied traction f on the Neumann part
ΓN = ∂Ω \ (ΓD∪ΓC).

All in all, we address the following rate-dependent PDE system

− div(εαDe(u̇) + Ce(u)) = F in Ω×(0,T ), (8.1a)

u = 0 on ΓD×(0,T ), (8.1b)

(εαDe(u̇) + Ce(u))|ΓN
ν = f on ΓN×(0,T ), (8.1c)

(εαDe(u̇) + Ce(u))|ΓC
n± ± γ(z)∂ψ(

[[
u
]]

)± β(
[[
u
]]

) 3 0 on Γ±×(0,T ), (8.1d)

∂R(ż) + εż −∆z + φ̃(z) + ∂γ(z)ψ(
[[
u
]]

) 3 0 on ΓC×(0,T ), (8.1e)

where u̇ and ż stand for the partial time derivatives of u and z. Here, F is a volume force, D, C ∈
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Lin(Rd×d
sym) the positive definite and symmetric viscosity and elasticity tensors, ν the exterior unit nor-

mal to ∂(Ω+∪ΓC∪Ω−), and R is given by

R(r) = κ+ max{r, 0}+ κ−max{−r, 0} with κ± > 0. (8.2)

Hence, healing of the broken molecular links is disfavored, but not totally blocked. Giving up unidirec-
tionality allows for a more straightforward application of our abstract results. Nonetheless, we expect
that, at the price of some further technicalities our techniques could be adapted to deal with unidi-
rectionality by means of additional estimates (like for instance in the application of BV solutions to
unidirectional damage developed in [KRZ13]).

The term γ(z)∂ψ([[u]]), with γ and ψ nonnegative functions (we may think of γ(z) = max{z, 0})
and ψ convex, in (8.1d) derives from the contribution γ(z)ψ([[u]]) to the surface energy, cf. (8.6d)
ahead, which penalizes the constraint z[[u]] = 0 a.e. on ΓC, typical of brittle delamination models.
Indeed, to our knowledge, existence results for brittle models are available only in the case of a rate-
independent evolution for z, cf. e.g. [RSZ09, RoT15a]. In fact, (8.1) is rather a model for contact with
adhesion and will be accordingly referred to in this way. Our assumptions on the constitutive functions
γ, ψ and β, and on the multivalued operator φ̃ (indeed, on the mapping z 7→ φ̃(z) − z), will be
specified in (8.5) ahead.

We define the operatorsC,D : H1(Ω;R3)→ H1(Ω;R3)∗ via

〈Cu, v〉H1(Ω) :=

∫
Ω

Ce(u) : e(v) dx, 〈Du, v〉H1(Ω) :=

∫
Ω

De(u) : e(v) dx,

while we denote by J : H1(Ω;R3)→ L4(ΓC;R3); u 7→ [[u]] the jump operator, by ‖J‖ its operator
norm, and by J∗ its adjoint. We denote by A the Laplacian with homogeneous Neumann boundary
conditions

A : H1(ΓC)→ H1(ΓC)∗ 〈Az,ω〉H1(ΓC) :=

∫
ΓC

(
∇z∇ω + zω

)
dx .

In particular, we have ‖z‖2
H1(ΓC) = 〈Az, z〉H1(ΓC). Finally, we denote by `u : (0,T ) → U∗ the

functional encompassing the volume and surface forces F and f , namely

〈`u(t),u〉H1(Ω) :=

∫
Ω

F (t)u dx+

∫
ΓN

f(t)u dS .

Throughout, we will assume that

`u ∈ C1([0,T ]; H1(Ω;R3)∗) . (8.3)

Hence, system (8.1) takes the form

0 ∈ εαDu̇+Cu+ J∗
(
β(
[[
u
]]

) + γ(z)∂ψ(
[[
u
]]

)
)
− `u in H1(Ω;R3)∗ (8.4a)

0 ∈ ∂R(ż) + εż +Az + ∂φ̂(z) + ∂γ(z)ψ(
[[
u
]]

) a.e. in ΓC (8.4b)

almost everywhere in (0,T ). In (8.4), β̂ a primitive for β and φ̂ a primitive for the multivalued operator
z 7→ φ̃(z)− z.
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Structure as a (generalized) gradient system

First of all, let us specify our assumptions on the constitutive functions β̂, γ, φ̂, and ψ:

ψ, β̂ : R3 → [0,∞) are lsc and convex with ψ(0) = β̂(0) = 0,

∃Cψ > 0 ∀ a ∈ R3 : ψ(a) ≤ Cψ(1+|a|2),

β̂ ∈ C1(R3) and β = Dβ̂ is globally Lipschitz

γ is convex, non-decreasing and 1-Lipschitz, with γ(0) = 0,

φ̂ : R→ [0,∞] is lsc and (−Λφ)-convex for Λφ > 0, with φ̂(z) =∞ for z /∈ [0, 1].


(8.5)

Hence, ∂γ and ∂ψ in (8.4) are convex analysis subdifferentials, while ∂φ̂ : R ⇒ R is the Fréchet
subdifferential of φ̂.

To fix ideas, prototypical choices for β̂, γ, φ̂, and ψ would be:

(i) β̂ the Yosida regularization of the indicator function of the cone C = {v ∈ R3 : v · n+ ≤ 0}
(cf. also Remark 8.3);

(ii) γ(z) = max{z, 0};
(iii) φ̂ encompassing the indicator function I[0,1], which would ensure that z ∈ [0, 1];
(iv) ψ([[u]]) = k

2
|[[u]]|2 with k > 0.

Observe that (8.4) falls into the class of gradient systems (4.11), with the ambient spaces

U = H1
ΓD

(Ω;R3), Z = L2(ΓC), Zri = L1(ΓC) (8.6a)

where H1
ΓD

(Ω;R3) the space of H1-functions on Ω fulfilling a homogeneous Dirichlet boundary con-
dition on ΓD. By Korn’s inequality, the quadratic form associated with the operatorD induces on U a
norm equivalent to the H1-norm; hereafter, we will in fact use that

‖u‖2
U := 〈Du,u〉H1(Ω), 〈Cu,u〉H1(Ω) ≥ cC‖u‖2

U.

The 1-homogeneous dissipation potential R : Zri → [0,∞) is defined by

R(ż) :=

∫
ΓC

R(ż) dx with R from (8.2). (8.6b)

The viscous dissipation potentials Vu : U→ [0,∞) and Vz : U→ [0,∞) are

Vu(u̇) :=
1

2
〈Du̇, u̇〉H1(Ω) Vz(ż) :=

∫
ΓC

1
2
|ż|2 dx. (8.6c)

The driving energy functional E : [0,T ]×U×Z→ (∞, +∞] is given by

E(t,u, z) : =
1

2
〈Cu,u〉H1(Ω)− 〈`u(t),u〉H1(Ω) +

1

2
〈Az, z〉H1(ΓC)

+

∫
ΓC

(
β̂(
[[
u
]]

)+γ(z)ψ(
[[
u
]]

)+φ̂(z)
)

dx

for z ∈ H1(ΓC) and φ̂(z) ∈ L1(ΓC),

(8.6d)

and∞ otherwise.
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As we will see in Proposition 8.2, under the conditions on β̂, γ, φ̂, and ψ specified in (8.5),

E complies with the coercivity conditions from Hyp. 4.3 with the spaces

Ue = U = H1
ΓD

(Ω;R3) and Ze = H1(ΓC) b Z, (8.7)

and its Fréchet subdifferential ∂qE : [0,T ]×U×Z⇒ U∗×Z∗ is given by

(µ, ζ) ∈ ∂qE(t,u, z) if and only if
µ = Cu+ J∗

(
β([[u]]) + γ(z)%

)
− `u(t) for some selection ΓC 3 x 7→ %(x) ∈ ∂ψ([[u(x)]])

ζ = Az + ωψ([[u]]) + φ for selections ΓC 3 x 7→ ω(x) ∈ ∂γ(z(x))

and ΓC 3 x 7→ φ(x) ∈ ∂φ̂(z(x)) s.t. Az + φ ∈ L2(ΓC)
(8.8)

(indeed, observe that, by the growth properties of γ and ψ, the term ωψ([[u]]) is in L2(ΓC) for any
selection ω ∈ ∂γ). In particular, here we have used that the Fréchet subdifferential of the ((−Λφ)-
convex) functional F : Z→ [0,∞]

F(z) :=

{
1
2
〈Az, z〉H1(ΓC) +

∫
ΓC
φ̂(z) dx if z ∈ H1(ΓC) and φ̂(z) ∈ L1(ΓC),

∞ else,
(8.9a)

is given by

∂F(z) = {Az + φ̃ : φ̃(x) ∈ ∂φ̂(x) for a.a. x ∈ ΓC, Az + φ̃ ∈ L2(ΓC)} . (8.9b)

We also point out for later use that ∂qE fulfills the structure condition (4.23), i.e. ∂qE(t,u, z) =
∂uE(t,u, z)×∂zE(t,u, z) for every (t,u, z) ∈ [0,T ]×U×Z.

Existence for the viscous system

As we will check in Proposition 8.2 ahead, our general existence result, Theorem 4.8, applies to the
viscous delamination system. Hence, for every pair of initial data (u0, z0) ∈ H1

ΓD
(Ω;R3)×H1(ΓC)

there exists a solution

u ∈ H1(0,T ; H1
ΓD

(Ω;R3)) and z ∈ L∞(0,T ; H1(ΓC)) ∩ H1(0,T ; L2(ΓC)), (8.10)

to the Cauchy problem for system (8.4).

8.2 The vanishing-viscosity limit

We will now address the vanishing-viscosity limit as ε → 0+ of system (8.4). Our main result
states the convergence of (a selected family of) viscous solutions to an enhanced BV solution to
the system (U×Z,E,Vε

α

u +R+Vεz)ε↓0 defined by (8.6), in fact enjoying the additional regularity z ∈
BV([0,T ]; Ze) (with Ze = H1(ΓC)). Analogously, we also obtain the existence of parametrized BV
solutions, to which Theorem 5.20 applies, providing a characterization in terms of system (8.15) ahead.

In fact, we will be able to obtain solutions to the viscous system (8.4) enjoying estimates, uniform with
respect to the viscosity parameter, suitable for the vanishing-viscosity analysis, only by performing cal-
culations on a version of system (8.4) in which the functions β̂, γ, φ̂, and ψ are suitably smoothened,
cf. (8.18). That is why, in Theorem 8.1 below will state:
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(i) the existence of qualified viscous solutions to (the Cauchy problem for) (8.4), where by ‘qualified’
we mean enjoying estimates (8.13) below;

(ii) their convergence (up to a subsequence) to an enhanced BV solution (we mention that, since the
viscous dissipation potentials from (8.6c) are both 2-homogeneous, the formulas in (5.11) and
(5.14) yield an explicit representation formula for the functional Mα

0 involved in the definition of
BV solution);

(iii) the convergence of reparametrized (qualified) viscous solutions to an enhanced pBV solution for
which the differential characterization from Theorem 5.20 holds.

For simplicity, in Theorem 8.1 we shall not consider a sequence of initial data (uε0, zε0)ε but confine
the statement to the case of fixed data (u0, z0). We will impose that (u0, z0) fulfill the additional
‘compatibility condition’ (8.11).

Theorem 8.1. Assume conditions (8.3) and (8.5). Let (u0, z0) ∈ U× Ze fulfill

u0 ∈ H1
ΓD

(Ω;R3), ∆z0 ∈ L2(ΓC), ∂φ̂(z0) ∩ L2(ΓC) 6= Ø. (8.11)

Then, there exists a family

(uε, zε)ε ⊂ H1(0,T ; H1
ΓD

(Ω;R3))×H1(0,T ; H1(ΓC)) (8.12)

solving the Cauchy problem for the viscous delamination system (8.10) with the initial data (u0, z0),
and enjoying the following estimate

sup
ε>0

∫ T

0

{
‖u̇ε‖H1(Ω) + ‖żε‖H1(ΓC)

}
dt ≤ C . (8.13)

Moreover, for any null sequence (εk)k the sequence (uεk , zεk)k admits a (not relabeled) subse-
quence, and there exists a pair

(u, z) ∈ BV([0,T ]; H1
ΓD

(Ω;R3))×BV([0,T ]; H1(ΓC)),

such that

(1) the following convergences hold as k →∞

uεk(t) ⇀ u(t) in H1
ΓD

(Ω;R3), zεk(t) ⇀ z(t) in H1(ΓC) for all t ∈ [0,T ]; (8.14)

(2) (u, z) is an enhanced BV solution to the delamination system (U×Z,E,Vε
α

u +R+Vεz)ε↓0 from
(8.6).

Finally, reparametrizing the sequence (uεk , zεk)k in such a way that the rescaled curves (tεk , uεk , zεk)k
enjoy estimates (5.27) and (5.35), up to a subsequence we have convergence of (tεk , uεk , zεk)k, in
the sense of (5.29), to an enhanced pBV solution (t, u, z) : [0, S] → [0,T ]×H1

ΓD
(Ω;R3)×H1(ΓC)

for which the differential characterization from Theorem 5.20 holds. Namely, there exist measurable
functions λu, λz : (0, S)→ [0,∞] satisfying for almost all s ∈ (0, S) the switching conditions (5.47c)
and the subdifferential inclusions

0 ∈ λu(s)Du̇(s)+Cu(s)+J∗
(
β(
[[
u(s)

]]
)+γ(z(s))∂ψ(

[[
u(s)

]]
)
)
−`u(t(s)), (8.15a)

0 ∈ ∂R(ż(s)) + λz(s)ż(s) +Az(s) + ∂φ̂(z(s)) + ∂γ(z(s))ψ(
[[
u(s)

]]
) a.e. in ΓC (8.15b)

(with convention (5.41) in the case λx(s) =∞).
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Proof. It is sufficient to check that the rate-independent system (U×Z,E,Vε
α

u +R+Vεz)ε↓0 from (8.6)
complies with the assumptions of Theorems 5.14, 5.20, and 6.12, and that there exist ‘qualified’ vis-
cous solutions enjoying estimates (8.13). More precisely,

(1) In Proposition 8.2 ahead we will check that the rate-independent delamination system
(U×Z,E,Vε

α

u +R+Vεz)ε↓0 complies with Hypotheses 4.1, 4.2, 4.3, 4.5, 4.10, and 5.7 (in fact,
the parametrized chain rule (5.38) holds).

(2) We will obtain the existence of viscous solutions enjoying estimates (8.13) by working on a
smoothened version of system (8.4), introduced in Section 8.4 ahead. Therein, we will obtain
estimates for the solutions to the regularized viscous system uniform with respect to the regular-
ization parameter. Hence, with Proposition 8.5 in Section 8.5 we will conclude the existence of
‘qualified’ solutions for which (8.13) holds, and thereby conclude the proof of Theorem 8.1.

In what follows, we will most often use the place-holders U, Z, ...... (cf. (8.6a) and (8.7)) for the involved
function spaces.

8.3 Properties of the rate-independent system for delamination

This section is centered around Proposition 8.2 below, in which we check the rate-independent system
(U×Z,E,Vε

α

u +R+Vεz)ε↓0 from (8.6). complies with the ‘abstract’ Hypotheses from Section 4. In
particular, from the following result we gather that Theorem 4.8 is applicable, yielding the existence of
solutions as in (8.10) to the viscous delamination system.

Proposition 8.2. Assume (8.3) and (8.5). Then, the delamination system (U×Z,E,Vε
α

u +R+Vεz)ε↓0
from (8.6) fulfills Hypotheses 4.1, 4.2, 4.3, 4.5, 4.10, and 5.7.

Proof. The proof consists of three steps.

Step 1. Hypotheses 4.1, 4.2, 4.3, and 4.10: The validity of Hypothesis 4.1, 4.2, and 4.3 is obvious. A
straightforward calculation shows that the Fréchet subdifferential of E is given by (8.8), so that the
structure condition ∂qE(t, q) = ∂uE(t, q)×∂zE(t, q) holds at every q = (u, z) ∈ U×Z. Therefore,
by Lemma 4.11, Hypothesis 4.10 will be ensured by the validity of Hypothesis 4.5, which we now
check.

Step 2. Hypothesis 4.5: Let (tn)n ⊂ [0,T ] and (un, zn)n ⊂ U×Z be in the conditions of Hypothesis
4.5, and let (µn, ζn)n, with µn ∈ ∂uE(tn,un, zn) and ζn ∈ ∂zE(tn,un, zn), fulfill µn ⇀ µ in U∗ and
ζn ⇀ ζ in Z∗. Hence,

µn = Cun + J∗(β(
[[
un
]]

)+γ(zn)%n)− `u(tn) with %n ∈ ∂ψ(
[[
un
]]

) a.e. in ΓC,

ζn = Azn + ωnψ(
[[
un
]]

) + φn for some ωn ∈ ∂γ(zn) and φn ∈ ∂φ̂(zn) .

We observe that, by Sobolev embeddings and trace theorems, from the convergences un ⇀ u in
Ue and zn ⇀ z in Ze we infer that [[un]] → [[u]] in Lq(ΓC;R3) for all 1 ≤ q < 4, and zn → z

in Lp(ΓC) for all 1 ≤ p < ∞. Furthermore, since 0 ≤ zn ≤ 1 a.e. on ΓC, we even have zn
∗
⇀ z

in L∞(ΓC). Since γ is Lipschitz, we gather that γ(zn) → γ(z) in Lp(ΓC) for all 1 ≤ p < ∞, too.
By the growth properties of ψ, we have that the sequence (%n)n with %n ∈ ∂ψ([[un]]) a.e. in ΓC is
bounded in L4(ΓC) and thus, up to a subsequence, it weakly converges in L4(ΓC) to some %. By
the strong-weak closedness of the graph of ∂ψ (or, rather, of the maximal monotone operator that
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∂ψ : R3 ⇒ R3 induces on L2(ΓC)), we have that % ∈ ∂ψ([[u]]) a.e. in ΓC. Moreover, we find that
γ(zn)%n ⇀ γ(z)%, for instance in L2(ΓC). Since β is Lipschitz, we also have β([[un]])→ β([[u]]) in
Lq(ΓC;R3) for all 1 ≤ q < 4. Also taking into account that `u ∈ C1([0,T ]; U∗), we then conclude
the weak limit µ of the sequence (µn)n belongs to ∂uE(t, q).

Let us now discuss the weak Z-limit ζ of the sequence (ζn)n. First of all, from the Lipschitz continuity
of γ we gather that the sequence (ωn)n is bounded in L∞(ΓC). Hence, (ωnψ([[un]]))n is bounded
in L2(ΓC) and, a fortiori, we gather that also the terms (Azn + φn)n are bounded in L2(ΓC). By
the strong-weak closedness of the graph of (the operator induced by) ∂γ (on L2(ΓC)), we infer that
ω ∈ ∂γ(z) a.e. in ΓC. Since ψ has at most quadratic growth, from [[un]] → [[u]] in Lq(ΓC;R3) for
all 1 ≤ q < 4 we obtain that ψ([[un]]) → ψ([[u]]) in Lq/2(ΓC;R3) via the dominated convergence
theorem. All in all, we have that ωnψ([[un]]) ⇀ ωψ([[u]]) ∈ ψ([[u]])∂γ(z) in L2(ΓC).

Now, with arguments similar to those in the previous lines and that in L2(ΓC), since ωn
∗
⇀ ω in

L∞(ΓC) and ψ([[un]]) → ψ([[u]]) in Lq/2(ΓC) for all 1 ≤ q < 4. In turn, also taking into account
that the sequence (Azn)n is itself bounded in H1(ΓC)∗, it is immediate to check that there exists
φ ∈ H1(ΓC)∗ such thatAzn + φn ⇀ Az+ φ in L2(ΓC). Since the functional F from (8.9) F is also
(−Λφ)-convex, its Fréchet subdifferential has a strongly-weakly closed graph in L2(ΓC)×L2(ΓC),

and we thus infer that φ ∈ ∂φ̂(z) a.e. in ΓC. All in all, we conclude that that ζ ∈ ∂zE(t, q). This
concludes the proof of Hypothesis 4.5.

Step 3. Hypothesis 5.7: Let us now turn to the parametrized chain rule from Hypothesis 5.7. Since the
viscous dissipation potentials are 2-homogeneous, the associated vanishing-viscosity contact poten-
tials are given by (3.10) (cf. Example 3.4) so that, in particular, the coercivity condition (5.37) holds,
and Proposition 5.16 is applicable. Therefore, Hypothesis 5.7 follows from the chain rule of Hyp. 4.7.
The latter chain-rule property can be verified by resorting to Proposition A.1 ahead. Hence, we need to
show E complies with condition (A.1), which states that the Fréchet subdifferential ∂qE can be charac-
terized by a global inequality akin to that defining the convex analysis subdifferential: for everyE > 0,
and energy sublevel SE , there exists an upper semicontinuous function $E : [0,T ]×SE×SE →
[0,∞], with $E(t, q, q) = 0 for every t ∈ [0,T ] and q ∈ SE , such that

E(t, q̂)−E(t, q) ≥ 〈ξ, q̂−q〉Q−$
E(t, q, q̂)‖q̂−q‖Q for all t ∈ [0,T ], q, q̂ ∈ SE and all ξ ∈ ∂qE(t, q) .

(8.16)
In order to check (8.16), we will resort to a decomposition for the energy functional from (8.6d) as

E(t,u, z) = Eelast(t,u) + F(z) + Ecoupl(u, z) (8.17a)

with F from (8.9),

Eelast(t,u) := 1
2
〈Cu,u〉H1(Ω)− 〈`u(t),u〉H1(Ω), (8.17b)

while, for later convenience, we encompass the surface term
∫

ΓC
β̂([[u]]) dx in the coupling energy

Ecoupl(u, z) :=

∫
ΓC

(
β̂(
[[
u
]]

)+γ(z)ψ(
[[
u
]]

)
)

dx . (8.17c)

Now, Eelast(t, ·) is convex while F is (−Λφ)-convex. Hence, they both comply with (8.16). Hence,

it is sufficient to check its validity for Ecoupl, and indeed for its second contribution, only, since β̂ is
also convex. Indeed, for every û, u ∈ U and ẑ, z ∈ Z and for all selections ΓC 3 x 7→ %(x) ∈
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∂ψ([[u(x)]]) and ΓC 3 x 7→ ω(x) ∈ ∂γ(z(x)) there holds∫
ΓC

(
γ(ẑ)ψ(

[[
û
]]

)−γ(z)ψ(
[[
u
]]

)
)

dx−
∫

ΓC

γ(z)%
[[
û−û

]]
dx−

∫
ΓC

ωψ(
[[
u
]]

)(ẑ−z) dx

=

∫
ΓC

γ(ẑ)
{
ψ(
[[
û
]]
−ψ(

[[
u
]]

)
}

dx−
∫

ΓC

γ(z)%
[[
û−û

]]
dx

+

∫
ΓC

{
γ(ẑ)−γ(z)−ω(ẑ−z)

}
ψ(
[[
u
]]

) dx

(1)

≥
∫

ΓC

(
γ(ẑ)−γ(z)

)(
ψ(
[[
û
]]

)−ψ(
[[
u
]]

)
)

dx+

∫
ΓC

γ(z)
{
ψ(
[[
û
]]

)−ψ(
[[
u
]]

)−%
[[
û−u

]]}
dx

(2)

≥
∫

ΓC

(
γ(ẑ)−γ(z)

)(
ψ(
[[
û
]]

)−ψ(
[[
u
]]

)
)

dx

(3)

≥ −‖ẑ−z‖L2(ΓC)‖ψ(
[[
û
]]

)−ψ(
[[
u
]]

)‖L2(ΓC)

where (1) & (2) follow from the convexity of γ and ψ, respectively, whereas (3) is due to the 1-Lipschitz
continuity of γ. Then, estimate (8.16) follows with the function$E

t (q̂, q) := ‖ψ([[û]])−ψ([[u]])‖L2(ΓC).
We have thus checked the validity of (8.16) and, a fortiori, of Hypothesis 5.7. This concludes the
proof.

Remark 8.3. The Lipschitz continuity of β has played a key role in the proof that E complies with
the closedness condition from Hyp. 4.5. In fact, we could allow for a nonsmooth β̂, but with a suitable
polynomial growth condition, that would still ensure that the maximal monotone operator induced by
β = ∂β̂ on L2(ΓC) is strongly-weakly closed. However, it would not be possible to check Hypothesis
4.5 in the case β is an unbounded maximal monotone operator, such as the subdifferential of an indica-
tor function. That is why, we are not in a position to encompass in our analysis the non-interpenetration
constraint between the two bodies Ω+ and Ω−.

8.4 A priori estimates for the smooth semilinear system

In this section we address a version of the viscous system (8.4) in which the functions β̂, γ, φ̂, and ψ,
complying with (8.5), are also smoothened. Namely, we will additionally suppose that they fulfill

γ, φ̂ ∈ C2(R;R), ψ, β̂ ∈ C2(R3;R),

γ′′, φ̂′′, D2β̂ are bounded, |Dψ(a)| ≤ C
(1)
ψ for all a ∈ R3.

}
(8.18)

These conditions will allow us to rigorously perform, on the solutions to system (8.4), calculations that
will ultimately lead to bounds, uniform with respect to viscosity parameter, suitable for our vanishing-
viscosity analysis. Such estimates will however only depend on the constants occurring in (8.5), and
not on those in (8.18). For these calculations we will crucially make use of the semilinear structure of
this regularized system and of the fact that the coupling between the displacement equation and the
flow rule for the delamination parameter is weak enough to allow us to treat those equations separately.

As already mentioned, for all ε ∈ (0, 1) and all initial data (u0, z0) ∈ U×Ze system (8.4) admits
finite-energy solutions (uε, zε) with the standard time regularity (8.10). We now aim to derive higher
order estimates as well, and to show that these estimates are independent of ε. We will make them
as explicit as possible. Let us mention in advance that one crucial argument involves the interpolation
between the different norms for the time derivative ż, namely

∀ ż ∈ Ze : ‖ż‖Z ≤ CGNR(ż)1/2‖ż‖1/2
Ze

. (8.19)
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Indeed, (8.19) follows by combining the lower bound R(v) ≥ cR‖v‖L1 with the classical Gagliardo-
Nirenberg interpolation ‖v‖2

L2 ≤ C‖v‖L1‖v‖H1 . This will allows us to exploit the ε-independent

dissipation estimate
∫ T

0
R(żε) dt ≤ C .

Step 1. Basic energy and dissipation estimates: The simple energy-dissipation estimate stemming from
the energy balance (4.18b) (cf. Lemma 4.12), together with `u ∈ C1([0,T ; U∗) implies that for all E0

there exists CE0
1 > 0 such all solutions (uε, zε) of (8.4) with E(0,uε(0), zε(0) ≤ E0 satisfy the basic

energy estimates∫ T

0

{
R(żε(t))+ε

α‖u̇ε(t)‖2
U+ε‖żε‖2

Z

}
dt ≤ CE0

1 and ∀ t ∈ [0,T ] : ‖uε(t)‖U+‖zε(t)‖Ze ≤ CE0
1 .

(8.20)
As a consequence of this a priori bound, of the fact that J : U→ L4(ΓC;R3) is a bounded operator,

and of upper estimates on ψ via the constants Cψ and C(1)
ψ , we find another constant CE0

2 such that
all solutions (uε, zε) of (8.4) with E(0,uε(0), zε(0)) ≤ E0 satisfy

‖ψ(
[[
uε(t)

]]
)‖L2 ≤ CψC

E0
2 , ‖Dψ(

[[
uε(t)

]]
)‖L4 ≤ CψC

E0
2 , (8.21a)

‖ψ(
[[
uε(t)

]]
)‖L4 ≤ C

(1)
ψ CE0

2 , ‖Dψ(
[[
uε(t)

]]
)‖L∞ ≤ C

(1)
ψ CE0

2 . (8.21b)

Estimate (8.21b) will in fact only be used for gaining enhanced regularity of the viscous solutions
(uε, zε), and not for the vanishing-viscosity analysis.

Step 2. Estimate for u̇ε: Because of the smoothness of β̂ and ψ, the displacement equation (8.4a) for
uε is a semilinear equation with a smooth nonlinearity, if we consider zε ∈ H1(0, T; Z) as given da-
tum. Thus, we can use the classical technique of difference quotients to show that uε ∈ H2(0, T; U)
provided that u̇ε(0) = ε−αD−1

(
Cu(0)+J∗(· · · )−`u(0)

)
∈ U. Hence, it is possible to differentiate

(8.4a) with respect to time, which yields

0 = εαDüε+Cu̇ε+J
∗
(

D2β̂(
[[
uε
]]

)
[[
u̇ε
]]

+γ(zε)D
2ψ(
[[
uε
]]

)
[[
u̇ε
]]

+γ′(zε)żεDψ(
[[
uε
]]

)
)
− ˙̀

u(t).

(8.22)
We can test (8.22) by u̇ε ∈ H1(0, T; U) and obtain

0 =
εα

2

d

dt
〈Du̇ε, u̇ε〉U + 〈Cu̇ε, u̇ε〉U + 〈D2β̂(

[[
uε
]]

)
[[
u̇ε
]]

+γ(zε)D
2ψ(
[[
uε
]]

)
[[
u̇ε
]]

,
[[
u̇ε
]]
〉Z

− 〈 ˙̀u, u̇ε〉U − 〈γ′(zε)żεDψ(
[[
uε
]]

),
[[
u̇ε
]]
〉Z

Here the last duality product in the first line is nonnegative, because a 7→ β̂(a)+γ(z)ψ(a) is convex.
The last duality product can be estimated using (8.21a). Defining θεU, θεZ, and λU∗ via

θεU(t)2 := 〈Du̇ε(t), u̇ε(t)〉U and θεZ(t)2 := ‖żε(t)‖2
Z, and λU∗(t) = ‖ ˙̀

u(t)‖U∗ ,

we have established the estimate

εα

2

d

dt
(θεU)2 + cC(θεU)2 ≤ λU∗θ

ε
U + 1CψC

E0
2 CH1,L4‖J‖θεZθεU

where we have also used that γ is 1-Lipschitz continuous, andCH1,L4 denotes the constant associated
with the continuous embedding U ⊂ L4(ΓC;R3). Using d

dt
(θεU)2 = 2θεU θ̇

ε
U we can divide by

θεU ≥ 0 and obtain
εαθ̇εU + cCθ

ε
U ≤ λU∗ + CψC

E0
2 CH1,L4‖J‖θεZ. (8.23)
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Let us mention that the above estimate could be rigorously obtained by replacing θεU by
√

(θεU)2 + δ,
which satisfies the same estimate, and then letting δ ↓ 0, cf. [Mie11, Sec. 4.4].

Step 3. Uniqueness and higher regularity of żε: We first observe that given uε ∈ H1([0, T]; U) and
z0 there is a unique solution zε for (8.4b). Indeed, assuming that z1 and z2 are solutions (with %j ∈
∂R(żj)) we set w = z1−z2 and test the difference of the two equations by ẇ = ż1−ż2, which yields

0 = 〈%1−%2, ż1−ż2〉Z +ε‖ẇ‖2
Z +

1

2

d

dt
〈Aw,w〉Ze

+ 〈G(uε, z1)−G(uε, z2), ẇ〉Z, (8.24)

where we have set G(u, z) = φ̂′(z) + γ′(z)ψ([[u]]). By our strengthened assumptions (8.18) and
Gagliardo-Nirenberg interpolation we have

‖G(uε, z1)−G(uε, z2)‖Z∗ ≤ ‖φ̂′′‖∞‖z1−z2‖Z + ‖γ′(z1)−γ′(z2)‖L4‖ψ(
[[
u
]]
ε)‖L4

≤
(
‖φ̂′′‖∞‖z1−z2‖Z + ‖γ′′‖∞‖z1−z2‖L4C

(1)
ψ CE0

2

)
≤ CG‖w‖1/2

Z ‖w‖
1/2
Ze

.

By using the monotonicity of ∂R, the first term in (8.24) is nonnegative. Using ‖w‖2
Ze

= 〈Aw,w〉H1(ΓC)

we obtain

1

2

d

dt
‖w‖2

Ze
+ ε‖ẇ‖2

Z ≤ CG‖w‖1/2
Z ‖w‖

1/2
Ze
‖ẇ‖Z ≤

C2
G

4ε
‖w‖Z‖w‖Ze + ε‖ẇ‖2

Z.

Canceling the terms ε‖ẇ‖2
Z and using ‖w‖Z ≤ ‖w‖Ze provides the estimate

‖z1(t)−z2(t)‖Ze ≤ eCG
2(t−s)/(4ε)‖z1(s)−z2(s)‖Ze for 0 ≤ s ≤ t ≤ T . (8.25)

We emphasize that this uniqueness result is special and relies strongly on the semilinear structure
of the flow rule for z under the strengthened assumption (8.18). It is indeed thanks to (8.18) that
G(u, ·) : Ze → Z∗ is globally Lipschitz, and in fact the constant CG in (8.25) does depend on C(1)

ψ .

This uniqueness is central to derive higher regularity as it is now possible to use suitable regulariza-
tions such as Galerkin approximations or replacing the nonsmooth function R by a smoothed version
Rδ. We do not go into detail here, but refer to [MiZ14] and [Mie11, Sec. 4.4]. In particular, our prob-
lem fits exactly into the abstract setting of [MiZ14, Sec. 3] with H = Z = L2(ΓC), B = A, and

Φ(t, z) =
∫

Ω

(
φ̂(z) + γ(z)ψ([[u(t)]]

)
dx.

Thus, under the additional conditionAz0 ∈ Z (or z0 ∈ H2(ΓC)), the unique solution zε with zε(0) =
z0 satisfies the following higher regularity properties:

żε ∈ L∞(0,T ; Ze) and
√
t z̈ε ∈ L2(0,T ; Z). (8.26)

Of course, at this stage we have no control over the dependence on ε of the corresponding norms.

Step 4. Identities not involving R: Surprisingly, there are two identities for the solution zε that are com-
pletely independent of R, i.e. they look like energy estimates for a semilinear parabolic problem:

ε

2

d

dt
‖żε‖2

Z + ‖żε‖2
Ze

+ 〈D2
zΦ(uε, zε)żε, żε〉Z + 〈DzDuΦ(uε, zε)u̇ε, żε〉Z = 0, (8.27a)

ε‖z̈ε‖2
Z +

1

2

d

dt
‖żε‖2

Ze
+ 〈D2

zΦ(uε, zε)żε, z̈ε〉Z + 〈DzDuΦ(uε, zε)u̇ε, z̈ε〉Z ≤ 0. (8.27b)

We refer to [Mie11, Eqn. (95) and Lem. 4.16] for a rigorous derivation based on the smoothness es-
tablished in (8.26). Relations (8.27) can be formally derived from equation (8.4b) by forgetting the
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nonsmooth term ∂R, then differentiating the whole equation with respect to t, and finally testing with
żε or z̈ε respectively. Indeed, (8.27b) will not be used below any more, but its relevance is obvious
by comparison with (8.24) and for deriving the (ε-dependent) a priori estimate for

√
t z̈ε (via Galerkin

approximations).

It is the identity (8.27a) that will be crucial for deriving ε-independent a priori estimates. It origin can
formally understood by looking at general smooth p-homogeneous dissipation potentials Ψ (i.e. fulfill-
ing Ψ(γv) = γpΨ(v) for all v and γ > 0). Then, Euler’s formula gives 〈DΨ(v), v〉 = pΨ(v), and
we find the identity〈 d

dt

(
DΨ(ż)

)
, ż
〉

= D2Ψ(ż)[z̈, ż] =
d

dt

(
〈DΨ(ż), ż〉 −Ψ(ż)

)
= (p−1)

d

dt
Ψ(ż).

The quadratic case p = 2 was applied above several times. Of course, in the case p = 1 the potential
R is nonsmooth. Hence, the proof in [Mie11, Lem. 4.16] is different and uses simple arguments based
on the characterization of ∂R in the 1-homogeneous case.

Step 5. L1 estimates for θεU, θεZ, and θεZe
: In (8.27a) the coupling term 〈DzDuΦ(uε, zε)u̇ε, żε〉 can

be estimated via the weaker assumption (8.5), namely

〈DzDuΦ(uε, zε)u̇ε, żε〉Z ≤ 1‖żε‖Z‖Dψ(
[[
uε
]]

)‖L4‖
[[
u̇ε
]]

)‖L4

≤ C3 θ
ε
Z(t)θεU(t) with C3 := CψC

E0
2 CH1,L4‖J‖ ,

where we exploited the 1-Lipschitz continuity of γ and (8.21a). Introducing the short-hand notation
θεZe

via (θεZe
(t))2 = ‖żε(t)‖2

Ze
= 〈Ażε(t), żε(t)〉H1(ΓC) and exploiting the Λφ-convexity of φ̂ and

the convexity of γ, identity (8.27a) yields

εθεZθ̇
ε
Z +

(
θεZe

)2 ≤ Λφ

(
θεZ
)2

+ C3 θ
ε
Z θ

ε
U .

For the first term on the right-hand side we can now exploit the interpolation (8.19) and after division
by θεZ ≥ 0 (recall θεZ ≤ θεZe

) we arrive, together with (8.23), at the differential estimates

εαθ̇εU + cCθ
ε
U ≤ λU∗ + CGNC3

(
R(żε)θ

ε
Ze

)1/2
, (8.28a)

εθ̇εZ + θεZe
≤ ΛφCGNR(żε) + C3 θ

ε
U . (8.28b)

We emphasize that all the appearing coefficients, except for the leading factors εα and ε, are inde-
pendent of ε ∈ (0, 1) and indeed depend only on Cψ. From the first equation we obtain via the
constants-of-variation formula (or Grönwall’s lemma) the estimate

θεU(t) ≤ Kε(t)ε
αθεU(0) +

∫ t

0

Kε(t−s)
(
λU∗(s)+CGNC3

(
R(żε(s))θ

ε
Ze

(s)
)1/2)

ds

withKε(t) = e−cCt/ε
α
/εα. Because of ‖Kε‖L1 =

∫∞
0
Kε(t)dt = 1/cC the L1-convolution estimate

leads to

IU :=

∫ T

0

θεU(t) dt ≤ 1

cC

(
εαθεU(0) +

∫ T

0

λU∗(t) dt+ CGNC3

∫ T

0

(
R(żε(t))θ

ε
Ze

(t)
)1/2

dt
)

.

Applying the Cauchy-Schwarz inequality to the last integral and integrating (8.28b) over [0,T ] we
obtain the estimates

IU ≤
1

cC

(
εαθεU(0) +

∫ T

0

λU∗(t) dt+ CGNC3 I
1/2
R I

1/2
Ze

)
,

IZe :=

∫ T

0

θεZe
(t) dt ≤ εθεZ(0) + ΛφCGNIR + C3IU, where IR :=

∫ T

0

R(żε(t)) dt.
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It is easy to show that there exists a constant C∗, which only depends on C3 = CψC
E0
2 CH1,L4‖J‖,

cC ,CGN, and Λφ, such that IU+IZe can be estimated byC∗
(
εαθεU(0)+εθεZ(0)+

∫ T
0
λU∗ dt+IR

)
.

We have thus proved the following result.

Lemma 8.4 (Rate-independent a priori estimate in the semilinear case). Assume (8.3) and (8.5).
Additionally, let β̂, γ, φ̂, and ψ satisfy (8.18) and let the initial data (u0, z0) ∈ U × Ze comply with
(8.11). Then, There exists a constant C∗ > 0, only depending on the initial data and on the constants
Λφ and Cψ from (8.5), such that the unique solution (uε, zε) of (8.4) satisfies the a priori estimate∫ T

0

(
‖u̇ε‖U + ‖żε‖Ze

)
dt ≤ C∗

(
εα‖u̇ε(0)‖U + ε‖żε‖Z +

∫ T

0

(
‖ ˙̀
u‖U∗ + R(żε)

)
dt
)

. (8.29)

8.5 Existence and a priori estimates in the general case

We now return to the setup of Sections 8.1 and 8.2, in which the constitutive functions β̂, γ, φ̂, and ψ
only comply with (8.5). We exhibit approximations of β̂, γ, φ̂, and ψ that also satisfy (8.18). For this,
we will resort to the following general construction.

Smoothening the Yosida approximation Following, e.g., the lines of [GiR06, Sec. 3], for a given
convex function χ̂ : Rd → [0,∞] with subdifferential χ = ∂χ̂ : Rd ⇒ Rd, and for a fixed δ ∈ (0, 1),
we define

χδ := χY
δ ? ηδ

where χY
δ is the Yosida regularization of the maximal monotone operator χ (we refer to, e.g., [Bré73])

and

ηδ(x) := 1
δ2
η
(
x
δ2

)
with


η ∈ C∞(Rd),
‖η‖1 = 1,
supp(η) ⊂ B1(0).

(8.30)

Thus, χδ ∈ C∞(Rd) and it has been shown in [GiR06] that

‖Dχδ‖∞ ≤
1

δ
, |χδ(x)−χY

δ (x)| ≤ δ for all x ∈ Rd . (8.31a)

Taking into account the properties of the Yosida we deduce that

|χδ(x)| ≤ |χo(x)|+ δ with |χo(x)| = inf{|y| : y ∈ χ(x)} . (8.31b)

Furthermore, χδ admits a convex potential χ̂δ satisfying, as a consequence of (8.31a), (below χ̂Y
δ

denotes the Yosida approximation of χ̂):

−δ|x| ≤ χ̂Y
δ (x)− δ|x| ≤ χ̂δ(x) ≤ χ̂Y

δ (x) + δ|x| ≤ χ̂(x) + δ|x| and χ̂δ(x)→ χ̂(x) (8.31c)

for all x ∈ Rd. Finally, the following analogue of Minty’s trick holds: given O ⊂ Rm and sequence
(vδ)δ v, χ ∈ L2(O;Rd) such that vδ ⇀ v and χδ(vδ) ⇀ η in L2(O;Rd),

lim sup
δ→0+

∫
O

χδ(vδ) · vδ dx ≤
∫
O

η · v =⇒ η ∈ ∂χ̂(v) a.e. in O. (8.31d)

We apply this construction to γ, obtaining a smooth approximation γδ. The definition of β̂δ clearly
simplifies, since we have already required that β̂ ∈ C1(R) with β Lipschitz. As for φ, we define

φδ : R→ R φδ(z) := f δ(z)− Λφ

2
z2
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with f δ the smoothened Yosida approximation of the convex function z 7→ f(z) = φ̂(z) +
Λφ
2
z2. It

follows from (8.31a) that β̂δ, γδ and φδ comply with (8.18).

The construction of ψδ. In smoothening ψ we also have to take care of the linear growth constraint
encompassed in (8.18). Hence, we construct ψδ in two steps:

Step 1. Inf-convolution We define ψic
δ : R3 → [0,∞) via inf-convolution with the smooth function

h : R3 → [0,∞), h(a) :=
√

1+|a|2 − 1 by setting

ψic
δ (a) := inf

x∈R3

(
1

δ
h(x−a) + ψ(x)

)
. (8.32)

It turns out that ψic
δ is convex, of class C1, and since h(0) = 0 we have that

ψic
δ (a) ≤ ψ(a) for all a ∈ R3. (8.33a)

Since h is even, we also have ψic
δ (a) = infx∈R3{1

δ
h(x) +ψ(a−x)}. Hence, recalling that ψ(0) = 0

we find that

ψic
δ (a) ≤ 1

δ
h(a) for all a ∈ R3, (8.33b)

so that, in particular, ψic
δ has linear growth. Finally, let aδ ∈ Argmin

x∈R3

{1
δ
h(x−a) + ψ(x)}. Then,

1
δ
h(aδ−a) ≤ ψic

δ ≤ ψ(a), so that limδ→0+ h(aδ−a) = 0, hence |aδ−a| =
√

(h(aδ−a)+1)2−1→
0 as δ → 0+. All in all, we conclude that

ψic
δ (a) =

1

δ
h(aδ−a) + ψ(aδ) ≥ ψ(aδ) with aδ → a as δ → 0+ . (8.33c)

Step 2. Smoothening We then define ψδ ∈ C∞(R3;R) via

ψδ := ψic
δ ? ηδ with ηδ from (8.30). (8.34)

Clearly, ψδ is also convex. Combining (8.31c) and (8.33a), (8.33b), and (8.33c) we gather that

−δ|a| ≤ ψ(aδ)− δ|a| ≤ ψδ(a) ≤ min
{1

δ
h(a),ψ(a)

}
+ δ|a| with aδ → a as δ → 0+ .

(8.35a)
Thus, ψδ has also linear growth. Taking into account that it is convex, from (8.35a) we easily deduce
that

|Dψδ(a)| ≤ |∂ψ◦(a)|+ δ for all a ∈ R3, (8.35b)

(where we have again used the notation |∂ψ◦(a)| = inf{|η| : η ∈ ∂ψ(a)}. Finally,

lim
δ→0+

ψδ(a) = ψ(a) for all a ∈ R3 . (8.36)

The delamination system (8.4) featuring β̂δ, γδ, φ̂δ and ψδ obviously has a gradient structure in the
ambient spaces (8.6a), with the dissipation potentials from (8.6b) and (8.6c), and with the driving
energy (cf. (8.17))

Eδ(t,u, z) := Eelast(t,u) + Fδ(z) + Eδcoupl(u, z) (8.37a)
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with Eelast from (8.17), and

Fδ(z) :=
1

2
〈Az, z〉H1(ΓC) +

∫
ΓC

φ̂δ(z) dx if z ∈ H1(ΓC), and∞ else, (8.37b)

Eδcoupl(u, z) :=

∫
ΓC

(
β̂δ(
[[
u
]]

) + γδ(z)ψδ(
[[
u
]]

)) dx . (8.37c)

which indeed Mosco converges as δ → 0+, with respect to the topology of U×Z, to the energy
functional E from (8.6d). We will pass to the limit, as δ → 0+, in the corresponding energy-dissipation
balance (4.18b) to prove that the solutions (uεδ, z

ε
δ)δ to the regularized delamination system converge

to a solution of the original system (8.4), satisfying the basic energy estimate (8.20) as well as the
rate-independent a priori estimate (8.29).

Proposition 8.5 (Existence of viscous solutions with improved estimates). Under assumptions (8.5)
for β̂, ψ, γ, and φ̂ and the compatibility conditions (8.11) on the initial data (u0, z0), there exists a
constant C∗ > 0 such that for all ε > 0 there exist a solution (uε, zε) ∈ H1(0,T ; U)×H1(0,T ; Ze)
satisfying the energy estimate (8.20) with CE0

1 = C∗, as well as the improved estimate∫ T

0

(
‖u̇ε‖U + ‖żε‖Ze

)
dt ≤ C∗.

Proof. Let (δk)k be a null sequence and, for ε > 0 fixed, let (qεδk)k be the corresponding sequence
of solutions to the regularized system (8.4); from now on, we will simply write (qk)k. Our starting point
is the energy-dissipation balance

Eδk(t, qk(t)) +

∫ t

s

(
Vε

α

u (εαu′k(r)) + R(z′k(r)) + Vεz(ε z
′
k(r))

)
dr

+

∫ t

s

( 1

εα
V∗u(−µk(r)) +

1

ε
W∗z(−ζk(r))

)
dr = Eδk(s, qk(s)) (8.38)

+

∫ t

s

∂tE
δk(r, qk(r)) dr for all [s, t] ⊂ [0,T ]

with
µk(t) = Cuk(t) + J∗

(
βδk(

[[
uk(t)

]]
) + γδk(zk(t))Dψ

δk(
[[
uk(t)

]]
)
)
− `u(t),

ζk(t) = Azk(t) + (γδk)′(zk(t))ψ
δ(
[[
uk(t)

]]
) + φδk(zk(t)) .

Relying on the energy estimate (8.20) and on well known compactness results, we infer that there
exists qε = (uε, zε) such that, along a not relabeled subsequence,

qk ⇀ qε in H1(0,T ; U×Z) and qk(t) ⇀ qε(t) in U×Ze for all t ∈ [0,T ] . (8.39)

It also follows from estimate (4.25a) in Lemma 4.12 that there exist µε and ζε such that, up to a further
subsequence,

µk ⇀ µε in L2(0,T ; U∗) and ζk ⇀ ζε in L2(0,T ; Z∗) .

In order to identify the weak limit ζε(t) as an element of ∂zE(tt,uε(t), zε(t)) for almost all t ∈ (0,T ),
we observe that, by (8.31b), |(γδk)′(zk)| ≤ δ + |∂γo(zk)| ≤ δ + 1, taking into account that γ(z) =
max{z, 0}. Therefore,

‖(γδk)′(zk)ψδ(
[[
uk
]]

)‖L2

(1)

≤ (δ+1)
(
‖ψ(
[[
uk
]]

)‖L2+δ‖
[[
uk
]]
‖L2

)
(2)

≤ (δ+1)
(
C

(2)
ψ ‖
[[
uk
]]
‖2

L4+δ‖
[[
uk
]]
‖L2+C

)
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with (1) due to (8.35a) and (2) to (8.5). Since (uk)k is bounded in L∞(0,T ; H1(Ω;R3)), we imme-
diately deduce that ((γδk)′(zk)ψ

δ([[uk]]))k is bounded in L∞(0,T ; L2(ΓC)). A standard argument
based on the fact that z 7→ φδk(z)+Λφz is a non-decreasing function then yields a separate estimate
in L2(0,T ; L2(ΓC)) for both (Azk)k and (φδk(zk))k so that, up to a subsequence, φδk(zk) ⇀ φ
in L2(0,T ; L2(ΓC)) for some φ. Combining this with the fact that zk → zε in L2(0,T ; L2(ΓC))

we immediately conclude by (8.31d) that φ ∈ ∂φ̂(zε) a.e. in (0,T )×ΓC. With the same argu-
ments we find that (γδk)′(zk)

∗
⇀ ω in L∞((0,T )×ΓC) with ω ∈ ∂γ(zε) a.e. in (0,T )×ΓC.

Finally, again applying (8.35a) to estimate |ψδ([[uk]])| and taking into account that [[uk]] → [[u]]
strongly in L∞(0,T ; Lq(ΓC)) for every 1 ≤ q < 4, with the dominated convergence theorem
we conclude that ψδ([[uk]]) → ψ([[uε]]), for instance, in L3/2((0,T )×ΓC). All in all, we find that
(γδk)′(zk)ψ

δ([[uk]]) ⇀ ωψ([[uε]]) in L3/2((0,T )×ΓC). We have thus proved that

ζε = Az + ωψ(
[[
uε
]]

) + φ with ω ∈ ∂γ(zε), φ ∈ ∂φ̂(zε) a.e. in (0,T )×ΓC ,

and thus ζε(t) ∈ ∂zE(t,uε(t), zε(t)).

The identification of µε as an element of ∂uE(·,uε(·), zε(·)) first of all follows from observing that,
by (8.39), Cuk

∗
⇀ Cu in L∞(0,T ; U∗). Moreover, with similar arguments as in the above lines,

based on properties (8.31), we find that γδk(zk)→ γ(zε) in Lq((0,T )×ΓC) for all 1 ≤ q <∞ and,

recalling that β is Lipschitz, that there exists β̃ ∈ L∞(0,T ; L4(ΓC)) such that βδk([[uk]]) ⇀ β̃ in
L∞(0,T ; L4(ΓC)). Finally, taking into account (8.35b) and the fact that ψ has quadratic growth we
conclude that there exists % ∈ L∞(0,T ; L4(ΓC)) such that Dψδk([[uk]])

∗
⇀ % in L∞(0,T ; L4(ΓC)).

All in all, we find that

J∗(βδk(
[[
uk
]]

) + γδk(zk)Dψ
δk(
[[
uk
]]

)) ⇀ η = β̃ + γ(zε)% in L2(0,T ; U∗),

and it remains to show that η = J∗(β([[u]])+γ(z)Dψ([[u]])). For this, we observe that the functionals

Jδk : L2(0,T ; U×Z) → R defined by Jδk(u, z) :=
∫ T

0

∫
ΓC

(
β̂δk([[u]]) + γδk(z)ψδk([[u]])

)
dx dt,

clearly fulfilling

DuJ
δk(u, z) = J∗(βδk(

[[
u
]]

) + γδk(z)Dψδk(
[[
u
]]

)) for every (u, z) ∈ L2(0,T ; U×Z),

enjoy the following property:

(uk, zk) ⇀ (u, z) in L2(0,T ; U×Z),
DuJ

δk(uk, zk) ⇀ η in L2(0,T ; U∗×Z∗),

lim supk→∞
∫ T

0
〈DuJ

δk(uk, zk),uk〉U dt ≤
∫ T

0
〈η,u〉U dt


=⇒ η ∈ J∗

(
β(
[[
u
]]

) + γ(z)∂ψ(
[[
u
]]

)
)

.

Hence, we need to prove that

lim sup
k→∞

∫ T

0

∫
ΓC

{
βδk(

[[
uk
]]

)
[[
uk
]]

+γδk(zk)Dψ
δk(
[[
uk
]]

)
[[
uk
]]}

dx dt ≤
∫ T

0

〈η,u〉H1(Ω) dt .

This follows from testing the u-equation (8.4a) at the level δk by uk, taking the limit as k → ∞, and
using that, by the convergence arguments in the above lines, the quadruple (u, z, β̃, %) fulfills the limit
equation 0 = εαDu̇ε + Cuε + +J∗(β̃+γ(zε)%) − `u in U∗ a.e. in (0,T ). All in all, we conclude
that J∗(β̃+γ(zε)%) ∈ J∗(β(zε)+γ(zε)∂ψ([[uε]])), so that

µε ∈ Cuε + J∗
(
β(
[[
uε
]]

) + γ(zε)∂ψ(
[[
uε
]]

)
)
− `u(t) = ∂uE(t,uε, zε) .
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Therefore, passing to the limit as k → ∞ in (4.18b) we infer that the quadruple (uε, zε,µε, ζε)
fulfills (µε(t), ζε(t)) ∈ ∂qE(t, qε(t)) for almost all t ∈ (0,T ), joint with the energy-dissipation upper
estimate in (4.18b). Now, by Proposition 8.2 the energy functional E from (8.6d) complies with the chain
rule of Hypothesis 4.7. Hence, by Remark 4.9 the validity of the energy-dissipation upper estimate is
sufficient to conclude that (uε, zε) solve the Cauchy problem for the delamination system (8.4).

By lower semicontinuity arguments, the a priori estimate (8.29) is inherited by (uε, zε). This concludes
the proof of Proposition 8.5 and, ultimately, of Theorem 8.1.

A Chain rules

In this section we first of all provide a sufficient condition for the chain-rule Hypothesis 4.7 (and, in fact,
for the closedness Hypothesis 4.5 as well). More precisely, we will show that its validity is guaranteed
by a sort of uniform subdifferentiability property of the energy E on its sublevels, cf. (A.1) below,
which we borrow from [MRS13]; as already observed in the proof of Proposition 8.2, (A.1) for instance
holds for λ-convex functionals. The proof of the following result combines the argument for [MRS13,
Prop. 2.4] with results from [AGS08].

Proposition A.1. Let E : [0,T ] × Q → (−∞, +∞] comply with Hypothesis 4.3. Assume that for
every E > 0 there exists a modulus of subdifferentiability $E : [0,T ]×SE×SE → [0,∞) such that
for all t ∈ [0,T ] :

$E(t, q, q) = 0 for every q ∈ SE,

the map (t, q, q̂)→ $E(t, q, q̂) is upper semicontinuous, and

E(t, q̂)− E(t, q) ≥ 〈ξ, q̂−q〉Q−$
E(t, q, q̂)‖q̂−q‖Q for all q, q̂ ∈ SE and all ξ ∈ ∂qE(t, q) .

(A.1)
Then, E complies with Hypothesis 4.7.

Proof. In order to show Hypothesis 4.7, let q ∈ AC([0,T ]; Q) and ξ ∈ L1(0,T ; Q∗) fulfill (4.15), and
letE > 0 be such that q(t) ∈ SE for all t ∈ [0,T ]. Preliminarily, let us suppose that E is independent
of time, i.e. E(t, q) = E(q) (with a modulus of subdifferentiability $E(t, ·, ·) = $E(·, ·)), and let us
prove the absolute continuity of [0,T ] 3 t 7→ E(q(t)). For this, as in [MRS13] we resort to [AGS08,

Lemma 1.1.4] and reparametrize q to a 1-Lipschitz curve q̃ : [0,L]→ Q, with L =
∫ T

0
‖q′(t)‖Q dt,

q̃ := q ◦ t̃, and t̃ : [0,L]→ [0,T ] the left-continuous, increasing map

t̃(s) := min{t ∈ [0,T ] :

∫ t

0

‖q′(r)‖Q dr = s} .

Let us set ξ̃(s) := ξ(t̃(s)). Then, it follows from (4.15) and a version of the change of variables
formula (cf., e.g., [Bog07, Thm. 5.8.30]), that∫ L

0

‖ξ̃(s)‖Q∗ ds =

∫ L

0

‖ξ̃(s)‖Q∗‖q̃′(s)‖Q ds =

∫ T

0

‖ξ(t)‖Q∗‖q′(t)‖Q dt <∞,

whence ξ̃ ∈ L1(0,L). Hence, we are in a position to repeat the very same arguments from the proof
of [MRS13, Prop. 2.4]. Namely, relying on the validity of (A.1) we obtain that

E(q̃(s2))− E(q̃(s1)) ≥ 〈ξ̃(s1), q̃(s2)−q̃(s1)〉Q−$
E(q̃(s1), q̃(s2))‖q̃(s2)−q̃(s1)‖Q
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for all 0 ≤ s1 ≤ s2 ≤ L. Exchanging the role of s1 and s2 and exploiting the 1-Lipschitz continuity of
q̃ leads to∣∣E(q̃(s2))−E(q̃(s1))

∣∣ ≤ (‖ξ̃(s1)‖Q∗+‖ξ̃(s2)‖Q∗+$E(q̃(s1), q̃(s2))+$E(q̃(s2), q̃(s1))
)
|s1−s2| .

From the above estimate the absolute continuity of the function [0,L] 3 s 7→ E(q̃(s)) follows by
repeating the very same arguments as in the proof of [AGS08, Thm. 1.2.5]. Again changing variables
in the integral we infer that [0,T ] 3 t 7→ E(q(t)) is absolutely continuous.

In the general case, let us first of all check the absolute continuity of [0,T ] 3 t 7→ E(t, q(t)), namely
that for every ε > 0 there exists δ > 0 such that for every collection of pairwise disjoint intervals
(ai, bi) ⊂ (0,T ), i = 1, . . . ,M , there holds

M∑
i=1

(bi−ai) < δ =⇒
M∑
i=1

|E(bi, q(bi))−E(ai, q(ai))| < ε . (A.2)

In order to obtain the above estimate, we use that

|E(bi, q(bi))−E(ai, q(ai))| ≤ |E(bi, q(bi))−E(ai, q(bi))|+ |E(ai, q(bi))−E(ai, q(ai))| (A.3)

and estimate the first term via (4.7d), so that

|E(bi, q(bi))−E(ai, q(bi))| ≤
∫ bi

ai

|∂tE(r, q(bi))| dr ≤ C#

∫ bi

ai

|E(r, q(bi))| dr ≤ C#E|bi − ai|,

Hence, we choose δ1 = ε
2C1E

and get
∑M

i=1 |E(bi, q(bi))−E(ai, q(ai))| < ε
2
. As for the second

term in (A.3), we rely on the absolute continuity of E(q) := E(ai, q). We thus conclude (A.2). Finally,
to show the chain-rule formula (4.16), we fix a point t ∈ (0,T ) in which q′(t) and d

dt
E(t, q(t)) exist,

and derive from (A.1) that

E(t+ h, q(t+ h))− E(t, q(t))

= E(t+ h, q(t+ h))− E(t, q(t+ h)) + E(t, q(t+ h))− E(t, q(t))

≥
∫ t+h

t

∂tE(r, q(t+ h)) dr + 〈ξ(t), q(t+ h)−q(t)〉Q−$
E(t, q(t), q(t+ h))

≥
∫ t+h

t

(∂tE(r, q(t+ h))−∂tE(r, q(r))) dr +

∫ t+h

t

∂tE(r, q(r)) dr

+ 〈ξ(t), q(t+ h)−q(t)〉Q−$
E(t, q(t), q(t+ h))‖q(t+ h)−q(t)‖Q

(A.4)

We now divide the above estimate by h > 0 and take the limit as h → 0+. Now, recall that q(t) ∈
SE for all t ∈ [0,T ]. Therefore, thanks to Hypothesis 4.5 the function [0,T ]×[0,T ] 3 (r, s) 7→
∂tE(r, q(s)) is uniformly continuous, with a modulus of continuity ω : [0,T ] × [0,T ] → [0,∞), so
that∣∣∣∣ 1
h

∫ t+h

t

(∂tE(r, q(t+h))−∂tE(r, q(r))) dr

∣∣∣∣ ≤ 1
h

∫ t+h

t

ω(|t+h−r|)dr ≤ ω(h)→ 0 as h→ 0+ .

Taking into account that limh→0+
1
h

∫ t+h
t

∂tE(r, q(r)) dr = ∂tE(t, q(t)), (A.4) thus leads to the
estimate ≥ in (4.16). The converse inequality follows by dividing (A.4) by h < 0 and taking the limit
as h→ 0−. This concludes the proof.
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Let us now carry out the proof of Proposition 5.16, which shows the validity of the parametrized chain
rule from Hypothesis 5.7 if Hypothesis 4.7 holds and, in addition, the vanishing-viscosity contact po-
tentials associated with Vu and Vz satisfy the coercivity property (5.37).

Proof of Proposition 5.16. Preliminarily, we observe that, if the vanishing-viscosity contact potentials
bVu and bVz satisfy (5.37), then the ‘reduced’ rescaled joint M-function Mα,red

0 enjoys the following
coercivity property:

∃ c > 0 ∀ (t, q, t′, q′) ∈ [0,T ]×D×[0,∞)×Q : Mα,red
0 (t, q, t′, q′)

≥ c
(
‖µ‖U∗‖u′‖U + ‖ζ+σ‖U∗‖z′‖Z

)
(A.5)

for all (µ, ζ) ∈ A∗u(t, q)×A∗z(t, q) and some σ ∈ ∂R(0).

Clearly, the above estimate trivially holds if t′ > 0, as then S ∗
u (t, q) = S ∗

z (t, q) = 0, so that
A∗u(t, q) = {0} and every ζ ∈ A∗z(t, q) fulfills −ζ ∈ ∂R(0). To show it for t′ = 0, we will separately
discuss the cases α > 1 (the arguments for α ∈ (0, 1) are indeed specular) and α = 1. In the case
α > 1, we have that, if S ∗

u (t, q) = 0, then by (5.12) we have

Mα,red
0 (t, q, 0, q′) = bVz(z

′, S ∗
z (t, q))

(1)

≥ cz‖z′‖Z‖ζ+σ‖Z∗

for all ζ ∈ A∗z(t, q) and all σ ∈ ∂R(0) with W∗z(ζ) = V∗z(ζ−σ), where (1) follows from (5.37). Anal-
ogously, if S ∗

u (t, q) > 0, then Mα,red
0 (t, q, t′, q′) = bVu(u

′, S ∗
u (t, q)) and we have the analogous

estimate. If α = 1, then by (5.12) and again (3.9) we have

Mα,red
0 (t, q, 0, q′) = bVu⊕Vz(q

′, S ∗
u (t, q)+S ∗

z (t, q))

≥ bVu(u
′, S ∗

u (t, q)) + bVz(z
′, S ∗

z (t, q))

≥ cu‖u′‖U‖µ‖U∗ + cz‖z′‖Z‖ζ+σ‖Z∗

for all µ, ζ , and σ as in (A.5).

Let us now consider an admissible curve (t, q) ∈ A ([a, b]; [0,T ]×Q) such that, in addition, z ∈
AC([a, b]; Z). Hence, Mα

0 [t, q, t′, q′] = Mα
0 (t, q, t′, q′) a.e. in (a, b). Then, (5.20) yields that

Mα
0 (t, q, t′, q′) ∈ L1(a, b). Let us now choose measurable selections (a, b) 3 s 7→ µ(s) ∈

A∗u(t(s), q(s)), (a, b) 3 s 7→ ζ(s) ∈ A∗z(t(s), q(s)), and (a, b) 3 s 7→ σ(s) ∈ ∂R(0) such
that

‖µ(s)‖U∗‖u′(s)‖U+‖ζ(s)+σ(s)‖Z∗‖z′(s)‖Z ≤Mα,red
0 (t(s), q(s), t′(s), q′(s)) for a.a. s ∈ (a, b).

Hence, we have
∫ b
a

(‖µ(s)‖U∗‖u′(s)‖U+‖ζ(s)+σ(s)‖Z∗‖z′(s)‖Z) ds <∞, and using∫ b

a

‖σ(s)‖Z∗‖z′(s)‖Z ds ≤ CR

∫ b

a

‖z′(s)‖Z ds <∞

by (4.6), we ultimately deduce that∫ b

a

(‖µ(s)‖U∗‖u′(s)‖U+‖ζ(s)‖Z∗‖z′(s)‖Z) ds <∞ .

We are thus in a position to apply the chain rule from Hypothesis 4.7 and conclude that s 7→
E(t(s), q(s)) is absolutely continuous and that

d

ds
E(t, q)− ∂tE(t, q)t′ = 〈µ, u′〉U + 〈ζ, z′〉Z a.e. in (a, b),

Then, the chain-rule estimate (5.38) follows from observing that the right-hand side in the above for-
mula estimates −Mα

0 (t, q, t′, q′) from above thanks to Lemma 5.5. This concludes the proof.
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We conclude this section with a result relating parametrized chain rule from Hypothesis 5.7 to that in
Hypothesis 6.4.

Lemma A.2. If the rate-independent system (U×Z,E,Vε
α

u +R+Vεz)ε↓0 satisfies the chain rule of
Hypothesis 5.7, then it also satisfies Hypothesis 6.4.

Proof. Consider a curve q ∈ BV([0,T ]; U)×(R([0,T ]; Z)∩BV([0,T ]; Zri)) fulfilling the stationary
equation (6.10a) and the local stability (6.10b), and let us fix [t0, t1] ⊂ [0,T ]. As in Theorem 6.15(2),
we associate with q a parametrized curve (t, q) = (t, u, z) ∈ A ([S0, S1]; [t0, t1]×Q) such that
(6.27) holds on the interval [t0, t1]. The parametrized chain-rule inequality (5.23) reads for a.a. s ∈
(S0, S1)

d

ds
E(t(s), q(s))− ∂tE(t(s), q(s))t′(s) ≥ −R[z′](s)−Mα,red

0 (t(s), q(s), 0, q′(s)) .

Integrating on the interval (S0, S1) and using (6.27), we conclude the desired chain-rule inequality
(6.9). With this, Lemma A.2 is proved.

B Measurability in Theorem 5.20

To prove the statement in Theorem 5.20 concerning the existence of measurable selections ξ =
(µ, ζ) : (0, S) → U∗×Z∗ and (λu,λz) : (0, S) → [0,∞]2 satisfying (5.47), we will resort to the
following generalization of Filippov’s Selection Theorem, proved in [MiR15, Prop. B.1.2].

Proposition B.1. Let (O,O,µ) be a σ-finite complete measure space and X a complete separable
metric space. Let F : O ⇒ X be a measurable set-valued mapping with closed non-empty images,
graph(F ) := {(s,x) : x ∈ F (s)} its graph, and let G be the σ-algebra given by the restriction
of O ×B(X) (with B(X) the Borel σ-algebra on X) to graph(F ). Let g : graph(F ) → R be a
G-measurable mapping such that

∀ s ∈ O :

{
∃x ∈ F (s) : g(s,x) = 0,
g(s, ·) : F (s)→ R is continuous.

(B.1)

Then, there exists a measurable selection f : O → X of F such that g(s, f(s)) = 0 for all s ∈ O.

For the construction of the parameters λu and λz introduce the sets Λx(v,σ) via

Λx(v,σ) := Argmin
λ>0

BVx(
1
λ
, v,σ) = Argmin

λ>0

1

λ

(
Vx(λv) + σ

)
for (v,σ) ∈ X×[0,∞) (B.2)

with x ∈ {u, z} and X ∈ {U, Z}. Recall that Proposition 3.2 guarantees that Λx(v,σ) 6= Ø for all
σ > 0. Analogously, for q′ = (u′, z′) we will use the notation

Λuz(q
′,σu+σz) := Argmin

λ>0
BVu⊕Vz(

1
λ
, q′,σu+σz) = Argmin

λ>0

1

λ

(
Vu(λu

′) + Vz(λz
′) + σu + σz

)
.

A close perusal of the proof of Proposition 5.18 then reveals that, for a given (t, q, t′, q′) ∈ Σα with
α 6= 1,

(t, q, t′, q′) ∈ Vx if and only if system (5.42) holds with λx ∈ Λx(x
′, S ∗

x (t, q)),

for x ∈ {u, z} and x′ ∈ {u′, z′}. Analogously, in the caseα = 1, we have that (t, q, t′, q′) ∈ Σ1∩Vuz

if and only if (5.42) holds with λ ∈ Λuz(q
′, S ∗

u (t, q)+S ∗
z (t, q)).

We are now in a position to the missing part of the proof of Theorem 5.20.
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Proof of Part (1) of Theorem 5.20. Let (t, q) ∈ A ([0, S]; [0,T ]×Q) be a enhanced pBV solution of
the rate-independent system (U×Z,E,Vε

α

u +R+Vεz)ε↓0. We will now prove the existence of mea-
surable λu, λz : (0, S) → [0,∞], and µ : (0, S) → U∗ and ζ : (0, S) → Z∗ satisfying (5.47)
in the case α > 1; with similar arguments one can obtain the analogous statement for α = 1 and
α ∈ (0, 1). To avoid trivial situations, we also suppose that (t, q) is non-degenerate.

Step 1: Existence of measurable λu,λz : (0, S)→ [0,∞]. Proposition 5.17 shows that (t(s), q(s),
t′(s), q′(s)) belongs to the contact set Σα for a.a. s ∈ (0, S) and that, in turn, Σα ⊂ EuRz∪EuVz∪
Bz. Recalling the short-hand notation (5.49), we introduce the short-hand ((0, S) ∩ Bz)

◦ for the set
{(t, q, t′, q′) ∈ Bz and S ∗

u (t, q) > 0}. Since for α > 1 we have t′ ≡ 0 and z′ ≡ 0 on ((0, S)∩Bz)
◦

and since (t, q) is non-degenerate, we have u′ 6= 0 on ((0, S)∩Bz)
◦. Therefore, thanks to Proposition

3.2, the set Λu(u
′(s), S ∗

u (t(s), q(s))) = Argminλ>0 BVu(
1
λ
, u′(s), S ∗

u (t(s), q(s))) is non-empty
for every s ∈ ((0, S) ∩ Bz)

◦. We consider the multi-valued mapping Γu : ((0, S) ∩ Bz)
◦ ⇒ [0,∞)

defined by Γu(s) := Λu(u
′(s), S ∗

u (t(s), q(s))) and observe that its graph is a Borel subset of
(0,∞)2. Indeed, Γu is given by the composition of the upper semicontinuous multi-valued mapping
Λu, with the Borel function u′ and the lower semicontinuous function S ∗

u (t, q).

Now we are in a position to apply the von Neumann-Aumann selection theorem (cf. [CaV77, Thm. III.22])
to Γu and conclude that

∃ measurable λ̃u : ((0, S) ∩ Bz)
◦ → (0, +∞) with λ̃u(s) ∈ Λu(u

′(s), S ∗
u (t(s), q(s))) . (B.3)

Let N be the negligible subset of (0, S) on which either t′ or q′ do not exist, or (t, q, t′, q′) /∈ Σα:
since Σα ⊂ EuRz ∪ EuVz ∪ Bz, we have that

(0, S)\N = A1 ∪ A2 ∪ A3 ∪ A4 with


A1 = (0, S) ∩ EuRz,
A2 = (0, S) ∩ EuVz,
A3 = {s ∈ (0, S) ∩ Bz : S ∗

u (t(s), q(s)) = 0},
A4 = {s ∈ (0, S) ∩ Bz : S ∗

u (t(s), q(s)) > 0} .

Hence, we define λu on (0, S)\N by

λu(s) :=

{
0 if s ∈ A1 ∪ A2 ∪ A3,

λ̃u(s) if s ∈ A4 .
(B.4)

Analogously, we define λz on (0, S)\N by

λz(s) :=


0 if s ∈ A1,

λ̃z(s) if s ∈ A2,

∞ if s ∈ A3∪A4 .

(B.5)

Here, λ̃z : (0, S) ∩ EuVz → (0, +∞) is a measurable selection with

λ̃z(s) ∈ Λz(z
′(s), S ∗

z (t(s), q(s))), whose existence is again guaranteed by [CaV77, Thm. III.22].

Clearly, λu and λz satisfy the switching conditions (5.47c). Also taking into account (B.2), we conclude
that (t, q) solve the subdifferential system (5.46) with λu and λz.

Step 2: existence of measurable ξ = (µ, ζ) : (0, S)→ U∗×Z∗. We aim to apply Filippov’s theorem,
in the form of Proposition B.1, with O = (0, S)\N , X = U∗×Z∗, and the multi-valued mapping

F : (0, S)\N ⇒ U∗×Z∗, F (s) :=

{
∂qE(t(s), q(s)) if (t(s), q(s)) ∈ dom(∂qE),

{(0, 0)} otherwise.
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Observe that F is measurable, with (non-empty) closed images thanks to Hypothesis 4.5. We now
consider the mapping g : graph(F )→ R given by

g(s,µ, ζ) :=


V∗u(−µ) + W∗z(−ζ) if s ∈ A1,

V∗u(−µ) + R(z′(s))+ 1
λz(s)

Vz(λz(s)z
′(s))+ 1

λz(s)
W∗z(−ζ)+〈ζ, z′(s)〉Z if s ∈ A2,

V∗u(−µ) + W∗z(−ζ) if s ∈ A3,
1

λu(s)
Vu(λu(s)u

′(s)) + 1
λu(s)

V∗u(−µ) + 〈µ, u′(s)〉U if s ∈ A4 .

It turns out that, also in view of the discussion developed in Step 1, g is measurable. Furthermore, for
every s ∈ (0, S) the functional g(s, ·, ·) is continuous thanks to the continuity of R and Vx and V∗x,
x ∈ {u, z}. Finally, the first of conditions (B.1) holds since, by Step 1, (t, q) solve the subdifferential
system (5.46) with λu and λz, which exactly means that for every s ∈ (0, S)\N there exist (µs, ζs) ∈
∂qE(t(s), q(s)) such that g(s,µs, ζs) = 0. Hence, we are in a position to apply Proposition B.1, thus
concluding that there exists a measurable selection (0, S)\N 3 s 7→ (µ(s), ζ(s)) ∈ F (s) such that
g(s,µ(s), ζ(s)) ≡ 0 . This yields the desired selection as stated in (5.47a).
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