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MONOTONICITY 1

Abstract

An elementary proof of the anti-monotonicity of the quantum mechanical
particle density with respect to the potential in the Hamiltonian is given for
a large class of admissible thermodynamic equilibrium distribution functions.
In particular the zero temperature case is included.

1 Introduction

The Kohn-Sham system of Density Functional Theory, see e.g. [15, 13, 3|, has be-
come a widely used tool in the simulation of the electronic structure of matter since
it was introduced by Kohn and Sham in 1965 |9]. This was acknowledged by award-
ing the Nobel prize for Chemistry in 1998 to Walter Kohn [8]. On the other hand
there are few mathematical investigation of the Kohn-Sham system up to now: The
interesting question of bifurcation of solutions has been treated in [14]. For the Kohn-
Sham system as a nonlinear system of partial differential equations on a bounded
spatial domain existence of solutions and a priori estimates have been proved, see [6],
[7]. The proof for the Kohn-Sham system with an exchange—correlation term rests on
the existence (and regularity properties) of an unique solution for the corresponding
Schrédinger—Poisson system with only self-consistent electrostatic interaction. The
underlying fundamental result is the anti-monotonicity of the quantum mechanical
particle density with respect to the potential in the Hamiltonian. This was observed
in 1990 independently by Nier [12| and Caussignac et al. [1], and is closely related
to the convexity of von Neumann-type trace functionals [11, chapter V.3], [10], [5].

In this note we prove in an elementary way the anti-monotonicity of the quantum
mechanical particle density with respect to the potential in the Hamiltonian. Thus,
we additionally enlarge the class of admissible thermodynamic equilibrium distribu-
tion functions used for the composition of the quantum mechanical particle density.

2 Results

In the following $ is an infinite dimensional, separable Hilbert space with scalar
product (-,-), and H is a self-adjoint operator on $) with compact resolvent.

Theorem 2.1. Let U and V' be bounded, self-adjoint operators on $. If f : R — R
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is a function such that f(H + U) and f(H + V) are trace class operators, then

tr([f(H +U) — f(H +V)][U - V])
D 1ok QP O) = F () (i = ), (1)

k=1

where {\,}32, and {w}2, are the sequences of eigenvalues (counting multiplicity)
of the operators H + U and H +V, respectively, and {1y}, {(}52, are the cor-
responding sequences of (normalised) eigenvectors.

Remark 2.2. In contrast to previous results (see e.g. [5]) Theorem 2.1 does not
require that the distribution function f is continuous or (Lebesque) measurable. This
is due to the fact that all occurring spectral measures E are discrete and, hence,
all (scalar) measures (E(-)p,¢) are purely atomic. Consequently, every function
f R — R is measurable with respect to measures (E(-)p,p) with ¢ € 9, see e.g.
[2, chapter 13.18]. Thus, the integrals [ f(X) d(E(X\)p, ) are well defined for all
pESHN.

In particular, the characteristic function of the negative half azis is an admissible
distribution function. This case corresponds to a quantum system at zero tempera-
ture.

Corollary 2.3. Under the assumptions of Theorem 2.1: If there are real numbers
ey and ey such that the operators f(H +U — €y), and f(H +V — ey) are nuclear
and, additionally, satisfy

tr(f(H+U =€) =te(f(H+V —ev)), (2)

then

tr([f(H +U —ey) — f(H+V —e)][U = V])
= >t W, P [fOw —ev) = flm—ev)] e —ev = +ev]. (3)

These results have consequences for the quantum mechanical particle density. Let
us assume that H is a semi-bounded, self-adjoint operator with compact resolvent in
L?(92), where Q is a bounded Lipschitz domain in the up to three dimensional space
R?. In particular, H can be a Schrédinger operator. The operator H is perturbed by
a bounded, self-adjoint multiplication operator U induced by a real potential U from
L>(€2). Then H+U has also a compact resolvent, and we denote by {\;(U)}72; and
{Ye(U)}32, the sequences of eigenvalues and (normalised) eigenfunctions of H + U
counting multiplicity.

U) =D FOw — ev)|n(U) (4)

is the quantum mechanical particle density associated with the potential U with
respect to the free Hamiltonian H and the thermodynamic equilibrium distribution
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MONOTONICITY 3

function f. If there is Fermi-Dirac distribution, then, in the three-dimensional case
(d = 3) at positive temperature, f is the Fermi function f(s) = 1/(1 + exp(—s)). If
the sum Y .2, f(A\x — €y) converges, then the (non-linear) particle density operator
N is a map from L>(Q) to L'(€2). The normalising shift ¢ is the Fermi level defined
by

N = [ M) ds =Y - ), ®)
& k=1
where N is total number of particles confined in €. If f is not strictly monotone,

then the Fermi level is not necessarily uniquely determined by (5). However, we call
any solution of (5) a Fermi level of the quantum system.

Corollary 2.4. Let H be a semi-bounded, self-adjoint operator in L*(Q) and {\}3,
the sequence of its eigenvalues counting multiplicity. If the distribution function
f:R — R, is monotonously decreasing and obeys

Z lf( A+ )] < o0 for any real number «, (6)
k=1

then the particle density operator (4) is anti-monotone from L>=(Q) to L*(Q), i.e.

/Q(N(U)(x) —NV)(@)(U(x) = V(z))dr <0 (7)

for all real potentials U, V € L>().

Remark 2.5. Corollary 2./ can be extended to more general perturbations U, V
than just bounded ones. If, e.g. H and f are chosen such that f(H + W)X is
nuclear for all multiplication operators W and X induced by functions from L*(QQ),
then the (extended) mapping

L2(Q) 5 W — —N (W) € LX(Q)

is also monotone, see [6], [7], [5].

3 Proofs

For the proof of our results we need the following simple facts on the summabil-
ity of double sums > 7 _, ar. We say the double sum converges if the sequence
{An}5e, of partial sums A, = 3¢, ay converges. If Y777, 5 %, |ay| converges,
then » ;_, ay is summable, the sums >~ > " ay and Y ;2 > 72 ay converge,
and

o0 o0 o0 o0 o0
§ ag = § E ag, = E E A, (8)
k1 1 1=1 =1 k1

see [4, Theorem XI.5.2].
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Proof of Theorem 2.1

Because H is a self-adjoint operator with compact resolvent in the separable Hilbert
space $) the operators I + U and H + V also have a compact resolvent. Since
f(H+U) and f(H + V) are trace class operators, there is
tr((f(H+U) = f(H+V))(U-V))
=tr(f(H+U)(U—-V))—te(f(H+V)U—-V)).

The trace can be expressed in terms of an eigensystem:

tr(f(H+U)(U—-V))

[e.9]

= (FH+U)U = V)b, t) = > FO) (U = V)tbi, ),
k=1

k=1

where the sum on the right-hand side is absolutely convergent. Further, one can
develop each v, into a Fourier series with respect to the system {(;}7°;:

Y=Y (U Q).

=1

Hence,

tr(f(H+ Uy U -Vv))
—Zf MU = V)t = > FO) D (Wi, (U = V)i, G).-
k=1 =1

As the sum S0 | £ 3202, [(Wn, O (U — V), ()| converges, (8) implies

r(f(H+U)U =V)) = > FO) e, Q) (U = V)ibk, Q).

k=1
Next we note
(U =V, @) = ((H+U) = (H + V)|ow, @) = (A — ) (¥k, 1)
for all k, [ € N. Hence,

t(f(H+U)U=V)) = > FO0) W Q)N — 1) (W, )
= 3 TR0 = )l (s QI (9)
k=1

Similarly one gets

tr(f(H+V)U =V)) =D Flu) N — )| (@, Q)

k=1

which, together with (9), implies (1).
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MONOTONICITY 5

Proof of Corollary 2.3
From (2) one gets

tr (f(H+U —ey)— f(H+V —ey)) [ev —ev] =0,
and consequently

tr([f(H+U—ey) = f(H+V —ey)|[U—=V])
= ([ U — ) — FHV — ][0 — ) — (V — ).

Now, Theorem 2.1, applied to U = U — ¢;y and V = V — €y, implies the relation (3).

Proof of Corollary 2.4

One has to check that for any U, V' € L* the relation (7) holds. First, one verifies
that f(H 4+ W — ey ) is a trace class operator for any bounded operator . Indeed,
there is

H—||W| —lew| < H+W —ew

in the sense of forms. Due to the minimax principle, the monotone decay of the
distribution function f, and the supposition (6) the operator f(H + W — ey) is
trace class. Thus, the series (4) converges in L!(€). By straightforward calculations
one verifies that the expression on the left hand side of (7) equals (3). As f decreases
monotonously, the pre-factors

(fFMk = ev) = fl = ev) (M = ev) = (u = ev))

are all non-positive, what proves the assertion.
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