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ABSTRACT

Random alloy fluctuations significantly affect the electronic, optical, and transport properties of (In,Ga)N-based optoelectronic devices.
Transport calculations accounting for alloy fluctuations currently use a combination of modified continuum-based models, which neglect to
a large extent atomistic effects. In this work, we present a model that bridges the gap between atomistic theory and macroscopic transport
models. To do so, we combine atomistic tight-binding theory and continuum-based drift-diffusion solvers, where quantum corrections are
included via the localization landscape method. We outline the ingredients of this framework in detail and present first results for uni-polar
electron transport in single and multi- (In,Ga)N quantum well systems. Overall, our results reveal that both random alloy fluctuations and
quantum corrections significantly affect the current-voltage characteristics of uni-polar electron transport in such devices. However, our
investigations indicate that the importance of quantum corrections and random alloy fluctuations can be different for single and multi-
quantum well systems.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0059014

I. INTRODUCTION

III-nitride (I1I-N)-based quantum well (QW) structures are at
the heart of modern short wavelength light emitting diodes
(LEDs)."” Here, (In,Ga)N/GaN multi-QWs (MQWs) are used to
realize devices operating in the visible part of the spectrum.
While in the blue wavelength range such III-N LEDs offer very high
efficiencies, achieving the same at longer wavelengths is very chal-
lenging. Therefore, to tailor and guide the design of future energy
efficient ITI-N LED structures operating over a wide spectral range,
accurately modeling their fundamental properties is essential.

It is important to note that nitride-based heterostructures have
in general very different properties to other III-V material systems,
such as GaAs or AlGaAs. This starts with the underlying crystal
structure: the thermodynamically stable phase for GaAs is zinc
blende, while III-N systems preferentially crystallize in the wurtzite
phase.”™ This difference in the crystal structure has far reaching
consequences, resulting, for instance, in a spontaneous electric
polarization vector field in wurtzite ITII-N systems; such a field is
absent in a zinc blende structure.® Therefore, in a nitride-based het-
erostructure, any discontinuity in the polarization vector field leads
to a very strong electrostatic built-in field, which then can give rise
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to a quantum confined Stark effect (QCSE).”® The QCSE is further
increased by strain dependent piezoelectric polarization contribu-
tions.”'” As a consequence, the radiative recombination rates in
ITI-N heterostructures are strongly reduced by the QCSE.”'">"

When it comes to modeling charge carrier transport in LED
structures utilizing III-N QWs, the effects of the built-in polariza-
tion field are taken into account in “standard” one-dimensional
(1D) drift-diffusion (DD) simulations. However, in general, the
turn-on voltages predicted by such an approach are considerably
higher compared to experiments.'”™"” It has recently been shown
that this shortcoming in the simulation of (In,Ga)N-based LEDs'®
or uni-polar devices'” is related to (i) treating these systems as 1D
as well as (ii) the semi-classical nature of DD models. Regarding
(i), theoretical and experimental studies have revealed that the elec-
tronic and optical properties of III-N-based heterostructures are
strongly affected by alloy fluctuations and accompanying carrier
localization,'”'" all of which is not fully reflected within a 1D DD
transport model.'>'>"? Furthermore, (ii) the semi-classical nature
of DD models neglects quantum mechanical effects, such as tun-
neling. Fortunately, such quantum effects can be included, to some
extent, in DD simulations via the so-called localization landscape
theory (LLT)’""** or the (nonlocal) effective potential method to
smooth band edges.””™*’

Thus, to accurately guide the design of future III-N-based
LEDs, a fully three-dimensional (3D), ideally atomistic, transport
model that includes quantum mechanical effects for the entire
device is required. While atomistic calculations have been per-
formed to target these questions,”>”” such a treatment is numeri-
cally extremely expensive.'” This becomes even more challenging
when device performance studies are required, where, for instance,
the well width or the composition in the well and barrier regions of
the device is systematically modified. Given the numerical burden
of the fully atomistic and quantum mechanical solvers, the work-
horse for transport calculations still remains largely DD. The chal-
lenge here is now to transfer atomistic effects accurately into a
modified, quantum-corrected DD transport model. Previous work,
targeting, for instance, (In,Ga)N LED or uni-polar devices, tackled
such a multiscale problem in the following way:'®*® First, a
random distribution of In and Ga atoms on either a cubic or wurt-
zite grid is generated. Second, based on such a distribution, the
local In content is determined by using averaging procedures on
the underlying grid. Equipped with this information, continuum-
based strain and built-in field calculations are performed, which
can then be used to generate an “energy landscape” (conduction
and valence band edges/confining potential), mainly in the frame-
work of a single-band effective mass approximation (EMA).
This information can either be directly used for 3D DD-based
transport calculations or even coupled with LLT to account for
quantum corrections. It is important to note that such an approach
relies on (i) identifying an interpolation procedure for the local
alloy content, (ii) the knowledge of how related material parameters
change with composition locally, and (iii) assuming that bulk
parameters can be used locally to obtain strain and built-in field
effects. Finally, it assumes that even when including random alloy
fluctuations, the modified continuum-based single-band EMA
describes the electronic structure of this complicated system accu-
rately. Thus, overall “atomistic” aspects enter mainly at the In atom
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distribution level. However, it is difficult to judge how well local
fluctuations in strain or built-in fields are captured in comparison
with a fully atomistic approach (valence force field plus local polari-
zation theory). Furthermore, consequences of alloy fluctuations for
the electronic structure of the well and again how this compares to
a fully atomistic description, e.g., tight-binding, are not widely dis-
cussed or analyzed.

We have recently established a theoretical framework that
allows one to target these questions,” which works as follows:
First, we generate an energy landscape that is directly obtained
from an atomistic tight-binding (TB) model, which accounts for
random alloy fluctuations and connected fluctuations in strain and
built-in fields on a microscopic level. Second, the electronic struc-
ture of, e.g., an (In,Ga)N QW, can be calculated within TB and a
single-band EMA (using this landscape) so that the data can be
directly compared since both operate on the same alloy microstruc-
ture. Here, in principle, the only free parameter in the modified
EMA is the effective mass; the confining potential (band edges) is
directly obtained from the TB model. Our results showed that
when operating on the same alloy microstructure (alloy configura-
tion) and the same confining energy landscape, the modified EMA
significantly ~overestimates the bandgap/transition energy of
(In,Ga)N/GaN QWs, at least for In contents larger than 5%.
However, as the calculations were performed on the same alloy
microstructure, it allows one to adjust the EMA. We have found
that using a rigid energy shift within the QW region results in a
good agreement between TB and EMA, at least in terms of transi-
tion energies and the distribution of (localized) energy states.”

In this work, we extend the theoretical framework above to
study charge carrier transport in III-N-based devices. We give the
details of the method and apply it to uni-polar transport in single
QW (SQW) and MQW (In,Ga)N systems. In general, we use the
energy landscape calculated from our atomistic TB model in con-
junction with LLT to generate a quantum-corrected energy land-
scape. This landscape presents the backbone of our DD simulation.
For the active (In,Ga)N QW region, we use a finite-element mesh
with as many nodes as atomic lattice sites, which we later enlarge to
work in combination with a specialized finite volume method. In
doing so, (n-doped) contact regions can be added to the system on a
much coarser grid to model a full device. We highlight that the
developed approach can be extended to investigate complete (In,Ga)
N-based LED structures (p—i—n systems) as well as AlGaN-based UV
LEDs in future studies.

Our obtained results for uni-polar (In,Ga)N SQW and MQW
structures show that when including LLT and alloy fluctuations,
smaller turn-on voltages are observed in comparison with a stand-
ard virtual crystal approximation (VCA) calculation; this agrees
with previous studies.'™'® Furthermore, and as discussed already
above, “standard” 1D uni-polar electron transport calculations,
which effectively correspond to our VCA results, give too large
turn-on voltages when compared to experiment. The fact that our
full 3D model gives smaller turn-on voltages compared to VCA
suggests already an improved description of experimental findings
and highlights again the importance of quantum corrections and
alloy fluctuations for an accurate description carrier transport in
(In,Ga)N-based devices. We stress that our results are achieved
without any re-fitting/adjusting of, e.g., piezoelectric coefficients,
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which is often applied in “conventional” 1D DD calculations found
in the literature,” '

The remainder of the paper is organized as follows: We
present the theoretical ingredients of our multiscale model, namely,
TB, LLT, and DD, as well as the mesh generation (additional infor-
mation is supplied in an Appendix) in Sec. II. Our results for uni-
polar transport in (In,Ga)N-based SQW and MQW systems are
detailed in Sec. III. Finally, we summarize our framework and the
results in Sec. I'V.

Il. THEORETICAL FRAMEWORK: FROM AN ATOMISTIC
ENERGY LANDSCAPE TO DRIFT-DIFFUSION
SIMULATIONS

We present and discuss the different ingredients of our multi-
scale framework in this section. We start in Sec. II A with the TB
model and briefly describe the procedure to generate an energy
landscape that contains the contributions from random alloy fluc-
tuations and thus associated strain and built-in field fluctuations.
Section II B details how the obtained landscape is transferred to a
finite-element method (FEM) mesh, which presents the starting
point for our charge carrier transport calculations. Utilizing this
mesh, Sec. II B gives details on (i) how the random alloy fluctua-
tions are treated for later transport calculations and (ii) how the
LLT equation is solved on the underlying FEM mesh. The uni-polar
transport model based on the derived energy landscape, which we
employ for our numerical studies, is introduced in Sec. II D; here,
we also describe how the spatially varying band edges are handled
numerically.

A. Tight-binding model and local band-edge
calculations

In order to capture the effects of (random) alloy fluctuations
on the conduction (CBE) and valence band edges (VBE) and ulti-
mately on the electronic structure of the QW active region of a
III-N device, we employ atomistic TB theory. In the following, we
give a brief overview of the underlying model and how to extract
local band edges from a TB model; more details can be found in
Refs. 17, 29, and 32. While this approach is general, we discuss in
the following an (In,Ga)N/GaN QW system as an example.

The backbone of our theoretical framework is an empirical
nearest neighbor sp> TB model.”” The TB parameters were deter-
mined by fitting GaN and InN bulk TB band structures to the cor-
responding hybrid functional density functional theory (DFT)
band structures.’”” Given the (large) lattice mismatch between InN
and GaN (/210%), strain effects have to be taken into account in
(In,Ga)N/GaN QWs. To obtain an atomistic resolution of the
strain in such a structure, the equilibrium positions of all the atoms
in the simulation supercell are obtained using a valence force field
(VFF) model,'”* which has been implemented in the software
package LAMMPS.” As already discussed above, ITI-N heterostruc-
tures in general exhibit built-in (spontaneous and piezoelectric)
polarization vector fields. To account for (local) polarization effects
in (In,Ga)N/GaN QWs, a local polarization theory3 2 s employed.
The TB model summarized in this paragraph has been extensively
benchmarked against DFT as well as experimental data.”>**

ARTICLE scitation.org/journalljap

As highlighted above, a key ingredient for DD transport calcula-
tions is the (local) CBE and VBE. This information can now be
extracted from our TB model by diagonalizing the Hamiltonian at
each lattice site.”” Our previous work™ already revealed that when
using this atomistically generated landscape directly in conjunction
with an effective mass model, electron as well as hole ground state
energies, and thus the connected transition energies, are significantly
underestimated, at least for systems with In contents larger than 5%.
However, the broadening of the energy spectrum due to alloy fluctua-
tions was in good agreement between the models, even though carrier
localization effects may not be treated accurately in the EMA. The
overall agreement between TB and EMA can be improved in terms of
transition energies, energy spectrum broadening, and to some extent
carrier localization characteristics by applying a (composition depen-
dent) rigid shift to the band edges in the QW region. We apply this
approach here too. In doing so, we find indeed good agreement
between TB and results obtained within LLT when operating on the
confining potential landscape extracted from TB.

B. Device mesh generation for transport calculations

The obtained local band edges on the atomistic wurtzite lattice
sites need to be transferred to a mesh that allows us to perform
the transport calculations. Two aspects are important here.
First, the mesh needs to be fine enough to capture alloy fluctua-
tions in the active region. Second, in regions where no alloy fluctu-
ations are present, the band-edge energies can be obtained from
the literature (e.g., n-doped GaN contacts). In this contact region,
the mesh can also be chosen much coarser when compared to the
atomistic region; this helps to keep the computational cost low. The
latter part is very important to make self-consistent 3D DD simula-
tions feasible. A schematic illustration of our approach to address
this challenge is shown in Fig. 1. We start from an atomistic TB
energy landscape as discussed above and ultimately construct a
larger mesh for the DD simulations.

Next, we discuss the post-processing within the atomistic
region before we explain the embedding into the larger mesh.
Using the atom lattice sites as nodes, we construct a FEM mesh via
TetGen.”® The TB energy landscape determines the energy values at
the nodes. We stress again that the underlying TB mesh with In, Ga,
and N atoms is not used to generate a composition profile/map on
which local averages for continuum-based calculations are determined;
we use TB directly to define the energy landscape. Figure 2(a) depicts
the TB model data for a 3.1 nm thick Ing;GagoN SQW in the
x—z-plane, where the z-axis is parallel to the wurtzite c-axis. The
depicted test structure has 38 150 atoms and the corresponding FEM
mesh has 38 150 nodes, and 280 816 tetrahedra [see Fig. 2(b)]; this
mesh represents the atomistic region discussed above. We have
employed this transfer of TB data to an atomistic FEM mesh previ-
ously” to compare the electronic structure of (In,Ga)N/GaN QWs
when using atomistic and continuum methods.

In order to perform full-device calculations, contact regions
(e.g., n-doped GaN contacts) have to be attached to the atomistic
region of the simulation. In the context of DD simulations for
semiconductor devices, the finite-volume method (FVM) has been
exceptionally successful. Our specific approach described in detail
in the Appendix requires a mesh that ensures that the numerical

J. Appl. Phys. 130, 065702 (2021); doi: 10.1063/5.0059014
© Author(s) 2021

130, 065702-3


https://aip.scitation.org/journal/jap

Journal of
Applied Physics

Atomistic input

Atomistic

o[ Generate atomistic
FEM mesh

Configurations
(Tight-Binding)

Generate atomistic
finite volume mesh

ARTICLE

scitation.org/journalljap

Continuum output

Drift-diffusion
solver
(ddfermi)

Add device
regions (contacts)

VCA
3 data on
FEM mesh
. interpolation
- - Localization v N
Tlgg;:[t;";ﬂlng landscape theory Band edges on FEM = FVM
- atomistic
- Random allo
Faéﬁllmrlr?tlch Gaussian finite-volume mesh v
es broadening —_— data on
FEM mesh
Gaussian Localization interpolation
broadening landscape theory % EEM - FVM

FIG. 1. Schematic workflow to connect an atomistic tight-binding model to a continuum-based drift-diffusion solver (here ddfermi). The connection between the atomistic
and continuum-based grid is achieved in three steps. First, we generate an atomistic finite-element method (FEM) mesh with as many nodes as atomic sites. The data on
the FEM mesh are then interpolated on a Voronoi finite-volume method (FVM) mesh needed for stable drift-diffusion simulations. Finally, the FVM mesh is enlarged by
adding coarser contact and intrinsic regions. The inset details four different ways atomistic band-edge data are transferred to the FVM mesh. Whereas the data paths indi-
cated in black refer to the VCA type of data, the data paths in red refer to random alloy data. Solid arrows indicate an operation (stated in the box) on the FEM mesh, and
dashed arrows indicate interpolation to the FVM mesh. The meshes are shown visually in Fig. 2.

fluxes are perpendicular to the cell interfaces. Such a mesh is dual
to a boundary conforming a Delaunay tetrahedral mesh.
Therefore, the next step is the generation of such a finite-volume
mesh from the atomistic FEM mesh, which satisfies this addi-
tional requirement. Again via TetGen, we produce a so-called
boundary-conforming Delaunay tetrahedral mesh (for details, see
the Appendix), which includes the original FEM lattice sites and
interpolate the atomistic data onto it; see Figs. 2(b) and 2(c). The
FVM mesh has 47 248 nodes and 305 272 tetrahedra. Finally, we
attach coarser intrinsic meshes as well as n-doped GaN contact
regions to both sides of the atomistic region, again using TetGen.
Thus, a complete n-i-n diode has been created, see Fig. 2(d),
which contains the atomistic region (box with yellow-dashed
lines), the coarse grained intrinsic GaN (light blue and green),
and n-doped GaN (red and purple) regions. While as a test
system we have used here an n-i-n structure, the approach can
now be easily adapted for a p-i-n setup or other material systems.
The resulting boundary-conforming finite-volume mesh of the
complete n-i-n structure has in total 61202 nodes and 369 430
tetrahedra and can be used for DD simulations with ddfermi.’”
The tool chain for creating the combined meshes and transferring
TB data has been implemented with WIAS-pdelib”® and TetGen.”°

C. Localization landscape theory and random alloy
fluctuations on a FEM mesh

Having transferred the TB band-edge data to a larger mesh
with contact regions as described above, care must be taken when

performing DD simulations on this mesh. It has already been dis-
cussed in the literature that for transport properties, the spatial
length scale of the potential fluctuations is effectively determined
by the de Broglie wavelength.'® Consequently, charge carrier wave
functions sample a wider “area” of the confining energy landscape
rather than just a single lattice site. While in VCA this may be of
secondary importance, in a strongly fluctuating energy landscape, it
is important to account for this. The question has been discussed
in detail in Ref. 16, and the authors applied a Gaussian averaging
procedure to determine the local alloy content. The same ad hoc
procedure has been employed by DiVito et al.”® While we follow a
similar approach here and employ Gaussian averaging, we employ
this to the original band-edge profile E'® from TB

X 2
Zj E;FB(Xj) exp(— (\szo_’;ﬂ) )
T ex (_ <|x,»fx]-\)2)
j p 202

Ef(xi) = (1)

but not to the alloy content. Here, EZ(x;) is the CBE energy at the
(lattice) site x;; o denotes the Gaussian width and acts as a smooth-
ing parameter. This averaging procedure is of course only relevant
within the QW(s) and near the well-barrier interface. This scheme
has been implemented for the FEM mesh. Nodal values will be
interpolated to a finer boundary conforming the FVM mesh, fol-
lowing the approach described in Sec. II B. Given that we will focus
our attention on uni-polar transport, this procedure will be applied
to the CBE but can in future studies also be applied to the VBE.
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FIG. 2. Transfer of atomistic data to a larger finite-volume mesh for continuum-based drift-diffusion simulations. We start with a point set (a) defined by the atomistic
lattice sites as provided by tight-binding. Using TetGen, a tetrahedral finite-element mesh (b) is generated, which has exactly the same number of nodes as there are
atoms in (a). In doing so, the tight-binding input is exactly represented on the nodes of the atomistic finite-element method mesh. The colors in (b) represent the values of
the conduction band edge E;, and (c) depicts the E; profile of an Ing1Gap gN single quantum well in virtual crystal approximation. The data from the atomistic finite-element
method mesh are then interpolated to a finite-volume mesh (d), namely, a boundary-conforming Delaunay triangulation generated by TetGen.***° After attaching intrinsic
device regions and doped contact regions to the atomistic region, the full 3D device mesh (e) for drift—diffusion simulations is established.

We stress again that in Refs. 16 and 28 the In content at each point
is computed from a Gaussian average, and then the strain, built-in
field, and ultimately the CBE are evaluated in a pure continuum
framework. We go beyond this by calculating the CBE
(the confining potential) at each (lattice) site from the atomistic TB
approach, with no need to calculate local strain or built-in poten-
tials in a continuum-based framework before applying a Gaussian
function to the confining potential. Thus, in comparison with
Refs. 16 and 28, we have here a posteriori broadening and transfer
the atomistic effects on the band offset, strain, and built-in field
due to alloy fluctuations directly into the confining energy land-
scape before averaging.

In general, employing such a Gaussian averaging procedure
comes at the cost of having to correctly determine the width, o, a
priori. To analyze the impact of the o on the CBE profile, which
ultimately will also impact the transport, Fig. 3 shows the profile of

E? —qy in a 3.1nm wide Ing;GaNyyo /GaN SQW, comparing
random alloy fluctuations with different Gaussian widths o to a
VCA. Here, y denotes the electrostatic potential in the n-i-n
device, including also piezoelectric and spontaneous polarization
effects; g denotes the elementary charge. At each plane along the
c-direction, the full range of CBE values over the x-y plane is
shown, which allows clear visualization of the impact of the alloy
fluctuations on the CBE. Several features are important. The most
striking difference between the VCA and the smoothed random
alloy (RA) CBE is that the potential barrier between the GaN and
(In,Ga)N QW material is significantly reduced. This feature is
expected to reduce the turn-on voltage of the device and will be dis-
cussed in detail further below. Moreover, the barrier-well interface
reduces further with increasing o. However, the reduction between
o =0.6nm and o = 0.9nm is smaller than the reduction from
o = 0.3nm to o = 0.6 nm, even though the difference in o values is
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FIG. 3. Randomly fluctuating, smoothed conduction band-edge profile along the
Z- (c)-axis of an n-i-n Ing1GaggN/GaN single quantum system at zero bias
(more details given in the main text). The results are displayed in the absence
of quantum corrections via LLT but for three different Gaussian widths o,
namely, o = 0.3nm (red), o = 0.6 nm (blue), and o = 0.9nm (green), as
well as for a “standard” virtual crystal approximation (VCA, black).

the same (Ao = 0.3nm). We also note that while the average
band-edge energy in the well is basically unaffected by different o
values, the CBE fluctuations in the well noticeably reduce.
Consequences of these effects on the current-voltage characteristics
are discussed below.

Having determined the local band edges from atomistic TB
theory, we can now also include quantum corrections using LLT.”'
These corrections are not limited to a calculation that accounts for
random alloy fluctuations; LLT can also be used in conjunction
with a VCA description. We note that many commercial software
packages targeting carrier transport properties of III-N devices also
have the option to include quantum mechanical effects by solving
Schrodinger’s equation in the active region (QW region) of a device.
However, such an approach is numerically very demanding even for
a 1D simulation, not to mention a full 3D calculation, which is nec-
essary in the presence of random fluctuations. When using LLT, one
avoids having to solve the Schrodinger equation and thus a large
eigenvalue problem. In LLT, one is left with a linear partial differen-
tial equation, given by”'

2
HEMAMZ — _

“Au—+Vu=1. 2)
2m

Here, H™MA denotes a single-band effective mass Hamiltonian, m’
the effective (electron or hole) mass, and V the confining
potential energy. For the confining potential, V, we use our TB
band-edge data. Here, VCA data, V =E'“A, or random alloy
data, V = E?, for different o values can be used. As described in
detail in Refs. 16 and 21, once u is determined by solving Eq. (2)
with appropriate boundary conditions, one can also extract an
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effective confining potential W via
W(xi) = 1/u(xy). 3)

This effective potential for the energy landscape can be used in
DD simulations to include both random alloy fluctuations and
quantum corrections at the macroscopic DD scale.'® More details
on LLT are found in Refs. 16, 21, and 22.

Regarding the computational aspects, we numerically solve the
LLT equation, Eq. (2), supplied with appropriate Dirichlet and
Neumann boundary conditions on the atomistic FEM mesh via a
standard FEM.” The Dirichlet conditions are applied on the
left and right boundaries of the atomistic FEM mesh shown in
Fig. 2(b) and are implemented via a penalty technique."’ The FEM
discretization is implemented in WIAS-pdelib,”® using PARDISO
as a linear solver."’

Since LLT basically replaces the Schrédinger equation, LLT
provides also information about the energy spectrum and the wave
functions.”” Thus, the outcome of the LLT calculations can be
directly compared to our TB data. For the SQW structures analyzed
in Sec. 111, we find very good agreement between TB and LLT when
applying a rigid band-edge shift of 129 meV and in line with
Ref. 29. All of these provides a feedback loop between our atomistic
model, the obtained landscape, and the resulting electronic struc-
ture. This benchmarking gives further confidence that the here
established simulation framework for performing transport calcula-
tions captures alloy fluctuations accurately in SQWs.

Examples for the resulting effective energy landscapes/confin-
ing potential energies W — qy are given in Fig. 4. We observe that
similar to the random alloy case without quantum corrections, cf.

0.8 o'= 013 M ——
o=0.6 nm
0.6 - g =0.9nm -
VCA
204
>
o
¢ 0.2
(1N}
0
-0.2 \ ! \ \ ! \

210 -5 0 5 10 15 20 25
Position (nm)

FIG. 4. Randomly fluctuating, smoothed conduction band-edge profile along the
z- (c)-axis of an n-i-n Ing1GaggN/GaN single quantum well system at zero
bias (more details given in the main text). The results are displayed in the pres-
ence of quantum corrections via LLT but for three different Gaussian widths o,
namely, o = 0.3nm (red), c = 0.6nm (blue), and o = 0.9nm (green), as
well as a “standard” virtual crystal approximation (VCA, black).
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Fig. 3, the LLT treatment leads also to a reduction in the potential
barrier between the GaN material and (In,Ga)N QW. Therefore,
the strongly fluctuating TB landscape is “softened,” given that the
carrier wave functions sample a wider “area” on this landscape, as
one may expect from a quantum mechanical wave function analy-
sis. However, two additional aspects are important to note.
As already highlighted above, LLT can not only be combined with
the random alloy system, but can also be employed in a VCA type
calculation. Thus, from a VCA plus LLT description, it is also
expected that the potential barrier between the GaN and the
(In,Ga)N QW material is reduced. Therefore, including quantum
corrections in VCA should also affect the turn-on voltage of a
device when compared to a “standard” VCA calculation without
quantum corrections. Second, as one can infer from Fig. 4, once
LLT has been applied, increasing the Gaussian width o for the CBE
softening in the random alloy case has very little impact on the
resulting band-edge profile. Below, we will analyze this aspect in
greater detail when looking at the I-V curves of (In,Ga)N/
GaN-based uni-polar devices.

D. Uni-polar drift-diffusion model with spatially
varying band edges

In Secs. II A-II C, we have discussed the mesh generation and
also how random alloy fluctuations and quantum corrections in the
confining potential are treated. In this section, we focus our atten-
tion on the semi-classical van Roosbroeck system, which models
DD charge transport in semiconductors.”’ As discussed above, we
simulate here uni-polar DD transport in (In,Ga)N-based systems.
However, the framework is general and can be directly transferred
to the bipolar case.

For a bounded spatial domain Q C R? where d € {1, 2, 3},
the stationary van Roosbroeck system* consists of two coupled
nonlinear partial differential equations of the form

=V (&;x)Vy(x)) = q(C(x) — n(x)), (4a)
V-j,=0 (4b)

for x € Q. The Poisson equation, Eq. (4a), describes the electric field
E = —Vy that is generated by a scalar electric potential y(x) in the
presence of a free charge carrier density. Here, £,(x) = go&,(x)
describes the position dependent dielectric constant and g is the ele-
mentary charge. In a (doped) uni-polar semiconductor device, the
charge density is given by the density of free (negatively charged)
conduction band electrons, #n(x), and the density of ionized built-in
dopants, C(x) = N;)(x), where Nj; denotes the density of singly
ionized donor atoms. The current density j,(x) is given by the usual
expression™’

jn(x) = —q,u,,n(x)Vgo,,(x). (5)

That is, the negative gradient of the quasi Fermi potential, ¢, (x), is
the driving force of the current; u,(x) denotes the free carrier
mobility.
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Using the Boltzmann approximation, the densities of free car-
riers, #n(x), in a solid are given by

(6)

_ _ Edd
n(x) = N, exp q(y(x) — @,(x)) — EZ*(x) ,
kgT
where kg is the Boltzmann constant, T denotes the temperature,
Efd(x) is the (position dependent) band-edge energy used in the
transport calculations, and N, is the effective density of states,

N, =2 <72m22k3 T) 3/2.
I

We note that we have different options for setting the
band-edge energy E% in the DD simulations. One may choose
(smoothed) TB data E = E?, VCA results E% = EYCA, or the
outcome of LLT calculations E* = W. A schematic illustration of
the different options is given in the inset of Fig. 1. Equation (6)
indicates that the electric potential, y, leads to a bending of the
energy landscape, E. — qy, and thus results in a nonlinear, self-
consistent coupling to the carrier densities. In the following, we
assume a globally constant temperature for carriers and the crystal
lattice of T = 300 K.

We note that, for instance, due to random alloy fluctuations,
the CBE E, varies spatially. Thus, the electron flux, Eq. (5), needs
to be correctly discretized. To this end, we extend the well-known
local Scharfetter-Gummel flux approximation’” to variable band
edges, here shown for the CBE E.. Since by construction of the
FVM mesh (more details in the Appendix), the cell edges are
orthogonal to the fluxes, and we may consider only 1D fluxes,

1 oy — OE,
Jn = —2uqu,UrN.—q B —zu exp(1,1)
h Ur
oy — SE,
-B (Z %ﬂg exp(7,,x) } : @)
T

The parameter z, = —1 is the charge number for electrons,
B(x) = x/(exp(x) — 1) denotes the Bernoulli function, Ur = k“TT

the thermal voltage, 6y = w; — vy, 6E. = E;| — E.k, and

Nup = Zn Eer = aWp ~ ¢np) q](:"; owr)  pe (K, L}.
B

The subindices K and L refer to the nodes xx and x; associated
with the corresponding cells. Further details of the numerical
implementation of the above expressions, especially how to embed
all this into a finite-volume framework, are given in the Appendix.
The physical parameters used in the DD simulations are listed in
Table L.

lll. RESULTS

In this section, we apply the developed framework to uni-
polar, n-doped/intrinsic/n-doped (n-i-n), (In,Ga)N/GaN-based
devices: We analyze the impact of random alloy fluctuations and
quantum corrections introduced by LLT on the I-V curves of such
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TABLE |. Material parameters used in drift-diffusion simulations. Unless otherwise
stated, all parameters are taken from Ref. 16.

Physical quantity Value Units
m, GaN 0.2 my

m, InN 0.07 my

1, n-GaN 200 cm?/(V s)
U, i-GaN 440" cm?/(V s)
Uy, i-(In,Ga)N 300 cm?/(V s)
gl 9.7% €0
gl 15.3% €0

structures. The results are compared with the data obtained from a
VCA description of the same structures. Special attention is paid to
the impact of the Gaussian broadening width, o, on the results.
This analysis is carried out for both SQW systems, Sec. III A, as
well as for MQW structures consisting of three wells, Sec IIT B.
For all these calculations, the well width is 3.1 nm, the In content
in the well is 10%, and the barrier material is GaN. In the MQW
system, the width of the barrier between the wells is 8.0 nm.
Figure 5 gives a schematic illustration of the system. Except for the
VCA systems, all calculations make a random alloy assumption for
the InGaN alloy forming the QW; any additional penetration of In
atoms into the GaN barrier is not considered. The assumption of
such an abrupt interface between InGaN and GaN is consistent
with the experimental data in Ref. 18, at least for growth of InGaN
on GaN. When capping an InGaN QW with GaN, penetration of
In atoms into the GaN barrier may occur. However, recent experi-
mental studies show that by a careful choice of the growth condi-
tions, this effect can be reduced.”® Given that we are interested in
establishing a general simulation framework, these In atom “bleed-
ing” effects are of secondary importance for the present study but
can be incorporated in future investigations.

FIG. 5. Schematic illustration of the simulation cell with three quantum wells
(QWs) in the active region. The n-doped regions (light blue) have a doping
density of n=15x 10®cm=3 and a length of Lp = 160nm. The intrinsic
regions on the coarse mesh (green) have a length of L; = 40 nm. The atomistic
region, also assumed as intrinsic, contains regions of a GaN barrier material
(dark blue) with a length of Lg = 8.0nm and Ing1GaggN QWs (red) with a
length of Ly = 3.1 nm. The simulation cell has an in-plane dimension of w x
h=5.1 x 4.4nm? along the entire system.
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A. (In,Ga)N SQW system

In the first step and before looking at a full current-voltage
(I-V) curve of the Ing;GagoN SQW system, we focus our attention
on the impact of random alloy fluctuations on the results. More
specifically, we will study the impact of the Gaussian width ¢ and
thus the related smoothing of the energy landscape on the current.
Figure 6 displays the current in the system at a fixed bias of 3V for
different o values. The data are shown when including and when
neglecting quantum corrections arising from LLT. The calculations
have been performed for five different random alloy configurations
in the QW, allowing us to also study the influence of the alloy
microstructure on the current; the error bars indicate the standard
deviation. One can infer from Fig. 6 that when neglecting LLT
effects, the resulting current (strongly) depends on the width of the
Gaussian function, at least for o < 0.6 nm (= 2a, where a is the
in-plane lattice constant of GaN). Above this threshold, the depen-
dence of the current I on o is less pronounced. We will discuss the
impact of o on the full I-V curve further below, but noting here
that o may impact the results. In the literature, the value of ¢ has,
for instance, been estimated using atom probe tomography data,
and a value of oxpr = 0.6 nm has been assumed.'® Turning now to
the calculations including quantum corrections via LLT, Fig. 6
reveals that once these effects are taken into account, o is of secon-
dary importance for the obtained current I at the fixed bias of 3V;
this is at least the case for a SQW. We note, however, that this
aspect may depend on the in-plane dimensions of the simulation
cell and thus needs to be carefully investigated when performing
calculations that include random alloy fluctuations in general. This
observation agrees with our earlier conclusion that Gaussian
smoothing does not affect the band-edge profile, see Fig. 4, when
including LLT effects in the calculations.

5 I I
Without LLT
With LLT =

—_~ 4 B 1
~
o
—
x 3 F
<
52
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FIG. 6. Current / at a bias of 3V as a function of the Gaussian width, o, without
LLT (purple) and with LLT (blue) corrections for an n-i-n system with a 3.1 nm
wide Ing 1 GapgN single quantum well. The results are averaged over five different
microscopic alloy configurations, and errors bars are given by standard deviation.
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Having gained initial insight into the impact of the Gaussian
width o on the current I at a fixed voltage V, in the second step,
we focus our attention now on the full I-V curve of the SQW
system. Figure 7 depicts the obtained results within the different
approaches. Our reference point is again a “standard” VCA (black
solid line) model, which neglects both alloy fluctuations and LLT
effects. In addition, we present also the data of a combined VCA
and LLT treatment. Finally, Fig. 7 displays results for the random
alloy case for different o values (red lines: ¢ = 0.3 nm; blue lines:
o = 0.6 nm) with and without LLT effects included in the calcula-
tions. Turning to the result in the absence of LLT first, it becomes
clear that when accounting for random alloy fluctuations in the
model, the turn on voltage is shifted to lower values in comparison
with a standard VCA description. This is also consistent with pre-
vious literature results on uni-polar transport calculations of (In,
Ga)N/GaN-based QW systems.15 However, our calculations also
reveal, and in line with Fig. 6, that the obtained current at a given
voltage V depends on the Gaussian width . As already indicated
above, when neglecting quantum corrections via LLT, a further
analysis is required to determine o: if ¢ is too small, the resulting
very strong fluctuations in the energy landscape within the well are
beyond the applicability of a continuum-based DD model; if o is
too large, the fluctuations in the energy landscape are completely
removed as discussed in Sec. II C. Therefore, when neglecting LLT
effects, care must be taken when choosing o.

In the second step, we turn and discuss the I-V curves when
including effects arising from LLT (dashed lines in Fig. 7, both in
the random alloy case but also in the VCA simulations). Looking at
the calculations including random alloy fluctuations and LLT first,
we observe that the Gaussian width o is of secondary importance;

‘ VCA =———
VCA+LLT =====-
4 RA: 0=0.3 nM =———
RA+LLT: 0=0.3 nm e====-

RA: 0=0.6 M = ¢

RA+LLT: 0=0.6 nm

Current (A x 107)

1 2
Bias (V)

FIG. 7. Current-voltage curves for an n-i-n Iny1GaggN single quantum well
system, within virtual crystal approximation (VCA, black) and a random alloy
(RA) with Gaussian widths of o = 0.3 nm (red) and o = 0.6 nm (blue). Solid
lines show results without quantum corrections, and dashed lines denote results
with quantum corrections included via localization landscape theory.
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this is again consistent with our findings in Figs. 4 and 6. We note
also that when choosing a relatively large value of o (e.g., 0.6 nm),
the random alloy I-V curves with and without LLT (blue) do not
differ significantly. We attribute this to the effect that both LLT and
a relatively large Gaussian broadening soften the well-barrier inter-
face and thus reduce the resistivity of the system. Furthermore, the
fluctuations in the energy landscape within the QW are reduced,
leading to a further decrease in the resistance of the QW region.
We note that in the presented test system, the in-plane dimensions
of the simulation cell are relatively small, and further test on the
impact of ¢ on the I-V curve may be required in future studies.
However, this is beyond the scope of the present work, which intro-
duces the general framework. Nevertheless, our results show that
the calculations including random alloy fluctuations and LLT
effects give the lowest turn-on voltage and highest current com-
pared to all other models discussed here. However, and interest-
ingly, we find also that the VCA plus LLT calculations give almost
the same I-V curve as the quantum-corrected random alloy simu-
lations. This indicates that for a SQW, once LLT is included in the
model, the VCA can provide a very good approximation of the I-V
characteristics of the uni-polar n-i-n system in comparison with a
full 3D random alloy model. Furthermore, since the (3D) VCA
neglects any in-plane variation in the system, already, a 1D VCA
simulation seems to lead to reliable results—as long as LLT is
included. Having only to rely on a 1D simulation would obviously
reduce the computational cost immensely compared to a full 3D
calculation including alloy fluctuations. However, and as we will
show in Sec. III B, for a MQW system, a 1D VCA plus LLT calcula-
tion is no longer sufficient.

B. (In,Ga)N MQW system

Having discussed a SQW system in Sec. III A, we focus our
attention now on a MQW system. Figure 8 shows the I-V curves
for a MQW system consisting of three Ing;GagoN/GaN QWs with
a barrier width of Lg = 8.0 nm. Here, we followed the approach of
the SQW, and calculations have been performed using either a
VCA treatment or account for random alloy fluctuations in the
system. Again, the simulations are carried out both with and
without quantum corrections via LLT.

As in the SQW case, VCA calculations neglecting LLT effects
show the highest turn-on voltage and lowest current when com-
pared with all other data. When combining VCA and LLT, we find
similar to the SQW case that the turn-on voltage is reduced and
the current density is increased. However, and this is in strong con-
trast to the SQW data, cf. Fig. 7, in the MQW system, the results
from VCA plus LLT deviate noticeably from the outcome of calcu-
lations that accounted for both random alloy fluctuations and LLT;
cf. Fig. 8. We also note that VCA plus LLT simulations show signif-
icant deviations (lower currents, higher turn-on voltages) from
random alloy calculations that neglect LLT effects. Overall, we attri-
bute the aspect that random alloy fluctuations seem to become
more important in the MQW system to inherent features of LLT.
As discussed, for instance, in detail in Refs. 21 and 22, to predict
the ground state energy of a QW uainf LLT, the so-called reference
energy, E,f, has to be chosen appropriately. However, the choice of
E.f not only affects the prediction of the ground state energy of the
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FIG. 8. Current-voltage curves for a three Ing;GaggN quantum well system,
within virtual crystal approximation (VCA, black) and when random alloy (RA)
fluctuations (Gaussian width of o = 0.6 nm) are included in the model (blue).
Solid lines indicate results without quantum corrections, and dashed lines show
results with quantum corrections included via localization landscape theory.

system, but also affects the effective potential W, Eq. (2), which is
used in the DD transport calculations. If the QWs in a MQW
system in a DD simulation are energetically aligned, e.g., CBEs of
all wells forming the MQW have approximately the same energy
for an applied bias, and E.f can be chosen as the bottom of the
CBE. However, if there is a large difference in the CBEs of the dif-
ferent wells in the system, LLT may give a poorer approximation of
W for the well where the CBE is energetically furthest away from
the reference energy E.f. When applying a bias V in an n-i-n
system, this situation is often found. As a result, the softening of
the well-barrier interface along with an effective decrease of the
QW depth (confinement energy) may be different for the different
QWs in the MQW system. Obviously, for a SQW system, this issue
never arises. However, two important general aspects are to note.
First, the LLT treatment of MQWSs may be further improved by
partitioning the MQW system into different sub-regions in which
LLT is then solved separately. This means that one could calculate
LLT in each region with its own reference energy and “stitch” the
resulting effective potentials together. Such an advanced treatment
is beyond the scope of the present work, where we are establishing
a general first framework; further refinements can be made in
future studies. Second, we note that in a p-i-n system, near the
turn-on voltage, the QW band edges are expected to be energeti-
cally not too different. In that case, even without partitioning the
system, LLT should provide a good approximation for biases near
the turn-on voltage.

In principle, the same difficulties with respect to Ey.f apply here
in the random alloy systems when including LLT in the calculations.
However, and compared to the outcome of VCA plus LLT studies,
our results show that for simulations including alloy fluctuations but
neglecting LLT, larger currents are observed. As discussed above, the
calculations taking random alloy fluctuations into account

ARTICLE scitation.org/journalljap

automatically include some softening of the well barrier interface.
Combining LLT with random alloy fluctuations results in a further
increase of the current and reduction of the turn-on voltage. We
stress that standard 1D VCA DD calculations presented in the litera-
ture on n-i-n (In,Ga)N QW systems always predicted much higher
turn-on voltages when compared to the experimental studies.'’
Thus, the here obtained results reveal and support again the origin
of this discrepancy: standard 1D VCA calculations neglect alloy fluc-
tuations. Thus, even though E still has to be treated carefully, the
resulting energy landscape should present an improvement over
VCA in terms of the predicted I-V characteristics.

While the above calculations have been performed at a fixed
Gaussian width o of o = 0.6nm, we still need to evaluate the
impact of ¢ on the I-V characteristics. In the SQW case, cf. Fig. 6,
the predicted current at a fixed voltage was virtually independent of
o once LLT was applied. Due to the difficulty of choosing E¢ in a
MQW system, the current may now depend more strongly on the
Gaussian width o. However, our analysis reveals that after LLT has
been applied, at a fixed voltage of 3V, the obtained currents differ
only by less than 8% from the mean over a ¢ range from 0 to
0.9nm (not shown). The change due to different Gaussian widths
o is only a small correction compared to the change between, e.g.,
VCA and random alloy fluctuation calculations, indicating again
that calculations including both random alloy fluctuations and LLT
are robust against changes in 0. Random alloy calculations without
including LLT follow a similar trend to that of the SQW shown in
Fig. 6 (purple) where the result can strongly depend on the choice
of o, particularly for o less than 0.6 nm.

IV. CONCLUSIONS

In this work, we presented a general framework that allows
us to bridge the gap between atomistic tight-binding theory and
continuum-based drift-diffusion calculations. The model also
includes quantum corrections via the localization landscape method
to address charge carrier transport in III-N-based devices. Our
approach furthermore enables a feedback loop between atomistic
theory and continuum models since both operate on the same con-
fining energy landscape. Current models in the literature mainly use
modified continuum-based approaches that generate confining
energy landscapes from locally averaged alloy contents and do not
offer the option to compare the outcome of this with an atomistic
model.

In addition to establishing and providing insight into the
workflow of the overall framework, we have also targeted as a test
system uni-polar electron transport in (In,Ga)N-based single and
multi-quantum well structures. Overall, we find that random alloy
fluctuations and quantum corrections significantly impact the
current-voltage characteristics of uni-polar (In,Ga)N devices when
compared to standard virtual crystal approximation studies, which
are at the heart of most literature carrier transport solvers.
In general and independent of single and multi-quantum well
systems, the combination of quantum corrections and random
alloy fluctuations leads to lower turn-on voltages and higher
currents when compared to a virtual crystal approximation.
Overall, this effect is very important since literature studies on uni-
polar carrier transport have revealed that “standard” 1D continuum-
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based transport solvers, effectively corresponding to our virtual
crystal results, give turn-voltages considerably larger than the experi-
ment. Thus, our here predicted shift to lower turn-voltages due to
quantum corrections and alloy fluctuations indicates an improved
description of experimental data. However, we note that the relative
importance of quantum corrections and random alloy fluctuations
varies between single and multi quantum well systems. We find that
in the single quantum well system, quantum corrections are extremely
important. As a consequence, in the single quantum well, a combined
virtual crystal approximation plus LLT treatment leads to almost the
same current-voltage curve as in a calculation that also includes alloy
fluctuations. This indicates that for a single quantum well system, 1D
calculations including LLT may be sufficient; this reduces the computa-
tional demand significantly. However, our analysis also indicates that in
a MQW system this finding may not hold. In such cases alloy fluctua-
tions are required and so a full 3D transport calculation must be
carried out. Therefore, our investigations highlight that for MQW
systems, both atomistic as well as quantum mechanical effects should
be taken into account to achieve an accurate description of the I-V
characteristics of uni-polar (In,Ga)N-based devices.

We note that while we have applied this model to uni-polar
electron transport here, the toolchain is general and can thus be
applied to bi-polar devices. Furthermore, it may also be employed
to investigate other material systems, e.g., AlGaN, once an atomistic
energy landscape is extracted. All these questions can now be tar-
geted in future studies.
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APPENDIX: FINITE-VOLUME DISCRETIZATION

Unlike other previous studies,'® we discretize Eq. (4) via the
finite-volume method (FVM) on Voronoi cells.”” The 3D mesh is
shown in Fig. 2(c). The construction of such a mesh from a
boundary-conforming Delaunay triangulation is illustrated in
Fig. 9. Here, we briefly outline our approach.

We integrate the system given by Eq. (4) over a test volume oy
and apply Gauss’s divergence theorem, resulting in the integral
equations

— J &Vy -vds = qJ (C—n(y, ¢,))dx,
Doy (23

J j,-vds=0
Dwk

for k=1, ..., N, where N corresponds to the number of cells.
Here, v is the outward-pointing unit normal to the control volume
o. These equations represent an integral form of the van Roosbroeck
system discussed in the main text on every control volume. In particu-
lar, the first equation is Gauss’s law of electrodynamics. The second
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FIG. 9. First row: Piecewise linear description of computational domain with a
given point cloud (black dots). Middle row: Delaunay triangulation of domain
(gray edges) and triangle circumcenters (blue dots). As some boundary trian-
gles have angles larger than 90° opposite to the boundary, their circumcenters
lie outside of the domain. Last row: Boundary-conforming Delaunay triangulation
with automatically inserted additional points at the boundary (green dots) by pro-
jecting the circumcenters outside onto the boundary of the computational
domain. The boundary-conforming Delaunay triangulation is created from the
original point cloud (black dots) plus the projected circumcenters (green dots).
Now, all circumcenters (blue dots) lie within the computational domain. The
boundaries of the (restricted) Voronoi cells are shown as well (red edges). Since
the Voronoi cells are constructed from a boundary-conforming Delaunay triangu-
lation, the edge between any two neighboring boundary cells is perpendicular to
both boundary nodes. This is by construction also true for interior nodes and
the edge separating them. The images were created with triangle.*

equation constitutes a balance law for the electrons. The densities in
each control volume change only due to in- and outflow through the
boundary.

Next, the surface integrals are split into the sum of integrals
over the planar interfaces between the control volume wy and its
neighbors. Employing one point quadrature rules for the surface
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and volume integrals, we deduce the finite-volume scheme,
> 100k N Oy Diy = qloe| (Ck — n (Wi @)
o EN ()

Z |8wk N Owy U,,;k,g =0.
o EN (o)

(A1)

In the above formulas, N'(w;) denotes the set of all control
volumes neighboring k. In 2D, the measure |dw; N Awy| corre-
sponds to the length of the boundary line segment and in 3D to
the area of the intersection of the boundary surfaces. The measure
|ok| is in 2D given by the area and in 3D by the volume of the
control volume . The unknowns y; and ¢, are approximations
of the electric potential as well as the quasi Fermi potentials for
electrons evaluated at node x;. The doping is defined by the inte-
gral average

1
Cy = —J C(x) dx,
(Uk [

which can be approximated by its nodal value C(xx). The numeri-
cal fluxes Dy and j,k, in Eq. (A1) approximate the fluxes —eVy -
vie and j, - Ve in Eq. (4), respectively, on the interfaces between
two adjacent control volumes wy and ;. vy, @, and v, @,..

While the electron flux is numerically approximated via an
extension of the Scharfetter-Gummel scheme, Eq. (7), which can
handle a spatially varying band-edge profile E%, the electric dis-
placement flux is approximated by

Ve = Vi

Dyy = —&s——,
hye

where
hie = ||x¢ — x|

is the edge length. We point out that the flux approximation in
Eq. (A1) is crucial to obtain a stable and physics preserving numer-
ical solution.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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