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Abstract

Complete damage in elastic solids appears when the material looses all its integrity due to high ex-
posure. In the case of alloys, the situation is quite involved since spinodal decomposition and coarsening
also occur at sufficiently low temperatures which may lead locally to high stress peaks. Experimental
observations on solder alloys reveal void and crack growth especially at phase boundaries.

In this work, we investigate analytically a degenerating PDE system with a time-depending domain
for phase separation and complete damage processes under time-varying Dirichlet boundary conditions.
The evolution of the system is described by a degenerating parabolic differential equation of fourth order
for the concentration, a doubly nonlinear differential inclusion for the damage process and a degenerating
quasi-static balance equation for the displacement field. All these equations are strongly nonlinearly
coupled.

Because of the doubly degenerating character and the doubly nonlinear differential inclusion we are
confronted with introducing a suitable notion of weak solutions. We choose a notion of weak solutions
which consists of weak formulations of the diffusion equation and the momentum balance, a one-sided
variational inequality for the damage function and an energy estimate.

For the introduced degenerating system, we prove existence of weak solutions in an SBV -framework.
The existence result is based on an approximation system, where the elliptic degeneracy of the displace-
ment field and the parabolic degeneracy of the concentration are eliminated. In the framework of phase
separation and damage, this means that the approximation system allows only for partial damage and a
non-degenerating mobility tensor. For the approximation system, existence results are established. Then,
a passage to the limit shows existence of weak solutions of the degenerating system.

1 Problem description

Phase separation and damage processes occur in many fields, including material sciences, biology and chem-
ical reactions. In particular, for the manufacturing and lifetime prediction of micro-electronic devices it is
of great importance to understand the mechanisms and the interplay between phase-separation and damage
processes in solder alloys. As soon as elastic alloys are quenched sufficiently, spinodal decomposition leads
to a fine-grained structure of different chemical mixtures on a short time-scale (see [DM01] for numerical
simulations and experimental observations). The long-term evolution is determined by a chemical diffusion
process which tends to minimize the bulk and the surface energy of the chemical substances. J.W. Cahn and
J.E. Hilliard developed a phenomenological model for the kinetics of phase-separation in a thermodynami-
cally consistent framework known as the Cahn-Hilliard equation [CH58], for which an extensive mathemat-
ical literature exists. An overview of modeling and some analytical aspects of the Cahn-Hilliard equation
can be found in [Ell89]. The recent literature is mainly focused on coupled systems. For instance, physical
observation and numerical simulations reveal that mechanical stresses influence the developing shapes of the
chemical phases. A coupling between Cahn-Hilliard systems and elastic deformations have been analytically
studied in [Gar00, BCD+02, CMP00, Gar05a, Gar05b, BP05, PZ08]. For numerical results and simulations
we refer [Wei01, Mer05, BB99, GRW01, BM10]. Phase separation of the chemical components may also
lead to critical stresses at phase boundaries which result in cracks and formation of voids and are of particu-
lar interest to understand the aging process in solder materials, cf. [HCW91, USG07, GUaMM+07, FK09].
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A fully coupled system consisting of the Cahn-Hilliard equation, an elliptic equation for the displacement
field and a differential inclusion for the damage variable has been recently investigated in [HK11, HK10].

However, in [HK11, HK10] and in the most mathematical damage literature [BS04, Gia05, MR06, MT10,
KRZ11], it is usually assumed that damage cannot completely disintegrate the material (i.e. incomplete dam-
age). Dropping this assumption gives rise to many mathematical challenges. Therefore, global-in-time exis-
tence results for complete damage models are rare. Modeling and existence of weak solutions for purely me-
chanical complete damage systems with quasi-static force balances are studied in [BMR09, Mie11, HK12]
and with visco-elasticity in [MRZ10, RR12].

The main goal in the present work is to prove existence of weak solutions of a system coupling damage
processes to an elastic Cahn-Hilliard system as in [HK11] but allowing for complete damage. The elasticity
is considered to be linear and the system is assumed to be in quasi-static mechanical equilibrium since
diffusion processes take place on a much slower time scale. A weak formulation of the degenerating system
is given in Section 2 while the proof of existence is carried out in Section 3 and Section 4. In the first
step of the proof, a degenerated limit of the corresponding incomplete damage system coupled with elastic
Cahn-Hilliard equations is performed, see Section 3. Due to the additional coupling the passage to the limit
becomes more involved than in [HK12] and a conical Poincaré inequality is used to control the chemical
potential in a local sense.

However, as we will see, the limit functions may not form a weak solution since serious mathematical
difficulties occur in the existence proof when not completely damaged material fragments become isolated
from the Dirichlet boundary. The main idea in [HK12] has been to exclude these loosely parts from the
considered evolutionary problem. The exclusions lead to jumps in the overall energy which have to be
accounted for in the energy inequality. This issue is addressed in Section 4 by using methods from [HK12].
There, maximal local-in-time existence of weak solutions and a global existence result for approximate
weak solutions, which are also introduced in the next section, are proven. In this context, the concept of
maximal admissible subsets needs to be introduced to specify the domain of interest.

In the following, we fix a domain Ω ⊆ Rn, a maximal time T > 0 of interest and a constant p with p > n.

A relatively open subset G of Ω is called admissible with respect to a part of the boundary D ⊆ ∂Ω if
every path-connected component PG of G satisfies Hn−1(PG ∩D) > 0, where Hn−1 denotes the (n − 1)
dimensional Hausdorff measure. The maximal admissible subset ofG is denoted by AD(G). With the notion
of maximal admissible subsets, we can formulate our evolutionary system with a time-depending domain in
a smooth setting as follows:

Coupled PDE system with time-depending domain. Find a relatively open subset F ⊆ ΩT := Ω× [0, T ]
with the property F (t) = AD

(⋂
s<t F (s)

)
and F (s) ⊆ F (t) whenever s ≥ t (i.e. F is shrinking) and

functions

c ∈ C2(F ; R), u ∈ C2
x(F ; Rn), z ∈ C2(F ; R), µ ∈ C2

x(F ; R)

such that the PDE system

0 = div(W,e(c, ε(u), z)),

ct = div(m(z)∇µ)

zt+ξ = div(|∇z|p−2∇z)+W,z(c, ε(u), z)+f ′(z)

0 < z

with µ = −∆c+ Ψ,c(c) +W,c(c, ε(u), z),

with ξ ∈ ∂I(−∞,0](zt),

is satisfied pointwise in int(F ) with the initial-boundary conditions
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c(0) = c0, z(0) = z0

u(t) = b(t)

W,e(c(t), ε(u(t)), z(t)) · ν = 0

z(t) = 0

∇z(t) · ν = 0

∇c(t) · ν = 0

m(z(t))∇µ(t) · ν = 0

on F (0),

on Γ1(t) := F (t) ∩D,

on Γ2(t) := F (t) ∩ (∂Ω \D),

on Γ3(t) := ∂F (t) \ F (t),

on Γ1(t) ∪ Γ2(t),

on Γ1(t) ∪ Γ2(t),

on Γ1(t) ∪ Γ2(t).

The solution of the PDE system can physically be interpreted as follows: c denotes the chemical concentra-
tion ratio, ε(u) the linearized strain tensor of the deformation u, z the damage profile describing the degree
of damage (i.e. z = 1 undamaged and z = 0 completely damaged material point) and µ the chemical poten-
tial. Moreover, W denotes the elastic energy density, Ψ the chemical energy density, f a damage dependent
potential, m the mobility depending on the damage and b the time-depending Dirichlet boundary data for
D.

We assume the following product structure for the elastic energy density:

W (c, e, z) = g(z)ϕ(c, e)

with a non-negative function g ∈ C1([0, 1]; R+) such that the complete damage condition g(0) = 0 is
fulfilled. The case g(0) > 0 is treated in [HK11] for constant mobility. The second function ϕ ∈ C1(R ×
Rn×n

sym ; R+) should have the following polynomial form

ϕ(c, e) = ϕ1e : e+ ϕ2(c) : e+ ϕ3(c), (1)

for coefficients ϕ1 ∈ L(Rn×n
sym ) with ϕ1 > 0, ϕ2 ∈ C1(R; Rn×n

sym ) and ϕ3 ∈ C1(R). Note that homogenous
elastic energy densities of the type

W (c, e, z) =
1
2
zC(e− e?(c)) : (e− e?(c))

with e? eigenstrain and C stiffness tensor are covered in this approach. The mobility m ∈ C([0, 1]; R+), on
the other hand, should satisfy the following condition for degeneracy, i.e.

m(z) = 0 if and only if z = 0. (2)

In the next section, we provide a weak formulation of the above system.

2 Weak solutions and approximate weak solutions

Let Ω ⊆ Rn be a bounded C2-domain and D ⊆ ∂Ω be the Dirichlet boundary with Hn−1(D) > 0. The set
{f > 0} for a function f ∈ W 1,p(Ω) has to be read as {x ∈ Ω | f(x) > 0} by employing the embedding
W 1,p(Ω) ↪→ C(Ω) (because of p > n).

The weak formulation of the PDE system presented here will be based on an energetic approach and uses
the associated free energy E . Let G ⊆ Ω be a relatively open subset. Then, the free energy on G is given by

EG(c, e, z) :=
∫
G

1
p
|∇z|p +

1
2
|∇c|2 + Ψ(c) +W (c, e, z) + f(z) dx
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for c ∈ H1(G), e ∈ L2(G; Rn×n
sym ) and z ∈ W 1,p(G). We will omit the subscript G in EG and simply write

E .

In the following, a weak formulation of the system above combining the ideas in [HK11] and [HK12] is
given.

Definition 2.1 (Weak solution of the coupled PDE system) A quadruple (c, u, z, µ) is called a weak so-
lution with the initial-boundary data (c0, z0, b) if

(i) Trajectory spaces:

c ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))?), u ∈ L2
tH

1
x,loc(F ; Rn),

z ∈ L∞(0, T ;W 1,p(Ω)) ∩ SBV 2(0, T ;L2(Ω)), µ ∈ L2
tH

1
x,loc(F )

with e := ε(u) ∈ L2(F ; Rn×n
sym ) where F := AD({z− > 0}) ⊆ ΩT is a shrinking set.

(ii) Quasi-static mechanical equilibrium:

0 =
∫
F (t)

W,e(c(t), e(t), z(t)) : ε(ζ) dx (3)

for a.e. t ∈ (0, T ) and for all ζ ∈ H1
D(Ω; Rn). Furthermore, u = b on DT ∩ F .

(iii) Diffusion: ∫
ΩT

∂tζ(c− c0) dx dt =
∫
F
m(z)∇µ · ∇ζ dx dt (4)

for all ζ ∈ L2(0, T ;H1(Ω)) ∩H1(0, T ;L2(Ω)) with ζ(T ) = 0 and∫
F
µζ dx =

∫
F
∇c · ∇ζ + Ψ,c(c)ζ +W,c(c, e, z)ζ dx (5)

for all ζ ∈ L2(0, T ;H1(Ω)) with supp(ζ) ⊆ F .

(iv) Damage variational inequality:

0 ≤
∫
F (t)
|∇z(t)|p−2∇z(t) · ∇ζ +

(
W,z(c(t), e(t), z(t)) + f ′(z(t)) + ∂a

t z(t)
)
ζ dx (6)

0 ≤ z(t),
0 ≥ ∂a

t z(t)

for a.e. t ∈ (0, T ) and for all ζ ∈W 1,p(Ω) with ζ ≤ 0. The initial value is given by z+(0) = z0.

(v) Damage jump condition:

z+(t) = z−(t)1F (t) in Ω (7)

for all t ∈ [0, T ].
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(vi) Energy inequality:

E(c(t), e(t), z(t)) +
∫ t

0

∫
F (s)
|∂a
t z|2 +m(z)|∇µ|2 dx ds+

∑
s∈Jz∩(0,t]

Js

≤ e+
0 +

∫ t

0

∫
F (s)

W,e(c, e, z) : ε(∂tb) dx ds (8)

for a.e. t ∈ (0, T ), where the jump part Js satisfies 0 ≤ Js and is given by

Js := lim
τ→s−

ess inf
ϑ∈(τ,s)

E(c(ϑ), e(ϑ), z(ϑ))− e+
s (9)

and the values e+
s ∈ R satisfy the upper energy estimate

0 ≤ e+
s ≤ E(c(s), ε(b(s) + ζ), z+(s)) (10)

for all ζ ∈ H1
D∩F (s)(F (s); Rn).

Remark 2.2 (i) The vector-valued Banach space SBV 2(0, T ;L2(Ω)) can be analogously defined as for
real-valued SBV -functions on a time-interval (see [AFP00]).

The space-time local Sobolev space L2
tH

1
x,loc(F ; RN ) for a shrinking set F , on the other hand, is

given by

L2
tH

q
x,loc(F ; RN ) :=

{
v :F → RN

∣∣ ∀t ∈ (0, T ], ∀U ⊂⊂ F (t) open : v|U×(0,t) ∈ L2(0, t;Hq(U ; RN ))
}
.

For both definitions, we refer to [HK12].

(ii) Under additional regularity assumptions, a weak solution reduces to the pointwise classical notion
presented in Section 1 (cf. [HK12, Theorem 3.7]).

One aim of this paper is to prove maximal local-in-time existence of weak solutions according to Defini-
tion 2.1. In addition, following the approach in [HK12], existence of global solutions can be shown in an
approximate sense. To be more precise, we use the notation

F ≈η AD({z− > 0})

for a measurable set F ⊆ ΩT , a function z ∈ SBV 2(0, T ;L2(Ω)) and a constant η > 0 if the conditions

F (t) ⊇ AD({z−(t) > 0}) for all t ∈ [0, T ],

F (t) = AD({z−(t) > 0}) for all t ∈ [0, T ] \
⋃

t∈Cz?
[t, t+ η),

Ln
(
F (t) \ AD({z−(t) > 0})

)
< η for all t ∈

⋃
t∈Cz?

[t, t+ η)

are satisfied. Here, Cz? denotes the set of cluster points from the right of the jump set Jz? of the function
z? ∈ SBV 2(0, T ;L2(Ω)) given by z?(t) := z(t)1AD({z−(t)>0}) (1A : X → {0, 1} is the characteristic
function of a set A ⊆ X). Roughly speaking, z? is the restricted damage profile of z which takes all
material exclusions into account.
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Definition 2.3 (Approximate weak solution) A tuple (c, e, u, z, µ) and a shrinking set F ⊆ ΩT is called
an approximate weak solution with fineness η > 0 and the initial-boundary data (c0, z0, b) if

c ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))?), u ∈ L2
tH

1
x,loc(AD(F ); Rn),

z ∈ L∞(0, T ;W 1,p(Ω)) ∩ SBV 2(0, T ;L2(Ω)), µ ∈ L2
tH

1
x,loc(F ),

e ∈ L2(F ; Rn×n
sym )

with e = ε(u) in AD(F ), F ≈η AD({z− > 0}) and properties (ii)-(vi) of Definition 2.1 are satisfied.

The remaining part of this paper is devoted to establish local and global existence results.

3 Degenerate limit of the regularized system

In this section, we will start with a corresponding incomplete damage model coupled to an elastic Cahn-
Hilliard system and perform a limit procedure. For each ε > 0, we define the regularized free energy Eε
as

Eε(c, e, z) :=
∫

Ω

1
p
|∇z|p +

1
2
|∇c|2 + Ψ(c) +W ε(c, e, z) + f(z) dx

for functions c ∈ H1(Ω), e ∈ L2(Ω; Rn×n
sym ) and z ∈ W 1,p(Ω). The regularized elastic energy density and

mobility are given by

W ε(c, e, z) := (g(z) + ε)ϕ(c, e),
mε(z) := m(z) + ε.

From now on, we assume for ϕ, Ψ and g the following growth conditions:

|ϕ2(c)|, |ϕ2
,c(c)| ≤ C(1 + |c|), (11)

|ϕ3(c)|, |ϕ3
,c(c)| ≤ C(1 + |c|2), (12)

|Ψ,c(c)| ≤ C(1 + |c|2?/2), (13)

η ≤ g′(z). (14)

Here, η, C > 0 denote constants independently of c and z, and 2? denotes the Sobolev critical exponent. In
the case n = 2, Ψ,c has to satisfy an r-growth condition for a fixed arbitrary r > 0 whereas we have no
restrictions on Ψ,c in the one-dimensional case. The function f is assumed to be continuously differentiable.

A modification of the proof of Theorem 4.6 in [HK11] yields the following result.

Theorem 3.1 (ε-regularized coupled PDE problem) Let ε > 0. For given initial-boundary data c0
ε ∈

H1(Ω), z0
ε ∈ W 1,p(Ω) and bε ∈ W 1,1(0, T ;W 1,∞(Ω; Rn)) there exists a quadruple qε = (cε, uε, zε, µε)

such that

(i) Trajectory spaces:

cε ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))?), uε ∈ L∞(0, T ;H1(Ω; Rn)),

zε ∈ L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω)), µε ∈ L2(0, T ;H1(Ω)).
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(ii) Quasi-static mechanical equilibrium:∫
Ω
W ε
,e(cε(t), ε(uε(t)), zε(t)) : ε(ζ) dx = 0 (15)

for a.e. t ∈ (0, T ) and for all ζ ∈ H1
D(Ω; Rn). Furthermore, uε = bε on the boundary DT .

(iii) Diffusion: ∫
ΩT

(cε − c0
ε)∂tζ dx dt =

∫
ΩT

mε(zε)∇µε · ∇ζ dx dt (16)

for all ζ ∈ L2(0, T ;H1(Ω)) with ∂tζ ∈ L2(ΩT ) and ζ(T ) = 0 and∫
Ω
µε(t)ζ dx =

∫
Ω
∇cε(t) · ∇ζ + Ψ,c(cε(t))ζ +W ε

,c(cε(t), ε(uε(t)), zε(t))ζ dx (17)

for a.e. t ∈ (0, T ) and for all ζ ∈ H1(Ω).

(iv) Damage variational inequality:

0 ≤
∫

Ω
|∇zε(t)|p−2∇zε(t) · ∇ζ +

(
W ε
,z(cε(t), ε(uε(t)), zε(t)) + f ′(zε(t)) + ∂tzε(t) + rε(t)

)
ζ dx

(18)

0 ≤ zε(t),
0 ≥ ∂tzε(t)

for a.e. t ∈ (0, T ) and for all ζ ∈W 1,p(Ω) with ζ ≤ 0 where rε ∈ L1(ΩT ) satisfies

rε = −χε
(
W ε
,z(cε, ε(uε), zε) + f ′(z)

)+
(19)

with χε ∈ L∞(Ω) fulfilling χε = 0 on {zε > 0} and 0 ≤ χε ≤ 1 on {zε = 0}. The initial value is
given by zε(0) = z0

ε .

(v) Energy inequality:

Eε(cε(t), ε(uε(t)), zε(t)) +
∫

Ωt

|∂tzε|2 +mε(zε)|∇µε|2 dx ds

≤ Eε(c0
ε, ε(u

0
ε), z

0
ε ) +

∫
Ωt

W,e(cε, ε(uε), zε) : ε(∂tbε) dx ds (20)

holds for a.e. t ∈ (0, T ) where u0
ε minimizes Eε(c0, ε(·), z0

ε ) in H1(Ω; Rn) with Dirichlet data b0ε :=
bε(0) on D.

Proof. The existence theorem presented in [HK11] can be adapted to our situation by considering the viscous
semi-implicite time-discretized system (in a classical notation; we omit the ε-dependence in the notation for
the discrete solution at the moment):

0 = div
(
W ε
,e(c

m, ε(um), zm)
)

+ δ div(|um|2um),

cm − cm−1

τ
= div(mε(zm−1)∇µm),

µm = −∆cm + Ψ,c(cm) +W ε
,c(c

m, ε(um), zm) + δ
cm − cm−1

τ
,
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zm − zm−1

τ
+ ξ + ζ = div(|∇zm|p−2∇zm) +W ε

,z(c
m, ε(um), zm) + f ′(zm),

with the sub-gradients ξ ∈ ∂I(−∞,0]((zm− zm−1)/τ), ζ ∈ ∂I[0,∞)(zm) and the discretization fineness τ =
T/M for M ∈ N. The discrete equations can be obtained recursively starting from (c0, u0, z0) with u0 :=
arg minu∈H1(Ω;Rn), u|D=b0|DEε(c

0, u, z0) by considering the Euler-Lagrange equations of the functional

Em(c, u, z) := Eε(c, u, z) +
∫

Ω

δ

4
|∇u|4 dx

+
τ

2

(∥∥∥∥z − zm−1

τ

∥∥∥∥2

L2(Ω)

+
∥∥∥∥c− cm−1

τ

∥∥∥∥2

X(zm−1)

+ δ

∥∥∥∥c− cm−1

τ

∥∥∥∥2

L2(Ω)

)

defined on the subspace of W 1,4(Ω; Rn) × H1(Ω) ×W 1,p(Ω) given by the conditions u|D = b(mτ)|D,∫
Ω c− c

0 dx = 0 and 0 ≤ z ≤ zm−1 a.e. in Ω. The scalar product 〈·, ·〉X(zm−1) is given by

〈u, v〉X(zm−1) :=
〈
mε(zm−1)∇A−1u,∇A−1v

〉
L2(Ω)

with the operator A : V0 → Ṽ0, Au :=
〈
mε(zm−1)∇u,∇·

〉
L2(Ω)

and the spaces

V0 :=
{
ζ ∈ H1(Ω)

∣∣ ∫
Ω
ζ dx = 0

}
,

Ṽ0 :=
{
ζ ∈ (H1(Ω))∗

∣∣ 〈ζ,1〉(H1)∗×H1 = 0
}
.

After passing the discretization fineness to 0, i.e. τ → 0+, we obtain the corresponding equations and in-
equalities for (15)-(20). A further passage δ → 0+ yields a weak solution as required. �

We will need the Γ-limit of the reduced energy functional of Eε in order to gain a suitable energy estimate
in the limit ε→ 0+. Define the reduced energy functionals Eε and Fε by

Eε(c, ξ, z) :=

 min
ζ∈H1

D(Ω;Rn)
Eε(c, ε(ξ + ζ), z) if 0 ≤ z ≤ 1,

∞ else,

Fε(c, ξ, z) :=

 min
ζ∈H1

D(Ω;Rn)
Fε(c, ε(ξ + ζ), z) if 0 ≤ z ≤ 1,

∞ else

with Fε(c, e, z) :=
∫

ΩW
ε(c, e, z) dx. The Γ-limits of Eε and Fε as ε → 0+ exist in the topological space

H1
w(Ω) ×W 1,∞(Ω; Rn) ×W 1,p

w (Ω) and are denoted by E and F, respectively. Here, H1
w(Ω) denotes the

space H1(Ω) with its weak topology. The limit functional F is needed as an auxiliary construction in the
following because it already captures the essential properties of E. In the next section, we are going to prove
some properties of the Γ-limit E which are used in the global-in-time existence proof.

Let (c0
ε, b

0
ε, z

0
ε ) → (c0, b0, z0) as ε → 0+ be a recovery sequence for Eε

Γ−→ E. In particular, c0
ε ⇀ c0 in

H1(Ω), b0ε → b0 in W 1,∞(Ω; Rn) and z0
ε ⇀ z0 in W 1,p(Ω). Furthermore, we set bε := b − b0 + b0ε . For

each ε > 0, we obtain a weak solution (cε, uε, zε, µε) for (c0
ε, z

0
ε , bε) according to Theorem 3.1.

Applying Gronwall’s lemma to the energy estimate (20) and following the argumentation in [HK12, Lemma
4.15] for the variables êε and zε, we gain the following a-priori estimates:
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• supt∈[0,T ] ‖cε(t)‖H1(Ω) ≤ C,

• ‖êε‖L2(ΩT ;Rn×n) ≤ C
with êε := eε1{zε>0},

• supt∈[0,T ] ‖zε(t)‖W 1,p(Ω) ≤ C,

• ‖∂tzε‖L2(ΩT ) ≤ C,

• ‖W ε(cε, eε, zε)‖L∞(0,T ;L1(Ω)) ≤ C,

• ‖mε(zε)1/2∇µε‖L2(ΩT ;Rn) ≤ C,

• ‖∂tcε‖L2(0,T ;(H1(Ω))?) ≤ ‖mε(zε)∇µε‖L2(ΩT ;Rn)

≤ C.

These estimates, Aubin-Lion type compactness theorems [Sim86], the variational inequality (18) and an
approximation argument yield the following convergence properties (cf. [HK12]):

Lemma 3.2 There exists functions

(i) c ∈ L∞(0, T ;H1(Ω))
∩H1(0, T ; (H1(Ω))?),

(ii) ê ∈ L2(ΩT ; Rn×n),

(iii) z ∈ L∞(0, T ;W 1,p(Ω))
∩H1(0, T ;L2(Ω)),

z is monotonically decreasing
with respect to t, i.e. ∂tz ≤ 0,

and a subsequence (we omit the index) such that for ε→ 0+

(a) cε ⇀ c in H1(0, T ; (H1(Ω))?),
cε → c in Lr(ΩT ) for all 1 ≤ r < 2?,
cε(t) ⇀ c(t) in H1(Ω) for all t,
cε → c a.e. in ΩT ,

(b) zε ⇀ z in H1(0, T ;L2(Ω)),
zε → z in Lp(0, T ;W 1,p(Ω)),
zε(t) ⇀ z(t) in W 1,p(Ω) for all t,
zε → z in ΩT ,

(c) bε → b in W 1,1(0, T ;W 1,∞(Ω; Rn)),

(d) êε ⇀ ê in L2(ΩT ; Rn×n),
W ε
,e(cε, eε, zε) ⇀W,e(c, ê, z)

in L2({z > 0}; Rn×n),
W ε
,e(cε, eε, zε)→ 0

in L2({z = 0}; Rn×n),
W ε
,c(cε, eε, zε) ⇀W,c(c, ê, z)

in L2({z > 0}; Rn×n),
W ε
,c(cε, eε, zε)→ 0

in L2({z = 0}; Rn×n).

To obtain a-priori estimates for the chemical potentials {µε} in some local sense, we make use of the conical
Poincaré inequality for star-shaped domains cited below.

Theorem 3.3 (Conical Poincaré inequality [BK98]) Suppose that Ω ⊆ Rn is a bounded and star-shaped
domain, r ≥ 0 and 1 ≤ p <∞. Then there exists a constant C = C(Ω, p, r) > 0 such that∫

Ω
|w(x)− wΩ,δt |pδr(x) dx ≤ C

∫
Ω
|∇w(x)|pδr(x) dx

for all w ∈ C1(Ω), where the δr-weight wΩ,δr is given by

wΩ,δr :=
∫

Ω
w(x)δr(x) dx, δ(x) := dist(x, ∂Ω).

By a density argument, the statement is, of course, also true for all w ∈W 1,p(Ω) which will be used in this
paper.
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Lemma 3.4 (A-priori estimates for µε)

(i) Interior estimate. For every t ∈ [0, T ] and for every open cube Q ⊂⊂ {z(t) > 0} ∩ Ω, there exists a
C > 0 such that for all 0 < ε� 1

‖µε‖L2(0,t;H1(Q)) ≤ C. (21)

(ii) Estimate at the boundary. For every t ∈ [0, T ] and every x0 ∈ {z(t) > 0} ∩ ∂Ω, there exist a
neighborhood U of x0 and a C > 0 such that for all 0 < ε� 1

‖µε‖L2(0,t;H1(U∩Ω)) ≤ C. (22)

Proof.

(i) We consider the smooth domain Q̃ := Bη(Q) := {x ∈ Rn |dist(x,Q) < ε}, where η > 0 is chosen
so small such that Q̃ ⊂⊂ {z(t) > 0} ∩ Ω. Testing (17) with the H1(Ω)-function

ζ(x) :=

{
δ(x) := dist(x, ∂Q̃) if x ∈ Q̃,
0 else,

and using the previous a-priori estimates yield boundedness of

µεeQ,δ :=
∫

eQ µε(x, s)δ(x) dx ≤ C (23)

with respect to a.e. s ∈ (0, T ) and ε ∈ (0, 1).

There exists an η > 0 such that zε(s) ≥ η in Q̃ for all s ∈ [0, t] and for all 0 < ε � 1 (see [HK12,
Corollary 4.17]). Thus, by assumption (2), mε(zε(s)) ≥ η′ > 0 holds in Q̃ for all s ∈ [0, t] and
all 0 < ε � 1 for a common constant η′ > 0. Consequently, we get by the a-priori estimate for
mε(zε)1/2∇µε

‖∇µε‖L2( eQ×[0,t])
≤ C (24)

for all ε ∈ (0, 1). Applying Theorem 3.3 (we plug in Ω = Q̃, r = p = 2 and w = µε(s) for s ∈ [0, t]),
integrating from 0 to t and using boundedness properties (23) and (24), we obtain boundedness of
‖µεδ‖L2( eQ×[0,t])

and thus boundedness of ‖µε‖L2(Q×[0,t]) with respect to 0 < ε � 1. Together with
(24), we get the claim (21).

(ii) By the properties of the domain, we can find a neighborhood U ⊆ Rn \ {z(t) = 0} of x0 and a
C2-diffeomorphism π : (−1, 1)n → U with the properties

• π
(
(−1, 1)n−1 × (−1, 0)

)
⊆ Ω,

• π
(
(−1, 1)n−1 × {0}

)
⊆ ∂Ω,

• π
(
(−1, 1)n−1 × (0, 1)

)
⊆ Rn \ Ω.

Let ϑ : (−1, 1)n → (−1, 1)n denote the reflection x 7→ (x1, . . . , xn−1,−xn) and T := π ◦ ϑ ◦ π−1.
Furthermore, let µ̃ε ∈ L2(0, t;H1(U)) be defined by

µ̃ε(x, s) :=

{
µε(x, s) if x ∈ U ∩ Ω,
µε(T (x), s) if x ∈ U \ Ω.
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Let Q ⊂⊂ U be a non-empty open cube with x0 ∈ Q. Then, integration by substitution with respect
to the transformation T yields∫

Q
µ̃ε(x, s)δ(x) dx =

∫
Q∩Ω

µε(x, s)δ(x) dx

+
∫
T (Q\Ω)

µε(x, s)δ(T (x))| det(∇T (x))| dx (25)

with δ(x) := dist(x, ∂Q). Here, we have used T ◦ T = Id. Testing (17) with

ζ = 1Q∩Ωδ ∈ H1(Ω)

and with
ζ = 1T (Q\Ω) · (δ ◦ T )|det(∇T )| ∈ H1(Ω)

and using the a-priori estimates, both terms on the right hand side of (25) are uniformly bounded with
respect to ε ∈ (0, 1) and a.e. s ∈ (0, T ). Note that the property |det(∇T )| ∈ H1(U) is based on the
assumption that Ω has a C2-boundary. For∇µ̃ε, we also get by integration via substitution:∫ t

0

∫
Q
|∇µ̃ε(x, s)|2 dx ds

≤
∫ t

0

∫
Q∩Ω
|∇µε(x, s)|2 dx ds+

∫ t

0

∫
Q\Ω
|∇µε(T (x), s)|2|∇T (x)|2 dx ds

=
∫ t

0

∫
Q∩Ω
|∇µε(x, s)|2 dx ds+

∫ t

0

∫
T (Q\Ω)

|∇µε(x, s)|2|∇T (T (x))|2| det(∇T (x))|dx ds.

(26)

We know that ∇µε is bounded in L2((Q ∩ Ω) × (0, t); Rn) and in L2(T (Q \ Ω) × (0, t); Rn) with
respect to 0 < ε � 1 by Q ∩ Ω, T (Q \ Ω) ⊂⊂ {z(t) > 0}, by assumption (2) and by the a-priori
estimates. Therefore, the left hand side of (26) is also bounded for all 0 < ε � 1. The Conical
Poincaré inequality in Theorem 3.3 yields boundedness of µ̃εδ in L2(Q× (0, t)). Finally, we can find
a neighborhood V ⊆ Q of x0 such that µ̃ε is bounded in L2(0, t;H1(V )).

�

Due to the a-priori estimates for {µε} and {uε}, the limit functions µ and u can only be expected to be
in some space-time local Sobolev space L2

tH
1
x,loc (see Remark 2.2). In the sequel, it will be necessary to

represent the maximal admissible subset of the not completely damaged area, i.e. AD({z > 0}), as a union
of Lipschitz domains which capture some parts of the Dirichlet boundary D. Following the argumentation
in [HK12], we define the shrinking set F := {z > 0} and obtain the following result.

Lemma 3.5 (cf. [HK12, Lemma 4.18]) There exists a function u ∈ L2
tH

1
x,loc(A(F ); Rn) such that ε(u) =

ê a.e. in AΓ(F ) and u = b on the boundary ΓT ∩ AΓ(F ).

A related result can be shown for the sequence {µε} by exploiting the estimates in Lemma 3.4. To proceed,
we recall a basic definition from [HK12].
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Definition 3.6 (cf. [HK12, Definition 4.1]) Let H ⊆ Ω be a relatively open subset. We call a countable
family {Uk} of open sets Uk ⊂⊂ H a fine representation for H if for every x ∈ H there exist an open set
U ⊆ Rn with x ∈ U and an k ∈ N such that U ∩ Ω ⊆ Uk.

Lemma 3.7 Let a sequence {tm} ⊆ [0, T ] containing T be dense. There exists a fine representation
{Umk }k∈N for F (tm) for every m ∈ N, a function µ ∈ L2

tH
1
x,loc(F ) and a subsequence of {µε} (also

denoted by {µε}) such that for all k,m ∈ N

µε ⇀ µ in L2(0, tm;H1(Umk )) (27)

as ε→ 0+.

Proof. A fine representation {Umk }k∈N of F (tm) can be constructed by countably many open cubes Q ⊂⊂
F (tm)∩Ω and of finitely many open sets of the form U ∩Ω such that U satisfies (22) from Lemma 3.4 (ii).
For each k,m ∈ N, we have the estimate

‖µε‖L2(0,t;H1(Umk )) ≤ C

for all 0 < ε� 1 by Lemma 3.4. By successively choosing sub-sequences and by a diagonal argument, we
obtain a µ ∈ L2

tH
1
x,loc(F ) such that (27) is satisfied (cf. proof of [HK12, Lemma 4.18]). �

The a-priori estimates and the convergence properties of {zε} in Lemma 3.2 and of {µε} in Lemma 3.7,
respectively, yield the following corollary.

Corollary 3.8 It holds for ε→ 0+:

m(zε)∇µε ⇀m(z)∇µ in L2(F ; Rn),

m(zε)∇µε → 0 in L2(ΩT \ F ; Rn).

Now, we have all necessary convergence properties to perform the degenerate limit in (15)-(20). To proceed,
we need the following auxiliary result.

Lemma 3.9 Let {tm} and {Umk } be as in Lemma 3.7. Then, for every compact subset K ⊆ F there exist a
finite set I ⊆ N, values mk ∈ N, k ∈ I and functions ψk ∈ C∞(ΩT ), k ∈ I , such that

(i) K ∩ ΩT ⊆
⋃
k∈I U

mk
k × (0, tmk),

(ii) supp(ψk) ⊆ Umkk × [0, tmk ],

(iii)
∑

k∈I ψk ≡ 1 on K.

Proof. We extend the family of open sets {V m
k } given by V m

k := Umk ×(0, tmk) in the following way. Define

P :=
{
{Wm

k }
∣∣Wm

k ⊆ Rn+1 is open with Wm
k ∩ ΩT = Umk × (0, tmk)

}
.

We see that P is non-empty and every totally ordered subset of P has an upper bound with respect to the
”≤“ ordering defined by

{Wm
k } ≤ {W̃m

k } ⇔ Wm
k ⊆ W̃m

k for all k,m ∈ N.
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By Zorn’s lemma, we find a maximal element {Ṽ m
k }. It holds

F ⊆
⋃

k,m∈N
Ṽ m
k . (28)

Assume that this condition fails. Then, because of F ∩ ΩT =
⋃
k,m∈N V

m
k , there exists a p = (x, t) ∈

F ∩ ∂(ΩT ) with p 6∈
⋃
k,m∈N Ṽ

m
k .

Let us consider the case t < T . Since F ⊆ ΩT is relatively open, we find an m0 ∈ N with x ∈ F (tm0) and
tm0 > t. By the fine representation property of {Um0

k }k∈N for F (tm0), we find an open set U ⊆ Rn with
x ∈ U and k0 ∈ N such that U ∩ Ω ⊆ Um0

k0
.

The family {W̃m
k } given by

W̃m
k :=

{
Ṽ m
k ∪ U × (−∞, tm0) if k = k0 and m = m0,

Ṽ m
k else,

satisfies {W̃m
k } ∈ P and p ∈

⋃
k,m∈N W̃

m
k which contradicts the maximality property of {Ṽ m

k }.

In the case t = T , we also find k0,m0 ∈ N and an open set U ⊆ Rn with x ∈ U such that U ∩ Ω ⊆ Um0
k0

and tm0 = T . The family {W̃m
k } given by

W̃m
k :=

{
Ṽ m
k ∪ U × R if k = k0 and m = m0,

Ṽ m
k else,

also contradicts the maximality of {Ṽ m
k }. Therefore, (28) is proven.

Heine-Borel theorem yields
K ⊆

⋃
k∈I

Ṽ mk
k

for a finite set I ⊆ N and values mk ∈ N, k ∈ I . Together with a partition of unity argument, we get
functions ψk ∈ C∞(ΩT ) such that (i)-(iii) hold. �

The degenerate limit ε→ 0+ can be performed as follows:

• We define the strain by e := ê|F ∈ L2(F ; Rn×n) and obtain for the remaining variables

c ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))?), u ∈ L2
tH

1
x,loc(AD(F ); Rn),

z ∈ L∞(0, T ;W 1,p(Ω)) ∩H1(0, T ;L2(Ω)), µ ∈ L2
tH

1
x,loc(F )

with e = ε(u) in A(F ).

• Passing to the limit ε→ 0+ in (15), (18) and (20) imply properties (3), (6) and (8) as in [HK12].

• Using Lemma 3.2 (a) and Corollary 3.8, we can pass to ε→ 0+ in (16) and obtain (4).

Let ζ ∈ L2(0, T ;H1(Ω)) with supp(ζ) ⊆ F be a test-function. Furthermore, let {ψl} be a partition
of unity of the compact set K := supp(ζ) according to Lemma 3.9. For each l ∈ N, we obtain
supp(ζψl) ⊆ Umll × [0, tml ]. Then, integrating (17) in time from 0 to tml , testing the result with ζψl
and passing to ε→ 0+ by using Lemma 3.2 and Lemma 3.7 show∫ tm

0

∫
Ω
µζψl dx ds =

∫ tm

0

∫
Ω
∇c · ∇(ζψl) + Ψ,c(c)ζψl +W,c(c, ê, z)ζψl dx ds.

Summing with respect to l ∈ I and noticing
∑

l∈I ψl ≡ 1 on supp(ζ) yield (5).
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In conclusion, the limit procedure in this section yields functions (c, e, u, z, µ) with e = ε(u) in AD(F ) and
which satisfy properties (ii)-(vi) of Definition 2.1. In particular, the damage function z has no jumps with
respect to time. We cannot ensure that {z > 0} equals AD({z > 0}) and, moreover, ifF\AD({z > 0}) 6= ∅,
it is not clear whether u can be extended to a function on F such that e = ε(u) also holds in F . This issue is
addressed in the next section where such limit functions are concatenated in order to obtain global-in-time
approximate weak solutions by Zorn’s lemma.

4 Existence results

In this section, we are going to prove the main results in this paper. The proofs are based on [HK12].

Theorem 4.1 (Maximal local-in-time weak solutions)
Let b ∈ W 1,1(0, T ;W 1,∞(Ω; Rn)), c0 ∈ H1(Ω) and z0 ∈ W 1,p(Ω) with 0 < κ ≤ z0 ≤ 1 in Ω be initial-
boundary data. Then there exist a maximal value T̂ > 0 with T̂ ≤ T and functions c, u, z, µ defined on the
time interval [0, T̂ ] such that (c, u, z, µ) is a weak solution according to Definition 2.1. Therefore, if T̂ < T ,
(c, u, z, µ) cannot be extended to a weak solution on [0, T̂ + ε].

Proof. Zorn’s lemma can be applied to the set

P :=
{

(T̂ , c, u, z, µ) | 0 < T̂ ≤ T and (c, u, z, µ) is a weak solution on

[0, T̂ ] according to Definition 2.1
}

to find a maximal element with respect to the following partial ordering

(T̂1, c1, u1, z1, µ1) ≤ (T̂2, c2, u2, z2, µ2) ⇔ T̂1 ≤ T̂2, c2|[0,bT1]
= c1, u2|[0,bT1]

= u1,

z2|[0,bT1]
= z1, µ2|[0,bT1]

= µ1. (29)

Indeed, P 6= ∅ by the result in Section 3. More precisely, since z ∈ L∞(0, T ;W 1,p(Ω))∩H1(0, T ;L2(Ω))
and since 0 < κ ≤ z0, we find an ε > 0 such that {z(t) > 0} = AD({z(t) > 0}) for all t ∈ [0, ε]. For the
proof that every totally ordered subset of P has an upper bound, we refer to [HK12]. �

The proof of global-in-time existence of approximate weak solutions requires a concatenation property (see
Lemma 4.4) which is, in turn, based on some deeper insights into the Γ-limit E. To this end, it is necessary
to have more information about the recovery sequences for Fε

Γ−→ F.

We will introduce the following substitution method. Assume that u ∈ H1(Ω; Rn) minimizes Fε(c, ε(·), z)
with Dirichlet data ξ on D. Then, by expressing the elastic energy density W in terms of its derivative W,e,
i.e.

W =
1
2
W,e : e+

1
2
zϕ2(c) : e+ zϕ3(c),

and by testing the Euler-Lagrange equation for u with ζ = u− ũ for a function ũ ∈ H1(Ω; Rn) with ũ = ξ
on D, the elastic energy term in Fε can be rewritten as∫

Ω
Wε(c, ε(u), z) dx =

∫
Ω

(g(z) + ε)
(
ϕ1ε(u) : ε(ũ) +

1
2
ϕ2(c) : (ε(u) + ε(ũ)) + ϕ3(c)

)
dx. (30)
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For convenience, in the following proof, the density W̃ is defined as

W̃ε(c, e, e1, z) := (g(z) + ε)
(
ϕ1e : e1 +

1
2
ϕ2(c) : (e+ e1) + ϕ3(c)

)
.

Lemma 4.2 For every c ∈ H1(Ω), ξ ∈ W 1,∞(Ω) and z ∈ W 1,p(Ω) there exists a sequence δε → 0+ such

that (c, ξ, (z − δε)+)→ (c, ξ, z) is a recovery sequence for Fε
Γ−→ F.

Proof. We follow the idea of the proof in [HK12, Lemma 4.9]. But here we have an additional concentration
variable which complicates the calculation. Let (cε, ξε, zε) → (c, ξ, z) be a recovery sequence such that
(z − δε)+ ≤ zε for some sequence δε → 0+. Consider

Fε(c, ξ, (z − δε)+)− Fε(cε, ξε, zε) = Fε(c, ξ, (z − δε)+)− Fε(c, ξ, zε)︸ ︷︷ ︸
Aε

+ Fε(c, ξ, zε)− Fε(cε, ξε, zε)︸ ︷︷ ︸
Bε

.

Since Aε ≤ 0, we focus on the second term of the right hand side. Let uε, vε ∈ H1
D(Ω; Rn) be given by

uε = arg min
ζ∈H1

D(Ω;Rn)

Fε(c, ε(ξ + ζ), zε), vε = arg min
ζ∈H1

D(Ω;Rn)

Fε(cε, ε(ξε + ζ), zε).

Using (30) for (c, ξ+uε, zε) with test-function ũ = vε and (30) for (cε, ξε+vε, zε) with test-function ũ = uε,
we obtain a calculation as follows:

Bε = Fε(c, ε(ξ + uε), zε)−Fε(cε, ε(ξε + vε), zε, )

=
∫

Ω
W̃ (c, ε(ξ + uε), ε(ξ + vε), zε + ε)− W̃ (cε, ε(ξε + vε), ε(ξε + uε), zε + ε) dx

=
∫

Ω
(g(zε) + ε)

(
ϕ1ε(ξ + uε) : ε(ξ + vε)− ϕ1ε(ξε + uε) : ε(ξε + vε)

+
1
2
ϕ2(c) : ε(2ξ + uε + vε)−

1
2
ϕ2(cε) : ε(2ξ + vε + uε) + ϕ3(c)− ϕ3(cε)

)
dx

=
∫

Ω
(g(zε) + ε)

(
ϕ1ε(ξ) : ε(ξ)− ϕ1ε(ξε) : ε(ξε) + ϕ1ε(uε + vε) : ε(ξ − ξε)

+ ϕ2(c) : ε(ξ − ξε) +
1
2

(ϕ2(c)− ϕ2(cε)) : ε(2ξε + uε + vε) + ϕ3(c)− ϕ3(cε)
)

dx

≤
∫

Ω
(g(zε) + ε)

(
ϕ1ε(ξ) : ε(ξ)− ϕ1ε(ξε) : ε(ξε) + ϕ2(c) : ε(ξ − ξε) + ϕ3(c)− ϕ3(cε)

)
dx

+ ‖(g(zε) + ε)ϕ1ε(uε + vε)‖L2(Ω)‖ε(ξ − ξε)‖L2(Ω)

+
1
2
‖ϕ2(c)− ϕ2(cε)‖L2(Ω)

(
‖(g(zε) + ε)ε(ξε + uε)‖L2(Ω) + ‖(g(zε) + ε)ε(ξε + vε)‖L2(Ω)

)
Using the convergence properties cε ⇀ c in H1(Ω), ξε → ξ in W 1,∞(Ω), zε ⇀ z in W 1,p(Ω) and the
boundedness ofFε(c, ε(ξ+uε), zε) andFε(cε, ε(ξε+vε), zε) with respect to ε, we conclude lim supε→0+ Bε ≤
0. The claim follows as in [HK12, Lemma 4.9]. �

Remark 4.3 The knowledge of such recovery sequences for Fε
Γ−→ F gives also more information about E.

In particular, we obtain an analogous result for E as in Lemma 4.2 and, moreover, the following properties

15



(cf. [HK12, Corollary 4.10, Lemma 4.11]):

• E(c, ξ,1F z) ≤ E(c, ξ, z)

• E(c, ξ, z) ≤ E(c, ε(u), z)

∀c ∈ H1(Ω), ∀ξ ∈W 1,∞(Ω; Rn), ∀z ∈W 1,p(Ω)
∀F ⊆ Ω open with 1F z ∈W 1,p(Ω),

∀c ∈ H1(Ω), ∀ξ ∈W 1,∞(Ω; Rn), ∀z ∈W 1,p(Ω) with
0 ≤ z ≤ 1, ∀u ∈ H1

loc({z > 0}; Rn) with u = ξ on D ∩ {z > 0}.

Lemma 4.4 (cf. [HK12, Lemma 4.21]) Let t1 < t2 < t3 be real numbers and let η > 0. Suppose that

q̃ := (c̃, ẽ, ũ, z̃, µ̃, F̃ ) is an approximate weak solution on [t1, t2],

q̂ := (ĉ, ê, û, ẑ, µ̂, F̂ ) is an approximate weak solution on [t2, t3]

with ê+
t2

= E(ĉ(t2), b̂(t2), ẑ+(t2)) (the value e+
t2

for q̂ in Definition 2.1).

Furthermore, suppose the compatibility condition ĉ(t2) = c̃(t2) and ẑ+(t2) = z̃−(t2)1AD({ez−(t2)>0}) and
the Dirichlet boundary data b ∈W 1,1(t1, t3;W 1,∞(Ω; Rn)).

Then, we obtain that q := (c, e, u, z, µ, F ) defined as q|[t1,t2) := q̃ and q|[t2,t3] := q̂ is an approximate weak
solution on [t1, t3].

Proof. Because of the properties in Remark 4.3 we can prove the following crucial energy estimate at time
point t2:

lim
s→t−2

ess inf
τ∈(s,t2)

E(c(τ), e(τ), z(τ)) = lim
s→t−2

ess inf
τ∈(s,t2)

E(c(τ), e(τ), z−(τ))

≥ lim
s→t−2

ess inf
τ∈(s,t2)

E(c(τ), ε(u(τ)), z−(τ)1AD({z−(τ)>0}))

≥ lim
s→t−2

ess inf
τ∈(s,t2)

E(c(τ), b(τ), z−(τ)1AD({z−(τ)>0}))

≥ E(c(t2), b(t2), χ)
≥ E(c(t2), b(t2), z+(t2))

with χ := z−(t2)1T
τ∈(t1,t2) AD({z−(τ)>0}). With this estimate, we can verify the claim by the same argu-

mentation as for [HK12, Lemma 4.21]. �

Theorem 4.5 (Global-in-time approximate weak solutions)
Let b ∈ W 1,1(0, T ;W 1,∞(Ω; Rn)), c0 ∈ H1(Ω) and z0 ∈ W 1,p(Ω) with 0 ≤ z0 ≤ 1 in Ω and {z0 >
0} admissible with respect to D be initial-boundary data. Furthermore, let η > 0. Then there exists an
approximate weak solution (c, e, u, z, µ) with fineness η > 0 according to Definition 2.3.

Proof. This result can also be proven by using Zorn’s lemma on the set

P :=
{

(T̂ , c, e, u, z, µ, F ) | 0 < T̂ ≤ T and (c, e, u, z, µ, F ) is an approximate weak solution on

[0, T̂ ] with fineness η according to Definition 2.3
}

with an ordering analogously to (29). The assumptions for Zorn’s lemma can be proven as in Theorem 4.1
(see [HK12, Proof of Theorem 4.1]). To show that a maximal element from P is actually an approximate
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weak solution on the time-interval [0, T ], we need the concatenation property in Lemma 4.4. Indeed, if a
maximal element q̃ is only defined on an time-interval [0, T̃ ] with T̃ < T we can apply the degenerated limit
procedure in Section 3 to the initial values c(T̃ ) and z(T̃ ) to obtain a new limit function q̂. By exploiting
Lemma 4.4, q is an approximate weak solution on the time-interval [0, T̃ + ε] for a small ε > 0 which
contradicts the maximality of q̃. �
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