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Abstract

The aim of this paper is to prove existence of weak solutions of hyperbolic-parabolic evolution
inclusions defined on Lipschitz domains with mixed boundary conditions describing, for instance,
damage processes and elasticity with inertial effects. To this end, we first present a suitable weak
formulation in order to deal with such evolution inclusions. Then, existence of weak solutions
is proven by utilizing time-discretization, H2–regularization and variational techniques.

1 Introduction

The gradient-of-damage model motivated by Frémond and Nedjar in [FN96] describes the damage
progression by microscopic motions in solid structures resulting from the growth of microcracks and
microvoids. In this approach, an order parameter z models the degree of damage in every material
point. It has the range [0, 1] with the following interpretation: the value 1 stands for no damage, a
value between 0 and 1 qualifies partial damage and the value 0 indicates maximal damage. Beyond
that, elastic deformations are described by a vector function u which specifies the displacement
from a given reference configuration Ω. The evolution law for u and z consists of two equations:
a hyperbolic equation for the mechanical forces and a parabolic equation for the damage process
involving two subgradients. The considered evolution can be summarized in the following PDE
system with the unknowns (u, z, ξ, ϕ):

utt − div (W,e(ε(u), z)) = l, (1a)
zt −∆pz + W,z(ε(u), z) + f ′(z) + ξ + ϕ = 0, (1b)
ξ ∈ ∂I[0,∞)(z), (1c)

ϕ ∈ ∂I(−∞,0](zt), (1d)

supplemented with the following initial-boundary conditions

u = b on ΓD × (0, T ), (2a)
W,e(ε(u), z) · ν = 0 on ΓN × (0, T ), (2b)
∇z · ν = 0 on ∂Ω, (2c)

u(0) = u0 in Ω, (2d)

ut(0) = v0 in Ω, (2e)

z(0) = z0 in Ω. (2f)

The hyperbolic equation (1a) is the balance equation of forces containing inertial effects modeled
by utt, the parabolic equation (1b) describes the evolution law for the damage processes and (1c)
as well as (1d) are sub-gradients corresponding to the constraints that the damage is non-negative
(z ≥ 0) and irreversible (zt ≤ 0).
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Moreover, l denotes the exterior volume forces, f is a given damage-dependent potential, ε(u)
describes the linearized strain tensor, i.e. ε(u) = 1

2(∇u + (∇u)T), and ΓD and ΓN are the Dirichlet
part and the Neumann part of the boundary ∂Ω. The elastic energy density W is assumed to be of
the form

W (e, z) =
1
2
h(z)Ce : e, (3)

where h models the influence of the damage on the stiffness tensor C. We assume that h′ ≥ 0 and
that complete damage does not occur, i.e., h is bounded from below by a positive constant. Let
us note that an activation threshold for the damage process can be modeled by linear terms in the
potential f .

Our goal of this paper is to prove existence of weak solutions for the system (1) on Lipschitz domains
Ω. First of all, we would like to mention that because of the Lipschitz regularity of ∂Ω and the
mixed boundary conditions for u, we cannot apply H2–regularity theory. Furthermore, we do not
have viscous terms such as ε(ut) in the force balance equation (1a) which gives better space-time
regularity for u. In the literature (see for instance [Seg04, BSS05, RR12]), H2–regularity for u as
well as viscous regularizations are used to handle the differential inclusion (1b)-(1d) with Yosida
regularization techniques. We present a different approach which allows to prove existence in a
weak notion. More precisely, we show that the inclusion (1b)-(1d) can be rewritten as a variation
inequality and a total energy inequality. For both properties, we need less regularity for the damage
variable z. By using variational techniques introduced in [HK13] and H2–regularization techniques,
we are eventually able to show existence of weak solutions.

The paper is structured as follows. In Section 2, we introduce some notation and preliminary
mathematical results from [HK13]. The main part is Section 3. We state and justify a notion of
weak solutions in Subsection 3.1. The proof of the existence theorem ranges from Subsection 3.2
to Subsection 3.3. In the first instance, we prove existence of weak solution for an H2–regularized
problem by using a time-discretization scheme and by applying variational techniques from Section
2 to pass to the time-continuous system. Finally, we get rid of the regularization by a further limit
passage which is performed in Subsection 3.3.

We like to conclude this introduction with a list in Table 1 showing some selected mathematical
works of related damage models and their results (the list is, of course, only an excerpt and by far
not complete).

Model type Boundary conditions Results References
quasi-static force balance “smooth” boundary, local existence [BS04]
+ regularized rate-depend. 0–boundary cond. +uniqueness
damage (special cases)

viscoelasticity “smooth” boundary, local existence [BSS05]
+ rate-dependent damage 0–boundary cond. +uniqueness

(special cases)
quasi-static force balance Lipschitz boundary, existence [HK11]
+ rate-dependent damage mixed boundary cond. +higher integr. [HK13]
+ Cahn-Hilliard equation
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quasi-static force balance Lipschitz boundary, existence [KRZ11]
+ rate-dependent damage mixed boundary cond. +regularity

/ rate-indep. damage +uniqueness
(special cases)

quasi-static force balance Lipschitz boundary, existence [MR06]
+ rate-independent damage mixed boundary cond. +regularity [BMR09]

+uniqueness [MT10]
viscoelasticity C2–boundary, existence [RR12]
+ rate-dependent damage 0–boundary cond. +regularity
+ heat equation +uniqueness

(special cases)

Table 1: Selected mathematical results for gradient-of-damage models.

2 Notation and preliminary results

Throughout this work, let p > n be a constant and p′ = p/(p−1) its dual and let Ω ⊆ Rn (n = 1, 2, 3)
be a bounded Lipschitz domain. For the Dirichlet boundary ΓD and the Neumann boundary ΓN of
∂Ω, we adopt the assumptions from [Ber11], i.e., ΓD and ΓN are non-empty and relatively open sets
in ∂Ω with finitely many path-connected components such that ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = ∂Ω.

The considered time interval is denoted by [0, T ] and Ωt := Ω × [0, t] for t ∈ [0, T ]. The partial
derivative of a function h with respect to a variable s is abbreviated by h,s. Furthermore, we define
for k ≥ 1 the spaces

W k,p
+ (Ω) :=

{
u ∈ W k,p(Ω) |u ≥ 0 a.e. in Ω

}
,

W k,p
− (Ω) :=

{
u ∈ W k,p(Ω) |u ≤ 0 a.e. in Ω

}
,

Hk
ΓD

(Ω) :=
{
u ∈ Hk(Ω) |u = 0 on ΓD in the sense of traces

}
.

In our considerations, we will frequently make use of the compact embedding

W 1,p(Ω) ↪→ C(Ω).

The following variational and approximation results are crucial for the proof of the existence theorem
in the next chapter.

Lemma 2.1 (See [HK13]) Let f ∈ Lp′(Ω; Rn), g ∈ L1(Ω) and z ∈ W 1,p
+ (Ω) with f · ∇z ≥ 0 a.e.

in Ω and {f = 0} ⊇ {z = 0} in an a.e. sense. Furthermore, we assume that∫
Ω

(
f · ∇ζ + gζ

)
dx ≥ 0 for all ζ ∈ W 1,p

− (Ω) with {ζ = 0} ⊇ {z = 0}.

Then ∫
Ω

(
f · ∇ζ + gζ

)
dx ≥

∫
{z=0}

max{0, g}ζ dx for all ζ ∈ W 1,p
− (Ω).

Remark 2.2 In [HK13], g is assumed to be in Lp(Ω). But the proof extends to g ∈ L1(Ω) without
any modifications.

3



In the next lemma, the notation {ζ = 0} ⊇ {f = 0} for functions in L∞(0, T ; W 1,p(Ω)) should be
read as {

x ∈ Ω | ζ(x, t) = 0
}
⊇

{
x ∈ Ω | f(x, t) = 0

}
for a.e. t ∈ (0, T ).

In the following, the subscript τ always refers to a sequence τk, k ∈ N, with τk ↘ 0 as k →∞.

Lemma 2.3 (See [HK13]) Let

• fτ , f ∈ L∞(0, T ; W 1,p
+ (Ω)), τ > 0

with fτ (t) → f(t) weakly in W 1,p(Ω) as τ ↘ 0 for a.e. t ∈ (0, T ),

• ζ ∈ L∞(0, T ; W 1,p
+ (Ω)) with {ζ = 0} ⊇ {f = 0}.

Then, there exist a sequence ζτ ∈ L∞(0, T ; W 1,p
+ (Ω)) and constants ντ,t > 0 such that

• ζτ → ζ strongly in Lq(0, T ; W 1,p(Ω)) as τ → 0+ for all q ≥ 1,

• ζτ → ζ weakly-star in L∞(0, T ; W 1,p(Ω)) as τ → 0+,

• ζτ ≤ ζ a.e. in ΩT for all τ > 0 (in particular {ζτ = 0} ⊇ {ζ = 0}),

• ντ,tζτ (t) ≤ fτ (t) in Ω for a.e. t ∈ (0, T ) and for all τ > 0.

If, in addition, ζ ≤ f a.e. in ΩT then the last condition can be refined to

ζτ ≤ fτ a.e. in ΩT for all τ > 0.

3 Analysis of the hyperbolic-parabolic system

3.1 Notion of weak solutions and existence theorem

In this work, we assume f ∈ C1([0, 1], R+) for the damage potential (see (1b)) and W to be given
by (3) with h ∈ C1([0, 1]; R) and h ≥ c on [0, 1] for a constant c > 0. Furthermore, we will use the
assumption h′ ≥ 0 on [0, 1].

The main idea for a weak formulation is to rewrite the doubly nonlinear differential inclusion
(1b)-(1d) into a variational inequality and a total energy inequality. This kind of notion was
introduced in [HK11] and is adapted to the present situation in the following (see Proposition 3.2
for a justification).

Definition 3.1 (Weak solution) We consider the following given data:

external volume forces: l ∈ L2(0, T ; L2(Ω; Rn)),

Dirichlet boundary data: b ∈ H1(0, T ; H2(Ω; Rn) ∩W 2,1(0, T ; L2(Ω; Rn)),

initial values: u0 ∈ H1(Ω; Rn), v0 ∈ L2(Ω; Rn), z0 ∈ W 1,p(Ω)

with 0 ≤ z0 ≤ 1 a.e. in Ω.

A weak solution of the PDE system (1)-(2) for the data (f, b, u0, v0, z0) is a triple (u, z, ξ) satisfying
the following properties:
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(i) spaces:

u ∈ L∞(0, T ; H1(Ω; Rn)) ∩W 1,∞(0, T ; L2(Ω; Rn)) ∩H2(0, T ; (H1
ΓD

(Ω; Rn))∗)

with u = b on ΓD × (0, T ), u(0) = u0 a.e. in Ω, ∂tu(0) = v0 a.e. in Ω,

z ∈ L∞(0, T ; W 1,p(Ω)) ∩H1(0, T ; L2(Ω))

with z(0) = z0 in Ω, z ≥ 0 a.e. in ΩT , ∂tz ≤ 0 a.e. in ΩT ,

ξ ∈ L∞(0, T ; L1(Ω)),

(ii) for all ζ ∈ H1
ΓD

(Ω; Rn) and for a.e. t ∈ (0, T ):

〈∂ttu, ζ〉H1 +
∫

Ω
W,e(ε(u), z) : ε(ζ) dx =

∫
Ω

l · ζ dx, (4)

(iii) for all ζ ∈ W 1,p
− (Ω) and for a.e. t ∈ (0, T ):

0 ≤
∫

Ω

(
|∇z|p−2∇z · ∇ζ + (W,z(ε(u), z) + f ′(z) + ξ + ∂tz)ζ

)
dx, (5)

(iv) for all ζ ∈ L∞+ (Ω) and for a.e. t ∈ (0, T ):

0 ≥
∫

Ω
ξ(ζ − z) dx, (6)

(v) total energy inequality for a.e. t ∈ (0, T ):∫
Ω

(
1
p
|∇z(t)|p + W (ε(u(t)), z(t)) + f(z(t)) +

1
2
|∂tu(t)|2

)
dx

+
∫

Ωt

|∂tz|2 dx ds−
∫

Ω
∂tu(t) · ∂tb(t) dx

≤
∫

Ω

(
1
p
|∇z0|p + W (ε(u0), z0) + f(z0) +

1
2
|v0|2

)
dx

−
∫

Ω
v0 · ∂tb

0 dx +
∫

Ωt

W,e(ε(u), z) : ε(∂tb) dx ds−
∫

Ωt

∂tu · ∂ttb dx ds

+
∫

Ωt

l · (∂tu− ∂tb) dx ds. (7)

Proposition 3.2 Let (u, z, ξ) be a weak solution. Furthermore, if additionally

u ∈ H1(0, T ; H1(Ω; Rn)), z ∈ H1(0, T ; W 1,p(Ω)),

then for a.e. t ∈ (0, T )

zt −∆pz + W,z(ε(u), z) + f ′(z) + ξ + ϕ = 0 in
(
W 1,p(Ω)

)∗
,

ξ ∈ ∂I
W 1,p

+ (Ω)
(z),

ϕ ∈ ∂I
W 1,p
− (Ω)

(zt).

Moreover, the total energy inequality (7) becomes an energy balance.
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Proof. Define the free energy functional E as

E(u, z) :=
∫

Ω

(
1
p
|∇z|p + W (ε(u), z) + g(z)

)
dx.

The Gâteaux derivatives duE and dzE are given as follows:

〈duE(u, z), ζ〉H1 =
∫

Ω
W,e(ε(u), z) : ε(ζ) dx,

〈dzE(u, z), ζ〉W 1,p =
∫

Ω

(
|∇z|p−2∇z · ∇ζ + W,z(ε(u), z) : ε(ζ) + f ′(z)

)
dx.

Testing (4) with ∂tu(t)− ∂tb(t) yields

〈duE(u, z), ∂tu〉H1 = 〈duE(u, z), ∂tb〉H1 +
∫

Ω
l · (∂tu− ∂tb) dx− d

dt

∫
Ω

1
2
|∂tu|2 dx

+ 〈∂ttu, ∂tb〉H1 . (8)

Testing (5) with ∂tz(t) yields

−
∫

Ω
|∂tz|2 dx ≤ 〈dzE(u, z), ∂tz〉W 1,p +

∫
Ω

ξ ∂tz dx. (9)

By using (8), the total energy inequality (7) can be rewritten as

E(u(t), z(t))− E(u0, z0) ≤
∫ t

0
〈duE(u(s), z(s)), ∂tu(s)〉H1 ds−

∫
Ωt

|∂tz(s)|2 dx ds. (10)

The right hand side of (10) can be estimated by (9) as follows:∫ t

0
〈duE(u(s), z(s)), ∂tu(s)〉H1 ds−

∫
Ωt

|∂tz(s)|2 dx ds

≤
∫ t

0

(
〈duE(u(s), z(s)), ∂tu(s)〉H1 + 〈dzE(u(s), z(s)), ∂tz(s)〉W 1,p

)
ds +

∫
Ωt

ξ ∂tz dx ds

= E(u(t), z(t))− E(u0, z0) +
∫

Ωt

ξ ∂tz dx ds. (11)

To obtain an energy balance from (10) and (11), we have to show
∫
Ωt

ξ ∂tz dx ds = 0. Indeed, from
(6) we infer ξ = 0 a.e. in {z > 0} and ξ ≤ 0 a.e. in {z = 0}. Therefore, it suffices to prove the
following:

for a.e. (x, s) ∈ Ωt : z(x, s) = 0 =⇒ ∂tz(x, s) = 0.

This is true because of ∂tz ≤ 0 a.e. in ΩT and by Fubini’s theorem (we also use z ∈ C(ΩT ) which
follows from an Aubin-Lions type embedding L∞(0, T ; W 1,p(Ω)) ∩ H1(0, T ; L2(Ω)) ↪→ C(ΩT ), see
[Sim86]) ∫

{z=0}
∂tz(x, s) d(x, s) =

∫
Ω

∫
{z(x)=0}

∂tz(x, s) ds dx

=
∫

Ω

(
z
(
x, T

)
− z

(
x, T inf

x

))
dx = 0,
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where {z(x) = 0} denotes the x-cut of {z = 0}, i.e.

{z(x) = 0} := {s ∈ [0, T ] | {z(x, s) = 0}}

and

T inf
x :=

{
inf{s ∈ [0, T ] | z(x, s) = 0} if {z(x, ·) = 0} 6= ∅,
T else.

Now, we have two ways of expressing the energy differences:

E(u(t), z(t))− E(u0, z0) =
∫ t

0
〈duE(u(s), z(s)), ∂tu(s)〉H1 ds−

∫
Ωt

|∂tz(s)|2 dx ds

and

E(u(t), z(t))− E(u0, z0)

=
∫ t

0

(
〈duE(u(s), z(s)), ∂tu(s)〉H1 + 〈dzE(u(s), z(s)), ∂tz(s)〉W 1,p

)
ds.

Comparison and adding
∫
Ωt

ξ ∂tz dx ds yield for a.e. t ∈ (0, T ):

〈dzE(u(t), z(t)) + ∂tz(t) + ξ(t), ∂tz(t)〉W 1,p = 0.

The variational property (5) can be rewritten for all ζ ∈ W 1,p
− (Ω) as

〈−dzE(u(t), z(t))− ∂tz(t)− ξ(t), ζ〉W 1,p ≤ 0.

Adding both, we get for all ζ ∈ W 1,p
− (Ω)

−〈dzE(u(t), z(t)) + ∂tz(t) + ξ(t), ζ − ∂tz(t)〉W 1,p ≤ 0,

which proves the claim. ¤

The main aim of this work is to prove existence of weak solutions in the sense above.

Theorem 3.3 To the given data (l, b, u0, v0, z0), there exists a weak solution of system (1)-(2) in
the sense of Definition 3.1.

3.2 Existence of weak solutions for an H2–regularized system

Here, we first solve a regularized version of our introduced damage model. The passage to the limit
system is performed in the next subsection.

Regularization

The regularized PDE system is given in a classical notion by a quadruple (u, z, ξ, ϕ) satisfying

utt − divW,e(ε(u), z) + δAu = l,

zt −∆pz + W,z(ε(u), z) + f ′(z) + ξ + ϕ = 0,
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ξ ∈ ∂I[0,∞)(z),

ϕ ∈ ∂I(−∞,0](zt),

where the linear operator A : H2(Ω; Rn) → (H2(Ω; Rn))∗ is defined as

〈Au, v〉H2 :=
∫

Ω
〈∇(∇u),∇(∇v)〉Rn×n×n dx :=

∑
1≤i,j,k≤n

∫
Ω

d2uk

dxidxj

d2vk

dxidxj
dx.

For the PDE system, we modify Definition 3.1 as follows.

Definition 3.4 (Weak solution for the regularized system) We consider the given data as in
Definition 3.1. A weak solution of the regularized PDE system for the data (l, b, u0, v0, z0) is a triple
(u, z, ξ) satisfying the following properties:

(i) spaces:

u ∈ L∞(0, T ; H2(Ω; Rn)) ∩W 1,∞(0, T ; L2(Ω; Rn)) ∩H2(0, T ; (H2
ΓD

(Ω; Rn))∗),

with u = b on ΓD × (0, T ), u(0) = u0 a.e. in Ω, ∂tu(0) = v0 a.e. in Ω,

z ∈ L∞(0, T ; W 1,p(Ω)) ∩H1(0, T ; L2(Ω)),

with z(0) = z0 in Ω, z ≥ 0 a.e. in ΩT , ∂tz ≤ 0 a.e. in ΩT ,

ξ ∈ L∞(0, T ; L1(Ω)),

(ii) for all ζ ∈ H2
ΓD

(Ω; Rn) and for a.e. t ∈ (0, T ):

〈∂ttu, ζ〉H2 +
∫

Ω
W,e(ε(u), z) : ε(ζ) dx + δ〈Au, ζ〉H2 =

∫
Ω

l · ζ dx, (12)

(iii) for all ζ ∈ W 1,p
− (Ω) and for a.e. t ∈ (0, T ):

0 ≤
∫

Ω

(
|∇z|p−2∇z · ∇ζ + (W,z(ε(u), z) + f ′(z) + ξ + ∂tz)ζ

)
dx, (13)

(iv) for all ζ ∈ L∞+ (Ω) and for a.e. t ∈ (0, T ):

0 ≥
∫

Ω
ξ(ζ − z) dx, (14)

(v) full energy inequality for a.e. t ∈ (0, T ):∫
Ω

(
1
p
|∇z(t)|p + W (ε(u(t)), z(t)) + f(z(t)) +

1
2
|∂tu(t)|2

)
dx +

∫
Ωt

|∂tz|2 dx ds

+
δ

2
〈Au(t), u(t)〉H2 −

∫
Ω

∂tu(t) · ∂tb(t) dx

≤
∫

Ω

(
1
p
|∇z0|p + W (ε(u0), z0) + f(z0) +

1
2
|v0|2

)
dx +

δ

2
〈Au0, u0〉H2

−
∫

Ω
v0 · ∂tb

0 dx +
∫

Ωt

W,e(ε(u), z) : ε(∂tb) dx ds−
∫

Ωt

∂tu · ∂ttb dx ds

+
∫

Ωt

l · (∂tu− ∂tb) dx ds + δ

∫ t

0
〈Au(t), ∂tb(t)〉H2 dt. (15)
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The existence proof for the regularized system is carried out in five steps in the following and is
based on a time-discretization scheme.

Step 1: Time-discretization

Let τ > 0 denote the discretization fineness and let Mτ := bT/τc be the number of discrete time
points.

We fix an m ∈ 1, . . . ,Mτ and define the functional Fm
τ : H2(Ω; Rn)×W 1,p(Ω) → R by

Fm
τ (u, z) :=

∫
Ω

(
1
p
|∇z|p + W (ε(u), z) + f(z)− l(mτ) · u

)
dx +

δ

2
〈Au, u〉H2

+
τ

2

∥∥∥∥z − zm−1

τ

∥∥∥∥2

L2

+
τ2

2

∥∥∥∥u− 2um−1 + um−2

τ2

∥∥∥∥2

L2

.

A minimizer of Fm
τ in the subspace{

u ∈ H2(Ω; Rn) | u|ΓD
= b(τm)|ΓD

}
×

{
z ∈ W 1,p(Ω) | 0 ≤ z ≤ zm−1

}
obtained by the direct method is denoted by (um

τ , zm
τ ). By a recursive minimization procedure

starting from the initial values (u0, z0) and u−1 := u0 − τv0, we obtain functions (um
τ , zm

τ ) for
m = 1, . . . ,Mτ . The velocity field vm

τ is set to (um
τ − um−1

τ )/τ and bm
τ and lmτ are given by b(τm)

and l(τm).

Let wm
τ ∈ {lmτ , bm

τ , um
τ , vm

τ , zm
τ }, we introduce the piecewise constant interpolations wτ , w−τ and the

linear interpolation ŵτ w.r.t. time as

wτ (t) := wm
τ with m = dt/τe ,

w−τ (t) := wmax{0,m−1}
τ with m = dt/τe ,

ŵτ (t) := βwm
τ + (1− β)wmax{0,m−1}

τ with m = dt/τe , β =
t− (m− 1)τ

τ

and the piecewise constant functions tτ and t−τ as

tτ := dt/τe τ = min{mτ |m ∈ N0 and mτ ≥ t},
t−τ := max{0, tτ − τ}.

We would like to remark that, by definition, wτ (t) = wτ (tτ ) for all t ∈ [0, T ] and

∂tv̂τ (t) =
um

τ − 2um−1
τ + um−2

τ

τ2

for t ∈ dt/τe.

Since the functions (um
τ , zm

τ ) are minimizers, we obtain the following necessary conditions (Euler-
Lagrange equations):

• uτ , vτ ∈ L∞(0, T ; H2(Ω; Rn)), ûτ , v̂τ ∈ W 1,∞(0, T ; H2(Ω; Rn)),
zτ ∈ L∞(0, T ; W 1,p(Ω)), ẑτ ∈ W 1,∞(0, T ; W 1,p(Ω)),

• for all ζ ∈ H2
ΓD

(Ω; Rn) and for a.e. t ∈ (0, T ):∫
Ω

∂tv̂τ · ζ dx +
∫

Ω
W,e(ε(uτ ), zτ ) : ε(ζ) dx + δ〈Auτ , ζ〉H2 =

∫
Ω

lτ · ζ dx, (16)
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• for a.e. t ∈ (0, T ) and for all ζ ∈ W 1,p(Ω) with 0 ≤ ζ + zτ (t) ≤ z−τ (t):

0 ≤
∫

Ω

(
|∇zτ |p−2∇zτ · ∇ζ + (W,z(ε(uτ ), zτ ) + f ′(zτ ) + ∂tẑτ )ζ

)
dx. (17)

Step 2: A priori estimates

• Testing (16) with uτ − u−τ − (bτ − b−τ ), and using the estimate∫
Ω

∂tv̂τ · (uτ − u−τ ) dx ≥ 1
2
‖vτ‖2

L2 −
1
2

∥∥v−τ
∥∥2

L2

as well as the convexity estimates (note that z−τ ≥ zτ )∫
Ω

W,e(ε(uτ ), zτ ) : ε(uτ − u−τ ) dx ≥
∫

Ω

(
W (ε(uτ ), zτ )−W (ε(u−τ ), z−τ )

)
dx (18)

δ〈Auτ , uτ − u−τ 〉H2 ≥
δ

2
〈Auτ , uτ 〉H2 −

δ

2
〈Au−τ , u−τ 〉H2 , (19)

yield

1
2
‖vτ (t)‖2

L2 −
1
2

∥∥v−τ (t)
∥∥2

L2 +
δ

2
〈Auτ (t), uτ (t)〉H2 −

δ

2
〈Au−τ (t), u−τ (t)〉H2

+
∫

Ω

(
W (ε(uτ (t)), zτ (t))−W (ε(u−τ (t)), z−τ (t))

)
dx−

∫
Ω

∂tv̂τ (t) ·
(
bτ (t)− b−τ (t)

)
dx

≤
∫

Ω
lτ (t) ·

(
uτ (t)− u−τ (t)− (bτ (t)− b−τ (t))

)
dx

+
∫

Ω
W,e(ε(uτ (t)), zτ (t)) : ε(bτ (t)− b−τ (t)) dx + δ〈Auτ (t), bτ (t)− b−τ (t)〉H2 . (20)

The right hand side can be estimated as follows (η > 0 has to be chosen suitably small)

r.h.s. ≤ τ‖lτ (t)‖L2

(
‖vτ (t)‖L2 + ‖∂tb̂τ (t)‖L2

)
+ Cτ‖ε(uτ (t))‖L2‖ε(∂tb̂τ (t))‖L2

+ δτ〈Auτ (t), uτ (t)〉1/2
H2 〈A∂tb̂τ (t), ∂tb̂τ (t)〉1/2

H2

≤ Cτ
(
‖lτ (t)‖2

L2 + ‖vτ (t)‖2
L2 + ‖∂tb̂τ (t)‖2

L2 + η‖ε(uτ (t))‖2
L2 + Cη‖ε(∂tb̂τ (t))‖2

L2

+ δ〈Auτ (t), uτ (t)〉H2 + δ〈A∂tb̂τ (t), ∂tb̂τ (t)〉H2

)
. (21)

Summing (20) over the discrete time points t = τ, 2τ, . . . , mτ with m ∈ {1, . . . ,Mτ}, taking
(21) and the regularity assumptions for l and b into account, we obtain

1
2
‖vτ (t)‖2

L2 +
δ

2
〈Auτ (t), uτ (t)〉H2 + c‖ε(uτ (t))‖2

L2 −
∫ tτ

0

∫
Ω

∂tv̂τ · ∂tb̂τ dx ds

≤ 1
2

∥∥v0
∥∥2

L2 +
δ

2
〈Au0, u0〉H2 +

∫
Ω

W (ε(u0), z0) dx

+ C

∫ tτ

0

(
‖vτ (s)‖2

L2 + η‖ε(uτ (t))‖2
L2 + δ〈Auτ (s), uτ (s)〉H2 + 1 + Cη

)
ds
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for all t ∈ [0, T ]. The discrete integration by parts formula yields for all t ∈ [0, T ]∫ tτ

0

∫
Ω

∂tv̂τ · ∂tb̂τ dx ds =
∫

Ω
vτ (t) · ∂tb̂τ (t) dx−

∫
Ω

v0 · ∂tb̂τ (0) dx

−
∫ tτ

0

∫
Ω

v−τ (s) · ∂tb̂τ (s)− ∂tb̂τ (s− τ)
τ

dx ds. (22)

We eventually obtain for all t ∈ [0, T ]

1
2
‖vτ (t)‖2

L2 +
δ

2
〈Auτ (t), uτ (t)〉H2 + c‖ε(uτ (t))‖2

L2

≤ Ĉ
(
1 +

∫ tτ

0

(
‖vτ (s)‖2

L2 + η‖ε(uτ (s))‖2
L2 + δ〈Auτ (s), uτ (s)〉H2

)
ds

−
∫ tτ

0

∫
Ω

v−τ (s) · ∂tb̂τ (s)− ∂tb̂τ (s− τ)
τ

dx ds
)

≤ C̃
(
1 +

∫ tτ

0

(
‖vτ (s)‖2

L2 + ‖v−τ (s)‖2
L2 + η‖ε(uτ (s))‖2

L2 + δ〈Auτ (s), uτ (s)〉H2

)
ds

)
.

Applying Gronwall’s inequality for piecewise constant functions shows

‖∇(∇uτ )‖L∞(0,T ;L2(Ω;Rn×n×n)) < C,

‖ε(uτ )‖L∞(0,T ;L2(Ω;Rn×n)) < C,

and

‖vτ‖L∞(0,T ;L2(Ω;Rn)) < C,

where C > 0 is independent of τ . Combining these estimates with Korn’s inequality, we obtain

‖uτ‖L∞(0,T ;H2(Ω;Rn)) < C.

Consequently, by noticing vτ = ∂tûτ ,

‖ûτ‖L∞(0,T ;H2(Ω;Rn))∩W 1,∞(0,T ;L2(Ω;Rn)) < C.

A comparison argument in (16) also gives

‖v̂τ‖L∞(0,T ;L2(Ω;Rn))∩H1(0,T ;(H2
ΓD

(Ω;Rn))∗) < C.

• Testing (17) with z−τ − zτ and using the convexity estimate∫
Ω
|∇zτ |p−2∇zτ · ∇(zτ − z−τ ) dx ≥ 1

p
‖∇zτ‖p

Lp −
1
p
‖∇z−τ ‖

p
Lp

yield

1
p
‖∇zτ (t)‖p

Lp −
1
p
‖∇z−τ (t)‖p

Lp + τ ‖∂tẑτ (t)‖2
L2

≤
∫

Ω

(
W,z(ε(uτ (t)), zτ (t)) + f ′(zτ (t))

)
(z−τ (t)− zτ (t)) dx. (23)
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Thus (η > 0 has to be chosen suitably small)

1
p
‖∇zτ (t)‖p

Lp −
1
p
‖∇z−τ (t)‖p

Lp + τ ‖∂tẑτ (t)‖2
L2

≤ τη ‖∂tẑτ (t)‖2
L2 + Cη‖W,z(ε(uτ (t)), zτ (t)) + f ′(zτ (t))‖2

L2 .

Summing over the discrete time points t = 1, . . . ,mτ , m ∈ {0, . . . ,Mτ}, and using 0 ≤ zτ ≤ 1
as well as ‖uτ‖L∞(0,T ;H2(Ω;Rn)) < C, we end up with

‖zτ‖L∞(0,T ;W 1,p(Ω)) < C,

‖ẑτ‖L∞(0,T ;W 1,p(Ω))∩H1(0,T ;L2(Ω)) < C.

In conclusion, we obtain the following a priori estimates.

Corollary 3.5 There exists a C > 0 such that for all τ > 0

‖vτ‖L∞(0,T ;L2(Ω;Rn)) < C, (24)

‖uτ‖L∞(0,T ;H2(Ω;Rn)) < C, (25)

‖ûτ‖L∞(0,T ;H2(Ω;Rn))∩W 1,∞(0,T ;L2(Ω;Rn)) < C, (26)

‖v̂τ‖L∞(0,T ;L2(Ω;Rn))∩H1(0,T ;(H2
ΓD

(Ω;Rn))∗) < C, (27)

‖zτ‖L∞(0,T ;W 1,p(Ω)) < C, (28)

‖ẑτ‖L∞(0,T ;W 1,p(Ω))∩H1(0,T ;L2(Ω)) < C. (29)

Step 3: Compactness

Standard weakly and weakly-star compactness results applied to the a priori estimates (24)-(29)
reveal existence of functions

u, u− ∈ L∞(0, T ; H2(Ω; Rn)),

û ∈ L∞(0, T ; H2(Ω; Rn)) ∩W 1,∞(0, T ; L2(Ω; Rn)),

v, v− ∈ L∞(0, T ; L2(Ω; Rn)),

v̂ ∈ L∞(0, T ; L2(Ω; Rn)) ∩W 1,∞(0, T ; (H2
ΓD

(Ω; Rn))∗),

z, z− ∈ L∞(0, T ; W 1,p(Ω)),

ẑ ∈ L∞(0, T ; W 1,p(Ω)) ∩H1(0, T ; L2(Ω))

and subsequences indexed by τk such that

uτk
→ u weakly-star in L∞(0, T ; H2(Ω; Rn)), (30)

u−τk
→ u− weakly-star in L∞(0, T ; H2(Ω; Rn)), (31)

ûτk
→ û weakly-star in L∞(0, T ; H2(Ω; Rn)) ∩W 1,∞(0, T ; L2(Ω; Rn)), (32)

vτk
→ v weakly-star in L∞(0, T ; L2(Ω; Rn)), (33)

v−τk
→ v− weakly-star in L∞(0, T ; L2(Ω; Rn)), (34)

v̂τk
→ v̂ weakly-star in L∞(0, T ; L2(Ω; Rn)) ∩H1(0, T ; (H2

ΓD
(Ω; Rn))∗), (35)

zτk
→ z weakly-star in L∞(0, T ; W 1,p(Ω)), (36)
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z−τk
→ z− weakly-star in L∞(0, T ; W 1,p(Ω)), (37)

ẑτk
→ ẑ weakly-star in L∞(0, T ; W 1,p(Ω)) and weakly in H1(0, T ; L2(Ω)). (38)

Taking into account uτk
−u−τk

= τk∂tûτk
and τk∂tûτk

→ 0 strongly in L∞(0, T ; L2(Ω; Rn)), we obtain
u = u− = û. Analogously, we get v = v− = v̂ and z = z− = ẑ. The identity ∂tûτk

= vτk
implies

∂tu = v. Thus

u ∈ L∞(0, T ; H2(Ω; Rn)) ∩W 1,∞(0, T ; L2(Ω; Rn)) ∩H2(0, T ; (H2
ΓD

(Ω; Rn))∗),

z ∈ L∞(0, T ; W 1,p(Ω)) ∩H1(0, T ; L2(Ω)).

Applying standard compactness arguments (Aubin-Lion theorem, see [Sim86], and the compact
embedding W 1,p(Ω) ↪→ L∞(Ω)) show

uτk
, u−τk

, ûτk
→ u strongly in Lq(0, T ; H1(Ω; Rn)) for every q ≥ 1, (39)

zτk
, z−τk

, ẑτk
→ z strongly in C(ΩT ). (40)

By choosing further subsequences (we omit the additional subscript), we also obtain pointwise a.e.
in ΩT convergence of uτk

.

Strong convergence of of {∇zτk
} in Lp(ΩT ; Rn) can be shown by a tricky approximation argument.

Lemma 3.6 There exists a subsequence of τk (omitting the additional subscript) such that zτk
→ z

in Lp(0, T ; W 1,p(Ω)).

Proof. According to Lemma 2.3, there exists an approximation sequence {ζτk
} ⊆ L∞(0, T ; W 1,p

+ (Ω))
with the properties:

ζτk
→ z strongly in Lp(0, T ; W 1,p(Ω)), (41)

0 ≤ ζτk
≤ z−τk

a.e. in ΩT for all k ∈ N. (42)

We omit the subscript k for notational convenience. Due to (42), we obtain

0 ≤ (ζτ − zτ ) + zτ ≤ z−τ

and, therefore, we can test (17) with ζτ − zτ and integrate in time:∫
ΩT

|∇zτ |p−2∇zτ · ∇(zτ − ζτ ) dx dt ≤
∫

ΩT

(
W,z(ε(uτ ), zτ ) + f ′(zτ ) + ∂tẑτ

)
(ζτ − zτ ) dx dt.

A uniform p-convexity argument and the above estimate show

c‖∇z −∇zτ‖p
Lp ≤

∫
ΩT

(
|∇z|p−2∇z − |∇zτ |p−2∇zτ

)
· ∇(z − zτ ) dx dt

=
∫

ΩT

|∇z|p−2∇z · ∇(z − zτ ) dx dt +
∫

ΩT

|∇zτ |p−2∇zτ · ∇(zτ − ζτ ) dx dt

+
∫

ΩT

|∇zτ |p−2∇zτ · ∇(ζτ − z) dx dt

≤
∫

ΩT

(
W,z(ε(uτ ), zτ ) + f ′(zτ ) + ∂tẑτ

)
(ζτ − zτ ) dx dt

+
∫

ΩT

|∇z|p−2∇z · ∇(z − zτ ) dx dt +
∫

ΩT

|∇zτ |p−2∇zτ · ∇(ζτ − z) dx dt. (43)

In the following, we prove that every term on the right hand side converges to 0 as τ ↘ 0.
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• The first integral on the r.h.s of (43) can be estimated as follows∫
ΩT

(
W,z(ε(uτ ), zτ ) + f ′(zτ ) + ∂tẑτ

)
(ζτ − zτ ) dx dt

≤
∥∥W,z(ε(uτ ), zτ ) + f ′(zτ )

∥∥
L∞(0,T ;L1(Ω))

‖ζτ − zτ‖L1(0,T ;L∞(Ω))

+
∥∥∂tẑτ

∥∥
L2(ΩT )

∥∥ζτ − zτ

∥∥
L2(ΩT )

. (44)

Note that for this estimate it suffices to have boundedness of uτ in
L∞(0, T ; H1(Ω; Rn)) instead of the much stronger result (25) (the situation will change for the
passage δ ↘ 0 in Subsection 3.3). By using the boundedness of uτ in L∞(0, T ; H1(Ω; Rn)),
boundedness properties (28)-(29) and convergence properties (40)-(41), we get convergence to
0+ of the two summands on the right hand side of (44).

• Due to (36), the second integral on the r.h.s. of (43) converges to 0+.

• We estimate the third integral on the r.h.s. of (43):∫
Ω
|∇zτ |p−2∇zτ · ∇(ζτ − z) dx dt ≤ ‖∇zτ‖p−1

Lp ‖∇(ζτ − z)‖Lp .

Because of the boundedness property (28) and the convergence property (41), we obtain
convergence to 0+ of the integral term above.

In conclusion, we obtain zτk
→ z strongly in Lp(0, T ; W 1,p(Ω)). ¤

Step 4: Energy inequality

By using the sharper estimate∫
Ω

W,e(ε(uτ ), zτ ) : ε(uτ − u−τ ) dx

≥
∫

Ω

(
W (ε(uτ ), zτ )−W (ε(u−τ ), z−τ )

)
dx

+
∫

Ω

1
2

(
h(z−τ )− h(zτ )

)
Cε(u−τ ) : ε(u−τ ) dx

than the convexity estimate (18), we obtain by testing (16) with uτ − u−τ − (bτ − b−τ ) (cf. (20)):

1
2
‖vτ (t)‖2

L2 −
1
2

∥∥v−τ (t)
∥∥2

L2 +
δ

2
〈Auτ (t), uτ (t)〉H2 −

δ

2
〈Au−τ (t), u−τ (t)〉H2

+
∫

Ω

(
W (ε(uτ (t)), zτ (t))−W (ε(u−τ (t)), z−τ (t))

)
dx−

∫
Ω

∂tv̂τ (t) ·
(
bτ (t)− b−τ (t)

)
dx

+
∫

Ω

1
2

(
h(z−τ (t))− h(zτ (t))

)
Cε(u−τ (t)) : ε(u−τ (t)) dx

≤
∫

Ω
lτ (t) ·

(
uτ (t)− u−τ (t)− (bτ (t)− b−τ (t))

)
dx

+
∫

Ω
W,e(ε(uτ (t)), zτ (t)) : ε(bτ (t)− b−τ (t)) dx + δ〈Auτ (t), bτ (t)− b−τ (t)〉H2 . (45)
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Adding the estimates (45) and (23), we end up with

1
2
‖vτ (t)‖2

L2 −
1
2

∥∥v−τ (t)
∥∥2

L2 +
δ

2
〈Auτ (t), uτ (t)〉H2 −

δ

2
〈Au−τ (t), u−τ (t)〉H2

+
1
p
‖∇zτ (t)‖p

Lp −
1
p
‖∇z−τ (t)‖p

Lp + τ ‖∂tẑτ (t)‖2
L2 −

∫
Ω

∂tv̂τ (t) ·
(
bτ (t)− b−τ (t)

)
dx

+
∫

Ω

(
W (ε(uτ (t)), zτ (t))−W (ε(u−τ (t)), z−τ (t))

)
dx

+
∫

Ω
f(zτ (t)) dx−

∫
Ω

f(z−τ (t)) dx + τe1
τ (t) + τe2

τ (t)

≤
∫

Ω
lτ (t) ·

(
uτ (t)− u−τ (t)− (bτ (t)− b−τ (t))

)
dx

+
∫

Ω
W,e(ε(uτ (t)), zτ (t)) : ε(bτ (t)− b−τ (t)) dx + δ〈Auτ (t), bτ (t)− b−τ (t)〉H2

with the error terms

e1
τ (t) :=

∫
Ω

1
2

h(z−τ (t))− h(zτ (t))
τ

Cε(u−τ (t)) : ε(u−τ (t)) dx

+
∫

Ω
W,z(ε(uτ (t)), zτ (t)) ∂tẑτ (t) dx

e2
τ (t) := −

∫
Ω

f(zτ (t))− f(z−τ (t))
τ

dx +
∫

Ω
f ′(zτ (t)) ∂tẑτ (t) dx.

Summing over the discrete time points and taking into account formula (22), we finally obtain∫
Ω

(
1
p
|∇zτ (t)|p + W (ε(uτ (t)), zτ (t)) + f(zτ (t)) +

1
2
|vτ (t)|2

)
dx +

δ

2
〈Auτ (t), uτ (t)〉H2

+
∫ tτ

0

∫
Ω
|∂tẑτ |2 dx ds +

∫ tτ

0

(
e1
τ (s) + e2

τ (s)
)

ds−
∫

Ω
vτ (t) · ∂tb̂τ (t) dx

≤
∫

Ω

(
1
p
|∇z0|p + W (ε(u0), z0) + f(z0) +

1
2
|v0|2

)
dx +

δ

2
〈Au0, u0〉H2

+
∫ tτ

0

∫
Ω

lτ ·
(
∂tûτ − ∂tb̂τ

)
dx ds +

∫ tτ

0

∫
Ω

W,e(ε(uτ ), zτ ) : ε(∂tb̂τ ) dx ds

+ δ

∫ tτ

0
〈Auτ (s), ∂tb̂τ (s)〉H2 ds−

∫
Ω

v0 · ∂tb̂τ (0) dx

−
∫ tτ

0

∫
Ω

v−τ (s) · ∂tb̂τ (s)− ∂tb̂τ (s− τ)
τ

dx ds. (46)

Step 5: Continuous limit

We are going to establish the equalities and inequalities of the weak formulation (12)-(15).

• By using the canonical embedding L2(Ω; Rn) ↪→ (H2
ΓD

(Ω; Rn))∗, it follows for all ζ ∈ H2
ΓD

(Ω; Rn)∫
Ω

∂tv̂τ (t) · ζ dx = 〈∂tv̂τ (t), ζ〉H2 .

Keeping this identity in mind, integrating (16) from t = 0 to t = T and passing to the limit
τ ↘ 0 by using (30), (35), (39) and (40), we obtain (12).
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• The main difficulty is to obtain the variational inequalities (13) and (14). The proof is per-
formed in two steps.

- Let ζ ∈ L∞(0, T ; W 1,p
− (Ω)) with {ζ = 0} ⊇ {z = 0}. By Lemma 2.3, we obtain a sequence

{ζτk
} ⊆ L∞(0, T ; W 1,p

− (Ω)) (we omit k) and constants ντ,t > 0 with the properties:

ζτ → ζ strongly in Lp(0, T ; W 1,p(Ω)), (47)
0 ≥ ντ,tζτ (t) ≥ −zτ (t) in Ω for a.e. t and all τ. (48)

Due to (48) and zτ ≤ z−τ , we also have for a.e. t:

0 ≤ ντ,tζτ (t) + zτ (t) ≤ z−τ (t) in Ω.

In consequence, for a.e. t, we can test (17) with ντ,tζτ (t). Dividing the resulting inequality
by ντ,t, integrating in time and passing to the limit τ ↘ 0 by using Lemma 3.6 and the
convergence properties (38), (39) and (47) yield

0 ≤
∫

ΩT

(
|∇z|p−2∇z · ∇ζ + (W,z(ε(u), z) + f ′(z) + ∂tz)ζ

)
dx.

In particular, we get an a.e. in time t formulation.

- We may apply Lemma 2.1 to the above variational inequality. Then, we obtain for all
ζ ∈ W 1,p

− (Ω) the inequality

0 ≤
∫

ΩT

(
|∇z|p−2∇z · ∇ζ + (W,z(ε(u), z) + f ′(z) + ξ̂ + ∂tz)ζ

)
dx (49)

with ξ̂ ∈ L1(ΩT ) given by

ξ̂ = −χ{z=0}max
{

0, W,z(e(u), z) + f ′(z) + ∂tz
}

.

Due to ∂tz ≤ 0 a.e. in ΩT , we may replace ξ̂ by ξ ∈ L∞(0, T ; L1(Ω)) in (49), where ξ is
given by

ξ = −χ{z=0}max
{

0, W,z(e(u), z) + f ′(z)
}

. (50)

In particular, (13) is valid for a subgradient ξ satisfying (14).

• To treat the energy inequality in (46), we set

Aτ (t) :=
∫

Ω

(
1
p
|∇zτ (t)|p + W (ε(uτ (t)), zτ (t)) + f(zτ (t)) +

1
2
|vτ (t)|2

)
dx

−
∫

Ω

(
1
p
|∇z0|p + W (ε(u0), z0) + f(z0) +

1
2
|v0|2

)
dx

+
δ

2
〈Auτ (t), uτ (t)〉H2 −

δ

2
〈Au0, u0〉H2 −

∫
Ω

vτ (t) · ∂tb̂τ (t) dx

+
∫

Ω
v0 · ∂tb̂τ (0) dx
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Bτ (t) :=
∫ tτ

0

∫
Ω
|∂tẑτ |2 dx ds−

∫ tτ

0

∫
Ω

lτ ·
(
∂tûτ − ∂tb̂τ

)
dx ds

−
∫ tτ

0

∫
Ω

W,e(ε(uτ ), zτ ) : ε(∂tb̂τ ) dx ds− δ

∫ tτ

0
〈Auτ (s), ∂tb̂τ (s)〉H2 ds

+
∫ tτ

0

∫
Ω

v−τ (s) · ∂tb̂τ (s)− ∂tb̂τ (s− τ)
τ

dx ds,

E1
τ (t) :=

∫ tτ

0
e1
τ (s) ds,

E2
τ (t) :=

∫ tτ

0
e2
τ (s) ds.

Then, (46) is equivalent to

Aτ (t) + Bτ (t) + E1
τ (t) + E2

τ (t) ≤ 0. (51)

Furthermore, by the a priori estimates, we observe that

|Aτ (t)|+ |Bτ (t)|+ |E1
τ (t)|+ |E2

τ (t)| < C (52)

for all t ∈ [0, T ] and for all τ > 0 (along a subsequence τk). Next, we consider the liminfτ↘0

of each term in (51) separately.

- By the already proven convergence properties and by lower semi-continuity arguments,
we obtain

lim inf
τ↘0

∫ t2

t1

Aτ (t) dt ≥
∫ t2

t1

A(t) dt for all 0 ≤ t1 ≤ t2 ≤ T, (53)

where A is defined as Aτ but uτ , zτ , vτ and b̂τ are substituted by their continuous limits.
Note that this lim inf–estimate does not necessarily hold pointwise a.e. in t because we
do not know vτ (t) → v(t) weakly in L2(Ω; Rn) for a.e. t (see (33)).

- Let 0 ≤ t1 ≤ t2 ≤ T be arbitrary. By Fatou’s lemma, by (38) and by a lower semi-
continuity argument, we obtain

lim inf
τ↘0

∫ t2

t1

∫ tτ

0

∫
Ω
|∂tẑτ (s)|2 dx ds dt ≥

∫ t2

t1

(
lim inf

τ↘0

∫ t

0

∫
Ω
|∂tẑτ (s)|2 dx ds

)
dt

≥
∫ t2

t1

∫ t

0

∫
Ω
|∂tz(s)|2 dx ds dt. (54)

Taking also (52) and the already known convergence properties into account, we obtain

lim inf
τ↘0

∫ t2

t1

Bτ (t) dt ≥
∫ t2

t1

B(t) dt, (55)

where B is defined as Bτ but uτ , ûτ , v−τ , zτ , ẑτ and b̂τ are substituted by their continuous
counterparts and ∂t

bbτ (t)−∂t
bbτ (t−τ)

τ by ∂ttb(t).
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- It holds

h(z−τ ) = h(zτ ) + h′(zτ )(z−τ − zτ ) + r(z−τ − zτ ),
r(η)
η

→ 0 as η → 0

by the differentiability of h. We then get∫ tτ

0

∫
Ω

1
2

h(z−τ )− h(zτ )
τ

Cε(u−τ ) : ε(u−τ ) dx ds

=
∫ tτ

0

∫
{z−τ (s)6=zτ (s)}

1
2

(
h′(zτ )

z−τ − zτ

τ
+

r(z−τ − zτ )
z−τ − zτ

z−τ − zτ

τ

)
×

×Cε(u−τ ) : ε(u−τ ) dx ds.

(56)

Because of∥∥∥∥r(z−τ − zτ )
z−τ − zτ

∥∥∥∥
L∞({z−τ 6=zτ})

≤
∥∥∥∥h(z−τ )− h(zτ )

z−τ − zτ

∥∥∥∥
L∞({z−τ 6=zτ})

+
∥∥∥∥h′(zτ )

z−τ − zτ

z−τ − zτ

∥∥∥∥
L∞({z−τ 6=zτ})

< C,

and r(z−τ −zτ )

|z−τ −zτ |
→ 0 as τ ↘ 0 a.e. in ΩT as τ ↘ 0, we conclude by Lebesgue’s generalized

convergence theorem ∥∥∥∥r(z−τ − zτ )
z−τ − zτ

∥∥∥∥
Lq({z−τ 6=zτ})

→ 0 for every q ≥ 1.

Using this and the already known convergence properties, we end up with

left hand side of (56)→
∫

Ωt

W,z(ε(u), z)∂tz dx ds

and, consequently, E1
τ (t) → 0 as τ ↘ 0. Together with the uniform boundedness (52),

this implies ∫ t2

t1

E1
τ (t) dt → 0 as τ ↘ 0 for all 0 ≤ t1 ≤ t2 ≤ T. (57)

- The convergence ∫ t2

t1

E2
τ (t) ds → 0 as τ ↘ 0 for all 0 ≤ t1 ≤ t2 ≤ T, (58)

can also be shown as above.

If we combine (53), (55), (57) and (58) we finally obtain

0 ≥ lim inf
τ↘0

∫ t2

t1

(
Aτ (t) + Bτ (t) + E1

τ (t) + E2
τ (t)

)
dt

≥
∫ t2

t1

(A(t) + B(t)) dt.

for all 0 ≤ t1 ≤ t2 ≤ T . Thus, A(t) + B(t) ≤ 0 for a.e. t ∈ (0, T ) which is the desired energy
inequality (15).

Hence, we have established existence of weak solutions in the sense of Definition 3.4.
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3.3 Passing to the limit system

We now study the limit δ ↘ 0. For each δ > 0, we obtain a solution (uδ, zδ, ξδ) in the sense of
Definition 3.4.

Step 1: A priori estimates

From the energy inequality (15), we infer

‖uδ‖L∞(0,T ;H1(Ω;Rn))∩W 1,∞(0,T ;L2(Ω;Rn)) < C, (59)

‖zδ‖L∞(0,T ;W 1,p(Ω))∩H1(0,T ;L2(Ω)) < C, (60)
√

δ‖uδ‖L∞(0,T ;H2(Ω;Rn)) < C. (61)

By considering (12), we get

〈∂ttuδ(t), ζ〉H2 ≤ C(‖ε(uδ(t))‖L2 + 1)‖ε(ζ)‖L2 + δ‖∇ (∇uδ(t)) ‖L2‖∇ (∇ζ) ‖L2

+ ‖l‖L2‖ζ‖L2

and, therefore,

‖uδ‖H2(0,T ;(H2
ΓD

(Ω;Rn))∗) < C. (62)

Step 2: Compactness

As in the previous section, the a priori estimates (59)-(62) reveal existence of functions

u ∈ L∞(0, T ; H1(Ω; Rn)) ∩W 1,∞(0, T ; L2(Ω; Rn)) ∩H2(0, T ; (H2
ΓD

(Ω; Rn))∗),

z ∈ L∞(0, T ; W 1,p(Ω)) ∩H1(0, T ; L2(Ω))

and subsequences indexed by δk such that

uδk
→ u weakly-star in L∞(0, T ; H1(Ω; Rn)) ∩W 1,∞(0, T ; L2(Ω; Rn))

∩H2(0, T ; (H2
ΓD

(Ω; Rn))∗), (63)

zδk
→ z weakly-star in L∞(0, T ; W 1,p(Ω)) and weakly in H1(0, T ; L2(Ω)). (64)

By applying the same technique as in the previous section, strong convergence of∇zδk
in Lp(ΩT ; Rn)

can be obtained. We conclude that

zδk
→ z strongly in Lp(0, T ; W 1,p(Ω)). (65)

Furthermore, by (60), we find

zδk
→ z strongly in C(ΩT ) (66)

for a subsequence by an Aubin-Lions type compactness result (cf. [Sim86]). As usual, we omit the
subscript k.

Step 3: Passing to the limit δ ↘ 0
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• Integrating (12) from 0 to T and using (63), (66) and
∫ T
0 δ〈Auδ, ζ〉H2 dt → 0 due to (61), we

conclude ∫ T

0
〈∂ttu, ζ〉H2 dt +

∫
ΩT

W,e(ε(u), z) : ε(ζ) dx dt =
∫

ΩT

l · ζ dx dt

for all ζ ∈ L∞(0, T ; H2
ΓD

(Ω; Rn)). Therefore, (4) is true for all ζ ∈ H2
ΓD

(Ω; Rn) and a.e.
t ∈ (0, T ). Using the density of the set H2

ΓD
(Ω; Rn) in H1

ΓD
(Ω; Rn) (here we need the assump-

tion that the boundary parts ΓD and ΓN have finitely many path-connected components, see
[Ber11]), we can identify ∂ttu(t) ∈ (H1

ΓD
(Ω; Rn))∗ and (4) is true for all ζ ∈ H1

ΓD
(Ω; Rn) and

a.e. t ∈ (0, T ). Furthermore, ∂ttu ∈ L∞(0, T ; (H1
ΓD

(Ω; Rn))∗).

• We choose the following cluster points w.r.t. a subsequence

χδ := χ{zδ>0} → χ weakly-star in L∞(ΩT ), (67)

ηδ := χ{zδ=0}∩{W,z(ε(uδ),zδ)+f ′(zδ)≤0} → η weakly-star in L∞(ΩT ), (68)

Fδ := χ{zδ>0}ε(uδ) → F weakly in L2(ΩT ; Rn×n), (69)

Gδ := χ{zδ=0}∩{W,z(ε(uδ),zδ)+f ′(zδ)≤0}ε(uδ) → G weakly in L2(ΩT ; Rn×n). (70)

By (66) and (63), we obtain for a.e. x ∈ {z > 0}

χ(x) = 1, η(x) = 0, F (x) = ε(u)(x), G(x) = 0, (71)

because of the following reason:

Let ζ ∈ L2(ΩT ; Rn×n) with supp(ζ) ⊆ {z > 0}. Then, by (66), we obtain supp(ζ) ⊆ {zδ > 0}
for all sufficiently small δ > 0. On the one hand, we find by (69)∫

ΩT

Fδ : ζ dx dt →
∫

ΩT

F : ζ dx dt.

On the other hand, by (63), (note that δ can be chosen arbitrarily small)∫
ΩT

Fδ : ζ dx dt =
∫

ΩT

ε(uδ) : ζ dx dt →
∫

ΩT

ε(u) : ζ dx dt.

Thus,
∫
ΩT

ε(u) : ζ dx dt =
∫
ΩT

F : ζ dx dt. The other identities in (71) follow analogously.

Let ζ ∈ L∞(0, T ; W 1,p
− (Ω)). Taking (50) into account, inequality (13) becomes by integration

over time

0 ≤
∫

ΩT

(
|∇zδ|p−2∇zδ · ∇ζ + ∂tzδζ

)
dx dt +

∫
{zδ>0}

(
W,z(ε(uδ), zδ) + f ′(zδ)

)
ζ dx dt

+
∫
{zδ=0}∩{W,z(ε(uδ),zδ)+f ′(zδ)≤0}

(
W,z(ε(uδ), zδ) + f ′(zδ)

)
ζ dx dt.

Applying limsupδ↘0 on both sides and multiplying by −1 yield

0 ≥ lim
δ↘0

∫
ΩT

(
|∇zδ|p−2∇zδ · ∇(−ζ) + ∂tzδ(−ζ)

)
dx dt
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+ lim inf
δ↘0

∫
ΩT

h′(zδ)(Fδ)2(−ζ) dx dt + lim inf
δ↘0

∫
ΩT

χδ f ′(zδ)(−ζ) dx dt

+ lim inf
δ↘0

∫
ΩT

h′(zδ)(Gδ)2(−ζ) dx dt + lim inf
δ↘0

∫
ΩT

ηδ f ′(zδ)(−ζ) dx dt.

Weakly l.s.c. arguments, the uniformly convergence property (66) and the properties listed in
(71) give

0 ≥
∫

ΩT

(
|∇z|p−2∇z · ∇(−ζ) + ∂tz(−ζ)

)
dx dt

+
∫
{z>0}

(
W,z(ε(u), z) + f ′(z)

)
(−ζ) dx dt

+
∫
{z=0}

(
(F 2 + G2)h′(z) + (χ + η)f ′(z)

)
(−ζ) dx dt.

This inequality may also be rewritten in the following form:

0 ≤
∫

ΩT

(
|∇z|p−2∇z · ∇ζ +

(
W,z(ε(u), z) + f ′(z) + ∂tz

)
ζ
)

dx dt

+
∫
{z=0}

(
(F 2 + G2)h′(z) + (χ + η)f ′(z)−W,z(ε(u), z)− f ′(z)

)
ζ dx dt.

Therefore,

0 ≤
∫

ΩT

(
|∇z|p−2∇z · ∇ζ +

(
W,z(ε(u), z) + f ′(z) + ∂tz + ξ

)
ζ
)

dx dt

with
ξ := χ{z=0}min

{
0, (F 2 + G2)h′(z) + (χ + η − 1)f ′(z)−W,z(ε(u), z)

}
.

This proves (5) and (6).

• To prove the energy inequality (7), we can proceed as in Subsection 3.2: Integrating (15) with
respect to time on [t1, t2] yields (0 ≤ t1 ≤ t2 ≤ T )∫ t2

t1

(Aδ(t) + Bδ(t) + Cδ(t)) dt ≤ 0 (72)

with

Aδ(t) :=
∫

Ω

(
1
p
|∇zδ(t)|p + W (ε(uδ(t)), zδ(t)) + f(zδ(t)) +

1
2
|∂tuδ(t)|2

)
dx

−
∫

Ω
∂tuδ(t) · ∂tb(t) dx−

∫
Ω

(
1
p
|∇z0|p + W (ε(u0), z0) + f(z0) +

1
2
|v0|2

)
dx

+
∫

Ω
v0 · ∂tb

0 dx,

Bδ(t) :=
∫

Ωt

|∂tzδ|2 dx ds−
∫

Ωt

W,e(ε(uδ), zδ) : ε(∂tb) dx ds +
∫

Ωt

∂tuδ · ∂ttb dx ds

−
∫

Ωt

l · (∂tuδ − ∂tb) dx ds,
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Cδ(t) :=
δ

2
〈Auδ(t), uδ(t)〉H2 −

δ

2
〈Au0, u0〉H2 − δ

∫ t

0
〈Auδ(t), ∂tb(t)〉H2 dt.

Let A and B be the corresponding functions to Aδ and Bδ, where uδ and zδ are replaced by
u and z, respectively. The limit passage in (72) can be performed as follows.

- Weakly lower semi-continuity arguments show

lim inf
δ↘0

∫ t2

t1

Aδ(t) dt ≥
∫ t2

t1

A(t) dt.

- Fatou’s lemma and weakly l.s.c. arguments as well as the convergence property for zδ

(see (65)) show (cf. (54))

lim inf
δ↘0

∫ t2

t1

Bδ(t) dt ≥
∫ t2

t1

B(t) dt.

- We have
Cδ(t) ≥ −δ

2
〈Au0, u0〉H2 − δ‖uδ(t)‖H2(Ω;Rn)‖∂tb(t)‖H2(Ω;Rn).

By (61), we obtain

lim inf
δ↘0

∫ t2

t1

Cδ(t) dt ≥ 0.

We end up with
∫ t2
t1

A(t) + B(t) dt ≤ 0 for all 0 ≤ t1 ≤ t2 ≤ T . This proves (7).

Proof of Theorem 3.3
Putting all steps of Section 3.3 together, Theorem 3.3 is proven. ¤
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