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Entropy and convergence analysis for two finite volume schemes
for a Nernst–Planck–Poisson system with ion volume constraints

Benoît Gaudeul, Jürgen Fuhrmann

ABSTRACT. In this paper, we consider a drift-diffusion system with cross-coupling through the chemical
potentials comprising a model for the motion of finite size ions in liquid electrolytes. The drift term is
due to the self-consistent electric field maintained by the ions and described by a Poisson equation.
We design two finite volume schemes based on different formulations of the fluxes. We also provide a
stability analysis of these schemes and an existence result for the corresponding discrete solutions. A
convergence proof is proposed for non-degenerate solutions. Numerical experiments show the behavior
of these schemes.
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1. INTRODUCTION

Proper modeling of the motion of ions in electrolytes – mixtures of a solvent and N ionic species
which can be described by their concentrations ci – and associated simulations are crucial in the
development of efficient batteries, fuel cells, and many other applications commonly considered as key
technologies for the 21st century. The classical Nernst-Planck equation is a linear system which for
given electrostatic potential Φ, charge number zi and diffusion coefficient Di describes the evolution
of the ion concentration ci via

∂tci − div(DiNi) = 0, Ni = ∇ci + zici∇Φ = ci∇ (log(ci) + ziΦ) .

The self-consistent electrostatic potential is described by the Poisson equation

−∇ · λ2∇Φ =
N∑
i=1

zici.

This model assumes that ions are infinitely small and that the ions of a given species i interact neither
with the solvent nor with other ionic species. However, in reality, ion sizes are finite, and ion motion
is only possible with a simultaneous displacement of solvent molecules. Moreover, the effective size
of ions is increased by the fact that in a polar solvent like water, they are surrounded by a solvation
shell consisting of a certain number of solvent molecules. The inclusion of these effects into the model
is particularly important for concentrated electrolytes and in electrode boundary layers with high ion
concentrations.

Historically, there have been many, often independent attempts to fix this situation, see e.g. the review
in [3], the discussion in [28] or [35]. A comprehensive model of ideal mixtures of solvated ions has been
derived in [21, 20]. In [28, 29], a two point flux finite volume discretization approach for these problems
has been derived. Various variants of ionic flux approximations have been investigated for the unipolar
case, where only one ionic species is considered, in [9], with the result that the flux approximation
approach introduced in [28] has several more accurate alternatives. For two of them, we have been
able to find appropriate generalizations to the case of several ionic species. These are introduced and
analyzed in the present paper.

In the sequel of Section 1, the continuous problem is formulated, and several key properties of the
continuous system are discussed. Among these is the decay of an entropy functional for positive
solutions.

1.1. The Nernst-Planck-Poisson system with finite ionic volumes. Consider a bounded con-
nected polytopal domain Ω ⊂ Rd, and finite simulation horizon T > 0. We model the evolution
of the concentration c0 of a solvent and N dissolved species: ci, i ∈ [[1, N ]]. The mixture satisfies a
volume filling constraint

N∑
i=0

vici = 1,

where vi are the molar volumes of the species. We will use this constraint using ratios of molar volumes
ki = vi

v0
:

N∑
i=0

kici =
1

v0

. (1.1)
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Finite volumes for Nernst–Planck–Poisson with ion volume constraints 3

The coefficients (k1, . . . , kN) are parameters of the problem and k0 is by definition equal to 1. As the
molar volumes are not the same, the total concentration

c :=
N∑
i=0

ci (1.2)

is not uniform. The set of positive concentrations ci, i ∈ [[1, N ]] such that c0 is positive is denoted by

A =

{
(c1, ..., cN) ∈ (0,+∞)N

∣∣∣∣∣c0 :=
1

v0

−
N∑
i=1

kici > 0

}
.

We also introduce the topological adherence ofA:

Ā =

{
(c1, ..., cN) ∈ [0,+∞)N

∣∣∣∣∣c0 :=
1

v0

−
N∑
i=1

kici ≥ 0

}
.

For the sake of clarity, we will let C = (c1, ..., cN) ∈ A and often consider c0 and c as functions of
C thanks to (1.1) and (1.2) without clearly expressing the dependency. The dissolved species follow a
conservation equation:

∂tci − divDiNi = 0, Ni = ci∇ (hi(C) + z̃iΦ) ∀i ∈ [[1, N ]]. (1.3)

where z̃i = zi−kiz0 the reduced charge number andDi > 0 the diffusion coefficient are parameters
of the problem, while hi(C) the chemical potential depends on all the concentrations through:

hi(C) = log
ci
c
− ki log

c0

c
∀i ∈ [[1, N ]]. (1.4)

This system is supplemented with Poisson equation for the potential:

− λ2 ∆ Φ = cdop +
N∑
i=0

zici. (1.5)

To simplify the computations, we let cdop = z0
v0

+ c̃dop and see that:

cdop +
N∑
i=0

zici = c̃dop +
N∑
i=1

z̃ici.

To avoid unnecessary complications of the notations, we will drop the tildas for the reduced molar
charges as the real molar charges do not appear anymore. Moreover, to simplify the proofs, we will
assume that the solvent carries no charge, hence z0 = 0 and c̃dop = 0. Treatment of nonzero c̃dop

one can find in [9].

As in [9], we consider a Dirichlet boundary condition for the potential on a non-negligible part of the
boundary ΓD ⊂ ∂Ω and homogeneous Neumann boundary condition on ΓN = ∂Ω \ ΓD:

Φ = ΦD on (0, T )× ΓD, ∇Φ · n = 0 on (0, T )× ΓN , (1.6)

where ΦD is assumed to be constant in time and in H1(Ω) ∩ L∞(Ω).

The system is supplemented with the following no flux boundary conditions for the concentrations:

ci∇ (hi(C) + ziΦ) · n = 0 on (0, T )× ∂Ω, for all i ∈ [[1, N ]], (1.7)

and with an initial condition C0 satisfying:

C0 ∈ L∞(Ω, Ā) and

∫
Ω

c0
i > 0 ∀i ∈ [[0, N ]]. (1.8)
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1.2. Key properties of the continuous system. In this section, we attempt to exhibit the properties
of a smooth enough solution (C,Φ) to the system (1.3)–(1.8) so that calculations are justified. The
first property is the conservation of mass. In other words, thanks to (1.3), C satisfies for any t ∈
[0, T ], i ∈ [[1, N ]]: ∫

Ω

ci(0, x) =

∫
Ω

ci(t, x).

Moreover, we need the concentrations to be positive for (1.4) to have a sense. In the discrete setting,
we will show that the concentrations belong to A. In the continuous setting, it will be assumed. We
hint that it might be possible to do it using the entropy method [33] and the flux formulation proposed
in [28]. Indeed, another key property of the system is the dissipation of a free energy. In this case, the
chemical free energy density H(C) is defined as follows:

H(C) :=
N∑
i=0

ci log
(ci
c

)
=

N∑
i=0

ci log ci − c log c.

This function is convex, however, the addition of the term−c log cmakes the proof quite intricate. This
point is detailed in Appendix A along with the proof of the following equations:

∂ciH(c1, ..., cN) = hi(C), ∀i ∈ [[1, N ]], C = (c1, ..., cN) ∈ A, (1.9)

− log(N + 1)

v0 min ki
≤ H(C) ≤ 0 ∀C ∈ A. (1.10)

The total free energy is formed by the integral of the chemical free energy density and electrical terms:

E(C,Φ) =

∫
Ω

H(C) + λ2 |∇Φ|2

2
dx− λ2

∫
ΓD

ΦD∇Φ · n.

Proposition 1.1. Let (C,Φ) be smooth solutions of (1.3)–(1.8) such that C(t, x) ∈ A. For such
solutions, E is a convex Lyapunov functional. Moreover, we have:

∂tE +

∫
Ω

n∑
i=1

Dici|∇hi(C) + ziΦ|2 = 0. (1.11)

Proof. We have using chain rules and (1.9):

∂t

∫
Ω

H(c1, ..., cN)dx =

∫
Ω

N∑
i=1

hi(C)∂tcidx. (1.12)

We also have using chain rules and integrating by part:

∂t

∫
Ω

|∇Φ|2

2
dx =

∫
∂Ω

Φ∂t (∇Φ · n)−
∫

Ω

Φ∂t ∆ Φdx.

Notice that we have∇Φ · n = 0 on ΓN and Φ = ΦD on ΓD. Using equation (1.5), we have:

∂tλ
2

(∫
Ω

|∇Φ|2

2
dx−

∫
ΓD

ΦD∇Φ · n
)

=

∫
Ω

Φ
N∑
i=1

zi∂tcidx.

Using this equation and (1.12), we have:

∂tE =
N∑
i=1

∫
Ω

(hi(C) + ziΦ)∂tcidx.

Using now equation (1.3) and integration by parts, we have the desired equation (1.11). Due to the
non-negativity of Dici, E is a Lyapunov functional. Its convexity follows from the assumption C ∈ A
(see Lemma A.1). �
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Finally, we introduce a notion of weak solution that relies on a reformulation of the fluxes:

Ni = ∇ci − kici∇ log c0 + (ki − 1)ci∇ log c+ zici∇Φ,

and the space of H1 functions satisfying the Dirichlet boundary conditions for the potential:

HΓD = {f ∈ H1(Ω), f|ΓD = 0} and QT = (0, T )× Ω.

More precisely:

Definition 1. A couple (C,Φ) is a weak solution of (1.3)–(1.8) if

� C ∈ L∞((QT ;A) with log(c0) ∈ L2((0, T );H1(Ω)), and Φ− ΦD ∈ L∞((0, T ),HΓD);
� for all ϕ ∈ C∞c ([0, T )× Ω)N , i ∈ [[1, N ]]∫∫

QT

ci∂tϕidxdt+

∫
Ω

c0
iϕi(0, x)dx

−
∫∫

QT

(
∇ci + ci∇

(
−ki log c0 + (ki − 1) log c+ ziΦ

))
· ∇ϕidxdt = 0; (1.13)

� for all ψ ∈ HΓD and almost all t ∈ (0, T ),

λ2

∫
Ω

∇Φ(t, x) · ∇ψ(x)dx =

∫
Ω

ψ(x)
N∑
i=1

zici(t, x)dx. (1.14)

1.3. Positioning and outline. The structure of cross-diffusion systems challenges the maximum
principle-based methods. In this paper we aim to discretize the system (1.3)–(1.8). For N = 1 this
system is a nonlinear drift-diffusion problem and several discretizations have been proposed in [9]. We
focus on the extension of these schemes to the more general setting with N > 1 while adapting the
proofs to tackle the challenges introduced by cross-diffusion.

More precisely, in Section 2, the two point flux based finite volume discretization with two variants
of the flux approximation is introduced. The main theorems about the existence of discrete solutions
and the convergence of approximate solutions are stated. Existence, free energy decay, and positivity
of concentrations are proven in Section 3, whereas the convergence is proven in Section 4. Several
1D and 2D numerical examples showcasing the proven properties of the discretization scheme are
discussed in Section 5.

2. DISCRETIZATION AND MAIN THEOREMS

In this section, we propose two discretizations of (1.3)–(1.8) and discrete counterparts of the continu-
ous properties. First, in Section 2.1, we state the requirements on the mesh and fix some notations.
Then in Section 2.2, we describe the common setting for the two schemes to be studied in this paper.
These schemes, presented in Section 2.3, rely on so-called two-point flux approximations of different
formulations of Ni. Then in Section 2.4, we state our two main results. The first one, namely Theo-
rem 2.1, focuses on the existence of a solution to the nonlinear system corresponding to the schemes
for a given mesh, and the dissipation of the energy at the discrete level. More precisely, one estab-
lishes that all the studied schemes satisfy a discrete counterpart to Proposition 1.1. Our second main
result, namely Theorem 2.2, is devoted to the convergence of the schemes as the time step and the
mesh size tend to 0.
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2.1. Discretization of (0, T )×Ω. In this paper, we perform a parallel study of two numerical schemes
based on two-point flux approximation (TPFA) finite volume schemes. As explained in [22, 26], this
approach appears to be very efficient for isotropic continuous problems when one has the freedom
to choose a suitable mesh fulfilling the so-called orthogonality condition [32, 27]. We recall here the
definition of such a mesh, which is illustrated in Figure 1.

Definition 2. An admissible mesh of Ω is a triplet
(
T , E , (xK)K∈T

)
such that the following conditions

are fulfilled.

(i) The set T is finite and each control volume (or cell) K ∈ T is non-empty, open, polyhedral, and
convex. We assume that

K ∩ L = ∅ if K,L ∈ T with K 6= L, while
⋃
K∈T

K = Ω.

(ii) Each face σ ∈ E is closed and is contained in a hyperplane of Rd, with positive (d − 1)-
dimensional Hausdorff (or Lebesgue) measure denoted by mσ = Hd−1(σ) > 0. We assume
thatHd−1(σ∩σ′) = 0 for σ, σ′ ∈ E unless σ′ = σ. For allK ∈ T , we assume that there exists
a subset EK of E such that ∂K =

⋃
σ∈EK σ. Moreover, we suppose that

⋃
K∈T EK = E . Given

two distinct control volumes K,L ∈ T , the intersection K ∩ L either reduces to a single face
σ ∈ E denoted by K|L, or its (d− 1)-dimensional Hausdorff measure is 0.

(iii) The cell centers (xK)K∈T belong to their cell: xK ∈ K , and are such that, if K,L ∈ T share a
face K|L, then the vector xL − xK is orthogonal to K|L.

(iv) For the boundary faces σ ⊂ ∂Ω, we assume that either σ ⊂ ΓD or σ ⊂ ΓN . For σ ⊂ ∂Ω with
σ ∈ EK for some K ∈ T , we assume additionally that there exists xσ ∈ σ such that xσ − xK
is orthogonal to σ.

σ = K|L

K

xσ

xK

xL

FIGURE 1. Illustration of an admissible mesh as in Definition 2.

We denote by mK the d-dimensional Lebesgue measure of the control volume K . The set of
the faces is partitioned into two subsets: the set Eint of the interior faces defined by Eint =
{σ ∈ E | σ = K|L for some K,L ∈ T } , and the set Eext of the exterior faces defined by Eext =
{σ ∈ E | σ ⊂ ∂Ω} , which can also be partitioned into ED = {σ ⊂ ΓD} and EN = {σ ⊂ ΓN}.
Given σ ∈ E , we let

dσ =

{
|xK − xL| if σ = K|L ∈ Eint,

|xK − xσ| if σ ∈ Eext,
and τσ =

mσ

dσ
.

DOI 10.20347/WIAS.PREPRINT.2811 Berlin 2021
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We finally introduce the size hT and the regularity ζT (which is assumed to be positive) of a discretiza-
tion (T , E , (xK)K∈T ) of Ω by setting

hT = max
K∈T

diam(K), ζT = min
K∈T

min
σ∈EK

d(xK , σ)

dσ
.

Concerning the time discretization of (0, T ), we consider an increasing finite family of times 0 =
t0 < t1 < . . . , < tNT = T . We denote by ∆tn = tn − tn−1 for 1 ≤ n ≤ NT , by ∆t =
(∆tn)1≤n≤NT , and by h∆t = max1≤n≤NT ∆tn. We will use boldface notations for vectors whose
number of components is dependent on the mesh while keeping the uppercase notation C when we
also consider different species.

2.2. A common setting for the Finite Volume schemes. The initial data C0 which belongs to
L∞(Ω, Ā) thanks to (1.8) is discretized into (C0

K)K∈T ∈ ĀT by setting

c0
K,i =

∮
K

c0
i (x)dx ∀K ∈ T , i ∈ [[1, N ]]. (2.1)

Notice that previous equation also holds for i = 0 and that this discretization satisfies:∑
K∈T

mKc
0
K,i =

∫
Ω

c0
i (x)dx > 0 i ∈ [[0, N ]] and C0

K ∈ Ā ∀K ∈ T . (2.2)

Assume that Cn−1 =
(
cn−1
K,i

)
K∈T ,i∈[[0,N ]]

is given for some n > 0, then we have to define how to

compute (Cn,Φn) = (Cn
K ,Φ

n
K)K∈T . First, we introduce some notations. For all K ∈ T and all

σ ∈ EK , we define the mirror values Cn
Kσ and Φn

Kσ of Cn
K and Φn

K respectively across σ by setting

Cn
Kσ =

{
Cn
L if σ = K|L ∈ Eint,

Cn
K if σ ∈ Eext,

Φn
Kσ =


Φn
L if σ = K|L ∈ Eint,

Φn
K if σ ∈ EN ,

ΦD
σ =

∮
σ

ΦDdγ if σ ∈ ED.
(2.3)

Given u = (uK)K∈T ∈ RT , we define the oriented and absolute jumps of u across any edge by

DKσu = uKσ − uK , Dσu = |DKσu|, ∀K ∈ T , ∀σ ∈ EK .

We may now use these operators to describe our scheme. The potential is approximated using the
classic TPFA scheme for the Poisson equation:

− λ2
∑
σ∈EK

τσDKσΦ
n = mK

N∑
i=1

zic
n
K,i, ∀K ∈ T . (2.4a)

The conservation equation is approximated using a backward-Euler scheme in time :

mK

cnK,i − cn−1
K,i

∆tn
+
∑
σ∈EK

F n
Kσ,i = 0, ∀K ∈ T , i ∈ [[1, N ]], (2.4b)

where F n
Kσ,i should be a conservative and consistent approximation of− Di

∆tn

∫ tn
tn−1

∫
σ
Ni ·nKσ (nKσ

denotes the normal to σ outward K). Finally, the concentration of the solvent is computed using a
discrete version of the volume filling constraint:

cnK,0 =
1

v0

−
N∑
i=1

kic
n
K,i, ∀K ∈ T . (2.4c)

It remains to define the numerical fluxes F n
Kσ,i. Two possible choices are given in the next section.
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2.3. Numerical fluxes for the conservation equations. To close the system (2.4), we have to define
the numerical fluxes F n

Kσ,i. As we intend to use two point flux approximations, they should be of the
form:

F n
Kσ,i =

{
0 if σ ∈ Eext

τσDiFi(CK , CL,ΦK ,ΦL) if σ = K|L ∈ Eint

(2.5)

For the sake of readability, we have chosen to define the flux functions Fi for unitary Di. Thus this
constant should rarely appear in the functional inequalities of the following sections. To preserve the
conservation of mass, all the flux functions Fi defined afterward satisfy an anti-symmetry property:

Fi(CK , CL,ΦK ,ΦL) = −Fi(CL, CK ,ΦL,ΦK) ∀CK , CL ∈ A,ΦK ,ΦL ∈ R, (2.6)

so that the fluxes are locally conservative, i.e.:

FK,σ + FL,σ = 0 ∀σ = K|L ∈ Eint.

2.3.1. The centered flux. The first numerical flux we consider is based on the original expression of
the flux (1.3):

Ni = Dici∇
(
hi(c) + ziΦ

)
.

The gradient and edge concentration are independently discretized :

Fi(CK , CL,ΦK ,ΦL) =
cK,i + cL,i

2
(hi(CK)− hi(CL)) + zi(ΦK − ΦL)) . (C)

This flux is a straightforward generalization of the eponymous flux presented in [9]. As such it is also
similar to the fluxes introduced in [15, 12, 7, 16, 11].

2.3.2. The Sedan flux. The other flux under study is also a generalization of the Sedan flux presented
in [9]. It originates from and is named after the SEDAN III semiconductor device simulation code [41]
and is used to handle the case of degenerated semiconductors in semiconductor device simulators,
see [40, 39]. The scheme relies on the introduction of the excess chemical potential

νi(C) := hi(C)− log(ci) = − log(c̄)− ki log
c0

c̄
.

This excess potential characterizes the non-ideality of the electrolyte leading to the following equivalent
continuous flux formulation:

Ni = Di

[
∇ci + ci∇ (ziΦ + νi(C))

]
.

The Scharfetter-Gummel-inspired discretization [38] of this expression of the flux leads to the so-called
Sedan flux:

Fi(CK , CL,ΦK ,ΦL) = B
(
ziΦL + νi(CL)− ziΦK − νi(CK)

)
cK,i

−B
(
ziΦK + νi(CK)− ziΦL − νi(CL)

)
cL,i, (S)

where B(x) = x
ex−1

for all x 6= 0 is the Bernoulli function. Notice that B can be extended by
B(0) = 1 and is in C∞.

Remark. In [9] we studied two other schemes. One was based on the diffusion enhancement and
discretization ideas originating from [4]. The extension of this so-called Bessemoulin-Chatard scheme
to the multi-species case appears to be not feasible due to the intrinsic use of one-dimensional chain
rules. The other scheme based on activity variables and the averaging of the inverse activity coefficient
was introduced for the multi-species case in [28]. Numerical analysis of such a scheme is more intri-
cate and would likely not be satisfactory as we were not able to prove convergence in [9]. Moreover,
unless more sophisticated inverse activity coefficient averaging strategies are available, this scheme
is considerably less accurate compared to all the others discussed in [9].

DOI 10.20347/WIAS.PREPRINT.2811 Berlin 2021
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2.4. Main theorems. We have proposed two schemes (2.4), (2.5) supplemented with either (C) or (S).
Both schemes are nonlinear systems. Solutions to this nonlinear system should satisfy discrete equiv-
alents of the properties listed in Section 1.2, namely conservation of mass and energy-dissipation. For
the latter, we introduce the discrete energy functional ET as a discrete counterpart of the continuous
energy functional E. It is defined by:

ET (Cn,Φn) =
∑
K∈T

mKH(Cn
K) +

λ2

2

∑
σ∈E

τσ (DσΦ
n)2 − λ2

∑
K∈T

∑
σ∈ED∩EK

τσΦD
σDKσΦ

n. (2.7)

The first theorem proven in this paper focuses on the existence of discrete solutions for a given mesh,
and the preservation of the physical bounds: non negative concentrations, and the properties of Sec-
tion 1.2.

Theorem 2.1. Let (T , E , (xK)K∈T ) be an admissible mesh and letC0 be defined by (2.1). Then, for
all 1 ≤ n ≤ NT , the nonlinear system of equations (2.4), (2.5) supplemented with either (C) or (S)
has a solution

(Cn,Φn) ∈ AT × RT .
Moreover, the solution to the scheme satisfies, for all 1 ≤ n ≤ NT ,

ET (Cn,Φn)− ET (Cn−1,Φn−1) ≤ ∆tn

N∑
i=1

∑
σ∈E

F n
Kσ,iDKσ(hi(C

n) + ziΦ
n), (2.8)

and ∑
K∈T

cK,imK =

∫
Ω

c0
i (x)dx ∀i ∈ [[0, N ]]. (2.9)

The proof of this theorem is the purpose of Section 3. Knowing a discrete solution to the scheme,
(Cn,Φn)1≤n≤N , we can define an approximate solution (CT ,∆t,ΦT ,∆t). It is the piecewise constant
function defined almost everywhere by

CT ,∆t(t, x) = Cn
K , ΦT ,∆t(t, x) = Φn

K if (t, x) ∈ (tn−1, tn]×K.
This definition will be developed in Section 4 and supplemented by other reconstruction operators.

Using this existence result, we let (Tm, Em, (xK)K∈Tm)m≥1, (Cn
m,Φ

n
m) ∈ AT ×RT , be a sequence

of admissible meshes in the sense of Definition 2 and associated approximate solution. We assume
that hTm , h∆tm −→

m→∞
0 while the mesh regularity remains bounded, i.e., ζTm ≥ ζ? for some ζ? > 0

not depending on m. A natural question is the convergence of (CTm,∆tm ,ΦTm,∆tm) towards a weak
solution to the continuous problem. The convergence result is stated in Theorem 2.2 which will be
proved in Section 4.

Theorem 2.2. For the two schemes under study, a sequence of approximate solutions
(CTm,∆tm ,ΦTm,∆tm)m≥1 satisfies, up to a subsequence:

CTm,∆tm −→
m→∞

C in L2(QT )N+1, ΦTm,∆tm −→
m→∞

Φ in L2(QT ). (2.10)

Moreover if infQT c0 > 0, (C,Φ) is a weak solution of (1.3)–(1.8) in the sense of Definition 1.

3. FIXED MESH ANALYSIS

In this section, we intend to prove Theorem 2.1. To this end, we will use a topological degree argument
in Section 3.3. This topological degree relies on properties of the fluxes and a priori estimates detailed
respectively in the following section and in Section 3.2. The methodology of this proof is very similar to
the one done in [9]. The key changes and improvements are concentrated in Proposition 3.2, Lemmas
3.2 and 3.5.
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3.1. Analysis of numerical flux based functions. In this section, we introduce several functions
derived from Fi. As in [9], the first functions of interest models the free energy dissipation for each
species i ∈ [[1, N ]]:

Di(CK , CL,ΦK ,ΦL) := −Fi(CK , CL,ΦK ,ΦL) (hi(CK) + ziΦK − hi(CL)− ziΦL) .

We also introduce the local free energy dissipation D :=
∑N

i=1Di. In addition to this function, we
can define a reconstruction of the concentration at the interfaces. This is the purpose of the following
lemma:

Lemma 3.1. For a fluxFi defined either by (C) or (S), the corresponding face concentration functions
defined by

Ci(CK , CL,ΦK ,ΦL) =
Fi(CK , CL,ΦK ,ΦL)

hi(CK) + ziΦK − hi(CL)− ziΦL

∀i ∈ [[1, N ]] (3.1)

if hi(CK)+ziΦK−hi(CL)−ziΦL 6= 0 can be extended by continuity onA×A×R×R. Moreover,
for all (CK , CL,ΦK ,ΦL) ∈ A×A× R× R, and for all i ∈ [[1, N ]]:

min(cK,i, cL,i) ≤ Ci(CK , CL,ΦK ,ΦL) ≤ max(cK,i, cL,i). (3.2)

Proof. The proof of the extension by continuity and the average property (3.2) is highly similar to [9,
Lemma 3.1]. For the centered scheme defined by (C), we have by definition:

Ci(CK , CL,ΦK ,ΦL) =
cK,i + cL,i

2
,

hence the extension by continuity and equation (3.2).

For the Sedan scheme, defined by (S), we introduce xi = log(cK,i/cL,i) and yi = ziΦL + νi(CL)−
ziΦK − νi(CK) and notice that:

hi(CK) + ziΦK − hi(CL)− ziΦL = xi − yi, (3.3)

Fi(CK , CL,ΦK ,ΦL) = B(yi)cK,i −B(−yi)cL,i.
Using the following property of the Bernoulli function:

B(log(a)− log(b))a−B(log(b)− log(a))b = 0, ∀(a, b) ∈ (0,+∞)2,

we have:

Fi(CK , CL,ΦK ,ΦL) = (B(yi)−B(xi))cK,i − (B(−yi)−B(−xi))cL,i. (3.4)

Finally using (3.3) and the differentiability of B, we have the desired extension on A×A× R × R.
We also have equation (3.2) thanks to the monotony of B and the relation B(x)−B(−x) = −x for
all x ∈ R. �

Thanks to this lemma, Di rewrites:

Di(CK , CL,ΦK ,ΦL) = Ci(CK , CL,ΦK ,ΦL)
(
hi(CK) + ziΦK − hi(CL)− ziΦL

)2

. (3.5)

This new formulation along with (3.2) grants the non-negativity of Di and D. The following lemma
gives more detailed information on the behavior of D:

Lemma 3.2. Let for δ, ε,M, c > 0, i ∈ [[1, N ]]:

Ψδ,ε,M,i(c) := inf
(CK ,CL)∈A2, (ΦK ,ΦL)∈[−M,M ]2

cK,0,cL,0>ε, cK,i≥min(δ, 0.5
kiv0

), cL,i<c

Di(CK , CL,ΦK ,ΦL),

Υδ,M(c) := inf
(CK ,CL)∈A2, (ΦK ,ΦL)∈[−M,M ]2

cK,0≥min(δ, 0.5
v0

), cL,0<c

D(CK , CL,ΦK ,ΦL).
(3.6)
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We have, for all δ, ε,M > 0:

lim
c→0+

Υδ,M(c) = +∞ and lim
c→0+

Ψδ,ε,M,i(c) = +∞ ∀i ∈ [[1, N ]].

As the proof of this lemma is purely technical it has been relegated to appendix B.

3.2. A priori estimates. In this section, we intend to establish uniform a priori estimates on the
concentration and the potential, in order to prove the existence of solutions that satisfies the properties
of Theorem 2.1.

We assume that we dispose of (Cn,Φn)n∈[[0,Nmax]] solution of (2.1), (2.4), (2.5) supplemented with

either (C) or (S) inAT ×RT . WhereA, the adherence ofA is the set of non-negative concentrations
c0, ...cN satisfying the volume filling constraint. The first a priori estimate is the conservation of mass
(2.9):

Lemma 3.3. For all n in [[0, Nmax]], i in [[0, N ]] we have:∑
K∈T

mKc
n
K,i =

∫
Ω

c0
i (x)dx.

The proof is straightforward and classical thanks to the local conservativity of the fluxes, the no flux
boundary conditions, and the discretization choice forC0.

We can also build a discrete equivalent to Theorem 1.1 using ET defined in (2.7) and the dissipation
function Di. This is the purpose of the following proposition:

Proposition 3.1. For all n in [[0, Nmax]], we have

ET (Cn,Φn)− ET (Cn−1,Φn−1) ≤ −∆tn
∑
i

Di

∑
σ=K|L∈Eint

τσDi(Cn
K , C

n
L,Φ

n
K ,Φ

n
L). (3.7)

Remark 3.1. Thanks to (2.5) and the definition of Di, (3.7) and (2.8) are equivalents.

Proof. The proof is fairly classical once noticed that thanks to Lemma A.1,H is convex (thusET too).
The inequality f(a)− f(b) ≤ f ′(a)(a− b) yields:

ET (Cn,Φn)− ET (Cn−1,Φn−1) ≤
∑
K∈T

N∑
i=1

mK(cnK,i − cn−1
K,i )hi(C

n
K)+

λ2
∑
σ∈E

τσDKσΦ
nDKσ(Φn −Φn−1)− λ2

∑
K∈T

∑
σ∈ED∩EK

τσΦD
σDKσ(Φn −Φn−1). (3.8)

Notice that the left-hand side is the term of interest, we will then focus on the reformulation of the right-
hand side. We multiply equation (2.4b) by hi(CK) + ziΦK and we sum over the cells and species in
order to get the following three-terms formula:

∑
K∈T

N∑
i=1

mK

cnK,i − cn−1
K,i

∆tn
hi(C

n
K)︸ ︷︷ ︸

Tchem

+
∑
K∈T

ΦK

N∑
i=1

mKzi
cnK,i − cn−1

K,i

∆tn︸ ︷︷ ︸
Tel

+
∑
K∈T

N∑
i=1

(∑
σ∈EK

F n
Kσ,i

)
(hi(CK) + ziΦK)︸ ︷︷ ︸

Tdiss

= 0. (3.9)

DOI 10.20347/WIAS.PREPRINT.2811 Berlin 2021



B. Gaudeul, J. Fuhrmann 12

The term concerning the chemical energy, ∆tnTchem, appears directly in (3.8), thus we focus on Tel.
Using equation (2.4a), we have:

∆tnTel = λ2
∑
σ∈E

τσDKσΦ
nDKσ(Φn−Φn−1)−λ2

∑
K∈T

∑
σ∈ED∩EK

τσΦD
σDKσ(Φn−Φn−1), (3.10)

which is the second line of equation (3.8). For Tdiss, an integration by parts yields:

Tdiss = −
N∑
i=1

∑
σ∈E

F n
Kσ,iDKσ(hi(C) + ziΦ).

Using this equation and equations (3.10), (3.9) in (3.8), we have (2.8):

ET (Cn,Φn)− ET (Cn−1,Φn−1) ≤ ∆tn

N∑
i=1

∑
σ∈E

F n
Kσ,iDKσ(hi(C

n) + ziΦ
n),

which concludes the proof thanks to the preliminary remark. �

In the following lemma, we will show several bounds on the potential Φ and then take advantage of
them to get a bound on the free energy dissipation:

Lemma 3.4. There exist MΦ depending only on λ,ΦD,Ω, 1
v0
, (k1, . . . , kN), (z1, . . . , zN), and an-

other constant M∗ depending also on ζT such that:

‖Φn‖∞ ≤MΦ, ∀1 ≤ n ≤ Nmax, (3.11)∑
σ∈E

τσ|DσΦ
n|2 ≤M∗, ∀1 ≤ n ≤ Nmax, (3.12)∣∣∣∣∣∣

∑
K∈T

∑
σ∈ED∩EK

τσΦD
σDKσΦ

n

∣∣∣∣∣∣ ≤M∗, ∀1 ≤ n ≤ Nmax, (3.13)

Nmax∑
n=1

∆tn

N∑
i=1

Di

∑
σ=K|L∈Eint

τσDi(Cn
K , C

n
L,Φ

n
K ,Φ

n
L) ≤M∗. (3.14)

Proof. The proof of (3.11) is a straightforward application of [9, Proposition A.1]. As the proof of (3.12)
is detailed in [9, Lemma 3.6], we focus on the proof of (3.13), assuming (3.12).

Multiplying equation (2.4a) by Φn
K and summing over K ∈ T yields, using (2.3):

∑
σ∈E

τσ (DσΦ
n)2 −

∑
σ∈ED

τσΦD
σDKσΦ

n =
∑
K∈T

Φn
KmK

N∑
i=1

zic
n
K,i.

Using equation (3.12), (3.11), and Cn ∈ AT , we have the desired result. The last result is based on
(3.7). Summing that equation, we have:

Nmax∑
n=1

∆tn

N∑
i=1

Di

∑
σ=K|L∈Eint

τσDi(Cn
K , C

n
L,Φ

n
K ,Φ

n
L) ≤ ET (C0,Φ0)− ET (CNmax ,ΦNmax) (3.15)

We have thanks to equations (1.10), (3.12), and (3.13):

ET (CNmax ,ΦNmax) ≥ −|Ω| log(N + 1)

v0 min ki
− λ2M∗ and ET (C0,Φ0) ≤ 3

2
λ2M∗,
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so that (3.15) becomes:

Nmax∑
n=1

∆tn

N∑
i=1

Di

∑
σ=K|L∈Eint

−τσDi(Cn
K , C

n
L,Φ

n
K ,Φ

n
L) ≤ 5

2
λ2M∗ + |Ω| log(N + 1)

v0 min ki
.

Hence the desired result, up to the choice of a bigger constant M∗. �

Finally, we use the free energy dissipation result (3.14), and the estimates on the free energy dissipa-

tion functional to improve the assumptionCn ∈ AT .

Lemma 3.5. There exist ε0, ε1, ..., εN positive, depending on, among other things,C0 and decreasing
with min∆t and minσ∈E τσ such that:

cnK,i ≥ εi ∀K ∈ T , n ∈ [[1, Nmax]], i ∈ [[0, N ]]

Proof. The proof follows the idea of [14, Lemma 3.10] (see also [15, Lemma 3.7], [9, Lemma 3.7]). We
start with the proof for i = 0 and a fixed time step n using Υδ,MΦ

, then treat the case of i ∈ [[1, N ]]
using Ψδ,ε0,MΦ,i and finally notice that no assumptions were made on n.

Thanks to assumption (1.8) on the initial concentrations, and Lemma 3.3, we dispose of K ∈ T such
that:

cnK,0 ≥
∮

Ω

c0
0dx =: δ0 > 0

We let δ1 = Υ−1
δ0,MΦ

( M∗
min∆tmini∈[[1,N ]] Di minσ∈E τσ

) where M∗ is as in Lemma 3.4. It is well defined

thanks to the monotony of Υ and Lemma 3.2. Moreover, we have for every cell L sharing an edge
with K :

cnL,0 ≥ δ1 > 0,

thanks to the positivity of Di and equation (3.14). Similarly we recursively define:

δl+1 = Υ−1
δl,MΦ

(
M∗

min∆tmini∈[[1,N ]]Di minσ∈E τσ
) ∀l ∈ N∗, (3.16)

and notice that thanks to the connectivity of Ω there exist l such that, for all L ∈ T :

cnL,0 ≥ δl.

Hence a possible choice for ε0. As explained above, the proof is exactly the same for i ∈ [[1, N ]],
with the use of Ψδ,ε0,MΦ,i instead of Υδ,MΦ

in equation (3.16) and does not depend on the time step
n ≥ 1. �

3.3. Existence of solutions. Using the estimates of the previous section we can establish the exis-
tence of a solution to our numerical scheme. Thanks to Proposition 3.1 and Lemmas 3.3 and 3.5, this
will conclude the proof of Theorem 2.1.

Proposition 3.2. Let C0 be defined by (2.1). Then, for all 1 ≤ n ≤ NT , the nonlinear system of
equations (2.4), (2.5) supplemented with either (C) or (S) has a solution (Cn,Φn) ∈ AT × RT .

Proof. As in [9, Proposition 3.8], we use induction and a topological degree argument to transform
continuously the non-linear system (2.4), (2.5) to a linear one. However, the path presented in [9] is no
longer valid as we do not have a monotony property on hi. The homotopy follows 3 steps. The first one
is sketched in Appendix C, the second one changes the discretization while maintaining ki, Di to 1
and the potential to zero. The last step corresponds to the activation of the potential and the remaining
nonlinearities.
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Following these ideas, we follows the zeros of a homotopyH:

H :

{
[0, 3]×AT × RT → (RN)T × RT

(α,C,Φ) 7→ H(α,C,Φ),

which should be our scheme for α = 3 and the heat equation for α = 0.

At every step, c0 is eliminated thanks to (2.4c).

Step 1: implementation of the solvent effects using an ad hoc scheme. For α ∈ [0, 1],H = 0 means
that for all K ∈ T , i ∈ [[1, N ]]:

cK,i − cn−1
K,i

∆tn
mK +

∑
σ=K|L∈Eint

τσ
cK,i − cL,i

log(cK,i/cL,i)

(
log(cL,i)− log(cK,i) + α

(
log(cK,0)− log(cL,0)

))
= 0,

−λ2
∑
σ∈EK

τσDKσΦ = 0,

where ΦD
α is set to zero. As expressed in Lemma C.1 we dispose of ε1 such that the zeros ofH have

a concentration that is bounded away from zero by ε1.

Step 2: change of scheme without potential and for identical species. We change the discretization of
ci∇ log(ci/c0). For α ∈ [1, 2],H = 0 rewrites:

cK,i − cn−1
K,i

∆tn
mK+(2−α)

∑
σ=K|L∈EK,int

τσ
cK,i − cL,i

log(cK,i/cL,i)

(
log(cL,i)−log(cK,i)+

(
log(cK,0)−log(cL,0)

))
+ (α− 1)

∑
σ=K|L∈EK,int

τσFi(CK , CL, 0, 0) = 0,

−λ2
∑
σ∈EK

τσDKσΦ = 0

where ΦD
α is again set to zero and ki,α to 1. Here again we dispose of ε2 such that the zeros of H

have a concentration that is bounded away from zero by ε2.

Step 3: activation of the potential and the difference between the species. For α ∈ [2, 3], H = 0
means:

cK,i − cn−1
K,i

∆tn
mK +

(
3− α + (α− 2)Di

) ∑
σ=K|L∈EK,int

τσFi(CK , CL, (3− α)ΦK , (3− α)ΦL) = 0

−λ2
∑
σ∈EK

τσDKσΦ = mK

N∑
i=1

(3− α)zici,

where ΦD
α is set to (3− α)ΦD and ki,α to 3− α+ (α− 2)ki. Thanks to Lemma 3.5, we dispose of

ε3 such that the zeros ofH have a concentration that is bounded away from zero by ε3.

Conclusion. Using a topological degree argument [34, 19], we can derive the existence of solutions for
α = 3 from the non zero topological degree at α = 0 and the uniform bounds on the concentration:
min(ε1, ε2, ε3) and the potential: MΦ. �
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4. CONVERGENCE

In this section we prove Theorem 2.2, which states the convergence of our schemes towards a weak
solution. We consider a sequence

(
Tm, Em, (xK)K∈Tm

)
m≥1

of admissible meshes with hTm , h∆tm

tending to 0 as m tends to +∞, while the regularity ζTm remains uniformly bounded from below by a
positive constant ζ?.

Thanks to Theorem 2.1, we have a family of discrete solutions (Cm,Φm)m. We will first propose
different reconstructions of approximate solutions in Section 4.1, then we show several compactness
properties in Section 4.2 in order to obtain the convergence of a subsequence of approximated solu-
tions. Section 4.3 is then devoted to the identification of the limit as a weak solution.

To enlighten the notations, we will remove the subscript m as soon as it is not necessary for under-
standing.

4.1. Reconstruction operators. In order to carry out the analysis of convergence, we introduce
some reconstruction operators following the methodology proposed in [24].

The operators πT : RT → L∞(Ω) and πT ,∆t : RT ×NT → L∞((0, T )×Ω) are defined respectively
by

πT u(x) = uK if x ∈ K, ∀u = (uK)K∈T ,

and

πT ,∆tu(t, x) = unK if (t, x) ∈ (tn−1, tn]×K, ∀u = (unK)K∈T ,1≤n≤NT .

These operators allow passing from the discrete solution (Cn,Φn)1≤n≤NT to the approximate solu-
tion since

ΦT ,∆t = πT ,∆t (Φ) , ci,T ,∆t = πT ,∆t (ci) , ∀i ∈ [[1, N ]].

To carry out the analysis, we further need to introduce an approximate gradient reconstruction. Since
the boundary conditions play a crucial role in the definition of the gradient, we need to enrich the
discrete solution by face values (Cn

σ )σ∈Eext,1≤n≤N and (Φn
σ)σ∈Eext,1≤n≤N defined by Cn

σ = Cn
Kσ

and Φn
σ = Φn

Kσ for σ ∈ Eext ∩ EK . With a slight abuse of notations, we still denote by Cn =
((Cn

K)K∈T , (C
n
σ )σ∈Eext) and Φn = ((Φn

K)K∈T , (Φ
n
σ)σ∈Eext) the elements of AT ∪Eext and RT ∪Eext

containing both the cell values and the exterior faces values of the concentration and the potential
respectively.

For σ = K|L ∈ Eint, we denote by ∆σ the diamond cell corresponding to σ, that is the interior of
the convex hull of σ ∪ {xK , xL}. For σ ∈ Eext, the diamond cell ∆σ is defined as the interior of the
convex hull of σ ∪ {xK}. The approximate gradient∇T : RT ∪Eext → L2(Ω)d is piecewise constant
on the diamond cells ∆σ, and it is defined as follows:

∇T u(x) = d
DKσu

dσ
nKσ if x ∈ ∆σ, ∀u ∈ RT ∪Eext .

We also define∇T ,∆t : R(T ∪Eext)×N → L2(QT )d by setting

∇T ,∆tu(t, ·) = ∇T un if t ∈ (tn−1, tn], ∀u = (un)1≤n≤N ∈ R(T ∪Eext)×N .

This reconstruction is merely weakly consistent (unless d = 1) and takes its source in [17, 25]. More
consistent reconstruction operators will be introduced in Section 4.3. Let us recall now some key
properties to be used in the analysis. First, for all u,v ∈ RT ∪Eext ,∑

σ∈E

τσDKσuDKσv =
1

d

∫
Ω

∇T u · ∇T vdx.
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This implies in particular that∑
σ∈E

τσ|Dσu|2 =
1

d

∫
Ω

|∇T u|2dx, ∀u ∈ RT ∪Eext . (4.1)

4.2. Compactness. In this section we intend to prove a discrete H1 estimate on the concentrations
using the bound on the free-energy dissipation (3.14). To that extend we will introduce a chemical dis-
sipationDchem as a discrete equivalent to

∑
ci|∇hi(c)|2 and compare it both with the usual distance

and the total dissipation D.

As the identification of the limit is only possible for

inf
QT

c0 > ε > 0,

the results of this section are proved under this assumption and complemented with remarks indicating
whether the hypothesis is necessary or not. In order to apply chain rules for the convergence, we need
to change the face concentration C from the one defined by the numerical scheme through Lemma 3.1
to the logarithmic average:

C̃i(CK , CL) =
cK,i − cL,i

log(cK,i)− log(cL,i)
∀i ∈ [[0, N ]]. (4.2)

This choice of edge concentration will also be used in the definition of Dchem to avoid a dependency
on the potential. The following lemma provides an estimate the numerical-flux based averages using
this logarithmic average.

Lemma 4.1. For all ε > 0 there exists αε > 0 depending only on ε,MΦ such that, for all
(CK , CL,ΦK ,ΦL) ∈ A×A× [−MΦ,MΦ]× [−MΦ,MΦ], and for all i ∈ [[1, N ]]:

cK,0, cL,0 > ε =⇒ αεC̃i(CK , CL) ≤ Ci(CK , CL,ΦK ,ΦL). (4.3)

Proof. For the centered scheme, this inequality is known with αε = 1 without assumption on c0 [36].
For the Sedan scheme the proof is more intricate and uses the hypothesis on c0. Equation (4.3) is
equivalent to the boundedness of

Ri(CK , CL,ΦK ,ΦL) :=
C̃i(CK , CL)

Ci(CK , CL,ΦK ,ΦL)
,

for cK,0, cL,0 > ε. Introduce xi = log
cK,i
cL,i

, and yi = ziΦL+νi(CL)−ziΦK−νi(CK) as in the proof
of lemma 3.1. By symmetry, one can assume xi ≥ 0 and thanks to our assumption on the solvent
and the potential, yi is bounded by some K . Moreover, we notice that by definition of xi, (3.4) yields:

Fi(CK , CL,ΦK ,ΦL) = cL,i
(
B(yi)e

xi −B(−yi)
)
,

so that we have:

Ri(CK , CL,ΦK ,ΦL) =
exi − 1

xi

xi − yi
B(yi)exi −B(−yi)

.

The right-hand side can be seen as a continuous function of xi, yi. Is is bounded on the boundary of
its definition domain [0,+∞)× [−K,K] and admits a finite limit 1

B(µ)
for xi →∞, yi → µ, thus Ri

is bounded. �

Then we try to take advantage of Proposition 3.1. As Lemma 3.4 already provides satisfying estimates
on Φ, we introduce

Dchem,i(CK , CL) :
A2 → R
(CK , CL) 7→ C̃i(CK , CL)(hi(CK)− hi(CL))2,
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Finite volumes for Nernst–Planck–Poisson with ion volume constraints 17

and

Dchem =
N∑
i=1

Dchem,i.

A first interesting result is that Dchem is a semimetric onA. The non-negativity and symmetry proper-
ties are trivially satisfied, the last property is the subject of the following lemma.

Lemma 4.2. We have Dchem(CK , CL) = 0 if and only if CK = CL

Proof. If CK = CL, we obviously have Dchem(CK , CL) = 0, we will then focus on the other implica-
tion. Assume that we dispose of CK , CL inA such that Dchem(CK , CL) = 0. We let for i ∈ [[0, N ]]:

aK,i = log
cK,i
cK

aL,i = log
cL,i
cL
, (4.4)

such that hi(CK) = aK,i − kiaK,0. We have C̃i(CK , CL) ≥ min(cK,i, cL,i) > 0, thus Dchem is the
sum of nonnegative terms. As we have Dchem(CK , CL) = 0, we have:

aK,i − kiaK,0 = aL,i − kiaL,0 ∀i ∈ [[1, N ]].

Assume that aK,0 = aL,0, then AK = AL, where A = (a0, ..., aN). Using
∑N

i=0 kie
ai = 1

v0c
,

AK = AL implies CK = CL.

The other case is absurd: using the symmetry of Dchem, one can freely assume that aK,0 > aL,0.
Using ki > 0, we have aK,i > aL,i∀i ∈ [[1, N ]] hence:

1 =
N∑
i=0

eaK,i >
N∑
i=0

eaL,i = 1.

�

The functionDchem cannot be extended by continuity ontoA2
. Some information for near zero concen-

trations is can be inferred from lemma 3.2. The following sequential result means that the semi-metric
property is preserved near the boundary ∂A2.

Lemma 4.3. Let (C l
K , C

l
L) be a sequence ofA2. If Dchem(C l

K , C
l
L)→ 0 then C l

K − C l
L → 0.

Proof. For the sake of simplicity, as this result will only be used with a lower bound on c0, we keep the
proof to this simpler case and assume that inf(clK,0, c

l
L,0) > 0. To prove the limit, we will show that

from any sub-sequence, we can extract a sub-sub-sequence such that C l
K − C l

L → 0. Considering
any sub-sequence, thanks to the boundedness of A we can extract a sub-sub-sequence such that
C l
K and C l

L converge. If we dispose of i ∈ [[1, N ]] such that clK,i → c∗ > 0 while clL,i → 0 (or the
symmetric situation), then we have:

C̃σ,i(C l
K , C

l
L) ∼

l→∞

c∗

− log(clL,i)
and

(
hi(C

l
K)− hi(C l

L)
)2 ∼

l→∞
log(clL,i)

2

so thatDchem,i(C
l
K , C

l
L) ∼l→∞ −c∗ log(clL,i)→∞, which is absurd. Necessary, we have clL,i → 0

if and only of clK,i → 0. As we have Dchem,i(C
l
K , C

l
L)→ 0, we also have:

alK,i − kialK,0 = alL,i − kialL,0 + o(1) ∀i ∈ [[1, N ]], inf
l

(clL,i) > 0,

where aK,i, aL,i are defined by (4.4). As both clK,i and clL,i are bounded away from zero, alK,i and alL,i
are convergent. Using the symmetry and up to a subsequence we have either alK,0−alL0

convergent of
limit zero or bounded away from zero. We conclude using the same ideas as the proof of the previous
lemma. �
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B. Gaudeul, J. Fuhrmann 18

This semi-metric is however not commonly used and the following lemma intends to compare it with
the usual distance.

Proposition 4.1. For all i ∈ [[0, N ]], there exist M such that:

(cK,i − cL,i)2

Dchem(CK , CL)
≤M, ∀ CK , CL ∈ A2. (4.5)

Proof. We will prove the result for i ∈ [[1, N ]] using reductio ad absurdum and case exhaustion.

Let (Cn
K , C

n
L) ∈ (A2)N be such that

(cnK,i−cnL,i)
2

Dchem(CnK ,C
n
L)
→ ∞ . We let εn := Cn

L − Cn
K and use the

boundedness ofA to extract a convergent sub-sequence of (Cn
K , ε

n) and denote (C∗, ε∗) its limit. As
ci is bounded, we have Dchem(Cn

K , C
n
L)→ 0. Thanks to Lemma 4.3, we have ε∗ = 0 so that we will

consider first order development in εn. We notice that the blow-up of the ratio implies that:

Dchem,j(C
n
K , C

n
L) = o(|εn|2) ∀j ∈ [[1, N ]]. (4.6)

For the sake of readability, we will drop from now on the superscript n. We have to consider three
cases:

1 c∗j = 0 implies εj = o(|ε|);

2 we dispose of species such that εj 6= o(|ε|) and c∗j = 0, but for all of them log
εj+cj
cj

remains
bounded;

3 we dispose of a specie such that εj 6= o(|ε|), c∗j = 0, and up to a subsection, log
εj+cj
cj

blows-up.

Preliminary remark about the solvent. We consider j ∈ [[1, N ]] such that c∗j > 0 and let εj =∑N
i=0 εi. We have, thanks to (4.6):

log
cj + εj
cj

= O(|ε|) and log
cj + εj
cj

= O(|ε|) and hj(CK)− hj(CL) = O(|ε|),

so that:

log
c0 + ε0
c0

= O(|ε|),

thus:
ε0
c0

= O(|ε|) and log
c0 + ε0
c0

=
ε0
c0

+ o(|ε|).

Conclusion of the proof in case 1. The proof of this first case is by far the most intricate of the three.
It is done in two step: first we use our hypothesis on Dchem, c, and ε to obtain a estimate where the
species are coupled through an ersatz of ε and c. Then we show an improved version of the Cauchy-
Schwarz inequality to improve the estimate into decoupled estimates which are incompatible with our
hypothesis.

First order development of hj gives:

hj(CK)− hj(CL) =
εj
cj
− kj

ε0
c0

+ (kj − 1)
ε

c
+ o(ε), ∀j ∈ [[1, N ]], c∗j > 0.

Thanks to (4.6) we have the estimation:

εj
cj
− kj

ε0
c0

+ (kj − 1)
ε

c
= o(|ε|), ∀j ∈ [[1, N ]], c∗j > 0. (4.7)
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To correct the effect of the species with negligible concentrations, we let:

ε̃0 = −
∑
c∗j>0

j 6=0

kjεj ε̃ = ε̃0 +
∑
c∗j>0

j 6=0

εj and c̃ =
∑
c∗j>0

cj

By construction, we have c̃ = c + o(1). Using the hypothesis (1) we have ε̃ = ε + o(|ε|) and
ε̃0 = ε0 + o(|ε|). These three results and equation (4.7) yields:

εj
cj
− kj

ε̃0
c0

+ (kj − 1)
ε̃

c̃
= o(|ε|), ∀j ∈ [[1, N ]], c∗j > 0.

We let ξj =
εj
cj
− ε̃

c̃
for j 6= 0 and ξ0 = ε̃0

c0
− ε̃

c̃
. Previous equation yields:

ξj = kjξ0 + o(|ε|), ∀j ∈ [[1, N ]], c∗j > 0.

Considering
∑

c∗j>0 cjξj , we have:

0 = ε̃− ε̃ =
∑
c∗j>0

cjξj =
∑

cjkjξ0 + o(|ε|) = ξ0

(
1

v0

+ o(1)

)
+ o(|ε|),

so that:
ξ0 = o(|ε|).

We conclude the first part of the proof with the following estimate that follows from (4.6):∑
c∗j>0∪{0}

cjξ
2
j = o(|ε|2). (4.8)

For the sake of readability, we will drop the ˜ over ε0 in the second part of the proof, use "c∗j > 0"
instead of "c∗j > 0 or j = 0", and assume by symmetry that ε̃ ≥ 0. We have :∑

c∗j>0

cjξ
2
j =

∑
c∗j>0

ε2j
cj
− ε̃2

c̃
. (4.9)

Let xj =
√
cj , yj =

εj√
cj

. We have:

ε̃ =
∑
c∗j>0

xjyj, |x|2 = c̃, |y|2 =
∑
c∗j>0

ε2j
cj
,

Thus the Cauchy-Schwarz inequality yields

ε̃2 ≤ c̃
∑
c∗j>0

ε2j
cj
,

hence another proof of the non-negativity of the right-hand side of (4.9). We intend to use ideas
presented in [2] to improve the estimation of ε̃. More precisely, the stability version of the Cauchy-
Schwarz presented in [1] gives:

ε̃ = |x||y|

(
1− 1

2

∣∣∣∣ x|x| − y

|y|

∣∣∣∣2
)
.

We intend to show that
∣∣∣ x|x| − y

|y|

∣∣∣ is bounded away from zero. To show this bound we let:

K : (C, ε) 7→
∣∣∣∣ x|x| − y

|y|

∣∣∣∣
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and consider a minimizing sequence of K under the conditions

cj > 0, ε0 = −
∑
c∗j>0

j 6=0

kjεj.

As K is invariant by scaling, we can assume that we have a convergent minimizing sequence C l
inf, ε

l
inf

of limit C∗inf, ε
∗
inf and of norm equal to 1. Note that we do not assume C ∈ A, nor C∗inf > 0 thus we

consider broader options than necessary for use in (4.9) to ensure existence of the minimum. Finally,
we notice that K is non negative, its infimum is either zero or positive. We will prove the positivity by
contradiction.

Assume that the limit of K(C l
inf, ε

l
inf) is zero, we show that |ylinf| is convergent up to a subsequence.

We consider j such that, up to a subsequence,
|ylj |
|ylinf|

is bounded away from zero. If c∗inf,j 6= 0, |ylj| is

bounded thus |ylinf| is too, and up to another subsequence, it is convergent. If c∗inf,j = 0 we notice that

xlinf,j → 0 and |xlinf| is bounded away from zero, so that
|ylj |
|ylinf|
→ 0, which is absurd. We let γ be the

limit of |ylinf|2.

As we have assumed the infimum to be zero, we have:

ε∗inf,j = c∗inf,j

γ

c̃∗inf

, ∀j s.t. c∗j > 0.

This would imply that ε∗inf is nonnegative, however, we have ε∗inf,0 = −
∑N

j=1 kjε
∗
inf,j and ε∗inf is of norm

1. This is absurd, hence the infimum cannot be zero. Thus we dispose of 0 < α depending only on
k1, . . . kN and the subset {c∗j > 0} of [[0, N ]] such that:

ε̃ ≤ |x||y| (1− α) .

As we have assumed (using symmetry) ε̃ ≥ 0, we also have α ≤ 1. So that we have:∑
c∗j>0

ε2j
cj
− ε̃2

c̃
= |y|2 − ε̃2

|x|2
≥ |y|2(1− (1− α)2) =

∑
c∗j>0

ε2j
cj

(1− (1− α)2).

Thanks to equations (4.8) and (4.9), we have:∑
c∗j>0

ε2j
cj

= o(|ε|2),

thus, thanks to (1), εj = o(|ε|) for all j ∈ [[0, N ]], which is absurd.

Conclusion of the proof in case 2. We dispose of j such that cj → 0 and εj 6= o(|ε|), thus have up
to a sub-sequence:

|ε| = O(εj) and Dchem,j = C̃σ,j
(

log
cj + εj
cj

+O(|ε|)
)2

.

The assumed boundedness of log
cj+εj
cj

implies that εj = O(cj) thus, cj 6= o(|ε|). Moreover, we also

dispose of α = min(1, infn
cnj +εnj
cnj

) > 0 such that:

C̃σ,j ≥ αcj
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Necessary, we have log
cj+εj
cj
→ 0 thus:

Dchem,j ≥ α
ε2j
cj

+ o(
ε2j
cj

),

which is bigger than |ε|2 and thus contradicts (4.6).

Conclusion of the proof in case 3. Let j be such that εj 6= o(|ε|), c∗j = 0, and log
εj+cj
cj

blows-up.

We have:

hj(C + ε)− hj(C) = log
εj + cj
cj

+ o(1),

and:
C̃σ,j(C + ε, C) =

εj

log
εj+cj
cj

,

so that:

Dchem,j ∼ εj log
εj + cj
cj

,

which contradicts (4.6) since εj 6= o(|ε|).

Global conclusion. As each of the cases lead to a contradiction, we have the desired inequality for
i ∈ [[1, N ]]. For the solvent, we see that:

cK,0 − cL,0 = −
N∑
i=1

ki(cK,i − cL,i),

thus the announced result up to the choice of a bigger constant M . �

Using these tools, we may now prove the following necessary compactness inequality:

Proposition 4.2. For all ε > 0, there exist M such that :

inf
mesh m

n∈[[1,NT,m]]
K∈Tm

cnm,K,0 > ε =⇒ ‖∇Tm,∆tmci‖
2
L2(QT ) ≤M, ∀i ∈ [[0, N ]],∀m.

Proof. We will show the result for i ∈ [[1, N ]] and use the definition of A to extend it the solvent. For
improved readability, we will drop the subscript m. By definition, we have:

|∇T ,∆tci|2L2(QT ) =

NT∑
n=1

∆tn
∑
σ∈Eint

τσ(Dσc
n
i )2

Thanks to Proposition 4.1 and Lemma 4.1, we have:∑
σ∈Eint

τσ(Dσc
n
i )2 ≤M

∑
σ=K|L∈EK,int

τσDchem(Cn
K , C

n
L) ≤ M

αε

∑
σ∈Eint

N∑
j=1

τσCnσ,j(Dσhj(C
n))2.

It is sufficient to bound
∑NT

n=1 ∆tn
∑

σ∈Eint
τσCnσ,j(Dσhj(C

n))2, for all j ∈ [[1, N ]] to get the desired
result. We have:

(Dσhj(C
n))2 ≤ 2(Dσ(hj(C

n)− zjΦn))2 + 2(zjDσΦ
n)2

Thanks to equation (3.14) of Lemma 3.4, we dispose of M such that :
NT∑
n=1

∆tn
∑
σ∈Eint

τσCnσ,j(Dσ(hj(C
n)− zjΦn))2 < M.
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Moreover,
∑

σ∈Eint
τσCnσ,j(zjDσΦ

n)2 is also bounded thanks to (3.12) and the L∞ bound on Ci and
zi. Thus we have:

NT∑
n=1

∆tn
∑
σ∈Eint

τσCnσ,j(Dσhj(C
n))2 ≤M, (4.10)

which in turn yields the desired result.

For the solvent we notice that:

∇Tm,∆tmc0 = −
N∑
i=1

ki∇Tm,∆tmci,

so that the bound on all∇Tm,∆tmci transfers into a bound on∇Tm,∆tmc0. �

Using this discrete L2(H1) estimate, we use a discrete Aubin-Lions lemma to get the compactness
of the sequence of solutions, as stated in following proposition:

Proposition 4.3. Let (Cm,Φm) be the family of discrete solutions defined either by the centered
scheme or by the Sedan scheme. In both cases, there exists Φ ∈ L∞(QT ;R)∩L2((0, T );H1(Ω)),
C ∈ L∞(QT ;A) such that, up to a subsequence,

πTm,∆tmCm −→
m→∞

C strongly in L2(QT )N+1, (4.11)

∇Tm,∆tmCm −→
m→∞

∇C weakly in L2(QT ), (4.12)

πTm,∆tmΦm −→
m→∞

Φ in the L∞(QT ) weak-? sense, (4.13)

∇Tm,∆tmΦm −→
m→∞

∇Φ in the L∞([0, T ], L2(Ω)d) weak-? sense. (4.14)

Proof. For improved readability we drop again the subscripts m. The proof of the first two result relies
on a discrete Aubin-Lions lemma [31, Lemma 3.4]. We intend to use it in the setting described in
[10, Lemma 9]. Proposition 4.2 provides a first property, but we still have to prove that there exist C
independent of the mesh such that

∑
n ‖cni − c

n−1
i ‖T ,−1 ≤ C , where ‖ · ‖T ,−1 is defined by duality:

‖c‖T ,−1 = sup
ϕ

(∫
Ω

πT cπTϕ, ‖πTϕ‖2
L2 + ‖∇Tϕ‖2

L2 = 1

)
.

Let ϕ ∈ RT . Tanks to (2.4b), we have:∫
Ω

πT (cni − cn−1
i )πTϕ = −∆tn

∑
K∈T

ϕK
∑
σ∈EK

F n
Kσ,i.

Using the definition of F n
Kσ,i along with the definition of Cσ,i respectively equations (2.5) and (3.1), we

have:∫
Ω

πT (cni − cn−1
i )πTϕ = ∆tn

∑
σ=K|L∈EK,int

DiτσCσ,i(Cn
K , C

n
L,Φ

n
K ,Φ

n
L)DKσ (hi(C

n) + ziΦ
n)DKσϕ.

Thanks to the Cauchy-Schwarz inequality, we have:

∫
Ω

πT (cni−cn−1
i )πTϕ ≤ ∆tnDi

 ∑
σ=K|L∈E int

τσCσ,i(Cn
K , C

n
L,Φ

n
K ,Φ

n
L) (DKσhi(C

n) + ziΦ
n)2

 1
2

 ∑
σ=K|L∈E int

τσCσ,i(Cn
K , C

n
L,Φ

n
K ,Φ

n
L) (DKσϕ)2

 1
2

.
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Using the definition of Dσ,i, Cσ,i ≤ 1
kiv0

and ‖∇Tϕ‖2
L2 ≤ 1, we have:

‖cni − cn−1
i ‖T ,−1 ≤

∆tn
kiDiv0

 ∑
σ=K|L∈E int

τσDσ,i(Cn
K , C

n
L,Φ

n
K ,Φ

n
L)

 1
2

.

Using the Cauchy-Schwarz inequality and Lemma 3.4 equation (3.14), we have :

∑
n

‖cni − cn−1
i ‖T ,−1 ≤

(∑
n

∆tn
k2
iD

2
i v

2
0

) 1
2

∑
n

∆tn
∑

σ=K|L∈EK,int

τσDσ,i(Cn
K , C

n
L,Φ

n
K ,Φ

n
L)

 1
2

≤ C.

This concludes the proof of equations (4.11) and (4.12).

We may now focus on the convergence of the potential. The existence of Φ satisfying (4.13) is a
straightforward consequence of (3.11). Similarly, (3.12) implies the existence of a vector field u such
that∇Tm,∆tmΦm −→

m→∞
u in the L∞([0, T ], L2(Ω)d) weak-? sense.

We have to identify u with∇Φ. We let w ∈ C∞c (QT , R
d) and define:

wn
σ =

∮
σ

w(tn, x)dx ∀σ ∈ E , n ∈ [[1, NT ]],

and the associated diamond-cell reconstruction:

wE,∆t(t, x) = wn
σ if x ∈ ∆σ and t ∈ (tn−1, tn].

Thanks to the smoothness of w, we have convergence of wE,∆t toward w and:∫∫
QT

wE,∆t · ∇T ,∆tΦ→
∫∫

QT

w · u.

Using the geometric relation dσmσ = dm∆σ and the definition ofwn
σ, we have:∫∫

QT

wE,∆t · ∇T ,∆tΦ = −
NT∑
i=1

∆tn
∑
K∈T

Φn
K

∫
K

div(w(tn, x))dx.

Thanks to the smoothness of w and the convergence of Φ, we have:∫∫
QT

wE,∆t · ∇T ,∆tΦ→ −
∫∫

QT

Φ div(w) =

∫∫
QT

∇Φ · w

This concludes the identification of u and the proof of (4.14). �

These convergence topologies are sub-optimal and will be improved in Lemma 4.4. First, we notice
that for the concentrations, we also dispose of edge values defined by Cσ and C̃σ in equations (3.1)
and (4.2). Using these face values, we introduce another reconstruction. For i in [[1, N ]], we let:

cE,∆t,i(x, t) =

{
Cσ,i(Cn

K , C
n
L,Φ

n
K ,Φ

n
L) if x ∈ ∆K|L and t ∈ (tn−1, tn],

cnK if x ∈ ∆σ, σ ∈ EK ∩ Eext and t ∈ (tn−1, tn].

Similarly, we introduce c̃E,∆t,i. As we expect, these reconstructions are convergent and share their
limit with πT ,∆tci. This is the main purpose of the following lemma.
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Lemma 4.4. Let C be as in Proposition 4.3. We have:

πTm,∆tmcm,i → ci strongly in Lp, p ∈ [1,∞) ∀i ∈ [[0, N ]], (4.15)

πTm,∆tmΦ→ Φ strongly in Lp, p ∈ [1,∞), (4.16)

cEm,∆tm,i → ci strongly in Lp, p ∈ [1,∞) ∀i ∈ [[1, N ]], (4.17)

c̃Em,∆tm,i → ci strongly in Lp, p ∈ [1,∞) ∀i ∈ [[0, N ]]. (4.18)

Proof. Equation (4.15) is a straightforward consequence of (4.11) and the boundedness of A. The
proof of (4.17) and (4.18) rely on the Lemma D.2. Thanks to Proposition 4.2, the hypothesis is satisfied
with p, p̃ = 2, using (4.15), we have the L1 convergence of the diamond reconstructions. Thanks to
theL∞ bound on the edge concentrations, this result translate in the desired equations. The enhanced
convergence of the potential relies on the same ideas as the ones given in the previous proof ([31,
Lemma 3.4] and [10, Lemma 9]) to get strong L2 convergence. This is done following the lines of [9,
Proposition 4.5]. �

Finally, we show a weak-convergence property on the gradients of the logarithms:

Lemma 4.5. Let C be as in Proposition 4.3. We have:

∇Tm,∆tm log(c)→ ∇ log(cm) weakly in L2(QT )d. (4.19)

Moreover, assuming inf c0 > 0, we have :

∇Tm,∆tm log(cm,0)→ ∇ log(c0) weakly in L2(QT )d. (4.20)

Proof. Let us start with the proof on equation (4.20). By definition (4.2), we have:

∇Tm,∆tm log(cm,0) =
1

c̃Em,∆tm,0

∇Tm,∆tmcm,0,

so that, using (4.18), (4.12), and the assumed bound on c0 we have:

∇Tm,∆tm log(cm,0)→ 1

c0

∇c0.

We conclude using the bound on c0 again to use the continuous chain-rule and get the announced
result.

For (4.19), we proceed similarly. Notice that since c ≥ 1
v0 max ki

> 0 the bound does not need to be

assumed. we only need the strongL2 convergence of the reconstruction using the logarithmic average
on the diamond cells. This is an application of Lemma D.2, as in the proof of Lemma 4.4. �

4.3. Identification. In this section we will identify the limits obtained in Proposition 4.3 as weak so-
lutions in the sense of Definition 1. First we improve the convergence topology on the potential and
identify it as a weak solution of the Poisson equation.

Proposition 4.4. The function Φ ∈ L∞((0, T ), H1(Ω)) defined in Proposition 4.3 satisfies: Φ −
ΦD ∈ L∞((0, T ), HΓD) and for all ψ ∈ HΓD and almost all t ∈ (0, T ) equation (1.14) holds:

λ2

∫
Ω

∇Φ(t, x) · ∇ψ(x)dx =

∫
Ω

ψ(x)
N∑
i=1

zici(t, x)dx.

Proof. Let ψ ∈ C∞c ([0, T ] ×
{

Ω ∪ ΓN
}

), then define ψnK = ψ(xK , tn) and ψnσ = ψ(xσ, tn) for
1 ≤ n ≤ N , K ∈ T and σ ∈ Eext. As for [9, Proposition 4.5], we introduce an other reconstruction
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of the gradient following [23] (see [18] for a practical example). Let ∇̂T : RT → L∞(Ω)d be strongly
consistent i.e.,

∇̂Tψn −→
hT→0

∇ψ(·, tn) uniformly in Ω, ∀n ∈ {1, . . . , N}, (4.21)

thanks to the smoothness of ψ. The operator ∇̂ is also such that∫
Ω

∇T u · ∇̂T vdx =
∑
σ∈E

τσDKσuDKσv, ∀u,v ∈ RT .

The scheme (2.4a) then reduces to

λ2

∫
Ω

∇TΦn · ∇̂Tψndx =

∫
Ω

πTψ
n

N∑
i=1

ziπT c
n
i dx, ∀n ∈ {1, . . . , N}, ∀ψ ∈ R(T ∪Eext)×N .

Integrating with respect to time over (0, T ) and passing to the limit hT , h∆t → 0 thanks to Proposi-
tion 4.3 equations (4.11) and (4.14) and equation (4.21) we have:

λ2

∫∫
QT

∇Φ · ∇ψdxdt =

∫∫
QT

ψ
N∑
i=1

zicidxdt, ∀ψ ∈ C∞c ([0, T ]× Ω ∪ ΓN).

By density of C∞c ([0, T ] × Ω ∪ ΓN) in L∞([0, T ], HΓD) and continuity of the linear application, we
have:

λ2

∫∫
QT

∇Φ · ∇ψdxdt =

∫∫
QT

ψ
N∑
i=1

zicidxdt, ∀ψ ∈ L∞([0, T ], HΓD).

In particular, (1.14) holds for almost every t ∈ (0, T ).

Concerning the boundary conditions for Φ, the fact that Φ = ΦD on (0, T ) × ΓD can be proved for
instance following the lines of [6, Section 4]. �

The following theorem focuses on the identification of C as a weak solution satisfying (1.13). As
announced in Theorem 2.2 this can only be done with an assumption on the solvent. Remark C.1 is
a first clue of the validity of this assumption. For positive initial condition, this assumption is valid in all
the numerical test. In the 1D setting and under a CFL condition, it might be possible to prove it through
improvements of Lemmas 3.2 and 3.5. This could be the topic of further research.

Theorem 4.1. Let C and Φ be as in Propositions 4.3. If one has inf c0 > 0, they are weak solutions
of (1.3)–(1.8) in the sense of Definition 1.

Proof. Let i ∈ [[1, N ]], ϕ ∈ C∞c ([0, T )× Ω), then define ϕnK = ϕ(xK , tn) for all n ∈ {0, . . . , NT}
and K ∈ T . Multiplying (2.4b) by ∆tnϕ

n−1
K , then summing over K ∈ T and n ∈ {1, . . . , NT}

leads to
T1 + T2 + T3 = 0, (4.22)

where we have set

T1 =

NT∑
n=1

∑
K∈T

mK(cnK,i − cn−1
K,i )ϕn−1

K ,

T2 =

NT∑
n=1

∆tn
∑
σ∈E

τσCnσ,iDKσhi(c
n)DKσϕ

n−1,

T3 =zi

NT∑
n=1

∆tn
∑
σ∈E

τσCnσiDKσΦ
nDKσϕ

n−1,
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where ϕn−1
Kσ = 0 for σ ∈ Eext and Cσ is defined by Lemma 3.1. The treatment of terms T1 and T3 is

exactly the same as in [9, Proposition 4.7] and we have:

T1 −→
m→∞

−
∫∫

QT

ci∂tϕdxdt−
∫

Ω

c0
iϕ(0, ·)dx, (4.23)

T3 −→
m→∞

∫∫
QT

zici∇Φ · ∇ϕdxdt. (4.24)

The treatment of the term T2 is more intricate. First we let T̃2 be the same term with a different edge
concentration:

T̃2 =
N∑
n=1

∆tn
∑
σ∈E

τσC̃nσ,iDKσhi(c
n)DKσϕ

n−1,

where C̃ is the logarithmic mean introduced in (4.2). We will first prove the convergence of T̃2 then
identify its limit. To this end, we set:

T̃2,1 =
N∑
n=1

∆tn
∑
σ∈E

τσC̃nσ,iDKσ log(cni )DKσϕ
n−1,

T̃2,2 =− ki
N∑
n=1

∆tn
∑
σ∈E

τσC̃nσ,iDKσ log(cn0 )DKσϕ
n−1,

T̃2,3 =(ki − 1)
N∑
n=1

∆tn
∑
σ∈E

τσC̃nσ,iDKσ log(cn)DKσϕ
n−1.

For term T̃2,1 we use the chain rule C̃nσ,iDKσ log(cni ) = DKσc
n
i and get :

T̃2,1 =
N∑
n=1

∆tn
∑
σ∈E

τσDKσc
n
iDKσϕ

n−1 =

∫∫
QT

∇Tm,∆tm · ci∇̂Tm,∆tmϕdcdt.

Thanks to the weak convergence of∇Tm,∆tmci and the strong convergence of ∇̂Tm,∆tmϕ, we have:

T̃2,1 →
∫∫

QT

∇ci · ∇ϕdxdt.

For the other terms, we need the enhanced convergence of gradients provided by Lemma 4.5. So that
the terms T̃2,2 and T̃2,3 have the following limits:

T̃2,2 = −ki
∫∫

QT

c̃Em,∆tm,i∇Tm,∆tm log(c0)∇̂Tm,∆tmϕdxdt→ −ki
∫∫

QT

ci∇ log(c0)∇ϕdxdt,

T̃2,3 = (ki − 1)

∫∫
QT

c̃Em,∆tm,i∇Tm,∆tm log(c)∇̂Tm,∆tmdxdtϕ→ (ki − 1)

∫∫
QT

ci∇ log(c)∇ϕdxdt.

Let us now establish that T2 and T̃2 share the same limit.

Thanks to the triangle and Cauchy-Schwarz inequalities, one has

|T2 − T̃2| ≤
N∑
n=1

∆tn
∑
σ∈E

τσ

∣∣∣Cnσ,i − C̃nσ,i∣∣∣ |Dσhi(c
n)|
∣∣Dσϕ

n−1
∣∣

≤

(
N∑
n=1

∆tn
∑
σ∈E

τσCnσ,i|Dσh(cn)|2
)1/2( N∑

n=1

∆tn
∑
σ∈E

τσ
(Cnσ,i − C̃nσ,i)2

Cnσ,i
|Dσϕ

n−1|2
)1/2

.
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The first term in the right-hand side is uniformly bounded thanks to (4.10). Thus our problem amounts
to show that

R :=
N∑
n=1

∆tn
∑
σ∈E

τσ
(Cnσ,i − C̃nσ,i)2

Cnσ,i
|Dσϕ

n−1|2 −→
m→∞

0. (4.25)

Let us reformulateR as

R =
N∑
n=1

∆tn
∑
σ∈E

τσ|Cnσ,i − C̃nσ,i|

∣∣∣∣∣1− C̃nσ,iCnσ,i
∣∣∣∣∣ |Dσϕ

n−1|2.

Thanks to Lemma 4.1, the quantity

∣∣∣∣1− C̃nσ,iCnσ,i
∣∣∣∣ is uniformly bounded, whereas the regularity ofϕ implies

that Dσϕ
n−1 ≤ ‖∇ϕ‖∞dσ. Putting this in the above expression ofR, we obtain that

0 ≤ R ≤ C‖cEm,∆tm,i − c̃Em,∆tm,i‖L1(QT ) −→
m→∞

0,

thanks to Lemma 4.4. Thus T2 and T̃2 share the same limit, which gives the announced result. �

5. NUMERICAL EXAMPLES

The numerical examples have been implemented in the Julia language [5] based on the package
VoronoiFVM.jl [30] which realizes the implicit Euler Voronoi finite volume method for nonlinear
diffusion-convection-reaction systems on simplicial grids. The resulting nonlinear systems of equa-
tions are solved using Newton’s method with optional parameter embedding. An advantage of the
implementation in Julia is the availability of ForwardDiff.jl [37], an automatic differentiation
package. This package allows the assembly of analytical Jacobians based on a generic implementa-
tion of nonlinear parameter functions without the need to write source code for derivatives.

5.1. Species redistribution in a one-dimensional cell filled with binary electrolyte. Let Ω =
(0, L) withL = 20. As an initial state, assume a binary electrolyte with two ionic species with opposite
charges and a solvent. At moment t = 0, we assume a spatially constant, electroneutral distribution
of the ions. We apply a potential difference via Dirichlet boundary conditions Φ|x=0 = −10 and
Φx=L = 10 and solve the Poisson equation with these data as initial value. We set homogeneous
Neumann boundary conditions for both ionic species. With starting time step size ∆t = 10−3 we start
the evolution until the species distribution reaches its equilibrium under the applied potential difference.
As discussed in [8], the time step sizes are controlled such that the energy dissipation per time step is
limited: E(ti)− E(ti+1) ≤ 10−1.

Fig. 2 shows the evolution in the case v0 = v1 = v2 = 1, z0 = 0, z1 = 1, z2 = −1. At the end of
the time evolution, most of the ions are accumulated in their respective polarization boundary layers,
almost completely displacing the solvent. As predicted, the ion concentration is bounded by 1. The
computation used the flux (S).

Fig. 3 shows the evolution in the case v0 = v1 = v2 = 1 and z0 = 0, z1 = 2, z2 = −1. Once
again, at the end of the evolution, anions and cations pile up in the corresponding boundary layers.
Ion concentrations are bounded by 1, but due to the larger charge of the cation, the corresponding
boundary layer becomes smaller.

Fig. 4 shows the evolution in the case v0 = v2 = 1, v1 = 2 and z0 = 0, z1 = 1, z2 = −1. Once
again, at the end of the evolution, anions and cations pile up in the corresponding boundary layers
but now, the cation concentration is bounded by 1

2
. The corresponding evolution of the relative free

energy E(t) − E∞ is shown in Fig. 5. We observe an exponential decay and almost equal behavior
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FIGURE 2. Evolution of electrostatic potential Φ, solvent concentration c0, anion con-
centration c− and cation concentration c+ for a symmetric binary electrolyte with equal
sizes of solvent molecules, anions and cations.
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FIGURE 3. Evolution of electrostatic potential Φ, solvent concentration c0, anion con-
centration c− and cation concentration c+ for an asymmetric binary electrolyte with
equal sizes of solvent molecules, cations and anions.

for both variants of the flux approximation (S) and (C). Moreover, the time step control algorithm keeps
the dissipation per timestep below the intended limit.

5.2. 1D stationary convergence test. In the same domain as above, we set v0 = 1, v1 = 2, v2 = 1,
and z1 = 1, z2 = −1. This time, we look for the stationary solution with homogeneous Dirichlet
boundary conditions for Φ, and Dirichlet boundary conditions for the concentrations. These boundary
conditions are for x = 0, c1v1 = 1.0− 3ε, c2v2 = ε and for x = L, c1v1 = ε, c2v2 = 1− 3ε, where
ε = 10−2. Implicitely, this sets c0 = 2ε at both boundaries. The result of the numerical convergence
tests (comparison to fine grid solution with 40960 grid points) for both types of fluxes suggest O(h2)
convergence in the L2 norm and O(h) convergence in the H1 seminorm.

5.3. An electrolytic diode. The second example regards a domain Ω = (0,W ) × (0, L) with
W = 2 and L = 10. We assume z0 = 0, z1 = 1, z2 = −1 and v0 = 1, v1 = 4, v2 = 4. At
y = 0 and y = L we fix concentrations to a value c1 = c2 = 0.01 We set Φ|y=0 = 0 and apply
a changing value Φbias at y = L. At x = 0 we apply symmetry (homogeneous Neumann) boundary
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FIGURE 4. Evolution of electrostatic potential Φ, solvent concentration c0, anion con-
centration c− and cation concentration c+ for a symmetric binary electrolyte with equal
sizes of solvent molecules and anions, but larger cations.
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FIGURE 5. Evolution of relative free energy and energy dissipation per time step for
symmetric binary electrolyte with equal sizes of solvent molecules and anions, but
larger cations.

conditions for Φ, c1, c2. Homogeneous Neumann boundary conditions are also applied for c1, c2 at
x = W . We set Neumann boundary conditions λ∇Φ · n = q(y) at x = W , where

q(y) =


σ, y ∈ (1

2
L, 3

4
L)

−σ, y ∈ (1
4
L, 1

2
L)

0, else

with σ = 5.

Fig. 7 shows three different states of the electrolytic diode. Fig. 8 (left) shows the corresponding
current-voltage curve. We see a well developed rectification effect: At reverse bias, ion concentrations
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FIGURE 6. Left: stationary solution of Dirichlet problem. Center and right: results of
numerical convergence test.

under the charged surface are rather low, resulting in low conductance and low ionic current. Whereas
at forward bias, larger ion concentrations lead to a larger ionic current.

Fig. 8 (right) shows the estimated error of the IV curve in dependence of the grid refinement. Reference
was a calculation on a grid with the quarter of the stepsize of the finest grid result shown. From this
experiment, we postulate a convergence rate for the ionic current calculation of O(h2).
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FIGURE 7. Electrostatic potential Φ, solvent concentration c0, anion concentration c−

and cation concentration c+ in an electrolytic diode filled with a symmetric binary
electrolyte with equal sizes of solvent molecules at reverse bias Φbias = −10 (top),
zero bias Φbias = 0 (center) and forward bias Φbias = 10 (bottom)
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FIGURE 8. Left: Current-voltage curve for electrolytic diode, calculated using the
scheme (S). Right: Convergence of calculated IV curve.

APPENDIX A. CHEMICAL FREE ENERGY DENSITY AND CHEMICAL POTENTIALS

In this appendix, we aim to prove (1.9), (1.10), and some convexity of:

H(c1, ...cN) = −c log(c) +
N∑
i=0

ci log(ci),

where c0 and c are functions of c1, ..., cN . This is summarized in the following lemma:

Lemma A.1. The N -variables function H is convex, moreover we have:

∂ciH(c1, ..., cN) = hi(C), ∀i ∈ [[1, N ]], C = (c1, ..., cN) ∈ A, (1.9)

− log(N + 1)

v0 min ki
≤ H(C) ≤ 0 ∀C ∈ A. (1.10)

Elementary computation shows that :

∂ciH(C) = log
ci
c
− ki log

c0

c
∀i ∈ [[1, N ]].

Hence the announced relation (1.9).

We now focus on the proof of the convexity of H overA. Let C,C∗ ∈ A, we have:

(∇RNH(C)−∇RNH(C∗)|C − C∗) =
N∑
i=0

(
log

ci
c̄
− log

c∗i
c̄∗

)
(ci − c∗i ). (A.1)

To prove the convexity of H , it is sufficient to show that this is non-negative. To that extend, we
introduce AN+1 the natural extension of A in RN+1 and consider the right-hand side of (A.1) as a
function of CN+1 = (c0(c1, ...cN), c1..., cN) ∈ AN+1 parameterized by C∗:

GC∗(c0, . . . , cN) =
N∑
i=0

(
log

ci
c̄
− log

c∗i
c̄∗

)
(ci − c∗i ),

and show that minCN+1∈AN+1
(GC∗(C)) = 0. To do so we compute the derivatives of GC∗ as a

function of RN+1 and use the Lagrange multiplier theorem. After some simplifications, we have for all
i ∈ [[0, N ]] :

∂ciGC∗(c0, ...cN) =
c∗

ci

(
ci
c̄
− c∗i
c̄∗

)
+

(
log

ci
c̄
− log

c∗i
c̄∗

)
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Notice that both terms have the sign of ci
c̄
− c∗i

c̄∗
. The Lagrange multiplier theorem states that any

extremum satisfies:

∃α ∈ R,∀i ∈ [[0, N ]], ∂ciGC∗ = αki

Hence, all the partial derivatives of GC∗ should have the same sign. Moreover, we notice that the sum
of ci

c̄
− c∗i

c̄∗
is zero. This is only possible the sign of the derivatives is constantly zero, i.e. : ci

c̄
=

c∗i
c̄∗

. At
such a point, we have GC∗ = 0. As the coercitivity and continuity of GC∗ grants the existence of a
minimum, we have the desired result:

0 ≤ (∇RNH(C)−∇RNH(C∗)|C − C∗),

which yields the convexity of H .

We still have to establish the bounds (1.10). To that end, we notice that:

H(C) = c
N∑
i=0

ci
c

log
ci
c

∀C ∈ A.

As c is non-negative and 0 ≤ ci
c
≤ 1, we have H(C) ≤ 0. For the lower bound, we notice that

−
∑N

i=0
ci
c

log ci
c

can be interpreted as the entropy of a random variable over a set ofN+1 elements.
It is common knowledge that it is maximal for ci

c
= 1

N+1
thus:

−c log(N + 1) ≤ H(C)

Finally, notice that 1
v0 max ki

≤ c ≤ 1
v0 min ki

yields

− log(N + 1)

v0 min ki
≤ H(C),

which is the desired bound.

APPENDIX B. PROOF OF LEMMA 3.2

This appendix is devoted to the proof of Lemma 3.2 stating the blow-up of the diffusion for extreme
concentrations. More precisely, we recall:

Lemma B.1. Let for δ, ε,M, c > 0, i ∈ [[1, N ]]:

Ψδ,ε,M,i(c) := inf
(CK ,CL)∈A2, (ΦK ,ΦL)∈[−M,M ]2

cK,0,cL,0>ε, cK,i≥min(δ, 0.5
kiv0

), cL,i<c

Di(CK , CL,ΦK ,ΦL),

Υδ,M(c) := inf
(CK ,CL)∈A2, (ΦK ,ΦL)∈[−M,M ]2

cK,0≥min(δ, 0.5
v0

), cL,0<c

D(CK , CL,ΦK ,ΦL).

We have, for all δ, ε,M > 0:

lim
c→0+

Υδ,M(c) = +∞ lim
c→0+

Ψδ,ε,M,i(c) = +∞ ∀i ∈ [[1, N ]].

We will prove the result for Ψδ,ε,M,i first, then use this property to show the bound on the solvent.
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B.1. Limit of Ψδ,ε,M,i. In this section we intend to prove the limit:

lim
c→0
c>0

Ψδ,ε,M,i(c) = +∞ ∀i ∈ [[1, N ]], δ, ε,M > 0.

The proof for the centered scheme relies on expression (3.5):

Di(CK , CL,ΦK ,ΦL) = Ci(CK , CL,ΦK ,ΦL) (hi(CK) + ziΦK − hi(CL)− ziΦL)2 .

We notice that hi(CK) + ziΦK − hi(CL)− ziΦL blows up and that Ci ≥ cK,i
2

, hence the blow-up of
the limit.

For the Sedan scheme, it is more intricate and try to bound Fi(CK , CL,ΦK ,ΦL) away from zero to
take advantage of the blow-up of (hi(CK) + ziΦK − hi(CL)− ziΦL). The positivity of the product,
ensures that the limit will have the right sign. Let δ, ε,M > 0, i ∈ [[1, N ]]. We denote by Oc the set:

Oc =
{

(CK , CL) ∈ A2, (ΦK ,ΦL) ∈ [−M,M ]2 | cK,0, cL,0 > ε, cK,i ∈ [δ, 1), cL,i < c
}
.

We notice that the hypothesis c0 > ε yields a bound on νi. Moreover, this bound is uniform in c. We
intend to use this bound to prove that the flux function defined by (S) is bounded away from zero. We
let:

M ′ = sup
c∈R+,∗

(
sup

(CK ,CL,ΦK ,ΦL)∈Oc
ziΦL + ν(CL,i)− ziΦK − ν(CK,i)

)
<∞.

We have, for all (CK , CL,ΦK ,ΦL) ∈ Oc:

Fi(CK , CL,ΦK ,ΦL) ≥ B(M ′)δ −B(−M ′)c,

hence Fi is bounded away from zero for c small enough and the desired result.

B.2. Limit of Υδ,M . In this section, we prove the remaining limit:

lim
c→0

Υδ,M(c) = +∞ ∀δ,M > 0

To reuse the ideas of previous section, we would like to dispose of a specie i such that cL,i > ε. We
start by building one artificially. Let δ,M > 0, and:

O(c) =
{

(CK , CL) ∈ A2, (ΦK ,ΦL) ∈ [−M,M ]2 | cK,0 ∈ [δ, 1), cL,0 < c
}
.

Notice that for all (CK , CL,ΦK ,ΦL) ∈ Oc, we dispose of i ∈ [[1, N ]] such that cL,i ≥ 1−v0c
Nkiv0

.
Notice also that Υδ,M is increasing, it is then sufficient to prove the limit for a given sequence. Let
cn be sequence that steadily decreases to zero such that for all n ∈ N , cn ≤ 1

2v0
and there exist

i ∈ [[1, N ]], (Cn
K , C

n
L,Φ

n
K ,Φ

n
L) ∈ Ocn satisfying:

D(Cn
K , C

n
L,Φ

n
K ,Φ

n
L) ≤ Υδ,M(cn) +

1

n
and cnL,i ≥

1

2Nkiv0

.

We have, using cnL,0 ≤ cn, cnK,i ≤ 1
kiv0

, 1
v0 max kj

≤ c ≤ 1
v0 min kj

, cnK,0 ≥ δ, the bounds on Φ, and

cnL,i ≥ 1
2Nkiv0

:

hi(C
n
K) + ziΦ

n
K − hi(Cn

L)− ziΦn
L ≤ ki log

cn

δ
+ |ki − 1| log

max kj
min kj

+ log(2N) + 2M |zi|.

As all the terms are bounded except log(cn) which goes to −∞, we have blow-up of hi(Cn
K) +

ziΦ
n
K − hi(Cn

L)− ziΦn
L.

For the centered scheme, we use Ci(Cn
K , C

n
L,Φ

n
K ,Φ

n
L) ≥ 1

4Nvi
, and we have :

Υδ,M(cn) ≥ Di(Cn
K , C

n
L,Φ

n
K ,Φ

n
L)− 1

n
≥ 1

4Nvi

(
hi(C

n
K) + ziΦ

n
K − hi(Cn

L)− ziΦn
L

)2 − 1

n
,

hence the desired result.
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For the Sedan scheme, we will also only consider Di, but we need a more precise approach : as in
previous section, we bound the flux away from zero. We let:

M ′ = sup
c∈(0, 1

2v0
]

 sup
(CK ,CL,ΦK ,ΦL)∈Oc0 ,cL,i≥

1
2Nvi

ziΦL + (ki − 1) log cL − ziΦK − ν(CK,i)

 .

We have:

Fi(Cn
K , C

n
L,Φ

n
K ,Φ

n
L) ≤ B (−ki log cn −M ′)

1

vi
−B (ki log cn +M ′)

1

2Nvi
.

As the right-hand side tends to −∞, the left-hand side is bounded away from zero. Using the previ-
ously detailed arguments, we have the desired limit.

APPENDIX C. STUDY OF A NUMERICAL SCHEME FOR hi = log(ci)− α log(c0)

To prove the existence of solutions to the Sedan and centered scheme, we introduce this simplified
cross diffusion system where the coupling occurs only through the solvent using the chemical potential
defined above. This system is discretized using the ideas of the centered scheme and [13]. In detail,
we use equation (2.4b), (2.4c) with ki, Di = 1, zi = 0, and :

Fi(CK , CL,ΦK ,ΦL) = C̃j(CK , CL) (hi(CK)− hi(CL)) , C̃j(CK , CL) =
cK,i − cL,i

log(cK,i)− log(cL,i)

where hi(C) is: log(ci)− α log(c0). We want to bound the concentrations away from zero uniformly
in α. This is the meaning of the following lemma, which is highly inspired by Lemma 3.5.

Lemma C.1. There exist ε = min(ε0, ε1, . . . , εN) > 0 depending on, among other things, C0 and
decreasing with h∆t and minσ∈E τσ such that for all Cn−1 ∈ AT satisfying Lemma 3.3, α ∈ [0, 1],
we have:

cnK,i ≥ εi ∀K, i

The proof follows the same reasoning as for the full system and is only sketched here. Using (2.4c)
we have:

cnK,0 − cn−1
K,0

∆tn
mK = −

∑
σ=K|L∈Eint

τσ
(
cnK,0 − cnL,0

)
− α

∑
σ=K|L∈Eint

τσR(Cn
K , C

n
L)
(
log(cnK,0)− log(cnL,0)

)
(C.1)

where we have set:

R(CK , CL) =
N∑
i=1

cK,i − cL,i
log(cK,i)− log(cL,i)

.

Remark C.1. Noticing thatR(CK , CL) ≥ 0 yields a maximum principle on c0. As we did not assume
that c0

0 is uniformly positive, we have to compute further.

Multiplying (C.1) by log(cnK,0) and summing over K ∈ T yields:

∑
K∈T

cnK,0 − cn−1
K,0

∆tn
mK log(cnK,0) +

∑
σ=K|L∈EK

τσDKLc
n
0DKL log cn0

+ α
∑

σ=K|L∈EK

τσR(CK , CL) (DKL log cn0 )2 = 0
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using the convexity of u log u, we have:∑
K∈T

mk

∆tn
(cnK,0 log(cnK,0)− cn−1

K,0 log(cn−1
K,0 )) ≤ −

∑
σ=K|L∈EK

τσDKLc
n
0DKL log cn0

− α
∑

σ=K|L∈EK

R(CK , CL) (DKL log cn0 )2 .

We may now use the decay of this entropy to prove the desired result for i = 0. To that extent
we proceed as in Lemma 3.5 and see that DKLc

n
0DKL log cn0 is clearly coercive in the sense of

lemma 3.2 while the part in α is non-negative. This yields the uniform bound for c0.

The bound for ci relies on the entropy H̃ =
∑N

j=1 cj log(cj) + αc0 log(c0). As for Lemma A.1, this

entropy restricted to A is convex and its derivatives as a function of RN are the chemical potentials,
Thus multiplying the conservation equation by h yields:∑

K∈T

mK

(
H̃(Cn

K)− H̃(Cn−1
K )

)
≤
∑
σ∈Eint

N∑
j=1

C̃σ,j (Dσhj(C
n))2 .

This new dissipation is also coercive in the sense of Lemma 3.2, thus we can proceed as in Lemma 3.5
to get the announced bounds.

APPENDIX D. A SIMPLE CONVERGENCE LEMMA

In this section, we express the results of [9] lemma 4.2 and [13, lemma 4.2] in a more generic fashion.
We let Tm be a sequence of admissible meshes of Ω such that hTm → 0,um ∈ RTm , and ũm ∈ RE int

m

such that for all σ = K|L ∈ E int
m :

min(uK , uL) ≤ ũσ,m ≤ max(uK , uL).

Lemma D.1. If we dispose of p ∈ [1,∞) such that

hTm‖∇Tmum‖Lp(Ω) → 0

The L1 convergence of the natural and diamond reconstructions are equivalent, moreover if one of
them is convergent, they share the same limit.

Proof. This result is equivalent to:

‖πTmum − ũm,Em‖L1(Ω) → 0.

For the sake of simplicity, we drop the subscript m for the rest of the proof. We let ∆Kσ be the half
diamond cell ∆σ ∩K , and notice that m(∆Kσ) = 1

d
mσd(xK , σ) ≤ hTmσ

d
. Elementary calculations

yield:

‖πT u− ũE‖L1(Ω) ≤
hT
d

∑
K∈T

∑
σ∈EK

mσ|uK − uσ|.

Thanks to our average assumption, we have |uK − uσ| ≤ Dσu thus:

‖πT u− ũE‖L1(Ω) ≤
2hT
d

∑
σ∈E int

mσDσu.

Let p be as in the lemma and q its Hölder conjugate. We have:∑
σ∈E int

mσDσu ≤

(∑
σ∈E int

mσdσ

(
Dσu

dσ

)p) 1
p
(∑
σ∈E int

mσdσ

) 1
q

≤ dm(Ω)
1
q ‖∇T u‖Lp(Ω),
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hence:
‖πT u− ũE‖L1(Ω) ≤ 2m(Ω)

1
qhT ‖∇T u‖Lp(Ω) → 0. (D.1)

This concludes the proof of the lemma. �

For reconstructions in Ω×[0, T ], we considerum ∈ RTm×∆tm , ũm ∈ RE int
m×∆tm satisfying the same

average property, and we have the same result.

Lemma D.2. If we dispose of p ∈ [1,∞), p̃ ∈ [1,∞) such that

hTm‖∇Tm,∆tmum‖Lp̃([0,T ],Lp(Ω)) → 0

TheL1(Ω×[0, T ]) convergence of the natural and diamond reconstructions are equivalent, moreover
if one of them is convergent, they share the same limit.

Proof. This result is equivalent to:

‖πTm,∆tmum − ũm,Em,∆tm‖L1(Ω×[0,T ]) → 0.

We make use of the computations for the previous lemma, namely (D.1) yields for all n ∈ [[1, NT,m]]:

‖πTm,∆tmu
n
m − ũ

n
m,Em,∆tm‖L1(Ω) ≤ 2m(Ω)

1
qhTm‖∇Tmun‖Lp(Ω).

Thus:

‖πTm,∆tmum − ũm,Em,∆tm‖L1(Ω×[0,T ]) ≤ 2m(Ω)
1
qhTm

NT,m∑
n=1

∆tn‖∇Tmun‖Lp(Ω).

Hölder’s inequality yields:

‖πTm,∆tmum − ũm,Em,∆tm‖L1(Ω×[0,T ]) ≤ 2m(Ω)
1
qT

1
q̃hTm‖∇Tm,∆tmu‖Lp̃([0,T ],Lp(Ω)),

where q̃ is the Hölder conjugate of p̃. Using the assumed estimation of the gradient, we have the
announced result. �
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