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Abstract We develop a full theory for the new class of Optimal Entropy-
Transport problems between nonnegative and finite Radon measures in general
topological spaces. These problems arise quite naturally by relaxing the
marginal constraints typical of Optimal Transport problems: given a pair of
finite measures (with possibly different total mass), one looks for minimizers
of the sum of a linear transport functional and two convex entropy functionals,
which quantify in some way the deviation of the marginals of the transport
plan from the assigned measures. As a powerful application of this theory,
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we study the particular case of Logarithmic Entropy-Transport problems and
introduce the new Hellinger—Kantorovich distance between measures in met-
ric spaces. The striking connection between these two seemingly far topics
allows for a deep analysis of the geometric properties of the new geodesic
distance, which lies somehow between the well-known Hellinger—Kakutani
and Kantorovich—Wasserstein distances.
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Main notation
M(X)

no
PX), P2X)

B(X)
T:p

y =ou+ut, p=oy+yt

wl A
Cp(X)

Lip, (X), Lip,,(X)
LSCy(X), LSC,(X)
USCy(X), USC,(X)
B(X), By(X)

LP(X, ), LP(X, ju; RY)
I'(Ry)

F(s), Fi(s)

F*(¢), F{($)

F°(9), F7 (¢i)

R(r), Ri(r;)
D(F)

Finite positive Radon measures on a
Hausdorff topological space X

The null measure in some M (X)
Radon probability measures on X (with
finite quadratic moment)

Borel subsets of X

Push forward of u € M(X) by a map
T:X —Y,see (2.5)

Lebesgue decompositions of y and pu,
Lemma 2.3

Restriction of ameasureto A: ulL_ A(B)
= nu(A N B), Sect. 2.1

Continuous and bounded real functions
on X

Bounded (with bounded support)
Lipschitz real functions on X

Lower semicontinuous and bounded (or
simple) real functions on X

Upper semicontinuous and bounded (or
simple) real functions on X

Borel (resp. bounded Borel) real func-
tions

Borel p-integrable real (or R4 -valued)
functions

Set of admissible entropy functions, see
(2.13), (2.14)

Admissible entropy functions
Legendre transform of F, F;, see (2.16)
Concave conjugate of an entropy func-
tion, see (2.45)

Reversed entropies, see (2.28)

Proper domain { F < oo} of an extended
real function F, see (2.14)
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D(F)
Fl, F}, aff Fog

I

XA

Hc(ri,r2), H(xi,ri;x2,12)
C(x1, x2)

d(x1, x2), da(x1, x2)
Fylw), Z(uly)
EWYlwr, w2), ET (w1, pn2)
D(@lp1, 12), D1, pw2)
(O3

LET (121, p2), £(d)

Wa (i1, p2)

H (1, n2)

GK(ur, p2)

(¢, dg), o

¢[r]
b2, dilp ()

HZ (1, w2), HE(1, pw2)

ACP([0, 1]; X)
X" |g

IDz f1. Dz fla
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The interior of D(F')

Recession, derivative at 0, and asymp-
totic coefficient of F, see (2.15)

The indicator function of a set K (0 on
K and +o0 outside)

The characteristic function of a set A
(1 on A and O outside)

Marginal perspective function, see
(5.1), (5.10), (5.3)

Lower semicontinuous cost function
definedin X = X x X»

A metric on a space X and its truncated
version d A a, see (6.8)

Entropy functionals and their reverse
form, see (2.35) and (2.57)

General Entropy-Transport functional
and its minimum, see (3.4)

Dual functional and its supremum, see
(4.10) and (4.8)

Set of admissible Entropy-Kantorovich
potentials

Logarithmic Entropy Transport func-
tional and its cost, see Sect. 6.1
Kantorovich—Wasserstein distance in
P2(X)

Hellinger—Kantorovich distance in
M(X), see Section 7.3

Gaussian Hellinger—Kantorovich dis-
tance in M(X), see Section 7.8

Metric cone and its vertex, see Sec-
tion 7.1

Ball of radius  centered at 0 in €
Homogeneous marginals and dilations,
see (7.16), (7.17)

Plans in € x € with constrained homo-
geneous marginals, see (7.21)

Space of curves x : [0, 1] — X with
p-integrable metric speed

Metric speed of a curve x € AC([a, b];
(X, d)), see Sect. 8.1

Metric slope and asymptotic Lipschitz
constant in Z, see (8.37)
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When no ambiguity is possible, we will often adopt the convention to write
the integral of a composition of functions as

/F(¢)du=/(FO¢>)du=/F(¢(x))dM(x)-

1 Introduction

The aim of the present paper is twofold: In Part I we develop a full theory of
the new class of Optimal Entropy-Transport problems between nonnegative
and finite Radon measures in general topological spaces. As a powerful appli-
cation of this theory, in Part II we study the particular case of Logarithmic
Entropy-Transport problems and introduce the new Hellinger—Kantorovich
(KK) distance between measures in metric spaces. The striking connection
between these two seemingly far topics is our main focus, and it paves the way
for a beautiful and deep analysis of the geometric properties of the geodesic
HK distance, which (as our proposed name suggests) can be understood as an
inf-convolution of the well-known Hellinger—Kakutani and the Kantorovich—
Wasserstein distances, see Remark 8.19 for a discussion of inf-convolutions of
distances. In fact, our approach to the theory was opposite: in trying to char-
acterize HK, we were first led to the Logarithmic Entropy-Transport problem,
see Section A.

From Transport to Entropy-Transport problems. In the classical Kan-
torovich formulation, Optimal Transport problems [2,40,49,50] deal with
minimization of a linear cost functional

(5()’)=/ C(xr, x2)dy(x1,x2), Cc:X| x X, =R, (1.1)
X1xXp

among all the transport plans, i.e. probability measures in P(X| x X»), ¥
whose marginals p; = Jréy € P(X;) are prescribed. Typically, X, X, are
Polish spaces, u; are given Borel measures (but the case of Radon measures
in Hausdorft topological spaces has also been considered, see [26,40]), the
cost function C is a lower semicontinuous (or even Borel) function, possibly
assuming the value +o0, and 7/ (x1, x2) = x; are the projections on the i-th
coordinate, so that

ni(Ap) =y (A x X2),

Iy — . . .
Y =W & {MZ(A2)=)’(X1XA2) forevery A; € B(X;). (1.2)

Starting from the pioneering work of Kantorovich, an impressive theory
has been developed in the last two decades: from one side, typical intrin-
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sic questions of linear programming problems concerning duality, optimality,
uniqueness and structural properties of optimal transport plans have been
addressed and fully analyzed. In a parallel way, this rich general theory has
been applied to many challenging problems in a variety of fields (probability
and statistics, functional analysis, PDEs, Riemannian geometry, nonsmooth
analysis in metric spaces, just to mention a few of them: since it is impossible
here to give an even partial account of the main contributions, we refer to the
books [42,50] for a more detailed overview and a complete list of references).

The class of Entropy-Transport problems, we are going to study, arises
quite naturally if one tries to relax the marginal constraints néy = u; by
introducing suitable penalizing functionals .%;, that quantify in some way the
deviation from w; of the marginals y; := né y of p. In this paper we consider
the general case of integral functionals (also called Csiszar f-divergences
[17]) of the form

Fiyilwa) = / Filor(e) dui + (il 17 (X0,

dy;
0i = ——, yi=oii+ ¥, (1.3)
dui

where F; : [0, 00) — [0, co] are given convex entropy functions and (F;)L,
are their recession constants, see (2.15). Typical examples are the logarithmic
or power-like entropies

Up(s) == m(sp —ps—1—1), peR\{0, 1},

Up(s) :=s —1—1logs, Uj(s):=slogs —s+1,

(1.4)

or for the total variation functional corresponding to the nonsmooth entropy
V(s) := |s — 1], considered in [38]. We shall see that the presence of the
singular part yf‘ in the Lebesgue decomposition of y; in (1.3) does not force
F;(s) to be superlinear as s 1 oo and allows for all the exponents p in (1.4).

Once a specific choice of entropies F; and of finite nonnegative Radon mea-
sures 1; € M(X;) is given, the Entropy-Transport problem can be formulated
as

ET(u, i) = inf { £l i) 1y e MO x X))o (1)

where & is the convex functional

Eylpt, n2) = F1(yiln1) + F2(2ln2) +/ C(x1, x2)dy. (1.6)
X1xX2
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Optimal Entropy-Transport problems 975

Notice that the entropic formulation allows for measures (1, 4y and y with
possibly different total mass.

The flexibility in the choice of the entropy functions F; (which may also take
the value +00) covers a wide spectrum of situations (see Sect. 3.3 for various
examples) and in particular guarantees that (1.5) is a real generalization of the
classical optimal transport problem, which can be recovered as a particular
case of (1.6) when Fj(s) is the indicator function of {1} (i.e. F;(s) always
takes the value +oo with the only exception of s = 1, where it vanishes).

Since we think that the structure (1.6) of Entropy-Transport problems will
lead to new and interesting models and applications, we have tried to estab-
lish their basic theory in the greatest generality, by pursuing the same line
of development of Transport problems: in particular we will obtain general
results concerning existence, duality and optimality conditions.

Considering e.g. the Logarithmic Entropy case, where F;(s) = slogs —
s + 1, the dual formulation of (1.5) is given by

D(u1, (2) 1= sup {9(% 2|, m2) - @it X — R,
1(x1)+¢2(x2) < C(x1, xz)},

where Z(¢1, g2|p1, p2) :=/(1 —e ) du +f(1 —e ) dpua,
X1 X2
(1.7)

where one can immediately recognize the same convex constraint of Transport
problems: the pair of dual potentials ¢; should satisfy ¢1 ¢y < con X1 x X».
The main difference is due to the concavity of the objective functional

(e, = [ (1—e ) du +/ (1—e ) duo,
X1 X7

whose form can be explicitly calculated in terms of the Lagrangian conjugates
F of the entropy functions. Thus (1.7) consists in the supremum of a concave
functional on a convex set described by a system of affine inequalities.

The change of variables y; := 1 — e~ ¥ transforms (1.7) in the equivalent
problem of maximizing the linear functional

URDEDY | vidut | adu (1.8)

on the more complicated convex set

@ Springer



976 M. Liero et al.

{(wl,xlfz) S X = (=00, 1), (I=y1(x1)(1=92(x2) = e—C(xmz)},
(1.9)

It will be useful to have both the representations at our disposal: (1.7) naturally
appears from the application of the von Neumann min—max principle from a
saddle point formulation of the primal problem (1.5). Moreover, (1.8)—(1.10)
will play an important role in the dynamic version of a particular case of ET,
the Hellinger—Kantorovich distance that we will introduce later on.

We will calculate the dual problem for every choice of F; and show that
its value always coincide with ET (w1, 2). The dual problem also provides
optimality conditions, that involve the pair of potentials (¢1, ¢2), the support
of the optimal plan y and the densities o; of its marginals y; w.r.t. ;. For the
Logarithmic Entropy Transport problem above, they read

o; > 0, Y = —loga,- M; a.c. in X,‘,
pr® e <C inX| x Xz, o1 ®ea=C py-ae.in X x X3,
(1.10)

and they are necessary and sufficient for optimality.

The study of optimality conditions reveals a different behavior between pure
transport problems and entropic ones. In particular, the c-cyclical monotonicity
of the optimal plan y (which is still satisfied in the entropic case) does not play
a crucial role in the construction of the potentials ¢;. When F;(0) are finite
(as in the logarithmic case) it is possible to obtain a general existence result of
(generalized) optimal potentials even when C takes the value +oc0.

A crucial feature of Entropy-Transport problems (which is not shared by
the pure transport ones) concerns a third homogeneous formulation, which
exhibits new and unexpected properties, in particular concerning the metric
and dynamical aspects of such problems. It is related to the 1-homogeneous
Marginal Perspective function

H(x,rix,r) = inf (rFL0/r) + 12 Fa(0/r2) +00(x1,x2)) - (111

and to the corresponding integral functional

JC(1, w2ly) :=/ H(x1,01(x1); x2, 02(x2)) dy
X1xX2
dpui

+ Y FOp (X)), o = . (1.12)
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Optimal Entropy-Transport problems 977

where u; = 0;yi + MIL is the “reverse” Lebesgue decomposition of ©; w.r.t. the
marginals y; of y. We will prove that

ET (a1, 12) = min | Gur, pialy) - y € MOX) % Xo) (1.13)

with a precise relation between optimal plans. In the Logarithmic Entropy
case Fj(s) = slogs — (s — 1) the marginal perspective function H takes the
particular form

HGi,r;x0,m) =r+r —2rrm e CUr1.x2)/2 (1.14)

which will be the starting point for understanding the deep connection with
the Hellinger—Kantorovich distance. Notice that in the case when X| = X»
and c is the singular cost

0  ifx =
C(xl,xQ):z{ =2, (1.15)

+o00 otherwise,

(1.13) provides an equivalent formulation of the Hellinger—Kakutani distance
[22,25], see also Example E.5 in Sect. 3.3.

Other choices, still in the simple class (1.4), give raise to “transport” versions
of well known functionals (see e.g. [31] for a systematic presentation): starting
from the reversed entropies F;(s) =s — 1 — logs one gets

ry+r >

2+ c(x1, x2)
(1.16)

which in the extreme case (1.15) reduces to the Jensen—Shannon diver-
gence [32], a squared distance between measures derived from the celebrated
Kullback-Leibler divergence [28]. The quadratic entropy Fj(s) = %(s — 1)
produces

H(xy,r1; x2,r2) = rplogry + rplogry — (r1+r2) IOg(

1
H(x1, 15 X2, 72) = m((n—mz +h(c(x1,x2))r1rz), (1.17)

where h(c) = c(4 —¢)if 0 < ¢ < 2 and 4 if ¢ > 2: Equation (1.17) can
be seen as the transport variant of the triangular discrimination (also called
symmetric X 2_measure), based on the Pearson X 2—divergence [31], and still
obtained by (1.12) when ¢ has the form (1.15).

Also nonsmooth cases, as for V (s) = |s — 1] associated to the total variation
distance (or nonsymmetric choices of F;) can be covered by the general theory.
In the case of F;(s) = V(s) the marginal perspective function is
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978 M. Liero et al.

H(xy,r15x2,m2) =r1 +r2— (2—c(x1,x2))+(r1 AT2)
= |ra—r1] + (C(x1, x2) A 2)(r1 A r2);

when X; = X, = R with ¢c(x1, x2) := |x;—x2| we recover the general-
ized Wasserstein distance Wll’l introduced and studied by [38]; it provides an
equivalent variational characterization of the flat metric [39].

However, because of our original motivation (see Section A), Part II will
focus on the case of the logarithmic entropy F; = Uj, where H is given by
(1.14). We will exploit its relevant geometric applications, reserving the other
examples for future investigations.

From the Kantorovich—Wasserstein distance to the Hellinger—-Kantorovich
distance. From the analytic-geometric point of view, one of the most inter-
esting cases of transport problems occurs when X1 = X, = X coincide and
the cost functional % is induced by a distance d on X: in the quadratic case,
the minimum value of (1.1) for given measures w1, 1y in the space P»(X)
of probability measures with finite quadratic moment defines the so called
L?-Kantorovich-Wasserstein distance

WiGur. o) = int { [ e dy ) sy € POXx X0,y = .

(1.18)
which metrizes the weak convergence (with quadratic moments) of probabil-
ity measures. The metric space (P> (X), Wy) inherits many geometric features
from the underlying (X, d) (as separability, completeness, length and geodesic
properties, positive curvature in the Alexandrov sense, see [2]). Its dynamic
characterization in terms of the continuity equation [7] and its dual formula-
tion in terms of the Hopf-Lax formula and the corresponding (sub-)solutions
of the Hamilton—Jacobi equation [37] lie at the core of the applications to gra-
dient flows and partial differential equations of diffusion type [2]. Finally, the
behavior of entropy functionals as in (1.3) along geodesics in (P2(X), Wy)
[16,35,37] encodes a valuable geometric information, with relevant applica-
tions to Riemannian geometry and to the recent theory of metric-measure
spaces with Ricci curvature bounded from below [3-5,21,34,47,48].

Ithas been a challenging question to find a corresponding distance (enjoying
analogous deep geometric properties) between finite positive Borel measures
with arbitrary mass in M (X). In the present paper we will show that by choos-
ing the particular cost function

—log (cosz(d)) ifd < /2,
otherwise,
(1.19)

c(xy, x2) := £(d(x1, x2)), where £(d) :=
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the corresponding Logarithmic-Entropy Transport problem

LET (1, = i i1 i —o; +1)du;
(1, pm2) yer?v%?X)Xi:/X(al 0go; —0; + ) i

d .
+ / 0(d(xy, x)) dy, o = -, (1.20)
X2 dpi

coincides with a (squared) distance in M(X) (which we will call Hellinger—
Kantorovich distance and denote by HK) that can play the same fundamental
role like the Kantorovich—Wasserstein distance for P, (X).

Here is a (still non exhaustive) list of our main results of part II concerning
the Hellinger—Kantorovich distance.

(i) The representation (1.13) based on the Marginal Perspective function
(1.14) yields

LET (11, p2)
du;
— min {/ (Ql + 02 — 2 /o102 cos(d(x1, x2) A n/2)> dy :0i = %}
(1.21)

By performing the rescaling r; +— rl.2 we realize that the function

H(xp, rlz; X2, r22) is strictly related to the squared (semi)-distance

dé(xl, ri;Xa, 1) = r12+r22—2r1r2 cos(d(xy, xp)Am), (xi,ri) € XxR4

(1.22)

which is the so-called cone distance in the metric cone € over X, cf. [10].

The latter is the quotient space of X x R, obtained by collapsing all the

points (x, 0), x € X, in a single point o, called the vertex of the cone. We
introduce the notion of “2-homogeneous marginal”

p=b'a =1 (),

/;(x)d,u:/g“(x)rzda(x,r) with ¢ € Cp(X),  (1.23)
X ¢

to “project” measures « € M(C) on measures u € M(X). Conversely,
there are many ways to “lift” a measure u € M(X) to ¢ € M(C) (e.g.
by taking o :=  ® 81). The Hellinger—Kantorovich distance HK(it1, u2)
can then be defined by taking the best Kantorovich—Wasserstein distance
between all the possible lifts of w1, uy in P (&), i.e.

HK (11, 12) = min {Wo (@1, 02) : o € P2(O), bl = i} (124)
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It turns out that (the square of) (1.24) yields an equivalent variational
representation of the LET functional. In particular, (1.24) shows that in
the case of concentrated measures

LET (418, a28y,) = HK2(a18y,, @28y,) = d2(x1, @13 x2,a2).  (1.25)

Notice that (1.24) resembles the very definition (1.18) of the K_amtorovich—
Wasserstein distance, where now the role of the marginals né is replaced

by the homogeneous marginals §2. It is a nontrivial part of the equivalence
statement to check that the difference between the cut-off thresholds (77 /2
in (1.21) and 7 in (1.22) does not affect the identity LET = H2.

(ii) By refining the representation formula (1.24) by a suitable rescaling and
gluing technique, we can prove that (M(X), HK) is a metric space, a
property that is not obvious from the LET-representation and depends on
a subtle interplay of the entropy functions Fj(c) = ologo — o + 1
and the cost function ¢ from (1.19). We show that the metric induces
the weak convergence of measures in duality with bounded and contin-
uous functions, thus it is topologically equivalent to the flat or Bounded
Lipschitz distance [19, Sect. 11.3], see also [27, Thm. 3]. It also inher-
its the separability, completeness, length and geodesic properties from
the correspondent ones of the underlying space (X, d). On top of that,
we will prove a precise superposition principle (in the same spirit of the
Kantorovich—Wasserstein one [2, Sect.8], [33]) for general absolutely
continuous curves in (M(X), HK) in terms of dynamic plans in €: as a
byproduct, we can give a precise characterization of absolutely continuous
curves and geodesics as homogeneous marginals of corresponding curves
in (P2(€), Wy, ). Aninteresting consequence of these results concerns the
lower curvature bound of (M (X), HK) in the sense of Alexandrov: it is
a positively curved space if and only if (X, d) is a geodesic space with
curvature > 1.

(iii) The dual formulation of the LET problem provides a dual characterization
of KK, viz.

1
El‘Kz(m,Mz)ZSHP{/%ész—/édm:

gengxxigs>—4m} (1.26)

where (Z)o<:<1 is given by the inf-convolution

. E() sin (dr /2 (x, X))
ZiE@) = It ey T T a0
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1(1 _cos?(dra(x, x’))>.

= inf -
xex t 14 2t&(x")

(iv) By exploiting the Hopf—Lax representation formula for the Hamilton—
Jacobi equation in €, we will show that for arbitrary initial data & €
Lip,(X) with inf & > —1/2 the function & := Z%¢£ is a subsolution (a
solution, if (X, d) is a length space) of

1
a7 & (x) + 5|DX5,|2(x) +2£2(x) <0 pointwise in X x (0, 1).

If (X, d) is a length space we thus obtain the characterization

1
EI'KZ(MO,M)=SUp{f £ duy —/ o duo : & € CK([0, 17; Lip, (X)),
X X

98 (x) + %IDx%}IZ(X) +2&7(x) <0 in X x (0, 1)},

(1.27)

which reproduces, at the level of HK, the nice link between Wy and

Hamilton—Jacobi equations. One of the direct applications of (1.27) is

a sharp contraction property w.r.t. HK for the Heat flow in RCD(0, o)

metric measure spaces (and therefore in every Riemannian manifold with
nonnegative Ricci curvature).

(v) Formula (1.27) clarifies that the HK distance can be interpreted as a
sort of inf-convolution (see the Remark 8.19) between the Hellinger
(in duality with solutions to the ODE 09;§ + 2.;32 = 0) and the
Kantorovich—Wasserstein distance (in duality with (sub-)solutions to
& (x) + %|DX§,|2(x) < 0). The Hellinger distance

2
He? (u1, o) = /X (Vor — e2) dy, wi=oaiv,

corresponds to the HK functional generated by the discrete distance
(d(xy, x2) = /2 if x; # x2). We will prove that

H (i1, no) < He(ur, p2), HK(ur, no) < Wy(uer, o),
Hua (1, m2) + He(ur, ), nHgy, t Wy, o) asn 4 oo,

where HK 4 (resp. HKg/,,) is the HK distance induced by nd (resp. d/n).

(vi) Combining the superposition principle and the duality with Hamilton—
Jacobi equations, we eventually prove that HK admits an equivalent
dynamic characterization “a la Benamou-Brenier” [7,18] (see also the
recent [27])in X = R4:
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HC2 (o m>=min{/l/(|v 2+ 2w ) dps dr
P} 0 t 4 t t .

w e C(0, 11; M(RY)), =i = i,
Butte + V-(vyjr) = wpts in 7' (RY x (0, 1))}.
(1.28)

Moreover, for the length space X = R? a curve [0,1] 3 7 w(t) is
geodesic curve w.r.t. KK if and only if the coupled system

1
s + V- (Deéy) = 4& s, 3E + §|stz|2 +262=0 (1.29)

holds for a suitable solution & = ;&y. The representation (1.28) is the
starting point for further investigations concerning the link to gradient
systems and reaction-diffusion equations, the cone geometry, the repre-
sentation of geodesics and of A-convex integral functionals: we refer the
interested reader to the examples collected in [30].

Recall that the HK variational problem is just one example in the realm
of Entropy-Transport problems, and we think that other interesting applica-
tions can arise by different choices of entropies and cost. One of the simplest
variations is to choose the (seemingly more natural) quadratic cost function
c(xq,xp) = d2(x1,x2) instead of the more “exotic” (1.19). The resulting
functional is still associated to a distance expressed by

GHK2 (111, (o) := min { / <r12 + r22 — 2r1rp exp(—d? (xq, xz)/2)> doc}
(1.30)

where the minimum runs among all the plans « € M (€ x &) such that bznéa =
;i (we propose the name Gaussian Hellinger—Kantorovich distance). If (X, d)
is a complete, separable and length metric space, (M(X), GHK) is a complete
and separable metric space, inducing the weak topology as HK. However, it
is not a length space in general, and we will show that the length distance
generated by GHK is precisely HK.

The plan of the paper is as follows.

Part I develops the general theory of Optimal Entropy-Transport problems.
Section 2 collects some preliminary material, in particular concerning the
measure-theoretic setting in arbitrary Hausdorff topological spaces (here we
follow [44]) and entropy functionals. We devote some effort to deal with gen-
eral functionals (allowing a singular part in the Definition (1.3)) in order to
include entropies which may have only linear growth. The extension to this
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general framework of the duality Theorem 2.7 (well known in Polish topolo-
gies) requires some care and the use of lower semicontinuous test functions
instead of continuous ones.

Section 3 introduces the class of Entropy-Transport problems, discussing
some examples and proving a general existence result for optimal plans. The
“reverse” formulation of Theorem 3.11, though simple, justifies the importance
of dealing with the largest class of entropies and will play a crucial role in
Sect. 5.

Section 4 is devoted to finding the dual formulation, proving its equivalence
with the primal problem (cf. Theorem 4.11), deriving sharp optimality con-
ditions (cf. Theorem 4.6) and proving the existence of optimal potentials in a
suitable generalized sense (cf. Theorem 4.15). The particular class of “regular”
problems (where the results are richer) is also studied in some detail.

Section 5 introduces the third formulation (1.12) based on the marginal
perspective function (1.11) and its “homogeneous” version (Sect. 5.2). The
proof of the equivalence with the previous formulations is presented in The-
orem 5.5 and Theorem 5.8. This part provides the crucial link for the further
development in the cone setting.

Part II is devoted to Logarithmic Entropy-Transport (LET) problems (Sect. 6)
and to their applications to the Hellinger—Kantorovich distance HK on M(X).

The Hellinger—Kantorovich distance is introduced by the lifting technique
in the cone space in Sect. 7, where we try to follow a presentation modeled
on the standard one for the Kantorovich—Wasserstein distance, independently
from the results on the LET-problems. After a brief review of the cone geom-
etry (Sect. 7.1) we discuss in some detail the crucial notion of homogeneous
marginals in Sect. 7.2 and the useful tightness conditions (Lemma 7.3) for
plans with prescribed homogeneous marginals. Section 7.3 introduces the
definition of the HK distance and its basic properties. The crucial rescaling
and gluing techniques are discussed in Sect. 7.4: they lie at the core of the
main metric properties of HK, leading to the proof of the triangle inequality
and to the characterizations of various metric and topological properties in
Sect. 7.5. The equivalence with the LET formulation is the main achievement
of Sect. 7.6 (Theorem 7.20), with applications to the duality formula (Theo-
rem 7.21), to the comparisons with the classical Hellinger and Kantorovich
distances (Sect. 7.7) and with the Gaussian Hellinger—Kantorovich distance
(Sect. 7.8).

The last section of the paper collects various important properties of HK that
share acommon “dynamic” flavor. After a preliminary discussion of absolutely
continuous curves and geodesics in the cone space € in Sect. 8.1, we derive the
basic superposition principle in Theorem 8.4. This is the cornerstone to obtain
a precise characterization of geodesics (Theorem 8.6), a sharp lower curva-
ture bound in the Alexandrov sense (Theorem 8.8), and to prove the dynamic
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characterization a la Benamou-Brenier of Sect. 8.5. The other powerful tool
is provided by the duality with subsolutions to the Hamilton—Jacobi equation
(Theorem 8.12), which we derive after a preliminary characterization of metric
slopes for a suitable class of test functions in €. One of the most striking results
of Sect. 8.4 is the explicit representation formula for solutions to the Hamilton—
Jacobi equation in X, that we obtain by a careful reduction technique from the
Hopf-Lax formula in €. In this respect, we think that Theorem 8.11 is interest-
ing by itself and could find important applications in different contexts. From
the point of view of Entropy-Transport problems, Theorem 8.11 is particularly
relevant since it provides a dynamic interpretation of the dual characterization
of the LET functional. In Sect. 8.6 we show that in the Euclidean case X = R?
all geodesic curves are characterized by the system (1.29). The last Sect. 8.7
provides various contraction results: in particular we extend the well known
contraction property of the Heat flow in spaces with nonnegative Riemannian
Ricci curvature to HK.

Note during final preparation. The earliest parts of the work developed here
were first presented at the ERC Workshop on Optimal Transportation and
Applications in Pisa in 2012. Since then the authors developed the theory
continuously further and presented results at different workshops and seminars,
see Appendix A for some remarks concerning the chronological development
of our theory.

In June 2015 the authors became aware of the parallel work [27], which
mainly concerns the dynamical approach to the Hellinger—Kantorovich dis-
tance discussed in Sect. 8.5 and the metric-topological properties of Sect. 7.5
in the Euclidean case.

Moreover, in mid August 2015 they became aware of the works [13,14],
which start from the dynamical formulation of the Hellinger—Kantorovich
distance in the Euclidean case, prove existence of geodesics and sufficient
optimality and uniqueness conditions (which we state in a stronger form
in Sect. 8.6) with a precise characterization in the case of a pair of Dirac
masses. Moreover, they provide a detailed discussion of curvature properties
following Otto’s formalism [36], and study more general dynamic costs on the
cone space with their equivalent primal and dual static formulation (leading to
characterizations analogous to (7.1) and (6.14) in the Hellinger—Kantorovich
case).

Apart from the few above remarks, these independent works did not
influence the first (cf. arXiv1508.07941v1) and the present version of this
manuscript, which is essentially a minor modification and correction of the
first version. In the final Appendix A we give a brief account of the chrono-
logical development of our theory.
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Part I. Optimal Entropy-Transport problems

2 Preliminaries
2.1 Measure theoretic notation

Positive Radon measures, narrow and weak convergence, tightness. Let
(X, 7) be aHausdorff topological space. We will denote by B (X) the o -algebra
of its Borel sets and by M(X) the set of finite nonnegative Radon measures
on X [44], i.e. o-additive set functions u : B(X) — [0, oo) such that

VB e B(X), Ve >0 IK, C Bcompact such that wu(B\K.) <e. (2.1)

The restriction B +— (B N A) of a Radon measure u to a Borel set A will be
denoted by ;L A.

Radon measures have strong continuity properties with respect to monotone
convergence. For this, denote by LSC(X) the space of all lower semicontinu-
ous real-valued functions on X and consider a nondecreasing directed family
(fidreL € LSC(X) (where L is a possibly uncountable directed set) of non-
negative and lower semicontinuous functions f; converging to f, we have (cf.
[44, Prop. 5, p.42])

lim | fdu = / Fdu forall u e M(X). 2.2)
rel Jx X

We endow M(X) with the narrow topology, the coarsest (Hausdorff) topology
for which all the maps 4 > || y ¢ du are lower semicontinuous, as ¢ : X — R
varies among the set LSCy(X) of all bounded lower semicontinuous functions
[44, p. 370, Def. 1].

Remark 2.1 (Radon versus Borel, narrow versus weak) When (X, 1) is a
Radon space (in particular a Polish, or Lusin or Souslin space [44, p. 122])
then every Borel measure satisfies (2.1), so that M(X) coincides with the set
of all nonnegative and finite Borel measures. Narrow topology is in general
stronger than the standard weak topology induced by the duality with contin-
uous and bounded functions of Cp(X). However, when (X, t) is completely
regular, i.e.

for any closed set F C X andany xg € X \ F
there exists f € Cp(X) with f(xg) >0and f =0on F, (2.3)

(in particular when t is metrizable), narrow and weak topology coincide [44,

p. 371]. Therefore when (X, t) is a Polish space we recover the usual setting
of Borel measures endowed with the weak topology.
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We now turn to the compactness properties of subsets of M(X). Let us first
recall that a set X C M(X) is bounded if sup,cq n(X) < 00; it is equally
tight if

Ve>0 3K, C Xcompact VueX:u(X\K,) <e. 2.4)

Compactness with respect to narrow topology is guaranteed by an extended
version of Prokhorov’s Theorem [44, Thm. 3, p. 379]. Tightness of weakly
convergent sequences in metrizable spaces is due to LE CAM [29].

Theorem 2.2 [f a subset X C M(X) is bounded and equally tight then it is
relatively compact with respect to the narrow topology. The converse is also
true in the following cases:

(1) (X, 7) is a locally compact or a Polish space;
(i1) (X, t) is metrizable and X = {ju, : n € N} for a given weakly convergent
sequence ([Ly).

If © € M(X) and Y is another Hausdorff topological space,amap T : X —

Y is Lusin p-measurable [44, Ch. 1, Sect.5] if for every ¢ > 0 there exists a

compact set K C X such that u(X \ K¢) < ¢ and the restriction of T to K,

is continuous. We denote by Ty € M(Y) the push-forward measure defined
by

Tiu(B) = /,L(T_l(B)) for every B € B(Y). (2.5)

For © € M(X) and a Lusin pu-measurable 7 : X — Y, we have Tiu €
M(Y). The linear space B(X) (resp. B, (X)) denotes the space of real Borel
(resp. bounded Borel) functions. If u € M(X), p € [1, oo], we will denote
by L?(X, u) the subspace of Borel p-integrable functions w.r.t. u, without
identifying p-almost equal functions.

Lebesgue decomposition. Given y, © € M(X), wewritey < pwif u(A) =0
yields y(A) = O for every A € B(X). We say that y L p if there exists
B € B(X) such that w(B) =0 =y (X \ B).

Lemma 2.3 (Lebesgue decomposition) For every vy, u € M(X) with y (X) +
w(X) > Othere exists Borel functions o, o : X — [0, 00) and a Borel partition
(A, Ay, Ay) of X with the following properties:

A={xeX:0x)>0={xeX:0x)>0}, og-0=1 inA, (2.6)
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y=ou+y, oeliX,w, y'Lu, y (X\A))=mu,) =0,
2.7)
_ 1 1 1 1 _ _
w=oy+u-, ccli(X,y), u- Ly, pn (X\A =y =0.
(2.8)

Moreover, the sets A, A, , A, and the densities o, o are uniquely determined
up to (u + y)-negligible sets.

Proof Let 6 € B(X; [0, 1]) be the Lebesgue density of y w.r.t. v := p + y.
Thus, € is uniquely determined up to v-negligible sets. The Borel partition
can be defined by setting A :={x € X : 0 < 6(x) < 1}, A, :={x € X :
O(x) =1}and A, := {x € X : 6(x) = 0}. By defining o := 0/(1 — 0),
o:=1/c =(1—-0)/0 foreveryx € Aando = o =0in X \ A, we obtain
Borel functions satisfying (2.7) and (2.8).

Conversely, it is not difficult to check that starting from a decomposition
as in (2.6), (2.7), and (2.8) and defining & = 0in A, 0 = 1in A, and
0 :=0/(1+40) in A we obtain a Borel function with values in [0, 1] such that
y =0(u+y). O

2.2 Min-max and duality

We recall now a powerful form of von Neumann’s Theorem, concerning mini-
max properties of convex-concave functions in convex subsets of vector spaces
and refer to [20, Prop. 1.243.2, Chap. VI] for a general exposition.

Let A, B be nonempty convex sets of some vector spaces and let us suppose
that A is endowed with a Hausdorff topology. Let L : A x B — R be a
function such that

a+ L(a,b) isconvex and lower semicont. in A for every b € B,

(2.92)
b+ L(a,b) isconcavein B foreverya € A. (2.9b)

Notice that for arbitrary functions L one always has
inf sup L(a, b) > sup inf L(a, b); (2.10)

acA beB beB acA

so that equality holds in (2.10) if sup,.pinf,c4 L(a,b) = +oo. When
sup,epginf,c4 L(a, b) is finite, we can still have equality thanks to the fol-
lowing result.

The statement has the advantage of involving a minimal set of topological
assumptions (we refer to [45, Thm. 3.1] for the proof; see also [9, Chapter 1,
Prop. 1.1]).
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Theorem 2.4 (Minimax duality) Assume that (2.9a) and (2.9b) hold. If there
exists b, € B and C > sup,cpinf,c4 L(a, b) such that

lae A:L(a b)) <C} iscompactin A, (2.11)
then
inf sup L(a, b) = sup inf L(a,b). (2.12)
acA beB beBacA

2.3 Entropy functions and their conjugates

Entropy functions in [0, 0o0). We say that F : [0, co) — [0, co] belongs to
the class I'(R ) of admissible entropy function if it satisfies

F is convex and lower semicontinuous and D(F) N (0, 00) =@, (2.13)

where
D(F):={s>0:F(s) < oo}. (2.14)

It is useful to recall that for every xo € D(F) the map x — %fo(x") is

increasing in D(F) \ {xo}, thanks to the convexity of F. The recession constant
F[,, the right derivative Fyj at 0, and the asymptotic affine coefficient aff Fi,
are defined by

F FG)—F
F., = lim () = supu, so € D(F);
S0 S s>0 $ — 5o
—00 if F(0) = o0,
F):=
0 lim w otherwise;
s40 ;
+o0 if F., = 400,
aff Fop 1= (2.15)
lim (FéO s — F(s)) otherwise.
S—>00

To avoid trivial cases, we assumed in (2.13) that the proper domain D(F’)
contains at least one strictly positive real number. By convexity, D(F) is a
subinterval of [0, 00), and we will mainly focus on the case when D(F’) has
nonempty interior and F has superlinear growth, i.e. F/, = +oo. Still it will
be useful to deal with the general class defined by (2.13).

Legendre duality. The Legendre conjugate function F* : R — (—00, +00]
is defined by

F*(¢p) := sup (s¢ — F(s)), (2.16)

s>0
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with proper domain D(F*) := {¢ € R : F*(¢) € R}; we will also denote
by D(F*) the interior of D(F*). Strictly speaking, F'* is the conjugate of the
convex function F : R — (—o00, +0¢], obtained by extending F to +oo for
negative arguments, and it is related to the subdifferential 9 F : R — 2% by

p€IF(s) & seD(F), ¢eDF*), F(s)+F(p)=s¢p. (2.17)
Notice that

inf D(F*) = —oo, supD(F*) = F.,, D(F*) = (—o0, Fl), (2.18)

so that F'* is finite and continuous in (—o0, Féo), nondecreasing, and satisfies

lim F*(¢) =inf F* = —F(0), supF* = lim F*(¢) = +o0. (2.19)
¢l —o0 ¢ +o00

Concerning the behavior of F* at the boundary of its proper domain we can
distinguish a few cases depending on the behavior of F at 0 and +o00:

o If Fé = —oo (in particular if F(0) = 400) then F* is strictly increasing
in D(F*).

e If F| is finite, then F* is strictly increasing in [Fj, F/ ) and takes the
constant value —F (0) in (—o0, Fé]. Thus — F(0) belongs to the range of
F* only if Fj > —o0.

o If F, is finite, then limgy p F*(¢p) = aff Fio. Thus FJ, € D(F*) only if
aff Fpo < 00.

e The degenerate case when F,, = F{ occurs only when F is linear.

If F is not linear, we always have

between (F), F.,) and (—F(0), aff Fi,) (2:20)

F* is an increasing homeomorphism }
with the obvious extensions to the boundaries of the intervals when F or
aff F are finite.

We introduce the closed convex subset § of R? associated to the epigraph
of F*

§:={@.v) eR* 1y < —F*(¢)}

{@.9) eR? :s¢p+ v < F(s) Vs > 0};

(2.21)

since D(F*) has nonempty interior, § has nonempty interior § as well, with
§={@.¥) eR*: ¢ e D(F"), ¥ < —F*@$)}. (2.22)
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and that § = S . The function F can be recovered from F* and from § through
the dual Fenchel-Moreau formula

F(s) =sup (s¢p — F*(¢)) = sup s¢p+v¥ = sup sp+1y. (2.23)
peR (9. ¥)eF (@)

Notice that § satisfies the obvious monotonicity property

o

@G V)eS, V<. p<¢ = (hV)eF (2.24)

If F is finite in a neighborhood of +o0, then F* is superlinear as ¢ 1 oo.
More precisely, its asymptotic behavior as ¢ — =00 is related to the proper

domain of F by

F*
lim @) . (2.25)
—+o0 ¢

st =
¢

We will also use the duality formula
(AF())" = AF*(-/2) A >0

and we adopt the notation ¢_ and ¢ to denote the negative and the positive part
of a function ¢, where ¢_(x) := min{¢(x), 0} and ¢4 (x) := max{¢p(x), 0}.

Example 2.5 (Power-like entropies) An important class of entropy functions

is provided by the power like functions U, : [0, c0) — [0, oo] with p € R
characterized by

Up € C®(0,00), Up(1) = Ul(1) =0,

- . 2.26
Uy(s) =52, U,0) = 1;3} Up(s). (2.26)
Equivalently, we have the explicit formulas
L (P —p(s—1)—1) ifp#0,1
(=D (S p(s ) ) ifp#0,1,
Up(s) = {slogs —s +1 ifp=1, fors > 0, (2.27)

s —1—logs if p =0,
with U,(0) = 1/pif p > 0and U, (0) = +ooif p < 0.
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Using the dual exponent ¢ = p/(p — 1), the corresponding Legendre con-
jugates read

7[(1 42y 1], D(U}) =R, ifp>1,¢>1,

e’ —1, DU} =R, ifp=1, g =00,

* L q—1 ¢ \q © .

Us(¢) =1 —|(1+ ——=)"=1|, DU} =(-00,1—¢q), if0<p<1,g<0,
q qg—1

—log(l —¢), D) = (—o0, 1), ifp=0,qg=0,

q—1 ¢ .
T[(l-ﬁ-ﬁ)q—l], D(U;):(—oo,l—q], ifp<0,0<gqg<1.

Reverse entropies. Let us now introduce the reverse density function R :
[0, 00) — [0, oc] as

F(l/r) ifr >0
Ry = |"FE/) =0, (2.28)
F ifr =0.

It is not difficult to check that R is a proper, convex and lower semicontinuous
function, with

R(0) = F.,, R., =F(0), affFeo=—R{, affRe =—Fy, (2.29)
so that R € I'(R4) and the map F +— R is an involution on I'(Ry). A

further remarkable involution property is enjoyed by the dual convex set R :=
{(y, ) € R?: R*(Y) + ¢ < 0} defined as (2.21): it is easy to check that

. ¥)ed & .9 eR, (2.30)

a relation that obviously holds for the interiors of § and fR as well. It follows
that the Legendre transform of R and F are related by

Y <—F(¢) & ¢<—-R'(Y) & (p.¥)eF foreveryop,y €R,
(2.31)
and, recalling (2.22),

¢ €D(F"), ¥ < —F*(¢) & Y DR, ¢ <—R*). (232
Both the above conditions characterize the interior of §. As in (2.20) we have

R* is an increasing homeomorphism } (2.33)

between (—aff Foo, F(0)) and (—F},, —F)
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with f)(R *) = (—o0, F(0)). Alastuseful identity involves the subdifferentials
of F and R: for every s, r > 0 with sr = 1, and ¢, ¥ € R we have

(¢ € 0F(r)and = —F*(¢)> — (w € IR(s) and ¢ = —R*(w)).
(2.34)
It is not difficult to check that the reverse entropy associated to U, is Uj— .

2.4 Relative entropy integral functionals

For F € T'(R,) we consider the functional .% : M(X) x M(X) — [0, oo]
defined by

F iyl :=/ Flo)du+ Floyt(X). y =ou+yt, (235
X

where y = ou + y* is the Lebesgue decomposition of y w.r.t. u, see
Lemma 2.3. Notice that

if F is superlinear then . (y|u) = +oo ify & u, (2.36)

and, whenever 7 is the null measure, we have

F(yIno) = F, y(X), (2.37)

where, as usual in measure theory, we adopt the convention 0 - co = 0.

Because of our applications in Sect. 3, our next lemma deals with Borel
functions ¢ € B(X; R) taking values in the extended real line R := RU{+o0}.
By § we denote the closure of §in R x R, i.e.

Y < —F*(¢) if —oo<¢<F,, ¢ <400
@) eF © (¥ =-o0 if ¢ = F/, = +oo,
Y€ [—o0, F(0)] ifp =—o0,
(2.38)
and, symmetrically by (2.29) and (2.30),

¢ <—R*(Y) if —oco<y < F(0), ¥ <+o0
@.V)eF & {¢p=- if = F(0) = +o0,
¢ €[—o0, FL ] ify = —o0.
(2.39)
In particular, we have

@ ¥v)eF = (¢ =<Fandy <F(0)). (2.40)
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Lemma 2.6 Ify, u € M(X) and (¢, V) € B(X; §) satisfy

F(ylp) <oo, Y_eL'(X,n) (resp. p— e LY(X, y)),

then ¢ € LY (X, y) (resp. ¥ € L' (X, ) and
Fohw - [ vanz [ sar (2.41)
X X

Whenever Y € L1(X, ) or ¢ € L' (X, y), then equality holds in (2.41) if and
only if for the Lebesgue decomposition given by Lemma 2.3 one has

¢ €dF(0), v = —F*(¢p) (u+y)-ae. in A, (2.42)
Y =F(0) <ocopu’-aeinA,, ¢=F, <ooytaeinA, (243)

Equation (2.42) can equivalently be formulated as v € 0R(o) and ¢ =
—R*().

Proof Let us first show that in both cases the two integrals of (2.41) are well
defined (possibly taking the value —oo). If ¥ € L'(X, n) (in particular
Y > —oo u-a.e.) with (¢, ) € § we use the pointwise bound s¢p < F(s)—y
thatyields s¢ < (F(s) —¥)+ < F(s)+¥- obtaining ¢, € L'(X, y), since
(¢. ) € § yields ¢ < FL,.

If p_ € L'(X,y) (and thus ¢ > —oo y-a.e.) the analogous inequality
Vi < F(s)+ s¢_ yields ¥, € L1(X, ). Then, (2.41) follows from (2.21)
and (2.40).

Once ¢ € L'(X, w) (or y € L(X, y)), estimate (2.41) can be written as

/A (F) 00— v) d,w/AM (o)) dMLJr/Ay(FéO sydyt 0

and by (2.21) and (2.40) the equality case immediately yields that each of the
three integrals of the previous formula vanishes. Since (¢, ¥) lies in § C R?
(u + y)-a.e. in A, the vanishing of the first integrand yields v = —F* (o)
and ¢ € d0F (o) by (2.17) for i and (u + y) almost every point in A. The
equivalence (2.34) provides the reversed identities ¢ € dR(0), » = —R*(¥).

The relations in (2.43) follow easily by the vanishing of the last two integrals
and the fact that v is finite p-a.e. and ¢ is finite y-a.e. O

A simple application of (2.41) yields the following variant of Jensen’s
inequality

F(ylw) = w(X)F (y(X)/u(X)) whenever u(X) > 0. (2.44)
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In order to prove it, we first choose arbitrary (¢, ¥) € § and constant functions
¢(x) = ¢, ¥(x) = in (2.41), obtaining

-y X)o7
F (vl = nO[ ¥ + mtb],

we then take the supremum with respect to (q_b, 1&) € §, recalling (2.23).

The next theorem gives a characterization of the relative entropy .%, which
is the main result of this section. Its proof is a careful adaptation of [2, Lemma
9.4.4] to the present more general setting, which includes the sublinear case
when F/, < oo and the lack of complete regularity of the space. This sug-
gests to deal with lower semicontinuous functions instead of continuous ones.
Whenever A C R, we denote by LSC,(X; A) the class of lower semicontinu-
ous simple real functions

LSC,(X) := {(p X > R : ¢ e LSC(X), ¢(X) s a finite subset of A},

by omitting A when A = R; we introduce the notation ¢ = —¢ and the
concave increasing function

F(p) = —F"(=¢), F°(¢) = inf (¢s + F(5); (2.45)
by (2.18) and (2.19) the interior of the proper domain of F° is ]o)(F °) =
(—F.,, +00) and limy 1 F°(@) = —00, limgy4oo F°(@) = F(0).

Theorem 2.7 (Duality and lower semicontinuity) For every y, u € M(X) we
have

ﬂ(ylu)=sup{/xwdu+fx¢dy:¢,w € LSC,(X),
GO, y(x) € FVx e X} (2.46)

= sup{/xwdu—/XR*(v/)dy Y eLSCs(X,fD(R*))}
(2.47)

- sup{/xFo(go) d,u—fxwdy L € LSC, (X, 1°)(F°))}. (2.48)

Moreover, the space LSC;(X) in the supremum of (2.46), can also be replaced
by the space LSCy(X) of bounded l.s.c. functions or by the space By(X)
of bounded Borel functions and the constraint (¢ (x), ¥ (x)) € S in (2.46)
can also be relaxed to (¢p(x), Y (x)) € § for every x € X. Similarly, the
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spaces LSCy (X, D(R*)) (resp. LSCy(X, D(F°))) of (2.47) (resp. (2.48)) can
be replaced by LSCy (X, D(R*)) or Bp(X, D(R*)) (resp. LSCp(X, D(F°)) or
By (X, D(F°))).

Remark 2.8 If (X, t) is completely regular (recall (2.3)), then we can equiv-
alently replace lower semicontinuous functions by continuous ones in (2.46),
(2.47) and (2.48). E.g. in the case of (2.46) we have

ﬁ(ym):sup{fxwdwfxwy:<¢>,¢>ecb<x;§>}, (2:49)

whereas (2.47) and (2.48) become

ﬁ(mm:sup{/xwdu—/xle*(wdy:w, R* (W) € Ch(X) |
=sup{/XF°<¢)du—fX<ody:go, F(9) € Cp(X)].

In fact, considering first (2.46), by complete regularity it is possible to express
every pair ¢, ¥ of bounded lower semicontinuous functions with values in §
as the supremum of a directed family of continuous and bounded functions
(o, Yo)aea which still satisfy the constraint given by S due to (2.24). We
can then apply the continuity (2.2) of the integrals with respect to the Radon
measures @ and y.

In order to replace l.s.c. functions with continuous ones in (2.47) we can
approximate i by an increasing directed family of continuous functions
(Yo)aea- By truncation, one can always assume that max iy > sup g >
inf ¥, > min . Since R*(1/) is bounded, it is easy to check that also R* (/)
is bounded and it is an increasing directed family converging to R*(y). An
analogous argument works for (2.49).

Proof Since the statements are trivial in the case when u = y = ng are the
null measure, it is clearly not restrictive to assume (u + y)(X) > 0. Let us
prove (2.46): denoting by .%” its right-hand side, Lemma 2.6 yields % > .%'.1In
order to prove the opposite inequality we consider the Lebesgue decomposition
given by Lemma 2.3: let A, € B(X) be a p-negligible Borel set where yt
is concentrated, let A := X \A, =AUA andleto : X — [0,00) be a
Borel density for y w.r.t. ;. We consider a countable subset (¢, ¥,,) - | with
Y1 = ¢1 = 0, whichisdense in§ and an increasing sequence <]3,, € (—o0, FL)
converging to F/_, with 1}” = —F* ((/3,,). By (2.23) we have

F(o(x)):l\l/iTrgO Fy(x), where Vx € X : Fy(x):= sup vy,+o(x)p,.

1<n<N
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Hence, Beppo Levi’s monotone convergence theorem (notice that Fy > F| =
0) implies .7 (y |u) = limyqoo Fy (v |1t), Where

Ty (i) I=AFN(X)dM(X)+$NV(Ay)-

It is therefore sufficient to prove that
F'(ylp) = Fy(ylu) forevery N € N. (2.50)

We fix N € N, set ¢y := qSN, Yo = &N, and recursively define the Borel
sets Aj, for j =0,..., N, with Ag := A, and

Al i={x e A: Fi(x) = Fy(x)},

- (2.51)
Aj={xeA: Fy(x)=F;j(x) > Fj_1(x)} forj=2,...,N.

Since F| < Fp <--- < Fy,thesets A;,i = 1,..., N, form a Borel partition
of A. As /1 and y are Radon measures, for every ¢ > 0 we find disjoint compact
sets K; C A; and disjoint open sets (by the Hausdorff separation property of
X) Gj D K such that

i (M(Aj \Kj)+y(A;\ Kj)):M(X\ LNJ Kj)+)/(X\ LNJ Kj) <e/Sn
j=0 j=0

where

SN = max [(d’n - ¢ﬁin) + (wn - w[i\l]ln)]’

0<n<N
N . N .
o=  mnin i sot=  Imin i
¢m1n 0<j<N ¢J’ 1zﬁmln 0<j<N 1'ﬁl

Since (¢, ¥n,) € § forevery n € N and § satisfies the monotonicity property
(2.24) (qu wr]r\;in) € §; since the sets G,, are disjoint, the functions

min’®

vw itxeGa

@) = {wnffm ifx e X\ (UV_ G,)
. if x € Gy,

on(x) = {qsgin ifx e X\ (UV_, G,)
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take values in § and are lower semicontinuous thanks to the representation
formula

YN (x) = wmm+2 — Vi) X G, (%),

PN (x) = Pl + Z Diin) X G, (X). (2.52)

Moreover, they satisfy

N
Fhrlw) = Z/A Fj di + goy (Ao)
j=174i
= ¢y (X) + YN ()

N
+ Z </A (d)J mm) d)/ +/ (1[/1 III\IIm) d,lL)
j=0 J

< Ny (X) + N w(X)
N
+ i — rﬁind+/ i nAllind =+
Z;)(/K,.(‘p’ S by + |0y =) n)+e
S/¢Ndy+/w1vdu+8.
X X

Since ¢ is arbitrary we obtain (2.50).

Equation (2.47) follows directly by (2.46) and the previous Lemma 2.6. In
fact, denoting by .%#” the right-hand side of (2.47), Lemma 2.6 shows that
F"(ylw) < F(ylp) = F'(yIw). On the other hand, if ¢, ¥ € LSC,(X)
with (¢, V) € § then ¥ takes values in D(R*) and —R*(y/) > ¢. Hence,
the map x — R*(y¥(x)) belongs to LSC,(X) since R* is real valued and
nondecreasing in the interior of its domain, and it is bounded from above by
—¢. We thus get 7" (y|pn) = F'(y|w).

In order to show (2.48), we observe that for every ¢ € LSCy (X, lo)(R*)) and
e > 0 we can set ¢ := R*(Y) + & € LSC,(X, D(F®)); since (Y, —R*(¥) —
g) € R, (2.3 yields ¥ < —F*(—¢) = F°(¢) sothat [ F°(p)du—[@dy >
[¥du — [ R*(¥)dy — ey(X). By construction and (2.30) we also have
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(=@, F°(¢)) € § so that [F(p)du — [@dy < Z(y|n) by Lemma 2.6.
Passing to the limit as ¢ | 0 and recalling (2.47) we obtain (2.48).

When one replaces LSC;(X) with LSCy(X) or Bp(X) in (2.46) and the
constraint (¢ (x), ¥ (x)) € S with (¢ (x), ¥ (x)) € § (oreven S) the supremum
is taken on a larger set, so that the right-hand side of (2.46) cannot decrease.
On the other hand, Lemma 2.6 shows that .% (y|u) still provides an upper
bound even if ¢, 1 are in By, (X); thus duality also holds in this case. The same
argument applies to (2.47) or (2.48). |

The following result provides lower semicontinuity of the relative entropy
or of an increasing sequence of relative entropies.

Corollary 2.9 The functional % is jointly convex and lower semicontinuous
in M(X) x M(X). More generally, if F € I'(Ry.) is the pointwise limit of an
increasing net (F))ecr, C I'(R4) indexed by a directed set L and (i, y) €
M(X) x M(X) is the narrow limit of a net (4, V))yel, C M(X) x M(X),
then the corresponding entropy functionals %), F satisfy

lirggglf T alun) = Z(yn). (2.53)

Proof The lower semicontinuity of .# follows by (2.46), which provides a
representation of .# as the supremum of a family of lower semicontinuous
functionals for the narrow topology. Using F,, < F; fora < A in L, « fixed,
we have

liminf % (yi|pa) = liminf %, (o lun) = Fo(yIn),
rell rell

by the above lower semicontinuity. Hence, it suffices to check that

yrrﬁ Fr(yln) = F(yln) forevery y, u € M(X). (2.54)
€

This formula follows by the monotonicity of the convex sets §, (associated to
F) by (2.21)),1.e. §4 C §a if ¢ < A in L, and by the fact that S - U)LG]LSOA; in
order to show the latter property, we argue by contradiction and we suppose
that there exists (¢, V) € 3 which does not belong to § := UAGLS}. Notice
that every §, has nonempty interior, so that §’ is a nonempty convex and open
set. We also notice that ¢ < F., and lim,cr, (F)5, = FJ, so that there exists
o € L with Ff(¢) < oo; thus there exists — > ¥ such that (¢, ¥) € §.
Applying the geometric form of the Hahn-Banach theorem, we can find a non
vertical line separating (¢, ¥) from §’, i.e. there exists & € R such that

' =~y +0( —¢) forevery (@, ) € F.
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Recalling that 5 = §, we deduce
Fi(¢)) > —¢ +0(¢" —¢) forevery ¢’ € D(F;), » €L;
taking the supremum w.r.t. ¢’ we obtain
Y +60¢ > F,(0) forevery L € L
and passing to the limit w.r.t. A € L we get
Y +60¢ > F(0) sothat —y <60¢ — F(¢) < F*(),

which contradicts the fact that (¢, ¥) € int§.

Thus for every pair of simple and lower semicontinuous functions (¢, ¥)
taking values in int § we have (¥ (x), ¢(x)) € int§, for every x € X and
some « € L so that

nminf%(ym)z%(ym)zf wdu+/ 6 dy.
rell X X

Since ¢, ¥ are arbitrary we conclude applying the duality formula (2.46). O

Next, we provide a compactness result for the sublevels of the relative
entropy, which will be useful in Sect. 3.4 (see Theorem 3.3 and Lemma 3.9).

Proposition 2.10 (Boundedness and tightness) If X C M(X) is bounded and
F!, > 0, then for every C > 0 the sublevels of F,

Ec = {y EM(X):ﬁ(ym)foorsome,uefK}, (2.55)

are bounded. If moreover X is equally tight and F = 400, then the sets E¢
are equally tight.

Proof Concerning the properties of Z¢, we will use the inequality

Ay(B) < Z(y|u) + F*(M)u(B) forevery A € (0, F.)), and B € B(X).

(2.56)
This follows easily by considering the decomposition y = o 4+ y* and by
integrating the Young inequality Ao < F(o) + F*(A) for A > 0 in B with
respect to u; notice that

1y (B) =xf odu + Ayt (B) 5x/ odu+ Flyt(B) if0 <A < FL.
B B
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Choosing first B = X in (2.56) and an arbitrary A in (0, F/_) (notice that
F*(A) < oo thanks to (2.18)) we immediately get a uniform bound of y (X)
forevery y € Ec.

In order to prove the tightness when F/, = +o00, whenever ¢ > 0 is given,
we can choose A = 2C /g and n > 0 so small that n F*(A)/A < /2, and then
a compact set K C X such that u(X \ K) < n forevery u € K. (2.56) shows
that y (X \ K) < e forevery y € E. O

We conclude this section with a useful representation of .% in terms of the
reverse entropy R (2.28) and the corresponding functional . We will use the
result in Sect. 3.5 for the reverse formulation of the primal entropy-transport
problem.

Lemma 2.11 For every y, u € M(X) we define
Ay = [ R dy + R0, 2.57)
X

where 1 = oy + pt is the reverse Lebesgue decomposition given by
Lemma 2.3. Then

F(ylw) = Z(uly). (2.58)

Proof It is an immediate consequence of the dual characterization in (2.46)
and the equivalence in (2.30). O

3 Optimal Entropy-Transport problems

The major object of Part I is the entropy-transport functional, where two mea-
sures i1 € M(X1) and uy € M(X>) are given, and one has to find a transport
plan y € M(X; x X»>) that minimizes the functional.

3.1 The basic setting

Let us fix the basic set of data for Entropy-Transport problems. We are given

e two Hausdorff topological spaces (X;, 7;),i = 1, 2, which define the Carte-
sian product X := X| x X» and the canonical projections 7 X > X;;

e two entropy functions F; € I'(R;), thus satisfying (2.13);

e a proper, lower semicontinuous cost function ¢ : X — [0, oo];

e apair of nonnegative Radon measures u; € M(X;) with finite mass m; :=
ui(X;), satisfying the compatibility condition

J o= <m1 D(Fl)) N <m2 D(F2)> £ 0, 3.1)
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We will often assume that the above basic setting is also coercive: this means
that at least one of the following two coercivity conditions holds:

F1 and F; are superlinear, i.e. (F,-)go = +o00; (3.2a)
(F1)s + (F2), + inf ¢ > 0 and ¢ has compact sublevels.  (3.2b)

For every transport plan y € M(X) we define the marginals y; := néy and,
as in (2.35), we define the relative entropies

Fiylu) = /X Fiondp + (F)oy (X0, vi = oipts + v (3.3)

With this, we introduce the Entropy-Transport functional as

Eln, 1) :=Z<%(ylm)+/ c(x1, x2) dy (x1, x2), (3.4)

; X

possibly taking the value 4+o0. Our basic setting is feasible if the functional & is
notidentically 400, i.e. there exists at least one plan y with & (y |1, n2) < oo.
3.2 The primal formulation of the optimal entropy-transport problem

In the basic setting described in the previous Sect. 3.1, we want to investigate
the following problem.

Problem 3.1 (Entropy-Transport minimization) Given u; € M(X;) find y €
M(X) = M(X1 x Xp) minimizing &(y |1, o), i.e.

E(ylnr, m2) = ET(n1, p2) = inf &(olpn1, u2). (3.5)
oeM(X)
We denote by Optgr (i1, n2) C M(X) the collection of all the minimizers of
(3.5).

Remark 3.2 (Feasibility conditions) Problem 3.1 is feasible if there exists at
least one plan y with &(p|u1, n2) < oco. Notice that this is always the case
when

F;(0) <00, i=1,2, (3.6)

since among the competitors one can choose the null plan 73, so that

ET(u1, n2) = EMlpr, n2) = FirO)pi (X) + F2(0)u2(X). (3.7
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More generally, thanks to (3.1) a sufficient condition for feasibility in the
nondegenerate case mm, # 0 is that there exist functions By and B, with

c(x1, x2) < Bi(x1) + Ba(x2), B; € LY(X;, ). (3.8)

In fact, the plans

0
y = w1 ® ur with € J given by (3.1) 3.9
mimy

are Radon [44, Thm. 17, p. 63], have finite cost & (y |41, (1) < oo and provide
the estimate

ET(u1, u2) < Eplpr, 1) <miF1(8/my) +maF2(0/m2)
+02mi71”BillLl(Xiylli)’ for every 6 € J.

1

Notice that (3.1) is also necessary for feasibility: in fact (2.44) yields
Fi(ylwi) = miFi(m/m;), where m:=y;(X;) =y(X).
Thus, whenever & (y |1, t2) < 00, we have
Ey i1, n2) = minf ¢ +my Fy(m/my) + maFa(m/my), (3.10)
and therefore
m = y(X) € (m; D(F})) N (ma D(F)) = J. (3.11)

We will often strengthen (3.1) by assuming that at least one of the domains of
the entropies F; has nonempty interior, containing a point of the other domain:

(int (m\D(F1)) Nmy D(F2)> U <m1 D(Fy) Nint (sz(Fz))) £ . (3.12)

This condition is surely satisfied if J has nonempty interior, i.e. max(mys; ,
mas, ) < min(mlsfr, mzs;r), where s;” = inf D(F}), s;r = sup D(F;).

We also observe that whenever p;(X;) = 0 then the null plan y = 3,
provides the trivial solution to Problem 3.1. Another trivial case occurs when
F;(0) < ooand F; are nondecreasing in D(F;) (in particular when F; (0) = 0).
Then it is clear that the null plan is a minimizer and ET (w1, o) = F1(0)m +
F>(0)m,.
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3.3

Examples

Let us consider a few particular cases:

E.1

E.2

E.3

Costless transport: Consider the case ¢ = 0. Since F; are convex, in
this case the minimum is attained when the marginals y; have constant
densities. Setting o; = 6 /m; in order to have m01 = mo0,, we thus have

ET (a1, u2) = Ho(m1, m2) s=min oy Fy 0/ my)+maFa(6/m2) : =0}

(3.13)

Entropy-potential problems: If 1o = 19 is the null measure and, just to
fix ideas, X; are Polish spaces with X» compact and C is real valued, then
setting V (x1) := miny,cx, C(x1, x2) we get

ET(u,no) = inf
yE

%<y|u)+/ Vdy + (R, y(XD). (.14)
M(X1)

X

In fact for every y € M(X) we have Z2(y2lno) = (F2)72(X2) =
(F2),71(X1); moreover by applying the von Neumann measurable selec-
tion Theorem [44, Thm. 13, p. 127] it is not difficult to check that

min{/Xcdy:y EM(X),nulyzy} :/X V(x1) dy (x1).
1

0 ifr=1
+o00 otherwise.

In this case any feasible plan y should have | and w, as marginals and
the functional just reduces to the pure transport part

Pure transport problems: We choose F; (r) =1, (r) =

T(w1, p2) = min { /

cdy : néy = ui}. (3.15)
X1xX2

As a necessary condition for feasibility we get ;1(X1) = u2(X2).

A situation equivalent to the optimal transport case occurs when (3.12)
does not hold. In this case, the set J defined by (3.1) contains only one
point 6 which separates m| D(F1) and my D(F>):

9=m1s1+=m2s2_ or 0=m1s1_=m2s;r. (3.16)
It is not difficult to check that in this case

ET(u1, m2) = miF1(0/my) +maF2(0/ma) +T(uy, p2).  (3.17)
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E.4 Optimal transport with density constraints: We realize density con-
straints by introducing characteristic functions of intervals [a;, b;], viz.
Fi(r) := 14 p;1(r),a; <1 < b;. E.g. when a; = 1, b; = +00 we have

|:—|'(M1,Mz)=min{/ cdy: iy =il (3.18)

X1xX2

For [ay, b1] = [0, 1] and [a>, b2] = [1, oo] we get

ET(u1, n2) = min { /

cdy: wly =, iy =) (3.19)
X1xX2

whose feasibility requires w2 (X2) > w1(X1).

E.5 Pure entropy problems: These problems arise if X; = X, = X and

transport is forbidden, i.e. (F;),, = 400, C(x1, x2) = 0 it xy —'xz
400 otherwise.
In this case the marginals of y coincide: we denote them by y. We can
write the density of y w.r.t. any measure u such that u; < u (say, e.g.,
u =1+ uo)asy = vu and then u; = Y. Since y <« u; we have
¥ (x) = 0 for u-a.e. x where 91(x)92(x) = 0. Thus o; = ¥/9; is well
defined and we have

5(?|M1,M2)=/

(191 Fi(@/01) + ﬁze(ﬁ/ﬁz)) dp, (3.20)
X

with the convention that 9; F; (9/9;) = 0 if ¥ = ¢¥; = 0. Since we
expressed everything in terms of w, by recalling the definition of the
function Hy given in (3.13) we get

d d
ET(u1, u2) :/ H()(ﬂ, ﬁ) du, whenever u; < . (3.21)
X du  du

In the Hellinger case F;(s) = U;(s) = slogs —s+ 1 a simple calculation
yields

2
Ho(61,0) = 0y + 6, — 2,610, = (\/or - V62 (3.22)

In the Jensen—Shannon case, where F;(s) = Up(s) = s — 1 — logs, we
obtain

; — o o .
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E.6

E.7

E.8

Two other interesting examples are provided by the quadratic case Fj(s) =
%(s — 1?2 and by the nonsmooth “piecewise affine” case F;(s) = |s — 1],
for which we obtain

1
Hy(61,0,) = m(‘gl —6,)%, and

Hy(61, 62) = |01 — 02|, respectively.

Regular Entropy-Transport problems: These problems correspond to
the choice of a pair of differentiable entropies F; with D(F;) D (0, 00),
as in the case of the power-like entropies U, defined in (2.26). When
they vanish (and thus have a minimum) at s = 1, the Entropic Optimal
Transportation can be considered as a smooth relaxation of the Optimal
Transport case E.3.

Squared Hellinger—Kantorovich distances: For a metric space (X, d),
set X; = X» = X and let t be induced by d. Further, set Fi(s) =
F>(s) :=Uj(s) =slogs —s + 1and

c(x1, x2) := —log <cos2 (d(xl, X2) A n/2)> or simply

c(x1, x2) := d*(x1, x2).

This case will be thoroughly studied in the second part of the present
paper, see Sect. 6.

Marginal Entropy-Transport problems: In this case one of the two
marginals of y is fixed, say yi, by choosing Fj(r) := I;(r). Thus the
functional minimizes the sum of the transport cost and the relative entropy
of the second marginal .%; (2| 2) with respect to a reference measure (7,
namely

ET = i T
(11, m2) %1{1 ){ (11, ¥2) +<%(J/2|M2)},

Y2eM(X2

where T has been defined by (3.15). This is the typical situation one has
to solve at each iteration step of the Minimizing Movement scheme [2],
when T is a (power of a) transport distance induced by C, as in the Jordan-
Kinderlehrer-Otto approach [24].
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E.9 The Piccoli-Rossi ‘“‘generalized Wasserstein distance’ [38,39]: For
a metric space (X,d), set X; = X; = X, let T be induced by d,
and consider Fi(s) = Fa(s) := V(s) = |s — 1| with C(x1, xp) =
d(xy, x2). This example can be considered as the natural extension of
the L!-Kantorovich—-Wasserstein distance (corresponding to (3.15) with
the distance cost) to measures with different masses, due to its dual rep-
resentation in terms of the flat metric, see (7.47).

E.10 The discrete case. Let (1f = Y /' a;dy,. ta = Y 1, B;dy; with
a;, Bj > 0, and let ¢; ; := C(x;, y;). In the case of superlinear entropy
functions F;, the Entropy-Transport problem for this discrete model con-
sists in finding coefficients y; ; > 0 which minimize

Z i y', j i Yi.i
jYi j>+Z,3jF2<L>+ZCiJViJ'
i j bi i
(3.23)

EWijlai, Bj) = Z%ﬂ(

3.4 Existence of solutions to the primal problem

The next result provides a first general existence result for Problem 3.1 in the
basic coercive setting of Sect. 3.1.

Theorem 3.3 (Existence of minimizers) Let us assume that Problem 3.1 is
feasible (see Remark 3.2) and coercive, namely at least one of the following
conditions hold:

(i) the entropy functions F\ and F» are superlinear, i.e. (F\), = (F2), =
+o0;
(ii) ¢ has compact sublevels in X and (Fy),, + (F2), +inf ¢ > 0.

Then Problem 3.1 admits at least one optimal solution. In this case
Opter (11, 12) is a compact convex set of M(X).

Proof We can apply the Direct Method of Calculus of Variations: since the map
y — &(yln1, o) islower semicontinuous in M(X | x X») by Theorem 2.7, it
is sufficient to show that its sublevels are relatively compact, thus bounded and
equally tight by the Prokhorov Theorem 2.2. In both cases boundedness follows
by the coercivity assumptions and the estimate (3.10). In particular, by formula
(2.15) defining (F;)j,, we can find 5 > 0 such that =L F; (mﬂl_) > %(F,-)go
whenever m > sm;;if a :=inf c + ) ; (F;),, > 0 the estimate (3.10) yields

2
y(X) < -&(ylut, n2) forevery y € M(X) with y(X)
a
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> smax(u1(X1), n2(X2)).

In case (ii) equal tightness is a consequence of the Markov inequality and the
nonnegativity of F;: by considering the compact sublevels K := {(x1, x2) €
X1 x X7 :c(xg, x2) < A}, we have

y(X\K;) <! /cdy < A7y, pa) forevery & > 0.

In the case (i), since ¢ > 0 Proposition 2.10 shows that both the marginals of
plans in a sublevel of the energy are equally tight and we thus conclude by [2,
Lemma 5.2.2]. |

Remark 3.4 The assumptions (i) and (ii) in the previous theorem are almost
optimal, and it is not hard to find examples violating them such that the state-
ment of Theorem 3.3 does not hold. In the case when 0 < (F1),+(F2),, < 00
but ¢ does not have compact sublevels, one can just take F;(s) := Up(s) =
s—logs — 1, X; := R, C(x1, x2) 1= 3¢5 %3, ju; = d.

Any competitor is of the form y := adp ® dg + v1 ® §p + do ® v» with
v; € M(R) and v; ({0}) = 0. Setting n; := v; (R) we find

Eylur, u2) = F(a+ny) + F(a + n2)
+3(a + / e’ d(vi + vz)) +n1 +no.

Since ming F(s) + s = log?2 is attained at s = 1/2, we immediately see that

E(ylut, wo) = 2log2 + +3/ex2d(v1 +19) > 2log2.

Moreover, 2log?2 is the infimum, which is reached by choosing « = 0 and
V] =V = %Sx,and letting x — +00. Onthe other hand, sincen|+ny+a > 0,
the infimum can never be attained.

In the case when € has compact sublevels but (F}),, = (F2),, = minc =0,
it is sufficient to take F;(s) := s, X; = [—1, 1], c(x, x2) = x12 + x%, and
wi = &o. Taking y,, := ndy ® dp one easily checks that inf &(y|u1, u2) =0
but &(y i1, u2) > 0 for every y € M(R?).

Let us briefly discuss the question of uniqueness. The first result only
addresses the marginals y; = néy.

Lemma 3.5 (Uniqueness of the marginals in the superlinear, strictly convex
case) Let us suppose that F; are strictly convex functions. Then the ;-
absolutely continuous part o;; of the marginals y; = néy of any optimal
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plan are uniquely determined. In particular, if F; are also superlinear, then
the marginals y; are uniquely determined, i.e. if y', y" € Optgr(u1, p2) then
my =my’i=12

Proof 1t is sufficient to take y = %y’ + %y” which is still optimal in
Opter (1, 12) since & is a convex functional w.r.t. y. We have néy =y =
%ylf + %yi” = %(al.’ + o/ + %(yi/)L + %()/l.”)L and we observe that the
minimality of y and the convexity of each addendum F; in the functional
yield

1 1 .
Fi(yilmwi) = Eﬂ’i(y,-/lm) - Ed@i()/i//Wi) fori =1,2.
Since y;H(Xi) = 3(r)H (X)) + 3(#/)H(Xi) we obtain
1 / 1 V2 .
(F,-(al-) — SFie) = 3Fi(o, )) du; =0 fori=1,2.
X

Since Fj; is strictly convex, the above identity implies 0; = o = o/ p;-a.e. in
X. When F; are superlinear then y; = o; thanks to (2.36). O

The next corollary reduces the uniqueness of optimal couplings in
Opter(m1, n2) to corresponding results for the Kantorovich problem asso-
ciated to the cost C.

Corollary 3.6 Let us suppose that F; are superlinear strictly convex functions
and that for every pair of probability measures v; € P(X;) with v; < 1;
the optimal transport problem associated to the cost C (see Example E.3 of
Sect. 3.3) admits a unique solution. Then Optgr (1, (2) contains at most one
plan.

Proof We can assume m; = pu;(X;) > 0 fori = 1,2. It is clear that any
y € Opter (11, (2) is a solution of the optimal transport problem for the cost
¢ and given marginals y;. Since y; < u; by (2.36) and y; and y» are unique
by Lemma 3.5, we conclude. O

Example 3.7 (Uniqueness in Euclidean spaces) If F; are superlinear strictly
convex functions, C(x, y) = h(x — y) for a strictly convex function / : R —
[0, 00) and u; K %4 then Problem 3.1 admits at most one solution. It is
sufficient to apply the previous corollary in conjunction with [2, Theorem
6.2.4]

Example 3.8 (Nonuniqueness of optimal couplings) Consider the logarithmic
density functionals F;(s) = Uji(s) = slogs — s + 1, the Euclidean space
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X; = X = R? and any cost ¢ of the form C(x1, x2) = h(|x;—x3]|). For the
measures (1 = 81,0y + 91,0y, and po with support in {0} x R and containing
at least two points, there are an infinite number of optimal plans. In fact, we
shall see that the first marginal y; of any optimal plan y will have full support
in A := {(—1,0), (1, 0)}, i.e. it will of the form ad(_1,0) + bd(1,0) With strictly
positive a, b, and the support of the second marginal y, will be concentrated in
B := {0} x R and will contain at least two points. Any plan o with marginals
y1, 2 will then be optimal, since it will be supported in A x B where the cost
C just depends on the second variable, since |(£1, 0) — (0, y)| = /1 + y2 for
every y € R. Therefore the cost contribution of ¢ to the total energy is

/Rh (,/1 +y2> dy2(y),

and we can choose o of the form [2, Sect.5.3]

7= / <°‘(y)5<—"0) + ﬁ(Y)Su,O)) dy2 (),
R

with arbitrary nonnegative densities «, § satisfying « + 8 = 1 and
[ady:(y) =a, [ Bdy,(y) = b will be admissible.

We conclude this section by proving a simple lower semicontinuity property
for the energy-transport functional ET. Note that in metrizable spaces any
weakly convergent sequence of Radon measures is equally tight.

Lemma 3.9 Let L be adirected set, (F i)‘) s.elL and (C*);.c1, be monotone nets of
superlinear entropies and costs pointwise converging to F; and C respectively,
and let (M?) sl be equally tight nets of measures narrowly converging to i
in M(X;). Denoting by ET ( resp. ET) the corresponding Entropy-Transport
functionals induced by Fi’\ and c* (resp. F; and c) we have

fim inf ET* (17, 15) > ET (1, 112). (3.24)
€

Proof Let y* € Optt—r(u?, ,u%) C M(X) be a corresponding net of optimal
plans. The statement follows if, assuming that & y* M?, ,u%) = I:—I'(,ui‘, /,L%) <
C < oo, we can prove that ET (w1, u2) < C. By applying Proposition 2.10,
we obtain that the sequences of marginals JréyA are equally tight in M(X;),
so that the net y* is also equally tight by [2, Lemma 5.2.2]. By extracting a
suitable subnet (not relabeled) narrowly converging to y in M(X), we can still
apply Proposition 2.10 and Corollary 2.9 to obtain

lim inf Z Fr ) =D Fiy ).
l

i
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A standard monotonicity argument and the lower semicontinuity of the cost
functions ¢* show that for every o € L

lim inf / c*dy” > liminf / c®dy* > f c¥dy.

rell rell

Passing now to the limit with respect to « € IL and recalling (2.2) we conclude.
O

As a simple application we prove the extremality of the class of Optimal
Transport problems (see Example E.3 in Sect. 3.3) in the set of entropy-
transport problems.

Corollary 3.10 Ler Fy, F» € I'(Ry) satisfy Fi(r) > Fi(1) = 0 for every
r € [0,00), r # 1 and let ET" be the Optimal Entropy Transport value
(3.5) associated to (nF1, nFy). Then for every pair of equally tight sequences
(U105 H2.0) CTM(X1) x M(X2), n € N, narrowly converging to (i1, L) we
have
lim ET" (1,0, 2,0) = T(e1, 12). (3.25)
ntoo

3.5 The reverse formulation of the primal problem

Let us recall the definition (2.28) of the reverse entropy functions R; associated
to F; by the formula

F; if 0
Ri(r) = | E1A/r) it =0, (3.26)
(Fi):)o ifr = 0,
and let Z; be the corresponding integral functionals as in (2.57).
Keeping the notation of Lemma 2.3
i =mly e M(Xi), i =oivi + 1 (3.27)

we can thus define

#nnnly) i= Y@ uly) + [ cdy

= fX (Ri(01G) + Ra02(62) +0(x1, ¥2) ) dy + Y Fi(Opi (X)),

(3.28)
By Lemma 2.11 we easily get the reverse formulation of the optimal Entropy-
Transport Problem 3.1.
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Theorem 3.11 For every y € M(X) and u; € M(X;)

Eylur, u2) = Z(ur, p2lpy). (3.29)

In particular
ET(u1, u2) = inf  Z(n1, paly), (3.30)
yeM(X)

and y € Optgr (w1, o) if and only if it minimizes % (i1, n2|-) in M(X).

The functional Z (i1, 42|, -) is still a convex functional, and it will be useful
in Sect. 5.

4 The dual problem

In this section we want to compute and study the dual problem and the corre-
sponding optimality conditions for the Entropy-Transport Problem 3.1 in the
basic coercive setting of Sect. 3.1. The derivation of the dual problem will be
carried out in Sect. 4.1 by writing a saddle-point formulation of the primal
problem 3.1 based on the duality Theorem 2.7 for the entropy functionals .%;.
The subsequent sections will then perform a systematic study of the duality
and of the related optimality conditions.

4.1 The “inf-sup” derivation of the dual problem in the basic coercive
setting

In order to write the first formulation of the dual problem we will use the reverse

entropy functions R; defined as in (2.28) or Sect. 3.5 and their conjugates
RY : R — (—o00, +00], which can be expressed by

R (W) :=sup (s — sF;(1/s)) = sup (¥ — Fi(r))/r. 4.1)

s>0 r>0

The equivalences (2.31) yield, for all (¢, ) € R?, the equivalence

@.¥)eFi & ¢=-RH). (4.2)

As a first step we use the dual formulation of the entropy functionals given by
Theorem 2.7 (cf. (2.47)) and find

cf(ylm,uz)=/cdy+sup{ Z(/X widui—Z/X_ R;“(wi)dyi):
¥i € LSC,(Xi, DR

@ Springer



1012 M. Liero et al.

It is now natural to introduce the saddle function .Z(y, ¥) depending on
Yy € M(X) and ¥ = (Y1, ¥2) with ¥; € LSC;(X;, D(R})) (omitting the
dependence on the fixed measures u; € M(X;)) via

LY. ¥) = /X <C(X1,xz)—RT(lﬁl(xl))—Rik(Wz(Xz))) dy+y fx vidpi.

4.3)
Notice that R} (1;) are bounded, so .Z’ cannot take the value —oo; in order to
guarantee that .2 < 400, we consider the convex set

M::{yeM(X):/Cdy<oo}. (4.4)
We thus have

Eylur, u2) = sup Ly, ¥)
¥ €LSC, (X; . D(RY))

and the Entropy-Transport Problem can be written as

ET(u1, u2) = inf sup Ly, ¥). 4.5)
YEM v eLSC, (X;, D(R)))

The dual problem can be obtained by interchanging the order of inf and sup
as in Sect. 2.2. Let us denote by ¢ @ ¢> the function (x1, x2) — @1(x1) +
@2(x2). Since for every ¥ = (Y1, ¥2) with ¥; € LSC,(X;, D(R})),

i, [ (ot x2) = RIGH (1) — R (a(2)) dy

yeM

_ )0 i R{(W) @ R;(Y2) =cC,
—o0o otherwise,

we obtain

foy vidui if RY() & RE(Y) <,

yigl{/[ LY. ¥) = (4.6)

—00 otherwise.

Thus, (4.6) provides the dual formulation, that we will study in the next section.

@ Springer



Optimal Entropy-Transport problems 1013

4.2 Dual problem and optimality conditions

Problem 4.1 (y-formulation of the dual problem) Let R be the convex func-
tions defined by (4.1) and let WV be the convex set

U= {¢ € LSC,(X1, D(R})) xLSC; (X2, D(RY)) : R} (Y1) ® R3 (Y2) 50}.
4.7)
The dual Entropy-Transport problem consists in finding a maximizer ¥ € W

for

DGer, o) = sup [ Yndpr + [ Yadua. (4.8)
Yev JX X

As usual, by the following change of variable
@i == R*W), vi=F (@) :=—F (=), (4.9)
as in (2.45) for the duality Theorem 2.7 (recall the notation ¢; = —¢; we used

in Sect. 2.3), we can obtain an equivalent formulation of the dual functional
D as the supremum of the concave functionals

Gl i) =Y [ P (4.10)

on the simpler convex set
@ = [ € LSC, (X, D) x LSC, (X2, DIFS), 01 @ ¢z < cf. (4.11)

Problem 4.2 (¢-formulation of the dual problem) Let F}° be the concave func-
tions defined by (4.9) and let ® be the the convex set (4.11). The ¢-formulation
of the dual Entropy-Transport problem consists in finding a maximizer ¢ € ®

for

D'(i1. 112) = sup Z(@lpw1. o) = sup » / Fo(endui.  (4.12)
ped ped i Xi

Proposition 4.3 (Equivalence of the dual formulations) The - and the ¢-
formulations of the dual problem are equivalent, D(j1, 2) = D' (01, o).

Proof Let us first notice that replacing ; with ¥, — ¢, ¢ > 0, and using
the strict monotonicity of R in (aff (F;), F;(0)), as well as the fact that
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R¥ = —(F))y in (=00, aff (F})») and inf ¢ > —(F1)5, — (F2),,, One can
replace W in (4.8) by the smaller set

e = {10 € LSC, (X1, D(RY)) xLSCy (X2, D(RY)) : RE (Y1) @ RE () < c}.

Since R is nondecreasing, for every ¥ € W° the functions ¢; := R} (¥;) + 9,
where § := % inf ¢ — Ry (Y1) @ R5(¥2) > 0, belong to LSC; (X, lo)(R;“)) and
s~atisfy 01Dy < ¢, with (—¢;, ;) € S, It then follows that (¢1, ¢2) € ® and
Vi = —F*(—¢;)) = F?(¢;) = ¥; so that D’ > D. An analogous argument
shows the converse inequality. O

Since “inf sup > sup inf” (cf. (2.10)), our derivation via (4.5) yields

ET (1, n2) = D(i1, o). (4.13)

Using Theorem 2.4 we will show in Sect. 4.3 that (4.13) is in fact an equality.
Before this, we first discuss for which class of functions v;, ¢; the dual formu-
lations are still meaningful. Moreover, we analyze the optimality conditions
associated to the equality case in (4.13).

Extension to Borel functions. In some cases we will also consider larger
classes of potentials ¥ or ¢ by allowing Borel functions with extended real
values, under suitable summability conditions. It is clear that in the formulation
of a dual problem it can be useful to deal with a smaller set of “competitors” (as
in Problem 4.1 where we consider simple and lower semicontinuous functions)
to derive various properties by exploiting the specific features of the involved
functions. On the other hand, when one aims to prove the existence of dual
optimizers, it is natural to enlarge the set of competitors in order to gain
better closure properties. This is one of the main motivation to extend the
dual formulation to general Borel functions. )

First of all, recalling (2.19) and (2.29), we extend R* and F° to R by setting

R*(—00) :=— FJ,, R*(+00) := 400;

R R (4.14)
F°(—00) :=—00, F°(+00) := F(0),

and we observe that, with the definition above and according to (2.38)—(2.39),
the pairs

(—¢, F°(¢)) and (—R*(¥), ¥) lie in F if < F(0) and ¢ > —FL.
(4.15)

We also set
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li+o08 = lim (—nVv i An)+(—nVv i An) forevery ¢y, { € R. (4.16)
n—oo

Notice that (£00) 4, (£00) = oo and in the ambiguous case +0o0 — 00
this definition yields (4-00) 4+, (—o00) = 0. We correspondingly extend the
definition of @ by setting

(1 o &) (x1, X2) = £1(x1) 40 2(x2) forevery & € B(X;; R).  (4.17)

The following result is the natural extension of Lemma 2.6, stating that
EWYlur, u2) = Z(@|u1, uo) for alarger class of y and ¢ than before.

Proposition 4.4 (Dual lower bound for extended real valued potentials) Let

¥ be a feasible plan and let ¢ € B(X1; R) x B(X2; R) satisfy ¢; > —(F;).,

91 o 92 < C, and (F? o ;) € LI(X;, i) (resp. (9i)+ € L'(Xi, vi)).
Then we have (¢;)— € L'(X;; Yi) (resp. (F7 o i)+ € LY'(X;, ui)) and

Elnr ) = Z/X Ff (i) dpi. (4.18)

Remark 4.5 In a similar way, if ¥ € B(X|, R) x B(X», R) with ¥; < F;(0),
Ri(Y1) ®o R5(Y2) < ¢, and (¥;)— € L'(X;, wi) (resp. (R} o ¥i)4 €
LY(X;, 1)), then (R} o ¥i)— € L1(X;, yi) (resp. (i) + € L' (X;, p;)) with

NS EY S (4.19)

O

Proof Let us consider (4.18) in the case that (F o ¢;)- € L'(X;, i) (the
calculations in the other cases, including (4.19), are completely analogous).
Applying Lemma 2.6 (with v; := F? o ¢; and ¢; := —¢;) and (2.40) we
obtain (¢;)— € L'(X;, y;) and then

Elwr ) = Fiyilui) +/Xcdy

> Z Fi(Yilmi) + /X ((01()61) +o (02(362)> dy

(2.41)

=Y A+ [ oan =Y [ Frendu.
i X i Xi

(4.20)
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Notice that the integrability of the negative part of ¢; w.rt. y; yields
@i (7' (x1, x2)) > —oo for y-ae. (x1,x2) € X so that ¢1(x1) +o 2(x2) =
@1(x1) + @2(x2) and we can split the integral

oo >/<Z(pi(xi)> dy = Z/‘pi(xi)dy :Z/‘Pi(xi)dyi.

O

Optimality conditions. If there exists a pair ¢ as in Proposition 4.4 such that
EWY 1, u2) = Z(@|u1, o) then all the above inequalities (4.20) should be
identities so that we have

ffi(VilMi)Z/ FP(¢i)du;, and

Xi

/X (C(Xl, x2) — (p1(x1) +o ¢2(X2))) dy =0.

The second part of Lemma 2.6 then yields

@1(x1) +o p2(x2) = C(x1, x2) y-ae.in X, (4.21a)
—@; € 0F;(0;) (i + vi)-a.e.in A; (4.21b)

¢ = —(F). yi-ae.inA,, (4.21c)

Fo(gi) = Fi(0) pi--ae.in Ay, (4.21d)

where (A;, Ay, Ay,) is a Borel partition related to the Lebesgue decomposi-
tion of the pair (y;, ;) as in Lemma 2.3. We will show now that the existence
of a pair ¢ satisfying

@ =(¢1,92) € BXX1;R) x BX2; R), ¢ > —(F))y, @1 Do 92 <C,
(4.22)
and the joint optimality conditions 4.21 is also sufficient to prove that a feasible
y € M(X) is optimal. We emphasize that we do not need any integrability
assumption on ¢.

Theorem 4.6 Let us suppose that Problem 3.1 is feasible (see Remark 3.2)
for ;i € M(X;) and let y € M(X); if there exists a pair ¢ as in (4.22) that
satisfies the joint optimality conditions (4.21), then y is optimal.

Proof We want to repeat the calculations in (4.20) of Proposition 4.4, but now
taking care of the integrability issues. We use a clever truncation argument of
[43], based on the maps

T, :R—> R, T,(¢):=—-nVvVeAn, (4.23)
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combined with a corresponding approximations of the entropies F; given by
F; n(r) := max (¢r — F(¢)). (4.24)
lpl<n

Recalling (4.16), it is not difficult to check that if ¢; 4+, ¢» > 0 we have
0 < Tu(1) + Tulp2) 1 o1 + @2 as n 1 00, whereas g1 +, g2 < 0 yields
0 > T,(p1) + T,(¢2) I @1 + @2 (notice that the cases when ¢; = =00,
@2 = Foo correspond to Ty, (¢1) + Tn(@2) = ¢1 +o 92 =0 < C).

In particularif ¢ satisfies (4.22) then T}, (¢;) € Bp(X;), T, (1) DT, (¢2) < C,
and T, (¢;) > —(F;),, dueto (F;),, > 0and ¢; > —(F;),,. The boundedness
of Ty, (¢;) and Proposition 4.4 yield for every y € M(X)

EFln ) = Y [ F o)) du (4.25)
i JXi
When (F;), < 0o, choosing n > (F;),, so that T,(¢;) = ¢i = —(Fi)
yil-a.e., and applying (ii) of the next Lemma 4.7, we obtain
o (4.21b, d)
f FP(To(pi)dp; = / <Fi,n((7i) + UiTn(QDi)) dpu;
Xi i

421
( :C)/ Fi,n(O'i)dMi+(Fi):>oViL(Xi)+/ T (@i) dyi,

X; Xi

and the same relation also holds when (F;),, = 400 since in this case yl.l =0.
Summing up the two contributions we get

E@ln =y ( /X Fin(0) dui + (F)o v (X))

+ [ (1o @ Tiien) dy.

Applying Lemma 4.7 (i) and the fact that ¢ &, 2 = ¢ > 0 y-a.e. by (4.21a),
we can pass to the limit as n 1 co by monotone convergence in the right-hand
side, obtaining the desired optimality & (y |1, n2) > EY |1, 12). O
Lemma 4.7 Let F;;, : [0, 00) — [0, 00) be defined by (4.24). Then
(1) Fip are Lipschitz, F; ,(s) < F;(s), and F; ,(s) 1 Fi(s) asn 1 oo.
(i1) Forevery s € D(F;) and ¢; € R U {+00} we have

—¢i €3Fi(s) = —Tu(gi) € 0F; n(s),

: ) (4.26)
pi =400, s =0 = F;,0) = F (T(¢:)) = F(n).
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In particular, both cases in (4.26) give F (T, (¢i)) = Fin(s) + sTu(9i).

Proof Property (i): By (2.23) and the definition in (4.24) we get F; , < F;.
Since —F*(0) = inf F; > 0 we see that F; , are nonnegative. Recalling that
F are nondecreasing with D(F*) D (—00, 0) (see (2.18)), we also get the
upper bound F; ,,(s) < —ns — F(—n). Eventually, (4.24) defines F; , as the
maximum of a family of n-Lipschitz functions, so F; , is n-Lipschitz.

Property (ii): Let us set F}", := F}* +1_ ] and notice that F; , = (F}",)"
so that (Fj ,)* = F},. Recalling that 0F;)~" = 9F*, (3F;,)~" = 9F},,
OF + 0l C 8Fi"jn and

0 ifp € (—n,n),
[0,00) if¢p=mn,
(—00,0] if¢p = —n,

] if |¢| > n,

M—nn) (@) =

we can easily prove the first implication of (4.26). In fact —¢; € 0 F;(s) yields
s € 0F (—¢;) and s = Ty, (s) € 8Fifn(—<pi) if |g;| < n; when —¢; > n the
monotonicity of the subdifferential and the fact that n € D(F*); c D(OF )
yields s > s’ for every s € dF;(n) so that s € 9F 4+ [0, 00) C IF,. A
similar argument holds when —¢; < —n.

Eventually, if ¢; = —oo and s = 0 (in particular F;(0) = F/*(—00) < 00),
then (4.24) and the fact that F;* is nondecreasing yields F; ,(0) = —F/(—n) =
FP(n) = F2 (T (@),

The last statement in (ii) is an immediate application of (4.26) and the link
between subdifferential and Fenchel duality stated in (2.17). O

4.3 A general duality result

The aim of this section is to show in complete generality the duality result
ET = D, by using the ¢-formulation of the dual problem (4.12), which is
equivalent to (4.7) by Proposition 4.3.

We start with a simple lemma depending on a specific feature of the entropy
functions (which fails exactly in the case of pure transport problems, see Exam-
ple E.3 of Sect. 3.3), using the strengthened feasibility condition in (3.12). First
note that the pair ¢; = 0 provides an obvious lower bound for D(u1, u2), viz.

D(i1, u2) = 20,011, p2) = ) miF{(0) = ) miinf Fr.  (427)

We derive an upper and lower bound for the potential ¢; under the assumption
that ¢ is bounded.
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Lemma 4.8 Let m; = p;(X;) and assume int (mD(Fy)) N my D(F2) # 0,
so that

s, sl+ € D(F1), s2 € D(F2) 1 mys; <mpsy < m1s1+, (4.28)

and S := sup C < oo. Then every pair ¢ = (p1, ¢2) € ® with Z(@|L1, n2) >
Y _; m; inf F; satisfies

] <supg; < OF,
L mi(Fi(sp)—inf Fy) 4 mo(Fa(s2)— inf Fy) + mosy§

of = = . (4.29)
masy — mis;

Proof Since ¢ = (@1, ¢2) € ® satisfies sup @) + sup o < S, the definition
of Z in (4.10) and the monotonicity of F° yield

> miinf F; < P(@lu1, pa) < miFf(sup 1) + maF5 (S—supgp)

1

Using the dual bound F(¢;) < ¢;s; + Fi(s;) fors; € D(F;) (cf. (4.9)) now
implies

Y miinf F; < Z(glu1, p2)

l
< (mys1—mas2) sup o1 +m1 F1(s1) +maFr(s2) + mosaS.

Exploiting (4.28), the choice s1 := s, shows the upper bound in (4.29); and
= st the lower bound. O

We improve the previous result by showing that in the case of bounded cost
functions it is sufficient to consider bounded potentials ¢;. This lemma is well
known in the case of Optimal Transport problems and will provide a useful
a priori estimate in the case of bounded cost functions; it will also play an
important role in the third step of the proof of Theorem 4.11, which contains
the main result concerning the dual representation.

Lemma 4.9 [fsupC = S < oo, then for every pair ¢ € ®, there exists ¢ € ®
such that 2(@|j1, n2) = Z(@|u1, n2) and

supg; —inf@; < S, 0 <sup@; +sup@ <S. (4.30)

If moreover (3.12) holds, than there exist a constant pmax > 0 only depending
on F;, m;, S such that

— ¢@max < inf @; < sup @i < Pmax- 4.31)
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1020 M. Liero et al.

Proof Since ¢ > (0, possibly replacing ¢; with @1 := ¢ V (—sup¢z) we
obtain a new pair (@1, ¢2) with

g1 =91, @1(x1) + @2(x2) < (p1(x1) + ¢2(x2)) A0 < C(x1, x2)

so that (¢1, ¢2) € ® and Z(@1, g2|p1, n2) = Z(p1, w21, 2) since Fy is
nondecreasing. It is then not restrictive to assume that inf ¢; > —sup¢s; a
similar argument shows that we can assume inf ¢, > — sup ¢;. Since

sup@p; +supgr < S (4.32)

we thus obtain a new pair (@1, ¢2) € X with

D@1, 21101, n2) = P(@1, g2lpe1, w2), sup@; —inf@; <. (4.33)

If moreover sup ¢ + sup > = —35 < 0, we could always add the constant &
to, e.g., 1, thus increasing the value of & while still preserving the constraint
®. Thus, (4.30) is established.

When (3.12) holds (e.g. in the case considered by (4.28)) the previous
Lemma 4.8 provides constants (pfc such that ¢ < sup@; < gofr. Now, (4.30)
shows that ¢, < sup@r < g02+ with g, = —(p1+ and <,02+ = S—¢, . Applying
(4.30) once again, we obtain (4.31) with ¢max 1= S + gof“ 2 O

Before stating the last lemma we recall the useful notion of c-transforms of
functions ¢; : X; — R for a real valued cost ¢ : X — [0, 00), defined via

@5 (x2) = xien)gl (cx,x2)—@i(x)) and @5(x1) = xiél)fz (cCx1, x) —@2(x)).

(4.34)
It is not difficult to show (see e.g. [2, Sect. 6.1]) that if ¢ & ¢ < C with
sup ¢; < oo then

¢{ and ¢§ are bounded, ¢f° @ ¢y <c, ¢ > ¢, and ¢ > ¢2. (4.35)

Moreover, ¢ = ¢§° if and only if ¢; = ¢S for some function ¢; in this case
®1 is called c-concave and (.gofc,.(pf) is a pair of c-concave potentials.

Since F;° are nondecreasing, it is also clear that whenever <pf°, (pf are [4;-
measurable we have the estimate

Yo € B(X1) xB(X2), p1 @ g2 <C:
D@1, P11, 12) < D95, @) |11, 12)  (4.36)

The next lemma concerns the lower semicontinuity of ¢f in the case when ¢
has the particular form (cf. [26])
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N
C=) cnXaixa2. Wwithe, > 0and A} open in X;. (4.37)

n=1

Lemma 4.10 Let us assume that C has the form (4.37) and that ¢ € By(X1) X
Bs(X2) is a pair of simple functions taking values in D(Fy) x D(F3) and
satisfying o1 © 2 < C. Then (¢{°, ¢f) € ® with Z((¢{°, ¢])|p1, n2) =
D@1, n2).

Proof Ttis easy to check that ¢{¢, ¢ are simple, since the infima in (4.34) are
taken on a finite number of possible values. By (4.35) it is thus sufficient to
check that they are lower semicontinuous functions.

We do this for ¢, the argument for ¢ = (¢§)° is completely analogous.
For this, consider the sets

Z = {z=(z,,),’f_1e{o W :3yex Van=1,...,N: = XM},
={yeX;:VYn=1,. N:XA,L(y)zzn}.

Clearly, (Y7);cz defines a Borel partition of X; we define ¢, := sup{g(y) :
y €Yz}

By construction, forevery z € Zand y € Y; themap fz(x) :=C(y, x) —¢;
is independent of y in Y, and it is lower semicontinuous w.r.t. x € X» since
C is lower semicontinuous. Since go'f(xz) is the minimum of a finite collection
of lower semicontinuous functions, viz.

¢f(x2) = min { f;(x2) : z € Z} (4.38)
we obtain ¢f € LSC(X). O

With all these auxiliary results at hand, we are now ready to prove our main
result concerning the dual representation using Theorem 2.4.

Theorem 4.11 [In the basic coercive setting of rm Sect. 3.1 (i.e. (3.2a) or (3.2b)
hold), the Entropy-Transport functional (3.4) and the dual functional (4.10)
satisfy

inf  E(Ylur, po2) = SuP D(@li1, o) forevery ni € M(X;),
yeM(X | xX>) 0ed
(4.39)

i.e. ET(u1, n2) = D(u1, p2) for every p; € M(X;).

Proof Since ET > D is obvious, it suffices to show ET < D. In particular, it is
not restrictive to assume that D(u1, p2) is finite. We proceed in various steps,
considering first the case when € has compact sublevels. Starting from Step 2
we will assume that (F;),, = 400 (so that F? are continuous and increasing
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onR,and Fog; € LSCp(X;) whenever ¢; € LSCp(X;)), and we will remove
the compactness assumption on the sublevels of C.

Step 1. We show that if the cost C has compact sublevels then (4.39) holds:
We can directly apply Theorem 2.4 to the saddle functional . of (4.3) by
choosing A = M given by (4.4) endowed with the narrow topology and
B = LSC,(X1, D(R})) x LSC,(X1, D(R)). Conditions (2.9a) and (2.9b)
are clearly satisfied; in order to check (2.11) we make use of the coercivity
assumption (F1),, + (F2)5, + minc > 0 to find ¥, = (Y1, ¥2) € B with
constant functions v; € IOD(R;“) and —R*(Y;) = —@; = ¢; € (—00, (F)5)
such that

D :min(c— (@1 ea@)) — &1 + &> + minc > 0.
Since

z(w/f*>=/x(c—minc) dy + Dy (X) + ) T (X0),

i

we immediately see that for C sufficiently big the sublevels {y € M :
Ly, ¥, < C} are closed, bounded (since D > 0) and equally tight (by
the compactness of the sublevels of ), thus narrowly compact. Thus, (4.39),
i.e. ET = D, follows from Theorem 2.4; this concludes the proof of Theo-
rem 4.11 in the case when (3.2b) holds.

From now on we consider the case (3.2a), by assuming F; superlinear,
ie. (F;),, = +oo0.

Step 2. We show that if p; have compact support, if (3.12) is satisfied,
and if the cost C has the form (4.37), then (4.39) holds: Let us set f(i =
supp(ui). Since (F) = +o0 the support of all y with &(y|u1, n2) < cois
contained X 1 X Xz so that the minimum of the functional & (y |1, 2) does
not change by restricting the spaces to X;. By applying the previous step to
the problem stated in X; X Xz, for every constant £ < I:—I'(/L 1, M2) we find
@ € LSC; (Xl) x LSC; (X2) such that 91 @ @2 < Cin X1 X Xz, that F? (¢;)
is finite, and that ) in F?(gi)dp; = E.

Extending ¢; to — sup Cin X; \f( ; the value of Z(¢|u1, n2) does not change
and we obtain a pair of simple Borel functions with ¢ @ ¢ < Ccin X. We can
eventually apply Lemma4.10to find (¢7¢, ¢7) € ® with Z(¢{°, ¢§|u1, n2) =
E. Since E < ET (w1, o) was arbitrary, we conclude that (4.39) holds in this
case as well.

In the next step we remove the assumption on the compactness of supp(¢;).

Step 3. We show that if (3.12) is satisfied and if the cost C has the form (4.37),
then (4.39) holds: Since p; are Radon, we find two sequences of compact sets
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Kin C X;suchthateg;, = i (X; \ Kip) = 0Oasn — oo, ie uj, =
XK., - i converges narrowly to u;.

Let E, := ET(u1n, p2,) and let E, < E, with lim, . E, =
liminf,,« E,. Since u; , have compact support, by the previous step and
Lemma 4.9 we can find a sequence ¢, € ® and a constant ¢, independent
of n such that

D@1 ns h2n) = EL and  sup @] < @max.

This yields
D(@ulir, ) = Z/ F(pin) i + Y Y (—Pmax)€in
i Ki,n i

> E;l + Z Fio(_‘pmax)gi,n-

1

Using the lower semicontinuity of ET from Lemma 3.9 we obtain

D(u1, p2) = liminf Z(g, |1, n2) = lim E,,
n—o0 n—oo
= liminf ET (i1, p2,0) = ET (1, p2).

Thus, (4.39) is established.

In the next step we remove the assumption (3.12) on F;.

Step 4. We show that if the cost C has the form (4.37), then (4.39) holds:
It is sufficient to approximate F; by an increasing and pointwise converging
sequence F/' € I'(Ry); we will denote by ET" the corresponding optimal
Entropy-Transport functional. The corresponding sequence (F7")° : ¢; +>
sups>o(F}"(s) + s¢;) of conjugate concave functions is also nondecreasing
and pointwise converging to F°. By the previous step, if E, < ET" (11, u2)
with lim, 00 E;, = limy— 00 ET" (11, 2) = ET (w1, w2) (the latter limit
follows by Lemma 3.9) we can find ¢,, € ® such that

E, <) /X (F)* (@) dui <) /X FP (o) dpi = 2(@, |1, 1a).
i i i i

Passing to the limitn — oo we conclude ET (w1, o) < D(u1, o) as desired.

Step 5, conclusion. We show that (4.39) holds for a general cost C: Let
c : X — [0,00] be an arbitrary proper l.s.c. cost and let us denote by
(€¥)qea the class of costs characterized by (4.37) and majorized by c. Then,
A is a directed set with the pointwise order <, since maxima of a finite
number of cost functions in A can still be expressed as in (4.37). It is not
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difficult to check that ¢ = sup,cs C* = limyea C* so that by Lemma 3.9
ET(u1, n2) = limgep ET* (1, n2) = sup,cp ET* (1, p2), where ET®
denotes the Entropy-Transport functional associated to C%.

Thus forevery E < ET (w1, up) wecanfinda € Asuchthat ET* (w1, up) >
E and therefore, by the previous step, a pair ¢* € LSCi(X1, f)(Ff)) X
LSC, (X2, D(F5)) with such that 9% ® ¢ < ¢ in X and Z(9* |11, it2) > E.
Since ¢* < ¢ we have ¢* € ® and ET (w1, 12) < D(u1, o) follows. O

Arguing as in Remark 2.8 we can change the spaces of test potentials ¢ =
(¢1, ¢2) € @ introduced in (4.11).

Corollary 4.12 The duality formula (4.39) [and the equivalence with (4.8)]
still holds if we replace the spaces of simple lower semicontinuous functions
LSC, (X;, ]o)(Fio)) (resp. LSC, (X, f)(R;"))) in the definition of ® (resp. W)
with the corresponding spaces of bounded lower semicontinuous functions
LSCy, or with the spaces of bounded Borel functions By,.

If (X;, ti) are completely regular spaces, then we can equivalently replace
lower semicontinuous functions by continuous ones, obtaining

|:—|'(M1,/L2)Zsup{2/x Fo(pi)du; @ @i, F(9i) €Cp(Xi), @1 @ @2 SC}
= sup { Z/X Vi dpi i, RE (i) € Cp(X),

RYW) @ R3(wo) < cl. (4.40)

Corollary 4.13 (Subadditivity of ET) The functional ET is convex and pos-
itively 1-homogeneous. In particular it is subadditive, in the sense that for
every i, . € M(X) and } > 0 we have

ET(A e, Ap2) = AET (1, o),
ET (11 + 1}, w2 + wh) < ET (i1, o) + ET (1], 1h). (4.41)

Proof By Theorem 4.11 it is sufficient to prove the corresponding property
of D, which follows immediately from its representation formula (4.8) as a
supremum of linear functionals. O

4.4 Existence of optimal Entropy-Kantorovich potentials
In this section we will consider two cases, when the dual problem admits a

pair of optimal Entropy-Kantorovich potentials ¢ = (¢1, ¢2).
The first case is completely analogous to the transport setting.
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Theorem 4.14 In the basic coercive setting of Sect. 3.1 (i.e. (3.2a) or (3.2b)
hold) let us suppose that (X;, d;), i = 1,2, are complete metric spaces, that
(3.12) holds, and that C is bounded and uniformly continuous with respect to the
product distance d((x1, x2), (x{ x5)) := >, di(x;, x]) in X = X| x X. Then
there exists a pair of optimal Entropy-Kantorovich potentials ¢ € Cp(X1) X
Cp(X2) satisfying

1@ <C, @ >=—(F)y, ET(ui,m)=2@lui, pn). (4.42)

Proof By the boundedness and uniform continuity of ¢ we can find a continu-
ous and concave modulus of continuity w : [0, o0) — [0, 00) with w(0) =0
such that

|C(xi, Xx2) — C(x1, x2)| =< a)(dl(xi, x1)),

|c(x1, x5) — C(x1, x2)| < w(da (x5, x2)).

Possibly replacing the distances d; with d; + w(d;), we may assume that
X1 = C(x1, xp) is 1-Lipschitz w.r.t. d; for every x, € X and x5 — C(x1, x2)
is 1-Lipschitz with respect to d, for every x; € Xi. In particular, every c-
transform (4.34) of a bounded function is 1-Lipschitz (and in particular Borel).

We apply Corollary 4.12: let ¢, be a maximizing sequence in ®. By Lemma
4.9 we can assume that ¢,, is uniformly bounded; by (4.35) and (4.36) we can
also assume that ¢, are c-concave and thus 1-Lipschitz. If K; , is a family
of compact sets whose union A; has a full ;; measure in X;, by applying the
Ascoli-Arzela theorem on each compact set K; , and a standard diagonal argu-
ment, we can extract a subsequence (still denoted by ¢,,) pointwise convergent
to @ = (¢1,¢2) in A; x Aj. By setting ¢; := liminf, .o @i n, 1 = 1,2, we
extend ¢ to X and we obtain a pair ¢; € Bp(X;) satisfying ¢;1 & ¢» < C,
@i > —(Fi)o and

D(@lu1, p2) = Z/A F (pi) dp
i i

n—oo

> lim Zf F{ (gin) dpi = ET (@1, p2),
i YA

thanks to the pointwise convergence in A;, Fatou’s Lemma and the fact that
F? (¢i,n) are uniformly bounded from above since ¢; , are uniformly bounded.
Eventually replacing (¢1, ¢2) with (¢$°, ¢f) we obtain a pair in Cp(X1) x
Cp(X7) satisfying (4.42) thanks to Proposition 4.4. O

The next result is of different type, since it does not require any boundedness
nor regularity of ¢ (also allowing the value +o0 if F;(0) < 00).
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Theorem 4.15 In the basic coercive setting of Sect. 3.1 (i.e. (3.2a) or (3.2b)
hold), let u; € M(X;) with ET (i1, u2) < oo (i.e. Problem 3.1 is feasible)
and let us suppose that at least one of the following two conditions hold:

(a) cis everywhere finite and (3.12) holds
(b) Fi(0) < oo.

Then a plan y € M(X) is optimal if and only if there exists a pair ¢ as
in (4.22) satisfying the optimality conditions (4.21) with respect to a Borel
partition (A;, Ay, Ay,) related to the Lebesgue decomposition of (y;, |;) as
in Lemma 2.3.

Our proof starts with an auxiliary result on subdifferentials, which will be
used extensively.

Lemma 4.16 Let F € T'(Ry), s € D(F), let ¢ € R U {400} be an accumu-
lation point of a sequence (¢,) C R satisfying

lim (F(s) — s¢n + F*(¢n)) = 0. (4.43)

If ¢ € Rthen ¢ € 0F(s), if ¢ = 400 then s = max D(F) and if p = —o0
then s = min D(F). In particular, if s € D(F) then ¢ is finite.

Proof Up to extracting a suitable subsequence, it is not restrictive to assume
that ¢ is the limit of ¢,, asn — o0. For every w € D(F) the Young inequality
wo, < F(w) + F*(¢y) yields

lim sup(w — s)¢, < limsup F(w) —F(s)+ (F(s)—S% + F*(d)n)) (4.44)

=F(w) — F(s)

If D(F) = {s} then d F(s) = R and there is nothing to prove; let us assume
that D(F’) has nonempty interior.

If ¢ € R then (w — s)¢p < F(w) — F(s) for every w € D(F), so that
¢ € 0F(s). Since the right-hand side of (4.44) is finite for every w € D(F),
if ¢ = +oo then w < s for every w € D(F), so that s = max D(F). An
analogous argument holds when ¢ = —o0. |

Proof of Theorem 4.15 We already proved (Theorem 4.6) that the existence of
a pair @ as in (4.22) satisfying (4.21) yields the optimality of p.

Let us now assume that y € M(X) is optimal. If u; = ng, then we also
have y = 0 and (4.21) is always satisfied, since we can choose ¢; = 0.

We can therefore assume that at least one of the measures w;, say o,
has positive mass. Let y € Optgr(u1, 12), and let us apply Theorem 4.11
to find a maximizing sequence @, € ® such that lim, 100 Z(@, |11, 12) =
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ET (w1, n2). Using the Borel partitions (A;, A,,;, A,,) for the pairs of measures
i, i provided by Lemma 2.3 and observing that the vanishing difference
ET (w1, n2) — Z(@, |11, 12) can be decomposed in the sum of the following
three nonnegative contributions

Sl 12) — (@l 12) =/

(C(XL X2) —<P1,n(X1)—</>2,n(XZ)) dy
X1 xXo

+/ (Fi(Ui)+Ui(/’i,n_Fio((Pi,n)) du;
AiUAMi

+ / ((Pi,n + (Fz)/oo) dViJ_

Vi

we get

lim (C(m, x2) — @1,a(x1) — wz,n(m)) dy =0,

n—>00 Jx %X,

lim <Fi(0i) + 0iin — F,-°(§0i,n)) du; =0,

n—00 AjUA,,

: 1
lim [ (g + (F)oo) dy =0,
Vi

Since all the integrands are nonnegative, up to selecting a suitable subsequence
(notrelabeled) we can assume that the integrands are converging pointwise a.e.
to 0. We can thus find Borel sets A” C A;, A;L,' C Ay A/)/i CAj,andA’' C X

with 7/ (A") = AJUAY,, (i; +Vi)<(Ai \ADU(Au \ AL U(A,\AL)) =0,
and y (X \ A") = 0 such that

Clx1,x2) <00, lim C(x1,x2) = @1.n(*1) = ¢22(x2) =0 in A, (4.45)
Fi(0;) <00, lim Fi(0;) +0igin — F (9in) =0 inAJUA,
n—oo ]
(4.46)
11?30 (¢in + (F)s) =0 in Al
(4.47)

n

Forevery x; € X; we define the Borel functions ¢j (x1) := lim sup,,_, ., ¢1,,(x1)
and ¢p(x2) = liminf,_, o @2 ,(x2), taking values in R U {fo00}. It is clear
that the pair ¢ = (¢1, ¢2) complies with (4.22), (4.21d) and (4.21c).

If y(X) = O then (4.21a) and (4.21b) are trivially satisfied, so that it is not
restrictive to assume y (X) > 0.
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If 11 (X1) = O then (F)),, is finite (since ylL(Xl) =y1(X1)=yX) >0
and ¢; = (F1),, on A;,l and on A’. It follows that ¢;(x3) = C(xy,x2) —
(F1)., € Ron A’ so that (4.21a) is satisfied. Since ¢2(x2) is an accumulation
point of ¢ ,(x2), Lemma 4.16 yields —g2(x2) € dF2(02(x72)) in A/2 so that
(4.21b) is also satisfied (in the case i = 1 one can choose A} = ¥).

We can thus assume that w;(X;) > 0 and y(X) > 0. In order to check
(4.21a) and (4.21b) we distinguish two cases.

Case a: C is everywhere finite and (3.12) holds. Let us first prove that
@1 < 0o everywhere.

By contradiction, if there is a point x; € X such that ¢;(x;) = oo we
deduce that ¢, (x2) = —oo for every x; € X».

Since the set A} U A;Lz has positive p>-measure, it contains some point
Xx3: Equation (4.46) and Lemma 4.16 (with F = F>, s = 02(x2), ¢y =
—@p.0(X2)) yield s; =maxD(F>) = 02(x3) < ocoand op = s;r in A, U A;Lz.
We thus have D(F>) C [O, s;], (F2)l, = +00 and therefore mzs;r =y(X).

On the other hand, if ¢ = —o0 in X, we deduce that ¢(x;) = +oo for
every x| € w!(A’). Since (F}),, > 0, it follows that (A;,i) =0(.e. yﬁ =0)
so that there is a point a; in A’1 such that ¢ (a;) = +00. Arguing as before, a
further application of Lemma 4.16 yields that oy = s = min D(F}) u;-a.e.
It follows that mys; = y1(X1) = y(X) = mzs;, and this contradicts (3.12).

Since wi(X;) > O the same argument shows that ¢, < 00 everywhere
in X». It follows that (4.21a) holds and ¢; > —o0 on A;. Since @; (x;) is an
accumulation point of ¢; ,(x;), Lemma 4.16 yields —¢; (x;) € 0F;(o;(x;)) in
AJ so that (4.21b) is also satisfied.

Case b: F;(0) < oo. In this case F; are bounded from above and ¢; >
—(F})l, everywhere in X;. By Theorem 4.11 lim, .00 Y _; [ F2(in) dpti >
—00, so that Fatou’s Lemma yields F{(¢1) € L1(X1, 1) and ¢ (x1) > —00
for pi-a.e. x; € Xj, in particular for (u; + y1)-a.e. x; € A}. Applying
Lemma4.16,since o (x1) > 0 = min D(F}) in A/, we deduce that —¢; (x1) €
dF1(o1(x1)) for (1 +vy1)-a.e.x; € A,i.e.(4.21b)fori = 1. Since we already
checked that (4.21c) and (4.21d) hold, applying Lemma 2.6 (with ¢ := —¢;
and ¥ := F{(¢1))) we get ¢ € L1(X1, 1), in particular ¢ o 7! € R holds
y-a.e.in X. It follows that (4.21a) holds and o or? € L' (X, y) sothatg, € R
(u2 + y2)-a.e. in A). A further application of Lemma 4.16 yields (4.21b) for
i =2. O

Corollary 4.17 Let us suppose that D(F;) D (0,00) and F; are differ-
entiable in (0, 00) and let u; € M(X;) with ET(uy, n2) < oo. A plan
Y € M(X) belongs to Optgr (i1, o) if and only if there exist Borel par-
titions (A;, Ay;, Ay,) and corresponding Borel densities o; associated to y;
and ;i as in Lemma 2.3 such that setting
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—F/(0y) ifxi € A,
@i (xi) ==y —(F)y  ifxi € Ay, (4.48)
—(Fi)o ifxi€ Xi\(A; UAyL),

we have

01 ®o 92 < Cin X1 x Xo,
1@y =Cy-aein(AjUA,) x (AxUA,). (4.49)

Proof Since 0 F;(s) = {If“l./(s)}foreverys € (0, 00) and F?(¢;) = F;(0)ifand
onlyif g; € [—(F}), oc], (4.49) is clearly anecessary condition for optimality,
thanks to Theorem 4.15. Since (F;); < F!(s) < (Fj),, Theorem 4.6 shows
that conditions (4.48)—(4.49) are also sufficient. |

The next result (where we will keep the same notation of Corollary
4.17) shows that (4.48)—(4.49) take an even simpler form when —(F,-)6 =
(Fj)y = —o0; in particular, by assuming that C is continuous, the sup-
port of the marginals y; of an optimal plan y cannot be too small, since
supp(yi) D supp(i;) \ supp(;-).

Corollary 4.18 (Spread of the support) Let us suppose that

e C: X — [0, o0] is continuous.
e D(F;) D (0, 00), F; are differentiable in (0, 00), and —(F;), = (Fi), =
o0,

and let u; € M(X;) with ET(uq, uz) < oo and y € M(X). Then y is an
optimal plan if and only if y; < Wi, for every (x1, x2) € supp(ue1) X supp(u2)
we have C(x1,x2) = 400 if x; € supp Mf‘ or X3 € supp Mé‘, and there
exist Borel sets A; C suppy; with yi(X; \ A;) = 0 and Borel densities
o; : Aj = (0, 00) of v; w.rt. u; such that

F{(o1) ® F(02) > —Cin A x Aa,
F{(Ul) ©® le(o'z) = —C py-a.e in A1 X As. (4.50)

Remark 4.19 Apart from the case of pure transport problems (Example E.3
of Sect. 3.3), where the existence of Kantorovich potentials is well known
(see [50, Thm. 5.10]), Theorem 4.15 covers essentially all the interesting
cases, at least when the cost C takes finite values if 0 ¢ D(F;). In fact, if
the strengthened feasibility condition (3.12) does not hold, it is not difficult to
construct an example of optimal plan y for which conditions (4.22), (4.21a),
(4.21b) cannot be satisfied. Consider e.g. X; = R, c(x, x2) := %|x1 — x2%,

wy = e_ﬁxlz.,%l, = e_ﬁ(m“)zfl, and entropy functions F; satis-
fying D(F1) = [a, 1], D(F2) = [1, b] with arbitrary choice of a € [0, 1)
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and b € (1, 00]. Since m|; = my = 1 the weak feasibility condition (3.1)
holds, but (3.12) is violated. We find y; = u;, o; = 1, so that the opti-
mal plan y can be obtained by solving the quadratic optimal transportation
problem, thus y := t;uu1 where £(x) := (x,x — 1). In this case the poten-
tials ¢; are uniquely determined up to an additive constant a € R so that
we have ¢1(x1) = x1 +4a, ¢p(x2) = —xp —a — % and it is clear that
condition —¢; € dF;(1) corresponding to (4.21b) cannot be satisfied, since
d F; (1) are always proper subsets of R. We can also construct entropies such
that 0F; (1) = ¢ (e.g. F1(r) = (1—-r)log(l—r) 4+ r with D(F1) = [0, 1],
Fr(r) = (r—1)log(r—1) — r 4+ 2 with D(F2) = [1, 00)) so that (4.21b) can
never hold, independently of the cost C.

5 “Homogeneous” formulations of optimal Entropy-Transport
problems

Starting from the reverse formulation of the Entropy-Transport problem of
Sect. 3.5 via the functional %, see (3.28), in this section we will derive further
equivalent representations of the ET functional, which will also reveal new
interesting properties, in particular when we will apply these results to the
logarithmic Hellinger—Kantorovich functional. The advantage of the reverse
formulation is that it always admits a “1-homogeneous” representation, asso-
ciated to a modified cost functional that can be explicitly computed in terms
of R; and C.
We will always tacitly assume the coercive setting of Sect. 3.1, see (3.2).

5.1 The homogeneous marginal perspective functional

First of all we introduce the marginal perspective function H. depending on
the parameter ¢ > inf ¢ (see [23, Chap. IV, Sect.2.2] for the definition and
the basic properties of the perspective; we use the term “marginal perspective”
since we are infimizing w.r.t. the perspective parameter):

Definition 5.1 (Marginal perspective function and cost) For ¢ € [0, 00), the
marginal perspective function H, : [0, 0o) x [0, c0) — [0, oo] is defined as
the lower semicontinuous envelope of

He(r1,r2) = inf 0 (R1(r1/60) + Ra(r2/0) + )
= inf i F1(0/r1) + 2 Fa(0/r2) + Oc. (5.1)

For ¢ = oo we set

Hy(r1, 1) := F1(0)r1 + F»2(0)rp. 5.2)
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The induced marginal perspective costis H : (X1 X R;) x (X2 x R}) —
[0, oo] with

H(xy1,r1;x2,12) := He(xy,xp)(r1,72), forx; € X;andr; > 0. (5.3)

The last formula (5.2) is justified by the property F;(0) = (R;),, and the
fact that H.(r1, r2) © Hxo(r1, r2) as ¢ 1 oo forevery ry, ro € [0, 00); see also
Lemma 5.3 below.

The marginal perspective cost (5.3) has an important interpretation in terms
of the optimal Entropy Transport problem 3.1 between two Dirac masses: at
least in the superlinear case (3.2a), it is easy to see that for every x; € X and
ri >0,i =1, 2, we have

H (x1, r1; x2, 12) = ET(r18y,, 728x,), when (F;)L, = +00. (5.4)

It is in fact sufficient to minimize & (y|r10y,, r28x,) among the plans y of the
form 08, x,)-

Example 5.2 Let us consider the symmetric cases associated to the entropies
U, introduced in (1.4) and Example 2.5 and V(s) = |s — 1|:

E.1 Inthe “logarithmic entropy case”’, which we will extensively study in Part
II, we have

Fi(s) :=Uji(s) =slogs — (s — 1) and R;(r) =Up(r) =r —1 —logr.
A direct computation shows

H.(r1,r2) = He(ri,m) =r1 +r — zme—c/z
= (VT R 2T (1),

E.2 For p =0, Fi(s) = Up(s) = s —logs — 1, and R;(r) = U;(r) we obtain

(5.5)

) r+nr
H(r1,12) = Hc(r1,r2) = rilogry +rplogry — (r1+r2) log ( 2+c )

(5.6)
E.3 In the power-like case with p € R \ {0, 1} we start from

Fi(s) :=Up(s) = (P = pGs=1) = 1), Ri(r) =Ui—p(r)

p(p—1)

and obtain, for r;, r» > 0,

H.(r1, ) = H.(r1,12)
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rnr

P+

- %[(rlm) - o (2-0-ve) | 57

where ¢ = p/(p—1). In fact, we have

O(Ui—p(3) + Ui—p(3) +¢) =
1 1
+ —(ri+r) + —((p—1)c —2)0)
p p—1

1 1 11 - - p

= —(r+r) + —[—((rll P plmryip 9) —(2- (p—l)c)@],
p p—1Lp

and (5.7) follows by minimizing w.r.t. 6. For example, when p = g = 2,

1 1 rir
Hc(rl,rz)z5(71+F2)—5r1+r2

(=P +h@nn),  (538)

2-o3

1
T2+ r2><

where h(c) = c(4 —c¢)if0 <c <2and4if c > 2. For p = —1 and
g = 1/2 equation (5.7) yields

H.(r1,r2) = He(r1,r2) = \/(rf +rHQ2+20) = (ri+r). (59

E.4 In the case of the total variation entropy R;(s) = V(s) = |s — 1| we
easily find

H.(r1,m2) = He(r1, 1) =711 +12 — (2 — )+ (r1 A1)
=|rp —ril+ (c A2)(r1 AT2).

The following dual characterization of H. nicely explains the crucial role
of H,.

Lemma 5.3 (Dual characterization of H.) For every ¢ > 0 the function H,
admits the dual representation

H(r1,r2)
= sup [riy +rava < 95 € DRY). REWn) + REW) <] (5.10)

= sup {1 F{(p) + 12F5(92) 1 i € DY), g1 +gn <. (5.1D)
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In particular it is lower semicontinuous, convex and positively 1-homogeneous
(thus sublinear) with respect to (ry, ra), nondecreasing and concave w.r.t. c,
and satisfies

He(r1,12) < Hoo(r1,12) = Y Fi(O)ri foreveryc >0, r; 2 0. (5.12)

1

Moreover,

(a) the function H, coincides with H, in the interior of its domain; in partic-
ular, if F;(0) < oo then H.(r1, r2) = H.(r1, r2) whenever riry > 0.

(d) If (F1)i + ¢ = —(F2) and (F2), + ¢ = —(F1), then

He(ri,r) = Y F(O)r; ifriry =0. (5.13)

Proof Since sup D(Ri*) = F;(0) by (2.33), one immediately gets (5.10) in the
case ¢ = 00; we can thus assume ¢ < 00.

It is not difficult [23, Chap. IV, Sect.2.2] to check that the perspective
function (rq,r2,0) — 0(R1 (r1/0) + Ra(r2/0) + c) is jointly convex in
[0, 00) x [0, 00) x (0, 00) so that I:Ic is a convex and positive 1-homogeneous
function. It is also proper (i.e. it is not identically +o00) thanks to (3.1), and it
is concave w.r.t ¢ since it is the infimum of a family of affine functions in c.

By Legendre duality [41, Thm.12.2], its lower semicontinuous envelope is
given by

Herior) =sup{ Y wiri s Hi) < 0), (5.14)
where

HZ (W v2) = sup{ D wirs = Hetri ) 211 2 0)

= sup Y (Viri — ORi(ri/0)) — et

r,~20,0>0 i

= supd( 3 K7 () —c)

0>0

_{o it RF(Yi) <00, X, Ri() < ¢

+o00 otherwise.

Now, (5.11) immediately follows from (5.10) by the usual change of variable
gi = RE(Y), recall 2.31) and Ff(¢;) = —F(— ;).

In order to prove point (a) it is sufficient to recall that convex functions are
always continuous in the interior of their domain [41, Thm. 10.1]. In particular,
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since 1im9¢0 Q(Rl(l’l/e) + Ry(rn/0) +¢) = Zi (R,-)gor,- = Zi F; (0)r; for
every r, rp > 0, we have I:IC (ri,r) <), ; Fi(0)r;, so that I:IC is always finite
if F;(0) < oo.

Concerning (b), itis obvious whenr; = rp, = 0. Whenr; > r, = 0, the facts
that sup D(R}) = F;(0), lim,4f,0) R¥(r) = —(F;);, and inf RY = —(F;),
(see (2.33)) yield

H,(r1,0) = sup {wlrl L RY(Y1) < ¢ — inf R§} — F1(0)ry.

An analogous formula holds when 0 = r; < rp. O
A simple consequence of Lemma 5.3 and (2.31) is the lower bound
He(ri.r2) = He(ri,r2) = Y vniri for (—gi, i) € §i with g1 + ¢ < c.

1

(5.15)
We now introduce the integral functional associated with the marginal perspec-
tive cost (5.3), which is based on the Lebesgue decomposition u; = 0;y; + MIL
(see Lemma 2.3),

(1, w2ly) :=/XH(Xl,Ql(m);Xz,Qz(Xz))dy+ZE(O)M,-l(Xi)

(5.16)
where we adopted the same notation as in (3.27). Let us first show that 77 is
always greater than .

Lemma 5.4 For every y € M(X), i, it € M(X;), ¢ € ®, 0; € LL(X;, y)
with [1; = 0;vi + Iu;, we have

/ H(x1, 01(x1); %2, 02002) dy + D Fi(O)ui(Xi) = Z(@lpr, o).
X ,
1
(5.17)
Proof Recalling that F?(¢;) = —F*(—¢;) < F;(0) by (2.19) and (2.45), and
using (5.15) withr; = p; and /; = FJ‘?(pj) we have
fX H(x1.01(x1): x2, 02(x2)) dy + Y Fi(0)j (X))

S.
= (Froieme + Bante) dr + X FOx)

= > /X F2(piei(xi) dyi + Y Fi(0)uj (X;)
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(2.19)

= Z/X F2(ooi (xi) dy; +Z/X F2 (g0 did!

= Z/ F (@) dui = Z(@linr, 12)-
i X o

An immediate consequence of the previous lemma is the following impor-
tant result concerning the marginal perspective cost functional .7# defined by
(5.16). It can be nicely compared to the Reverse Entropy-Transport functional
% for which Theorem 3.11 stated Z (i1, u2ly) = EW 1, 12).

Theorem 5.5 For every u; € M(X;), y € M(X) and ¢ € ® we have

(1, p2ly) = F(1, p2ly) = Z(@lur, 12). (5.18)
In particular
ET(u1, o) = H(u, p2) := min Iy, p2|y), (5.19)
yeM(X)

andy € Optgr(w1, w2) if and only if it minimizes 7€ (ju1, n2|-) in M(X) and
satisfies

H(x1,01(x1); x2, 02(x2)) = ZRi(Qi(Xi))-i-C(xl,xz) y-a.e.inX, (5.20)

]

where ; is defined as in (2.8). If moreover the following conditions

F1(0) = 400 or there exists xo € Xo with uy({x2}) =0,
F>(0) = +00 or there exists x1 € X1 with u1({x1}) =0, (5.21)

are satisfied, then

ET(u1, n2) =min{fXH(m,Ql(m);Xz,Qz(m)) dy :

y e MX), i = o} (5:22)

Proof The inequality Z (i1, u2ly) > (1, n2|y) is an immediate con-
sequence of the fact that Zi Ri(rj) + ¢ > I:Ic(rl, ry) > H.(r1,r) for
every r;,c € [0, o0], obtained by choosing & = 1 in (5.1). The estimate
(1, waly) > Z(@lu1, n2) was shown in Lemma 5.4.
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By using the “reverse” formulation of ET (¢, w2) in terms of the functional
(1, n2)y) given by Theorem 3.11 and applying Theorem 4.11 we obtain
(5.19) and the characterization (5.20).

To establish the identity (5.22) we note that the difference to (5.19) only lies
in dropping the additional restriction uf = 0. When both F;(0) = F»,(0) =
+o00 the equivalence is obvious since the finiteness of the functional y +—
S (1, paly) yields ui = py = 0.

In the general case, one immediately see that the right-hand side E” of (5.22)
(with “inf” instead of “min”) is larger than ET (141, u2), since the infimum of
J€ (1, na|-) is constrained to the smaller set of plans y satisfying u; < ;.
On the other hand, if y € Optgr(py, n2) with p; = o0y + /,LI-J‘ and m; =
Mf‘(X,-) > 0, we can consider y = y + m,uf ® ,uzl which satisfies
Wi < y;; by exploiting the fact that H (x1, r1; x2, r2) < Zi F;(0)r; by (5.12),
we obtain

(1, w2ly) :/;(H(xl»Ql(xl)§x2aQ2(x2))d7_’
1
mimy

< fX Hxn, 01 ()3 1, 000000) 45 + 3 By = A, j1al),

+ / H(x1,m1; X2, 2) djut @ iy
X

so that we have E/ < ET(u1, u2). The case when only one (say ,uzL) of
the measures MZJ‘ vanishes can be treated in the same way: since in this case
m; = ,ulL(Xl) > 0 and therefore F1(0) < oo, by applying (5.21) we can
choose y :=y + n%ull ® &x,, obtaining

JC (1, n2ly)

_ 1 L
=/1ﬂm&MMﬁnﬂﬂmD®H"r H e, i %2, 0) dut-
X my Jx,

s/Hm@mmm@mm@+ﬂ@m=%mme
X

O

Remark 5.6 Notice that (5.21) is always satisfied if the spaces X; are uncount-
able. If X; is countable, one can always add an isolated point X; (sometimes
called “cemetery”) to X; and consider the augmented space X; = X; u{x;}
obtained as the disjoint union of X and X;, with augmented cost C which
extends € to +00 on X| x X» \ (X1 x X2). We can recover (5.22) by allowing
y in M(X; x X2).
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5.2 Entropy-transport problems with “homogeneous” marginal
constraints

In this section we will exploit the 1-homogeneity of the marginal perspective
function .77 in order to derive a last representation of the functional ET, related
to the new notion of homogeneous marginals. We will confine our presentation
to the basic facts, and we will devote the second part of the paper to develop
a full theory for the specific case of the Logarithmic Entropy-transport case.

In particular, the following construction (typical in the Young measure
approach to variational problems) allows us to consider the entropy-transport
problems in a setting of greater generality. We replace a pair (y, 0), where y
and o are a measure on X and a nonnegative Borel function, by a measure
a € M(Y) on the extended space Y = X x [0, 0o). The original pair (y, o)
corresponds to a measure o = (x, 0(x))sy concentrated on the graph of ¢ in
Y and whose first marginal is y.

Homogeneous marginals. In the usual setting of Sect. 3.1, we consider the
product spaces Y; := X; x [0, co) endowed with the product topology and
denote the generic points in ¥; with y; = (x;, r;), x; € X; and r; € [0, oo) for
i =1, 2. Projections from Y := Y7 x Y» onto the various coordinates will be
denoted by 7%, 7, 7" with obvious meaning.

For p > Oand y € Y we will set |y|§ = Y ; Iri|? and call M, (Y)
(resp. P, (Y)) the space of measures & € M(Y) (resp. P(Y)) such that

/ lyl} de < oo0. (5.23)
Y

If & € M, (Y) the measures rf a belong to M(Y'), which allow us to define
the “p-homogeneous” marginal hlp (o) of ¢ € M, (Y) as the x;-marginal of

P o, namely

Fi

h (@) == ;! (rfa) € M(X)). (5.24)
The maps hf : M, (Y) — M(X;) are linear and invariant with respect to

dilations: if ¥ : ¥ — (0, 00) is a Borel map in L? (Y, @) and prdy(y) :=
(x1,71/0(y); x2, 2/ (y)), we set

dily,p () := (prdy)s(?7e), ie. for p €By(Y)

. (5.25)
/(P(y) d(dllﬁ,p(ot))=/</)(X1,rl/t‘/‘;m,rz/l‘/‘)l‘/‘p(y) dor(y).

@ Springer



1038 M. Liero et al.

Using (5.24) we obviously have
h! (dily (@) = h! (a). (5.26)

In particular, for &« € M, (Y) with (Y) > 0, by choosing

. L Jlylp if|yl, #0, . p _ /p
v = T = (], ihde ey, = op)

(5.27a)

we obtain a rescaled probability measure & with the same homogeneous

marginals as & and concentrated on ¥, , = {y € Y : |y|, < r} C

(X x [0, 7:]) x (X x [0, r]):
a =dily p(a) € P,(Y), h@ =hl(e), a(Y\Y, ,)=0. (527b)

Entropy-transport problems with prescribed homogeneous marginals.
Given u1, uo € M(X) we now introduce the convex sets

T (a1, 12) = fo € Mp(¥) 0 (@) < i},

(5.28)
T, pw2) = foe € Mp(¥) :hf (@) = i .

Clearly H2 (1, na) C J—Cé (w1, 12) and they are nonempty since every plan
of the form

1 .
o« = W(Ml ® 5a,> ® </L2 ® 8a2), withay,az > 0 (5.29)
19

belongs to P (i1, 2). It is not difficult to check that 32 (1, u2) is also
narrowly closed, while, on the contrary, this property fails for 32 (i1, p12)
if w1 (X1)p2(X2) # 0. To see this, it is sufficient to consider any o €
HEZ (w1, n2) \ {0} and look at the vanishing sequence dil,,-1 , (&) forn — oo.

There is a natural correspondence between 9{2 (1, po) (resp. H2 (w1, 12))
and HL (1, wo) (resp. HL (1, n2))inducedby themap ¥ 5 (xy, r1; x2, r2) —
(x1, rf; X2, rf). For plans a € HL (w1, n2) we can prove a result similar to
Lemma 5.4 but now we obtain a linear functional in c.

Lemma 5.7 For p € (0,00), j € M(X;), ¢ € ®, and & € HE (1, o) we
have

/ H(xi,rl; x2,r)) da + Z F;(O)u; (X)) = 2(@lp1, n2),
X -

where 1} := p; —h! (e). (5.30)
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Proof The calculations are quite similar to the proof of Lemma 5.4:

f H(ey,rfsxo, rdy dee + Y Fi(0) (X))
Y -

(5.15

)
= [ (Fr@iert + o) da+ Y o)
Z f FY (i) d(hf (o)) + Z Fi (0) i (X:)

2. 19)
3 / P a0 @)+ 3 / Fe (o) du]
= Z/X_ FF (00 dui = (@l wa).

O

As a consequence, we can characterize the entropy-transport minimum via
measures & € M(Y).

Theorem 5.8 For every u; € M(X;), p € (0, 00) we have

aeHl(ur,u2) JY

ET(u1, n2) =  min / (Z Ri(r!) +c(x1, X2)) do
Z F(0)(ui — h] () (X;) (5.31)

min / Hx s o) da 4+ 3 Fi(0) (i — Y (@) (X))
0569{[ (1,m2) ;

(5.32)

=  min /H(xl,r{’;xz,rg’)da. (5.33)
aeHL(u1,m0) JY

Moreover, for every plan y € Optgr(ie1, w2) (resp. optimal for (5.19) or for

(5.22)) with pi = oiyi + i, the plan o = (x1, 01" (x1): x2. 03’7 (x2))5¥
realizes the minimum of (5.31) (resp. (5.32) or (5.33)).
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Remark 5.9 When F;(0) = +o00 (5.31) and (5.32) simply read as

min /(ZR(r.p)—i—C(xl,xz)) de

aeHE(ui,u2)

ET(u1, n2)

= min /H(xl ri ,xg,rf)da.
aeHL (11, 12)

O

Proof of Theorem 5.8 Let us denote by E’ (resp. E”, E") the right-hand side

of (5.31) (resp. of (5.32), (5.33)), where “min” has been replaced by “inf”.

If y € M(X) and p1; = 0;yi + pi- (in the case of (5.33) ui- = 0) is the

usual Lebesgue decomposition as in Lemma 2.3 , we can consider the plan
= (xl,gl””(xl);xz 0, (x2))zy.

Since the map (Ql ,QZ/ Py X — R? is Borel and takes values in a
metrizable and separable space, it is Lusin y-measurable [44, Thm 5, p. 26],
so that & is a Radon measure in M(Y). For every nonnegative ¢; € Bp(X;)
we easily get

ffbi(xi)"ip do =/Qi(xi)¢i(xi)d)’ =/Qi¢i dy; < /¢i dui,
so that o € HE (w1, n2), hf (@) = 0;yi, and

Anmly) = [ (2 Rt + ot ) a7 + 3 Fr Ot (50

/ ZR ) + clx1, xz)) de

+ Z Fi(0) (i —h{ (@) (X;) = E".
4
Taking the infimum w.r.t. y and recalling (3.30) we get ET (01, u2) > E’. Since
S Ri(rP) 4+ cxi,x2) > H(xy, r{; x2, 1) itis also clear that E > E”.

On the other hand, Lemma 5.7 shows that E” > Z(¢|u1, n2) for every
@ € ®. Applying Theorem 4.11 we get ET (1, u2) = E' = E”.

Concerning E” itis clear that E” > E” = ET (1, t2). When (5.21) hold,
by choosing & induced by a minimizer of (5.22) we get the opposite inequality
E" < ET(u1, wa)-

If (5.21) does not hold, we can still apply a slight modification of the argu-
ment at the end of the proof of Theorem 5.5. The only case to consider is when
only one of the two measures Mll vanishes: just to fix the ideas, let us suppose

that i) = pui(X1) > 0 = puy(X2). If p € Opter (i1, 112) and & is obtained
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as above, we can just set « := & + (MlL X 81) X (v x §p) for an arbitrary
v € P(X>y). Itis clear that hip(oc) = u; and

fH(m,rlp;xz,rf)doe:/ H(x1, 01(x1); X2, 02(x2)) dy
Y X

+/ H(x1, 1;x2,0)dui ® v
X

(5.12) . .
< / H(x1, 01(x1); x2, 02(x2)) dy + F1(0)m;
X

= (1, u2ly) = ET (1, u2),
which yields E” < ET (w1, u2).

Remark 5.10 (Rescaling invariance) By recalling (5.27a,b) and exploiting the
1-homogeneity of H it is not restrictive to solve the minimum problem (5.32)
in the smaller class of probability plans concentrated in

Y p ={(xr,ri;x0,m) €Yl +r) <P}, rP = Z,U«i(xi)-
i

First, we note that it is not restrictive to assume that a({y € Y : |y|, =
0}) = 01in (5.32): we can always replace @ witha' ;= L {y € Y : lylp > 0}
since H (x1, 0; x2, 0) = Oforevery x; € X; and the homogeneous marginals of
a and o’ coincide. As a second step, forevery a € HE(ur, no) withee(Y) > 0,
the choice & given by (5.27a,b) yields a new probability plan concentrated on
Y, p C Y, , with the same homogeneous marginals as & and satisfying

fH(Xl,rf’;Xz,rf)doc=/H(Xl,(rl/ﬁ)”;Xz,(rz/ﬁ)”)l?”d&
Y Y
=fH(X1,rf;x2,r§)d&,
Y

where ¢ is the function defined in (5.27a) and we used the 1-homogeneity of
H w.r.t. the variables (r1, r2).

Part I1. The Logarithmic Entropy-Transport problem and the Hellinger—
Kantorovich distance

6 The Logarithmic Entropy-Transport (LET) problem

Starting from this section we will study a particular Entropy-Transport prob-
lem, whose structure reveals surprising properties.
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6.1 The metric setting for Logarithmic Entropy-Transport problems

Let (X, t) be a Hausdorff topological space endowed with an extended distance
function d : X x X — [0, oo] which is lower semicontinuous w.r.t. 7; we
referto (X, t, d) as an extended metric-topological space. In the most common
situations, d will take finite values, (X, d) will be separable and complete
and 7 will be the topology induced by d; nevertheless, there are interesting
applications where nonseparable extended distances play an important role,
so that it will be useful to deal with an auxiliary topology, see e.g. [1,3].
From now on we suppose that X; = X, = X. We choose the logarithmic
entropies
Fi(s) =U(s) :==slogs —s + 1, (6.1)

and a cost ¢ depending on the distance d through the function ¢ : [0, co] —
[0, oc] via

2 .
o1, x2) = £(dGr, 1), €)= { log(1 + tan’(d)) ifd € [0, 7/2),

+ 00 ifd >m/2,
(6.2)
so that
-1 2 if 2
CCr1. x2) = { og(cos (d(xl,xz))) i d(xl,.xz) <m/ 6.3)
+00 otherwise.

Let us collect a few key properties that will be relevant in the sequel.

LE.1 F; are superlinear, C* in (0, 00), strictly convex, with D(F;) = [0, 00),
F;(0) =1, and (F,~)6 = —o0. For s > 0 we have 0 F;(s) = {logs}.

LE2 Ri(r) =rFi(1/r)y=r —1—1logr, R;i(0) =400, (R));\ =1
LE3 F(¢) = exp(¢) — 1, F(¢) = | — exp(—p), D(F) = D(Ff) = R.
LEA4 R;“(l//) = —log(1 —¢) for ¥y < 1 and R (Y) = +oo for y > 1.

LE.5 The function £ can be characterized as the unique solution of the differ-
ential equation

'(d) = 2exp(t(d)), £(0)=+¢(0)=0, (6.4)
since it satisfies

d
U(d) = —log (cos*(d)) = 2 / tan(s)ds, d €[0,7/2), (6.5
0

@ Springer



Optimal Entropy-Transport problems 1043

so that
L(d) > dz, ¢'(d) =2tand > 2d, (¢"(d) > 2. (6.6)

In particular ¢ is strictly increasing and uniformly 2-convex. It is not
difficult to check that v/ is also convex: this property is equivalent to
200" > (¢£')? and a direct calculation shows

200" — (¢')* = 4log(l + tan*(d)) (1 + tan*(d)) — 4 tan*(d) > 0

since (1 +r)log(l+r) >r.
LE.6 H.(r1,r) =r1 +r — 2. /rir2exp(—c/2) for ¢ < oo, so that

H(xi,r1; X2, 12) = r1 + 1y — 2/rirz cos (dr 2 (x1, x2)), (6.7)
where we set
dy(x1,x2) :=d(x1,x) Aa forx; € X, a > 0. (6.8)
Since the function
2. 2y 2, 2
H(xy,ris X2, ry) = ri +ry = 2rir2c08(dr2(x1, x2)) ~ (6.9)

will have an important geometric interpretation (see Sect. 7.1), in the
following we will choose the exponent p = 2 in the setting of Sect. 5.2.

We keep the usual notation X = X x X, identifying X; and X, with X and
letting the index i run between 1 and 2, e.g. for y € M(X) the marginals are
denoted by y; = (! Y.

Problem 6.1 (The Logarithmic Entropy-Transport problem) Let (X, 7, d) be
an extended metric-topological space, £ and C be as in (6.2). Given u; € M(X)
find y € M(X) minimizing

LET (11, p2) Z},GHJ&?X) (;/X(Gi 10g0i—0i+1)dui+/xf(d(X1,X2)) d}'>,
(6.10)

where o; = %. We denote by Opt\gr (i1, b2) the set of all the minimizers y
in (6.10).

6.2 The Logarithmic Entropy-Transport problem: main results
In the next theorem we collect the main properties of the Logarithmic Entropy-

Transport (LET) problem relying on the reverse function % from Sect. 3.5, cf.
(3.28), and »Z from Sect. 5.1, cf. (5.16).
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Theorem 6.2 (Direct formulation of the LET problem) Let u; € M(X) be
given and let £, dy > be defined as in (6.2) and (6.8).

(a) Existence of optimalplans. There exists an optimalplany € Optg (11, (2)
solving Problem 6.1. The set Optg(1e1, n2) is convex and compact in
M(X), LET is a convex and positively 1-homogeneous functional (see
(4.41)) satisfying 0 < LET (1, o) < 3 pi (X).

(b) Reverse formulation (LET = min Z|g). The functional LET has the equiv-
alent reverse formulation as

LET (1¢1, 2) = min {%LE(/M, u2ly) ©y € M(X), wi =0ivi + /L,l}

where
RE(Ur, p2ly) == Z <M,-L(X) + fX (0i — 1 —log ;) d)/i)

+/ £(d(x1, x2)) dy, (6.11)
X

and y is an optimal plan in Opt g (i1, n2) if and only if it minimizes
(6.11).

(¢) The homogeneous perspective formulation (LET = min J4g). The func-
tional LET (1, ) can be equivalently characterized as

LET (11, o) = min{ﬁﬁE(m, u2ly) @y € M(X)}, where

JAE (11, 12p) :ZZ wi (X)—=2 /X Vvoi1(x1)o2(x2) cos(dy2(x1, x2)) dy
=Z ,U«f_(X)‘f'/;ng (x1)+02(x2)—2+/01(x1)02(x2) cos(dr /2 (x1, X2))) dy

(6.12)

and y; = oii + Mf Moreover; every plan y € Optg (11, n2) provides
a solution to (6.12).

Proof The variational problem (6.10) fits in the class considered by Prob-
lem 3.1, in the basic coercive setting of Sect. 3.1 since the logarithmic entropy
(6.1) is superlinear with domain [0, co). The problem is always feasible since
U1(0) = 1 so that (3.6) holds.

(a) follows by Theorem 3.3(i); the upper bound of LET is a particular case of
(3.7), and its convexity and 1-homogeneity follows by Corollary 4.13.
(b) is a consequence of Theorem 3.11.

@ Springer



Optimal Entropy-Transport problems 1045

(c) is an application of Theorem 5.5 and (6.7). m|

We consider now the dual representation of LET; recall that LSC, (X)) denotes
the space of simple (i.e. taking a finite number of values) lower semicontinuous
functions and for a pair ¢; : X — R the symbol ¢1 & ¢, denotes the function
(x1,x2) > ¢1(x1) + P2(x2) defined in X. In part a) we relate to Sect. 4.2,
whereas b)—d) discusses the optimality conditions from Sect. 4.4.

Theorem 6.3 (Dual formulation and optimality conditions)
(a) The dual problem (LET = D\ = D). For all 1, p2 € M(X) we
have

LET (a1, 12) = sup { Zie(0lir, 12) ¢ € LSC,(X), 1 @ 92 = £},
(6.13)

=SUP{ZfX1/fi du; @ ¥ € LSCy(X), Sl;(p‘/fi <1,

(1= 1) (1 = Y2(x2) = cos’(rpxr, ) in X[, (6.14)

where D (@1, 1) ==Y, fx (1 — e"pi) du;. The same identities hold if the
space LSCy(X) is replaced by LSCp(X) or Bp(X) in (6.13) and (6.14). When
the topology t is completely regular (in particular when d is a distance and ©
is induced by d) the space LSC;(X) can be replaced by Cp(X) as well.

(b) Optimality conditions. Let us assume that d is continuous. A plan 'y €
M(X) is optimal if and only if its marginals y; are absolutely continuous
W.EL L,

d>m/2 in (supp ,uf X suppuz) U (supp U1 X suppu%), (6.15)

and there exist Borel sets A; C supp y; with y; (X \ A;) = 0and Borel densities
o : Aj = (0, 00) of y; w.r.t. u; such that

01(x1)02(x2) > c08? (A /2 (X1, X2)) in Ay x Aa, (6.16)

01(x1)02(x2) = cos* (A2 (x1, ¥2)) p-a.e.in Ay x A, (6.17)
or, equivalently, in terms of the densities 0; = O'i_l of Wi w.r.t. y;

01(x1)02(x2) cos* (A ja(x1, x2)) < 1 in Ay x Aa, (6.18)
01(x1)02(x2) cos*(dyr 2 (x1, ¥2)) = 1 y-a.e. in Ay x As. (6.19)

(c) £(d)-cyclical monotonicity. Every optimal plan 'y € Optgr (i1, (2) is
a solution of the optimal transport problem T with cost £(d) (see (3.15) of

@ Springer



1046 M. Liero et al.

Sect.3.3) between its marginals y;. In particular it is £(d)-cyclically mono-
tone, i.e. it is concentrated on a Borel set G C X (G = supp(y) when d is
continuous) such that for every choice of (x{, x3 )rllv: | C G and every permu-

tationk : {1,...,N} - {1,..., N}
MY, cos? (de/a (e}, x2)) > T, cos? (d,, (e, X (’”)) . (6.20)

(d) Generalized potentials. If y is optimal and A;, o; are defined as in b)
above, the Borel potentials ¢;, ¥; : X — R

—logo; in A, 1—0; inA;,
Y ;= 4 —00 in X \ supp Ui, , Yii={—00 in X\ supp ii,
+00 otherwise, 1 otherwise,

(6.21)

satisfy o1 Do 2 < £(d), log(1—yr1) B, log(1—yr2) > £(d), and the optimality
conditions corresponding to (4.50)

@1(x1) + @2(x2) = log(1—=v1(x1)) + log(1—y2(x2))
= {(d(x1, x2)) y-a.e.in Ay X As.

Moreovere=% ; € LY(X, ;) and
LET (11, pa) = Zf (1 —e ) dpu,
—Jx

=> /X Yidpi =Y wi(X) —2y(X).  (6.22)

Proof 1dentity (6.13) follows by Theorem 4.11, recalling the definition (4.11)
of @ and the fact that F°(¢) = 1 — exp(—¢).

Identity (6.14) follows from Proposition 4.3 and the fact that R (/) =
—log(1 — /). Notice that the definition (4.7) of W ensures that we can restrict
the supremum in (6.14) to functions v; with supy ¥; < 1. We have discussed
the possibility to replace LSC,(X) with LSCy(X), By (X) or Cp(X) in Corol-
lary 4.12.

The statement of point (b) follows by Corollary 4.18; notice that the LET
problem is always feasible.

Point (c) is an obvious consequence of the optimality of p.

Point (d) can be easily deduced by (b) or by applying Corollaries 4.17
and 4.18, observing that the formula defining ¢; of (6.21) corresponds to
(4.48) with (F;)},, = +00 = —(F;)(, and the optimality condition corresponds
to (4.50). Finally, ¥; are justrelated to ¢; by ¥; = F(¢;) =1 —exp(—¢;). O
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In the one-dimensional case, the £(d)-cyclic monotonicity of part (¢) of the
previous theorem reduces to classical monotonicity.

Corollary 6.4 (Monotonicity of optimal plans in R) When X = R with the
usual distance, the support of every optimal plan y is a monotone set, i.e.

(x1,x2), (x],x5) € supp(¥), x; <x; = x2 <xj. (6.23)

Proof As the function £ is uniformly convex, (6.20) is equivalent to mono-
tonicity. O

The next result provides a variant of the reverse formulation in Theorem 6.2,
which expresses the LET problem as a supremum of the /inear mass functional
on y on a convex set characterized by the marginals of y and the cost.

Corollary 6.5 Forall vy, 2 € M(X) we have

LET (a1, 12) = Y i (X) = 2max {y(X) : ¥ € M(X), v = oy,
01(1)02(x2) = 052 (A (1, x2)) y-aee. in X} (624)

Proof Letus denote by M’ the right-hand side and let y € M(X) be a plan sat-
isfying the conditions of (6.24). If A; are Borel sets with y; (X\ A;) = Oando; :
X — (0, oo) are Borel densities of y; w.r.t. u;, the densities g; of u; w.r.t. y;
satisfy 0; (x;) = 1/0;(x;) in A; so that o1 (x1)02(x2) < c0s*(Ar/2(x1, X2))
yields 01 (x1)02(x2) cos?(dyx 2 (x1, x2)) > 1. Since (log 0;)+ € L' (X, y;) we
have

> (o + f

i (0i —1— 10gQi)dJ/i> +/ £(d(x1, x2)) dy

X

=) (X)) =y (X)) — [ log(o1(x1)02(x2) cos? (A2 (x1, x2))) dy
X

<Y wi(X) =2y(X).

By (6.11) we get M" > LET (i1, o). On the other hand, choosing any y €
Optgr (11, o) the optimality condition (6.17) shows that p is an admissible
competitor for (6.24) and (6.22) shows that M’ = LET (111, i2). O

Combining (6.12), (6.13), (6.14), and (6.24), we find that the nonnegative
and concave functional (i1, u2) — Y ; i (X) — LET (i1, o) can be repre-
sented as in the following equivalent ways:
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ZMi(X)—LEl'(m,uz)=2 max /X\/Ql(xl)QZ()Q)COS(dn/2(x1»x2))d)’

yeM(X)
(6.25)

=inf {3 / e dpi 1 g € LSC,(X), 91 @ 2 = L)} (6.26)
i X
= inf{Z/XJ/,- dui = Ui € USCy(X), inf Ui > 0,

U1 (x1)¥2(x2) > cos?(dya(x1, x2)) in X} (6.27)
=2max {y(X): y € M), ¥ = oy,

01(x1)02(x2) = cos’(dr a1, x2)y-ae inX | (628)

The next result concerns uniqueness of the optimal plan p in the Euclidean
case X = R?. We will use the notion of approximate differential (denoted by
D), see e.g. [2, Def. 5.5.1].

Theorem 6.6 (Uniqueness) Let u; € M(X) and y € Optigr(ie1, 12).
(1) The marginals y; = néy are uniquely determined.

(1) If X = R with the usual distance then y is the unique element of
Optigr (11, 12).

(i) If X = RY with the usual distance, n < 24 s absolutely continuous,
and A; C R4 and o; : A; — (0, 00) are as in Theorem 6.3 b), then o is
approximately differentiable at 1-a.e. point of Ay and y is the unique
element of Opt\gr (1, n2). The transport plan y is concentrated on the
graph of a function t : R¢ — RY satisfying

 arctan((§(x1)])
&)l

1.
E(x) = —§D10g01(x1) (6.29)

&(xp),

t(x1) =x

Proof (i) follows directly from Lemma 3.5.

(i1) follows by Theorem 6.3(c), since whenever the marginals y; are fixed
there is only one plan with monotone support in R (see e.g. [42, Chap. 2]).

In order to prove (iii) we adapt the argument of [2, Thm. 6.2.4] to our
singular setting, where the cost C can take the value +oo.

Let A; c R? and o; : A; — (0, 00) as in Theorem 6.3 b); notice that since
o1 > 01in A the classes of wi- and y1-negligible subsets of A; coincide.
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Since u; = u?? « 24 with density u € LY(RY), up to removing a -
negligible set (and thus yj-negligible) from Ay, it is not restrictive to assume
that u(x;) > 0 everywhere in A1, so that the classes of .2~ and 11 -negligible
subsets of A coincide. For every n € N we define

Arpi={x2 € Ay i 02(x2) = 1/n}, sp(x1) := sup cos>(|x;—xa])/o2(x2).

X2€A2.,
(6.30)
The functions s, are bounded and Lipschitz in R? and therefore differen-
tiable .#’?-a.e. by Rademacher’s Theorem. Since /i1 is absolutely continuous
w.rt. 24 we deduce that s,, are differentiable [i-a.e.in Aj.

By (6.16) we have o1(x1) > s,(x1) in A1. By (6.17) we know that for y;-
a.e. x| € Aj there exists x; € A, such that |[x; — x2| < 7/2 and o1(x1) =
cos?(|x; — x2])/o2(x2) so that o1(x1) = s,(x1) for n sufficiently big and
hence the family (B,),en of sets B, (= {x; € A1 : o1(x1) > su(x1)} is
decreasing (since s,, is increasing and dominated by o) and has .2¢-negligible
intersection.

It follows that y1-a.e. x; € A is a point of .,iﬂd—density 1of {x; € Ay :
o1(x1) = s,(x1)} for some n € N and s, is differentiable at x;. Let us denote
by A the set of all x; € A; such that oy is approximately differentiable at
every x| € A’1 with approximate differential ]301 (x1) equal to Ds, (x1) for n
sufficiently big.

Suppose now that x| € A’l and o1(x1) = cos2(|x1 — x2])/02(x2) for some
xp € Aj. Since by (6.16) and (6.17) the map x| cosz(lxi — x2))/o1(x])
attains its maximum at xi = x;, we deduce that

X1 — X2 1~
tan(|x; — x2|) ———— = —5Dlogoi(x1),
lx1 — x2] 2
so that x; is uniquely determined, and (6.29) follows. O

We conclude this section with the last representation formula for LET (i1, 142)
given in terms of transport plansa in Y := Y x Y with ¥ := X x [0, oo) with
constraints on the homogeneous marginals, keeping the notation of Sect. 5.2.
Even if it seems the most complicated one, it will provide the natural point of
view in order to study the metric properties of the LET functional, and it will
play a crucial role in Sect. 7.6, where the link between the LET formulation
and the Hellinger—Kantorovich distance will be studied. The interest of (6.34)
relies in the particular form of its integrand, by recalling that by (5.4) and (6.9)
we have

LET (r{8y,, 738(x2)) = ri 4 r3 — 2r172 cos(dy 2 (x1, x2)). (6.31)
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Theorem 6.7 For every u; € M(X) we have

LET G i) = 30 =2 max [ rirscos(eeaton, 1)) da
; X

aeHZ (11, 12)

= min { / <r12 + r% — 2r1ry cos(dy 2 (x, xz))> do (6.32)
Y

+ D (1 = @)X @ € MY, @) < ui]  (6.33)
i
., ( 2,2 : 200N
p—— { / r2 12— 217y cos(dy 2 (x1, xz))) doc s e eM(Y), h? (oc)_ul}
Y
(6.34)
Moreover, for every plan y € Opt\gr (i1, (2) and every pair of Borel densities

o; as in (6.11) the plan a = (x1, \/Q](xl); X2, \/QQ(XQ))ﬁ}_’ is optimal for
(6.33) and (6.32).

Proof ldentity (6.33) (resp. (6.34)) follows directly by (5.32) (resp. (5.33)) of
Theorem 5.8. Relation (6.32) is just a different form for (6.33). O

7 The metric side of the LET-functional: the Hellinger—Kantorovich
distance

In this section we want to show that the functional

(1, m2) =  LET (1, o) (7.1)

defines a distance in M(X), which is then called the Hellinger—Kantorovich
distance and denoted HK.

In order to introduce this distance we will adopt a geometric point of view,
which is strictly related to the characterization given in Theorem 6.7: it will
mainly exploit the link with Optimal Transport in the so-called geometric cone
¢ constructed on X, cf. [10, Sect. 3.6]. This is possible since the function

(x1,71; x2,12) — r12 + r22 —2rirpcos(d(xy, x2) Aa), a >0, (7.2)

appearing in (6.31) and (6.34) with a = 7/2, is a (possibly extended) squared
semidistance in ¥ = X x [0, 0c0), whenever a € (0, 7 ].

In the next two sections we will briefly study this function and the associated
metric for the particular choices of a = 7 (the canonical one in metric geom-
etry) and a = /2 (related to the minimal cost between a pair of Dirac masses
(6.31)): the role of these two values will be clarified in Remark 7.2 and in
Sect. 7.6, we also refer to [30, Sect. 3] for more motivation and examples. The
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induced metric space €, can be obtained by taking the quotient with respect to
the equivalence classes of points with distance 0. Radon measures on ¢ can be
projected to Radon measures on X by taking suitable homogeneous marginals,
which will be studied in Sect. 7.2.

The definition and the basic properties of the Hellinger—Kantorovich dis-
tance will be given in Sect. 7.3; the main metric properties will be derived in
Sects. 7.4 and 7.5: they rely on a refined gluing technique and on the flexibil-
ity of the notion of homogeneous marginals, which allow us to transfer many
useful properties of the Kantorovich—Wasserstein distance on the cone € to
corresponding properties for HK. Section 7.6 will then show the equivalent
characterization of HK in terms of the Logarithmic Entropy Transport problem
LET and its dual formulation, thus providing a direct and robust formulation of
HK as a convex minimization problem enjoying all the properties we recalled
in the previous section.

7.1 The cone construction
Let us quickly recall a few basic facts concerning the cone construction, refer-
ring to [10, Sect.3.6] for further details. In the extended metric-topological
space (X, t,d) of Sect. 6.1, we will denote by d, := d A a the truncated
distance and by y = (x,r), x € X, r € [0, 0), the generic points of
Y := X x [0, 00).

It is not difficult to show that the function dg : ¥ x ¥ — [0, 00)

d2((x1,71), (x2, 7)) == ri +r3 = 2riracos(dy (x1, x2))  (7.3)

is nonnegative, symmetric, and satisfies the triangle inequality (see e.g. [10,
Prop. 3.6.13]). We also notice that

d2(y1, y2) = Ir1 — ra|* + 4ryra sin? (de (x1, x2)/2), (7.4)

which implies the useful estimates

2
max (lrl—l’zl, —Vrnin dn(X1,X2)) < de¢(y1, ¥2)
< |ri—r2| + /rir2 dz (x1, x2). (7.5)

From this it follows that d¢ induces a true distance in the quotient space
¢ =Y/~ where

i~y & ri=r=0 o r =r, X =2x2. (7.6)
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Equivalence classes are usually denoted by ) = [y] = [x, r], where the vertex
[x, 0] plays a distinguished role. It is denoted by o, its complement is the
open set €, = €\ {o}. On € we introduce a topology ¢, which is in general
weaker than the canonical quotient topology: ¢ neighborhoods of points in
&, coincide with neighborhoods in Y, whereas the sets

{x,r]1:0<r<e}={pec:dem,0) <e}, e6>0, (1.7

provide a system of open neighborhoods of 0. 7¢ coincides with the quotient
topology when X is compact.

It is easy to check that (€, t¢) is a Hausdorff topological space and dg is T¢-
lower semicontinuous. If 7 is induced by d then t¢ is induced by d¢. If (X, d)
is complete (resp. separable), then (€, d¢) is also complete (resp. separable).

Perhaps the simplest example is provided by the unit sphere X = S?~! =
{x € R? : |x| = 1} in R endowed with the intrinsic Riemannian distance:
the corresponding cone € is precisely RY.

We denote the canonical projection by

p:Y—>¢& px,r)=I[xrl (7.8)

Clearly p is continuous and is an homeomorphism between Y \ (X x {0}) and
¢,. Arightinverse y : € — Y of the map p can be obtained by fixing a point
x € X and defining

r.¢—[0,00), rx,r]=r,
x ifr >0,

and y := (X, r). (7.9)

X:¢€— X, X[x,r]=1_ .
x ifr=0,

Notice that r is continuous and X is continuous restricted to &,.
A continuous rescaling product from € x [0, co) to € can be defined by

podi=1" fy=o, (7.10)
[x,Ar] ity =[x,r], s > 0.

We conclude this introductory section by a characterization of compact sets in
(€, 7¢).

Lemma 7.1 (Compact sets in €) A closed set K of € is compact if and only if
there is ro > 0 such that its upper sections

K(p) ={x e X :[x,r] € K for somer > p}

are empty for p > ro and compact in X for 0 < p < ry.
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Proof 1t is easy to check that the condition is necessary.

In order to show the sufficiency, let p = infg r. If p > 0 then K is compact
since it is a closed subset of the compact set p(K () x [p, rol).

If p = 0 then o is an accumulation point of K by (7.7) and therefore 0 € K
since K is closed. If % is an open covering of K, we can pick Uy € %
such that 0 € Uy. By (7.7) there exists € > 0 such that K \ Uy C p(K(e) X
[e, ro]): since p(K (e) x [e, ro]) is compact, we can thus find a finite subcover
{Uy,---,Un} C % of K\Up. {Un}fl\/:0 is therefore a finite subcover of K. O

Remark 7.2 (Two different truncations) Notice that in the constitutive formula
defining d¢ we used the truncated distance d,; with upper threshold 7, whereas
in Theorem 6.7 an analogous formula with d > and threshold /2 played a
crucial role. We could then consider the distance

di/zvg([xl» r1l, [x2, r21) i= rf +r5 — 2rira cos(dr 2 (x1, x2))  (7.11a)
= |r1 — 12| 4 4r1ra sin® (e 2 (x1, X2)/2) (7.11b)

on &, which satisfies
dre <dg < ﬁdn/z,c. (7.12)

The notation (7.11a) is justified by the fact that d,; 5 ¢ is still a cone distance
associated to the metric space (X, d/2), since obviously (d;/2)» = (dz/2) A
/2 = dy /2. From the geometric point of view, the choice of d¢ is natural,
since it preserves important metric properties concerning geodesics (see [10,
Thm. 3.6.17] and the next Sect. 8.1) and curvature (see [10, Sect.4.7] and the
next Sect. 8.3).

On the other hand, the choice of dy; / is crucial for its link with the function H
of (6.9), with Entropy-Transport problems, and with a representation property
for the Hopf-Lax formula that we will see in the next sections. Notice that
the 1-homogeneous formula (6.7) would not be convex in (71, r2) if one uses
d,; instead of d;/>. Nevertheless, we will prove in Sect. 7.3 the remarkable
fact that both d, and d, /> will lead to the same distance between positive
measures.

7.2 Radon measures in the cone € and homogeneous marginals
It is clear that any measure v € M(€&) can be lifted to a measure v € M(Y)

such that pzv = v: it is sufficient to take v = yzv where Y is a right inverse of
p defined as in (7.9).
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We call My (€) (resp. P2(€)) the space of measures v € M(E) (resp. v €
P(€)) such that

/rdv_/d(lj o)dv_/r dv < oo, v =y (7.13)

Measures in M5 (€) thus correspond to images py v of measures v € Mo (Y)
and have finite second moment w.r.t. the distance d¢, which justifies the index
2 in M,(€). Notice moreover that the measure 72 does not charge X x {0}
and it is independent of the choice of the point x in (7.9).

The above considerations can be easily extended to plans in the product
spaces €®V (where typically N = 2, but also the general case will turn out to
be useful later on). To clarify the notation, we will denote by §y = (n;)" e =
([xi, r;DY_; a point in €2V and we will set 1;(y) = r(n;) = ri, X;(y) =
x(tj,) € X. Projections on the i-coordinate from ¢®V to ¢ are usually denoted
by 7l or %, p = p®N : (Y)ON - BNy = yON : ¢®N . (1)®N are the
Cartesian products of the projections and of the lifts.

Recall that the L2-Kantorovich—-Wasserstein (extended) distance Wy, in
M5 (€) induced by d¢ is defined by

W3, (v1, v2) := min {/dg(m, h2) dee : @ € M(€), 7}t = v,-}, (7.14)

with the convention that Wqy, (v, v2) = +00 if v1(€) # v2(€) and thus the
minimum in (7.14) is taken on an empty set. We want to mimic the above defi-
nition, replacing the usual marginal conditions in (7.14) with the homogeneous
marginals hl.z which we are going to define.

Let us consider now a plan o in M(€®V) with @ = y,a € M(Y®V): we
say that a lies in Mo (€®V) if

/@ Zr doc_/ > rfda < oo. (7.15)
¢BN i

Its “canonical” marginals in M(¢) are o; = JTt? ‘o, whereas the “homogeneous”
marginals correspond to (5.24) with p = 2:

b7 (@) := (X))s(rfer) = 7" (rP@) =h}(@) € M(X), @&:=y,a. (7.16)
We will omit the index i when N = 1. Notice that rizoz does not charge
(w")~!(0) (similarly, r*& does not charge Y® 1 x {(¥, 0)} x Y®N =) 50 that

(7.16) is independent of the choice of the point x in (7.9).
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As in (5.26), the homogeneous marginals on the cone are invariant with
respect to dilations: if 9 : €®N — (0, 00) is a Borel map in L2(¢®V | a) we
set

(prdy (), :=1; - (P() " and dily(e) == (prdy): (P @),  (7.17)

so that
b7 (dily 2 (@) = b7 (@) forevery @ € Mp(€®V). (7.18)
As for the canonical marginals, a uniform control of the homogeneous
marginals is sufficient to get equal tightness, cf. (2.4) for the definition. We

state this result for an arbitrary number of components, and we emphasize that
we are not claiming any closedness of the involved sets.

Lemma 7.3 (Homogeneous marginals and tightness) Let K;, i = 1,--- , N,
be a finite collection of bounded and equally tight sets in M(X). Then, the set

o e Ma(@™) i bl € K fori =1,..., N} (7.19)

is equally tight in M(CN).
Proof By applying [2, Lem.5.2.2], it is sufficient to consider the case N = 1:
given a bounded and equally tight set X C M(X) we prove that H := {a €
Ma(€) f)zoz € fK} is equally tight. For A C X, R C (0, oo) we will use
the short notation A x¢ R for p(A x R) C €. If A and R are compact, then
A X¢ R is compact in €.

Let M := sup, cq u(X) < oo; since X is equally tight, we can find an
increasing sequence of compact sets K, C X such that u(X \ K,) < 87"

for every € XK. For an integer m € N we then consider the compact sets
Ry C € defined by

B = 10} U (K xe 27, 2" DU (| K xe 27, 277%1]). (7.20)

n=1

Setting Koo = (s Ky, we have (X \ Koo) = 0 and

o
€\ S C (K xe 2",00)) U (| Kitm \ Knm1) xe @741, 00))
n=1
U((X \ Kxo) X¢ (0, 00)).
Since for every a € 3 with h?a =  and every A € B(X) we have

@(A x¢ (5,00)) <52 u(A) <57*M and a((X \ Ko) x¢ (0,00)) =0,
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we conclude

w(C\ Ry) < M4+ (X \ Kpam-1) xe @7, 00))

n=1

00 00
< M4 4 Z4n—181—n—m < 4—m(M + 24—n>
n=1

n=1

<47"(1+ M)),

for every & € . Since all K, are compact, we obtain the desired equal
tightness. o

7.3 The Hellinger-Kantorovich problem

In this section we will always consider N = 2, keeping the shorter notation
Y = Y®2 and € = ¢®2. As in (5.28), for every w1, o € Ma(X) we define
the sets

f’)é(m, u2) = {a € Ma(€) : hia < Mi} and
92(u1. o) 1= |a € Mo(©) ¢ hla = .

They are the images of J-C% (u1, ) and J{i (w1, n2) through the projections
p;; in particular they always contain plans p.a, where « is given by (5.29).
The condition & € ﬁ%(m , 2) is equivalent to ask that

(7.21)

/ rizgo(xi) da < /go du; for every nonnegative ¢ € Bp(X). (7.22)

We can thus define the following minimum problem:

Problem 7.4 (The Hellinger—Kantorovich problem) Given w1, uo € M(X)
find an optimal plan oop € U{i(m, w2) C Mo(€&) solving the minimum
problem

HC(p1, p2)* == min { f dg(01, 02) der : @ € Ma(€), i = u}
(7.23)
We denote by Opty (i1, n2) C M(€) the collection of all the optimal plans o
realizing the minimum in (7.23) and by H? (1, n2) the value of the minimum
in (7.23) (whose existence is guaranteed by the next Theorem 7.6).

Remark 7.5 (Lifting of plans in Y) Since any plan o € M(€) can be lifted to
aplan @ = y,a € P(Y x Y) such that pya@ = « the previous problem 7.4 is
also equivalent to find
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min {/dg(yl, y)da:ae MY x Y), hX@) = M} (7.24)

The advantage to work in the quotient space € is to gain compactness, as the
next Theorem 7.6 will show.

An importance feature of the cone distance and the homogeneous marginals
is an invariance under rescaling, which can be done by the dilations from
(7.17). Let us set

C[R]:={[x,r1€ €:r < R} and €[R]:=C[R] x C[R].  (7.25)

Itis not restrictive to solve the previous problem 7.4 by also assuming that « is
a probability plan in P(€) concentrated on €[R] with R? = > mi(X), ie.

H2 (1, p2) = min/déda,
aeC

where C := {@ € P(@) : bl = ;. «(€\ €[R]) =0}. (7.26)

In fact the functional dé and the constraints have a natural scaling invariance
induced by the dilation maps defined by (7.17). Since

[ diditsa@n = [ 92t ri/o: . ra/9) da = [ e
(7.27)
restricting first e to €\ {(o, 0)} and then choosing ¢ asin (5.27a) with p = 2 we
obtain a probability plan dily 2(exL €\ {(0, 0)}) in J—Ci (i1, m2) concentrated
in €[R]\{(0, 0)} with the same cost f dé de. In order to show that Problem 7.4
has a solution we can then use the formulation (7.26) and prove that the set C
where the minimum will be found is narrowly compact in P(€). Notice that
the analogous property would not be true in P(Y x Y) (unless X is compact)
since the collection of measures concentrated in (X x {0}) x (X x {0}) would
not be equally tight. Also the constraints hl.zot = u; would not be preserved by
narrow convergence, if one allows for arbitrary plans in P(&), as in (7.23).

Theorem 7.6 (Existence of optimal plans for the HK problem) For every
ui, k2 € M(X) the Hellinger—Kantorovich problem 7.4 always admits a
solution a € P(&) concentrated on €[R] \ {(0, 0)} with R? = Do i (X).

Proof By the rescaling (7.27) it is not restrictive to look for minimizers o
of (7.26). Since €[R] is closed in € and the maps rl.2 are continuous and
bounded in €[R], C is clearly narrowly closed. By Lemma 7.3, C is also
equally tight in P(€), thus narrowly compact by Theorem 2.2. Since the d% is
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lower semicontinuous in &, the existence of a minimizer of (7.26) then follows
by the direct method of the calculus of variations. O

We can also prove an interesting characterization of HK in terms of the
Kantorovich—Wasserstein distance on P»(€) given by (7.14). An even deeper
connection will be discussed in the next section, see Corollary 7.13.

Corollary 7.7 (HK and the Kantorovich—Wasserstein distance on P;(€)) For
every 1, w2 € M(X) we have (recall the notation Yy explained after (7.16))

HK (1. j12) = min {Wde(al, )t € Pr(€), bl = u} (7.28)

and there exist optimal measures «; for (7.28) concentrated on €[R] with
R? = > i wi(X). In particular the map hz 1 Pr(€) — M(X) is a contraction,
ie.

HC(h a1, hPa) < Wy, (a1, @2) for every a; € P (Q). (7.29)

Proof If a; € P»(¢) with h%a; = p; then any Kantorovich—-Wasserstein
optimal plan & € P(C x €) for (7.14) with marginals «; clearly belongs to
Sﬁi(m, p2) and yields the bound HK(u1, u2) < Wy, (a1, a2). On the other
hand, if @ € Opty (11, p2) is an optimal solution for (7.23) and «; 1= JTéOl €
P2(€) are its marginals, we have HK(w 1, ) > Wy, (@1, a2), so that o; realize
the minimum for (7.28). |

We conclude this section with two simple properties of the HK functional.
We denote by 7o the null measure.

Lemma 7.8 (Subadditivity of HK?) The functional HK? satisfies

H (11, m0) = ju(X), HK? (11, p2) < i (X) + pa(X) (7.30)

for every ., u; € M(X), and it is subadditive, i.e. for every ji;, u; € M(X)
we have

H2 (e + 1), o + b)) < B2 (o, i) 4+ HK2 (i), ). (7.31)

Proof The relations in (7.30) are obvious. If ¢ € Sﬁi(/xl, w2) and o €
92 (), wh) itis easy to check that @ + &' € HZ (11 + p), o + pb). Since
the cost functional is linear with respect to the plan, we get (7.31). O

Subsequently we will use the symbol “_" for the restriction of measures.

Lemma 7.9 (A formulation with relaxed constraints) For every i, 2 €
M(X) we have
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HC (w1, 142)
=  min { / dg (1. v2) doe + > (i — bfa)(X)} (7.32a)

@€H (11, 402)

= 0+~ max |2 / i 2 cos(dle (1. X2)) da ).

aeHZ(n1.u2)

(7.32b)

Moreover,
(1) Equations (7.32a)—(7.32b) share the same class of optimal plans.
(i) A plan o € ﬁ%(,ul, w2) is optimal for (7.32a)—(7.32b) if and only if the
plan a, ;= a L (&, x &,) is optimal as well.
(iii) Ifa is optimal for (7.32a)—(7.32b) with ju} := p; — hizoc, thena := oo +o’
is an optimal plan in Opty (11, n2) for all o' € ﬁi(,u’l, W5).

@iv) A plan a € 92 (u1, 12) belongs to Opty (i1, (2) if and only if o, =
ol (€, x &) is optimal for (7.32a)—(7.32b).

Proof The formulas (7.32a) and (7.32b) are just two different ways to write
the same functional, since for every a € ﬁé(m, L2) we have

fd2 da+2 — bla )(X) = Zu,(X) /rl ry cos(dy (X1, X2)) der.

(7.33)
Thus, to prove (i) it is sufficient to show (7.32a). The inequality > is obvious,
since 92 (1, nw2) D H2 (w1, pn2) and for every e € $H2 (1, n2) the term
> (i - h7e)(X) vanishes.
On the other hand, whenever a € 3’)2 (i1, p2), setting ) 1= hl.Zoe e M(X),
u; = Ui — ,u " and observing that & € 532 (,u1 ,l,Lz) we get

f dg (1. v2) doc + Y (i — bee) (X) = HC (U], 1) + 1y (X) + ph(X)

"2V e HK? Ve
(1], ) + HE (i, Mz) (1, 12).

The same calculations also prove point (iii).

In order to check (ii) it is sufficient to observe that the integrand in (7.32b)
vanishes on € \ (&, x €,).

Finally,if ¢ € Opty (41, p2) is optimal for (7.23), then by the consideration
above it is optimal for (7.32b) and therefore (ii) shows that &, is optimal as
well. The converse implication follows by (iii). O
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7.4 Gluing lemma and triangle inequality

In this section we will prove that HK satisfies the triangle inequality and there-
fore is a distance on M(X). As in Optimal Transport (see e.g. [2, Sect. 7.1]), the
triangle inequality can be obtained by a gluing technique that allows us to join
acouple of optimal transport plans with acommon marginal. Here we will deal
with transport plans on the cone ¢ and homogeneous marginals. We will also
consider a more general situation where a sequence of measures is involved:
it will turn out to be extremely useful in various topological (Theorem 7.15)
and metric (Theorems 7.17, 8.4, 8.6, 8.8) results.

The main technical step is provided by the following property for plans in
M(€®V) with given homogeneous marginals, which is a simple application
of the rescaling invariance in (7.27). This property is nontrivial since homo-
geneous marginals are considerably less rigid than the usual marginals and
therefore the gluing technique requires a preliminary normalization, which
does not affect the computation of the HK distance.

Lemma 7.10 (Normalization of lifts) Ler &« € Ma(€®N), N > 2, be a plan
satisfying

e = p; € M(X) fori =1, ..., N,
and a; = /d’é(n,-l, i) de fori =2, ..., N, (7.34)

and let j € {1,..., N} be fixed. Then, it is possible to find a new plan a €
Mo (€®N) which still satisfies (7.34) and additionally the normalization of the
jeh lifs, |

ﬂﬁj (0) = 8o + ps(j ®51)- (7.35)

Proof By possibly adding ®”' 8, to & (which does not modify (7.34)) we may
suppose that

w;j ::a({t) e ®N . 7i(y) = 0}) >1,

where j is fixed as in the lemma. In order to find « it is sufficient to rescale o
by the function
ri(m) ify; #o,

) = _
®) w; 172 otherwise.

(7.36)

With the notation of (7.17) we set a := dily 2 (o) and_ we decompose « in
the sum & = o’ + «” where @’ = al{y € ¢®" : 7/(y) = o). For every
¢ € Bp(€) we have
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[ cwpda= [ cw; o wniim
=/§(o)w;1da/+ ¢(Lxj, /9 ()D9* (n) de”
=)+ [ ot 108da’” = c@ + [ (e, 1ride
=;(o>+/;opdw,~®sl>

which yields (7.35). |

We can now prove a general form of the so-called “gluing lemma” that
is the natural extension of the well known result for transport problems (see
e.g. [2, Lem.5.3.4]). Here its formulation is strongly related to the rescaling
invariance of optimal plans given by Lemma 7.10.

Lemma 7.11 (Gluing lemma) Let us consider a finite collection of measures
wi € M(X)fori=1,..., N with N > 2. Set

N N
© = Vi (X) + ) H(ui—1. ) and M*:= 3 pi(X). (137
i=2 i=l1

Then there exist plans o1, oy € P (E®NY such that
bizock:ui fori=1,...,N and

/dé(m_l,m)dak =H>(wi_1, i) for i=2,...,N. (7.38)
Moreover, the plans oy satisfy the following additional conditions:

o is concentrated on {l) € ¢ON . Z rf(n) < MZ}, (7.39)

ay is concentrated on { € €®V :supr;(y) < O} = (¢[®1)®N . (7.40)

]

Proof We first construct a plan e satisfying (7.38), then suitable rescalings
will provide ay satisfying (7.39) or (7.40). In order to clarify the argument,
we consider N-copies X1, X3, ..., Xy of X (and for € in a similar way) so
that X&V = [T, X,.

We argue by induction; the starting case N = 2 is covered by Theorem 7.6.
Let us now discuss the induction step, by assuming that the thesis holds for N
and proving it for N + 1. We can thus find an optimal plan ' such that (7.38)
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hold, and another optimal plan &« € Opty (itn, iy +1) for the pair wy, wy+1.
Applying the normalization Lemma 7.10 to ™ (with j = N) and to & (with
j = 1) we can assume that

) @) =8, + p2(pn ® 81) = 7} (@).

Therefore we can apply the standard gluing Lemma in ( ]_[lN: _11 Ci), Cn, Enyl
(see e.g. [2, Lemma 5.3.2] and [1, Lemma 2.2] in the case of arbitrary topo-
logical spaces) obtaining a new plan a¥*! satisfying nnl’z"" NN+l = N
and 7NN +tlgN+1 — o In particular, &V ! satisfies (7.38).

A further application of the rescaling (7.27) with ¢ as in (5.27a) yields a
plan a1 satisfying also (7.39).

In order to obtain ay, we can assume a({|y| = 0}) = 0 and set ay =
dily 2 (ar), where we use the rescaling function

DY) = r*1|1)|OO =] supr;(y) with r? = f |l)|go de.
i N

To obtain (7.40) it remains to estimate r. We consider arbitrary coefficients

0; > 0and use forn =2, ..., N the inequality
" " 1/2 " 1/2
rh <rn+ Z i —ri—1| < (29,-_1) (91f% + Zei”i — ri—1|2)
i=2 i=1 i=2
N N
A 1/2 1/2
< (ZQi 1) (91f% + Y 6idg (v, Ui—l)) :
i=1 i=2
which yields
N N
_\1/2 12
supri() < (2«9,- 1) (91r% + Zeid%(t)i, UFI)) )
! i=1 i=2

and therefore

N N
r? = /@@N |U|<2>o do = (;0i_1> /¢®N (0”% + Z;Qidé(t)i, Ui_l)) der

= (21\/:9;1) . (91M1(X) + ZN:QI' H (-1, Mi));
i=1 i=2

optimizing with respect to 8; > 0 we obtain the value of ® given by (7.37). O
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The next remark gives a similar rescaling result for probability couplings
B € Pr(€®N).

Remark 7.12 In a completely similar way (see [2, Lemma 5.3.4]), for every

N > 2 and every finite collection of measures ; € M(X), there exists a plan
B e P, (€®N) concentrated on {l) € ¢8N . sup; Ii(p) < E} with

N
E = (X)) + ) HK (i, po), (7.41)
i=2
such that

028 = p; and / (01, 0:) dB = HC (. i) (7.42)

fori=1,...,N. O

Arguing as in the proof of Corollary 7.7 one immediately obtains the following
result, which will be needed for the proof of Theorem 8.8 and for the subsequent
corollary.

Corollary 7.13 For every finite collection of measures u;j € M(X), i =

1,..., N, there exist a;, B; € P2(€) with «; concentrated in C[r] where
r = min(M, ©) is given as in (7.37) and B; concentrated in &[E] given
by (7.41) such that

hzai = u; and hzﬂi =u; fori=1,..., N,
HK (w1, i) = Wy, (B1, Bi) and
HC (i, prig1) = Wa (@i, 2ig1) fori=2,...,N.

We are now in the position to show that the functional HK is a true distance
on M(X), where we deduce the triangle inequality from that for Wy, by using
normalized lifts.

Corollary 7.14 (HK is a distance) HK is a distance on M(X); in particular,
for every 1, 2, u3 € M(X) we have the triangle inequality

HC (1, 13) < KK, pa) + H(ua, p13). (7.43)
Proof Tt is immediate to check that HK is symmetric and HK(w 1, np) = 0 if

and only if w1 = po. In order to check (7.43) it is sufficient to apply the
previous corollary 7.13 to find measures «; € P2(€), i = 1, 2, 3, such that

@ Springer



1064 M. Liero et al.

h2a; = p; and HK(ie1, 12) = Wa, (a1, o) and H(ua, p13) = Wy (2, 3).
Applying the triangle inequality for Wy, we obtain

HK(1, 13) < Wy (o, @3) < Wy, (o, a2) + Wy, (@2, a3)
= H(u1, p2) + H(pz, 13).

O

As a consequence of the previous two results, the map h? : P»(€) — M(X)
is a metric submersion.

7.5 Metric and topological properties

In this section we will assume that the topology t on X is induced by d and that
(X, d) is separable, so that also (€, d¢) is separable. Notice that in this case
there is no difference between weak and narrow topology in M(X). Moreover,
since X is separable, M(X) equipped with the weak topology is metrizable,
so that converging sequences are sufficient to characterize the weak-narrow
topology.

It turns out [2, Chap. 7] that (P2(&), Wy, ) is a separable metric space:
convergence of a sequence (,),eN to a limit measure « in (P2(€), Wy,)
corresponds to weak-narrow convergence in P(¢) and convergence of the
quadratic moments, or, equivalently, to convergence of integrals of continuous
functions with quadratic growth, i.e.

lim pda, = / ¢ da forevery ¢ € C(€) with |p(h)] < A+ Brz(n),
¢ ¢

n—0o0
(7.44)
for some constants A, B > 0 depending on ¢. Recall that r?(y) = dé(n, 0).

Theorem 7.15 (HK metrizes the weak topology on M(X)) HK induces the
weak-narrow topology on M(X): a sequence (jun)nen € M(X) converges to
ameasure  in (M, HK) if and only if (j4,)nen converges weakly to w in duality
with continuous and bounded functions.

In particular, the metric space (M(X), HK) is separable.

Proof Let us first suppose that lim,_, oo HK(i,, #) = 0. We argue by con-
tradiction and we assume that there exists a function ¢ € Cp(X) and a
subsequence (still denoted by ;) such that

f ¢ du, —f ;d,u‘ - 0. (7.45)
X X

inf
n
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The first estimate of (7.30) and the triangle inequality show that

lim sup e, (X) < limsup (HK (e, 1) + HKGe, m0))* = (X0,

n—oo n—oo

so that sup, u,(X) = M?* < oo. By Corollary 7.7 we can find measures
an, o), € P2(€) concentrated on €[2M] such that

Do =, b2 = tn, Wag (i, o)) = HK(, ).

By Lemma 7.3 the sequence (o)neN is equally tight in P> (€); since it
is also uniformly bounded there exists a subsequence k +— nj such that
o, weakly converges to a limit @ € P»(&). Since «, is concentrated on
C[2M] we also have limk_)ooWdQ.(ank, o) = 0 and therefore bza = U,
limy_, oo Wy, (et , @) = 0.

ng’

We thus have

lim / ¢(x)dpy, = lim /;(x)era;k :/{(x)rzda =/ c(x)du
k—oo Jx k—oo Jg¢ ¢ X

which contradicts (7.45).

In order to prove the converse implication, let us suppose that u,, is converg-
ing weakly to p in M(X). If u is the null measure ng, then lim,,—, o 1, (X) =0
so that lim,,—, oo HK(,,, ) = 0 by (7.30).

So we can suppose thatm := pu(X) > Oandhavem, 1= u,(X) >m/2 >0
for sufficiently large n. We now consider the measures «,,, « € P(€) given by

oy = pﬁ<m;1,un ®8m) and o := pﬁ(m_lu®5ﬂ>.

Since h?a, = wy, and h2a = w, by (7.29) we have HK(11,, 1) < Wy, (otn, o).

Since m;l,un is weakly converging to m~ ' in P(X) and m,, — m, it
is easy to check that m,; Y, ®6 Jm, weakly converges to mu®s Jm 1n
P(Y) and therefore o, weakly converges to « in P(¢) by the continuity of
the projection p. Hence, in order to conclude that Wqy, (et,, o) — 0 it is now
sufficient to prove the convergence of their quadratic moments with respect to
the vertex 0. However, this is is immediate because of

lim /dg(g, 0)da, = lim /r2 da, = lim m, =m = /d’é(g, 0) da.
n—o0 n—oo n— oo

O

Corollary 7.16 (Compactness) If (X, d) is a compact metric space then
(M(X), HKK) is a proper metric space, i.e. every bounded set is relatively com-
pact.
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Proof Tt is sufficient to notice that a set € C M(X) is bounded w.r.t. KK if and
only if sup, ce (X) < oo. Then the classical weak sequential compactness
of closed bounded sets in M(X) gives the result. O

The following completeness result for (M(X), HK) is obtained by suitable
liftings of measures p; to probability measures «; € P»(C), supported in
some €[O]. Then the completeness of the Kantorovich—Wasserstein space
(P2(€), Wy, ) is exploited.

Theorem 7.17 (Completeness of (M(X), HK)) If (X, d) is complete than the
metric space (M(X), HKK) is complete.

Proof We have to prove that every Cauchy sequence ((4p,)nen in (M(X), HK)
admits a convergent subsequence. By exploiting the Cauchy property, we can
find an increasing sequence of integers k — n(k) such that HK(u,, ) <
2% whenever m, m’ > n(k) and we consider the subsequence ,u;. = [n(i)> SO
that

N
Vi (X) + Z HK (ten iy, ni—1)) < V1 (X) + 1.
i=2

By applying the Gluing Lemma 7.11, for every N > 0 we can find measures
oziN € Pr(€),i =1,..., N, concentrated on €[®] with ® := /u1(X) + 1,
such that bzaiN = p; and Wde(aiN, ozl.l\i]) = HK(u}, ;).

For every i the sequence N +— aiN € P(@) is equally tight by Lemma 7.3
and concentrated on the bounded set €[®], so that by Prokhorov Theorem it
is relatively compact in (P2(€), Wy, ).

By a standard diagonal argument, we can find a further increasing

subsequence m +> N(m) and limit measures «; € P>(€) such that
. N(m)

that

,a;) = 0. The convergence with respect to Wy, yields

bzai = Ki, Wd@(al'v ai—l) = I-K(/-'L;’ /’L;—]) = 2i_1-

It follows that i +— o; is a Cauchy sequence in (P>(€), Wy, ) which is a
complete metric space [2, Prop. 7.1.5] and therefore there exists @ € P>(C)
such that lim; _, oo Wy, (o, @) = 0. Setting i1 := h2a € M(X) we thus obtain
lim; |_K(/-’L;’ wn) = 0. o

We conclude this section by proving a simple comparison estimate for HK
with the Bounded Lipschitz metric (cf. [19, Sect. 11.3]), see also [27, Thm. 3],
and the flat metric. The Bounded Lipschitz metric is defined via
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BL(1, u2) := Sup{/fd(m—ﬂz) : & € Lip, (X)), S;P|$|+Lip(€’ X) < 1},

(7.46)
and it is metrically equivalent to the flat metric

BL(1, p2) = SUP{/éd(m —u2) . § € Lip,(X), sgl(plél Vv Lip(§, X) < 1},

(7.47)
in the sense that BL(u1, u2) < BT_(;LI, w2) < 2BL(u1, up). In its turn,
BL(jt1, 142) coincides with the Piccoli-Rossi distance we considered in Exam-
ple E.9 of Sect. 3.3, see [39]. We do not claim that the constant C,. below is
optimal.

Proposition 7.18 For every 1, ur € M(X) we have
—~ 1/2
BL(w1, n2) < C*(Z Mi(X)) HK(i1, n2), where Cy := /2 + 72/2.
(7.48)

Proof Let § € Lip,(X) with supy |§] < 1 and Lip(§, X) < 1, and let & €
P(€) optimal for (7.26) and concentrated on €[R] with R? = w1 (X1) +
12(X7). Notice that

[E(x1) — &(x2)| < min(d(x1, x2), 2) < 2da(x1, x2) < 2d5(x1, x2)
< 27 sin(dy (x1, x2)/2).

We consider the function ¢ : ¢ — R defined by ¢(n) := &(X)r?. Hence, ¢
satisfies

¢(n1) — C(Uz)‘ < E(x1) —EX)Irira + (IEXDIr + [E(X2)[r2) |11 — 12|

< 2m sin(dy (X1, X2)/2)r1r2 + (r1 +r2)|rp — 12|

(7.4)
< V(1 + 1) +72rry de(vr, v2)

< Ciy/1} 4+ 13 de(nr, m2)

Since the optimal plan « is concentrated on {rf + r% < R?} we obtain
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[ €= | =] [ co0 = conda] < [ e~ comlde

< C*R/de(m, 2) doe < C R HK(u1, p2).

7.6 Hellinger-Kantorovich distance and Entropy-Transport functionals

In this section we will establish our main result connecting the Hellinger—
Kantorovich Problem 7.4 defining HK with the Logarithmic Entropy-Transport
Problem 6.1 defining LET.

It is clear that the definition of HK does not change if we replace the distance
d on X by its truncation d; = d A . It is less obvious that we can even
replace the threshold 7 with 77/2 and use the distance d > ¢ of Remark 7.2
in the formulation of the Hellinger—Kantorovich Problem 7.4. This property
is related to the particular structure of the homogeneous marginals (which are
not affected by masses concentrated in the vertex o of the cone €); in [30,
Sect.3.2] it is is called the presence of a sufficiently large reservoir, which
shows that transport over distances larger than /2 is never optimal, since it
is cheaper to transport into or out of the reservoir in o. This will provide an
essential piece of information to connect the HK and the LET functionals.

In order to prove that transport only occurs of distances < 7 /2 we define
the subset

€ = {drne <de} = {1, m) € € x & :d(x, X2) > 7/2}  (7.49)

and consider the partition (€', €”) of € = € x €, where ¢ := €\ ¢ =
{dz/2,¢ = de}. Observe that

€)= €N (€ x &) = {(h1,12) € € x & 1 d(x1, %) < 7/2}. (7.50)
In the following lemma we show that minimizers a« € Opty (11, 12) are
concentrated on €”, i.e. @(€’) = 0 which holds if and only if &, = a|_(€, x

¢,) is concentrated on Q/U’ . To handle the mass that is transported into or out
of 0, we use the continuous projections

gi : €~ & gi(n1,m) == M1,0), g1, 92) = (0, n2). (7.51)
Lemma 7.19 (Plan restriction) For every a € M(&) the plan
a:=ao"+ (g1)se' + (@)’ with o ==l €, o :=al &’ (7.52)

@ Springer



Optimal Entropy-Transport problems 1069

is concentrated on €, has the same homogeneous marginals as o, i.e. f)?& =

f)izoz, and
/@d@d&:/@d}rmd& S/ed%doc, (7.53)

where the inequality is strict if «(€') > 0. In particular for every [y, Ly €
M(X)

HK? (1, 12) = min { / d,z,/z,g(l)l, o) det : @ € Ma(€), bl = Mi}-
(7.54)

Proof For every ¢ € By(X), since rj o gy =0and rj o g; = ry, we have
[ catia = [eonrtaa= [coniaa’+ Y [ eoa@n@o?
k
=/;mﬁﬁw4/;mw%w=/;am%M=/;aﬁm,

so that h%& = b%a; a similar calculation holds for h% sothat@ € 92 (i1, n2).
Moreover, if (n1, ) € € we easily get

d2(01,12) > rf + 13 = d3(g1 (91, 12)) + d2(g2(01, 12))

so that whenever a(€’) > 0 we get
/d%d& = / (d% 0 g1 + d3 0 g2) do’ +/d§da”

</dédo/+/déda”:/d%da,

which proves (7.53) and characterizes the equality case. (7.54) then follows
by (7.53) and the fact that the homogeneous marginals of & and & coincide. O

In (7.54) we have established that & € Opty (1, 12) has support in €”.
This allows us to prove the identity LET = HK?. For this, we introduce the
open set & C € via

& = {([xl, r1l X2, 12]) € €5 X € - d(x1. x2) < 7r/2}

and note that rirp cos(dy2(X1, X2)) > 0in &. Recallalsop = p@p : ¥ — €,
where p is defined in (7.8).
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Theorem 7.20 (HK> = LET) For all i1, o € M(X) we have

HZ (w1, pa) = LET (w1, pa), (7.55)

and a(€') = 0 for optimal solution & € M(E&) of Problem 7.4 or of (7.32a,
b). Moreover,

(i) o € M(€) is an optimal plan for (7.32a, b) if and only if a(€") = 0 and
Y. (el €, x &) is an optimal plan for (6.33)—(6.32).

(i) @ € M(Y) is any optimal plan for (6.34) if and only if the plan &
obtained from & := pya as in (7.52) is an optimal plan for the Hellinger—
Kantorovich Problem 7.4.

(iii) In the case that y € M(X x X) belongs to Optyg (w1, u2) and
oi : X — [0,00) are Borel maps so that u; = o;y; + ,ul.J‘, then

B = (p o(x1, Q}/z()q); X2, Q;/z(xz)))ﬁy is an optimal plan for (7.32a,b),
and it satisfies 111y cos(dy/2(X1, X2)) = 1 B-a.e.; in particular B is con-
centrated on &.

(iv) If « € M(€) is an optimal plan for Problem 7.4 then o := atl_ & is an
optimal plan for (7.32a,b). Moreover,
o the plan ,3 = dillxz(&), with ¥ = (r1r2 COS(dﬂ/z(Xl, Xz))) ,Is an
optimal plan for (7.32a,b) satisfying i1 cos(dz /2 (X1, X2)) = 1 B-a.e.
e If (X, 1) is separable and metrizable, y := (X1,X2):B belongs to
Optigr (11, 12),
e If (X, 1) is separable and metrizable, B = (p o (x1, Qi/z(xl); X2, Q;

(12))),7-

Proof Identity (7.55) and the first statement immediately follow by combining
the previous Lemma 7.19 with Remark 7.5 and (6.34). Claim (ii) follows as
well.

In order to prove (i), we observe that if & is an optimal plan for the for-
mulation (7.32a,b) we can apply Lemma 7.9(iii) to find @ > « optimal for
(7.23), so that «(€') < a(€’) = 0. Given this property, (7.32a,b) correspond
to (6.33)—(6.32).

(iii) is a consequence of Theorem 6.7 and of the optimality conditions (6.19),
which show that B is concentrated on & and satisfies ryr; cos(dy /2 (X1, X2)) =
1 B-a.e. Therefore, B is optimal for (7.32a,b) thanks to claim (i).

Concerning (iv), the optimality of & is obvious from the formulation (7.32b)
and the optimality of B = dily 2(at) follows from the invariance of (7.32b)
with respect to dilations. We notice that -almost everywhere in & we have

12

/2

D U + (X1, %) = Y (17 = 1 = logr7) — log(cos*(dr/2(X1, X2)))

1
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= Z r? — 2 — 21og(f1r2 cos(dr 2 (X1, X2)))
=7 413 — 2r 112 cos(dy 2 (X1, X2)),
so that by (7.32a) we arrive at
[ (X v0) + et x) dB + 3 (1) = BB00) = HCGur, ).

(7.56)
Let us now set y 1= (X1, X2):B € M(X x X) and B; := néﬂ e M(€), which
yield y; := 7ly = (x)zB = Xz € M(X) and ji; := h}B = (%) (r}y) =
X (r>B;). Denoting by (Bix;)x;ex the disintegration of B; with respect to y;
(here we need the metrizability and separability of (X, 1), see [2, Sect. 5.3]),

we find
/ ¢ dfi; = / OO dp; = / ( / c00r2 i) dy,
X ¢ X <
= 2dBi . ) dy;
[ e [ api)ar

for all ¢ € Bp(X), so that

fi =0ivi < pi with g;(x) := / r*dp; .
¢

Applying Jensen’s inequality we obtain

[ verag = [vaidran = [ ( [ v apiaon)an
Z/‘Uo(/r,-2 dﬂi,x,-(ri)) dyi Z/Uo(@i(x)) dy;.

Now [ c(X1,X2)dB = [ c(x1, x2) dy and (7.56) imply

HC (1, ) > Z/X Uo(2i) dy; +/X XCd)’ +Y vi(X)

with v; := p; — ft; € M(X). Hence, since u; = 0;y; + v; and the standard
decomposition u; = g;y; + /,LIJ‘ (cf. (2.8)) give v; = ,uf + (0i —0i)Yi = ,uf,
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Up(s) = s — 1 — log s and the monotonicity of the logarithm yield

HC (. ) = ) (/ Uo(@:) dyi + i (X)) +/cdy

; X
=Y ([ (th@ + =) dyi+ i) + [ edy
= 30 ( [ votendn + i) + [ ody = 1ETGui )

where the last estimate follows from Theorem 6.2(b). Above, the first inequal-
ity is strict if v; # ;Lf so that ¢; > ©; on some set with positive y;-measure.
By the first statement of the Theorem it follows that y € Opt|gr (11, 12).
Hence, all the inequalities are in fact identities, and we conclude 9; = ;.
Since U is strictly convex, the disintegration measure B; y, is a Dirac measure

concentrated on /p; (x;), so that § = (p o (x1, Q:/z(xl); X2, Qé/z(xz)))ny. |

We observe that the system (y, 01, 02) provided by the previous Theorem
enjoys a few remarkable properties, that are not obvious from the original
Hellinger—Kantorovich formulation.

(a) First of all, thanks to (6.15), the annihilated part ,uf of the measures pu; is
concentrated on the set

M; ;= {x; € X : d(x;, supp(u;)) > 7 /2}

When w; (M,',j) = 0then u; < y;.
(b) As a second property, an optimal plan y € Opt (11, p2) provides an
optimal plan ¢ = (p o (x1, Qi/z(xl); X2, Qé/z()Q)))uy which is concen-

trated on the graph of the map (Qi/2 (x1); Q;/z (x2))from X x X toR xR,
where the maps o; are independent, in the sense that o; only depends on
Xi.

(c) A third important application of Theorem 7.20 is the duality formula for
the HK functional which directly follows from (6.14) of Theorem 6.3.
We will state it in a slightly different form in the next theorem, whose
interpretation will be clearer in the light of Sect. 8.4. It is based on the
inf-convolution formula

Z1E(x) = inf

x'eX

E(x) n sin®(dy 2 (x, x))
1425(¢)  2(1426(x))

1
— inf —(1 _
xex 2

cos?(dr 2 (x, x/))>

1+ 26(x") (7.57)
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where £ € B(X) with & > —1/2.
Theorem 7.21 (Duality formula for HK)

() If¢ € Bp(X) withinfx & > —1/2 then the function £ & defined by (7.57)
belongs to Lip, (X)), satisfies supy &1& < 1/2, and admits the equivalent
representation

PiE(x) = inf l(1

x'€Brpa(x) 2

B COSz(dn/ztx,x/))>

1 +26(x") (7:5%)

In particular, if & has bounded support then 1§ € Lip, (X), the space
of Lipschitz functions with bounded support.

(ii) Let us suppose that (X, d) is a separable metric space and t is induced
by d. For every 11, u1 € M(X) we have

1
EH@QMJM)=ﬂm{/!@£dﬂr—/éduoZ

§ € Lipy, (X), inf & > —1/2}. (7.59)

Proof Let us first observe that if

1
—§<a§§5bmx = < HE <

= < in X, (7.60)
1+ 2a 1+2b

where the upper bound follows using x’ = x, while the lower bound is easily
seen from the first form of #2;& in (7.57) and sin® > 0. Since 1/(1+2&(x')) <
1/(1 4 2a) for every x” € X, the function £2;£ is also Lipschitz, because it is
the infimum of a family of uniformly Lipschitz functions.

Moreover we have the estimate

ifd(x,x) > /2, (7.61)

1 (1 cos?(dy 2 (x, x’))> 1
— —_ = - >
2 142&5(x") 2 142b
which immediately gives (7.58). In particular, we have

£=0 inX\B = P£=0 in{fxeX:d(x, B)>r/2). (1.62)

Let us now prove statement (ii). We denote by E the the right-hand side of
(7.59) and by E’ the analogous expression where & runs in Cp(X):

E = sup{/%sdm —/gd,uoz § € Cp(X), inf§ > —1/2}. (7.63)
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It is clear that E’ > E. If & € Cp(X) with inf& > —1/2, setting 1 (x}) :=
—2&(x1), Ya(x2) = 2(Z1€)(x2), we know that supy ¥ < 1 and Y €
Lip, (X). Thus, ¥r; and yr are continuous and satisfy

(1=92(x2)) (1= (x1)) = cos?(dr 2 (x1, x2)).

Hence, the pair (1, ¥») is admissible for (6.14) (with Cp(X) instead of
LSC(X); note that v is metrizable and thus completely regular), so that
HK? (1o, p1) = LET (10, 1) > E'.

On the other hand, if (Y, ¥2) € Cp(X) x Cp(X) with supy ¥; < 1,
setting &1 = —%Wl and §2 = P1(—£1) we see that 2§2 > Y giving E' >
HK? (20, 121), so that FK (i, 1) = E.

It remains to show that E > E’. We first approximate & € C,(X) with
infy £ > —1/2 by a decreasing sequence of Lipschitz and bounded functions
(e.g. by taking &,(x) := sup, §(y) — ndy (x, y)) pointwise converging to &,
observing that Z§, is also decreasing, uniformly bounded and pointwise
converging to &1&. We deduce that the supremum in (7.63) does not change
if we restrict it to Lip, (X).

In the last step of the proof we want to show that we can eventually restrict
the supremum in (7.63) to Lip,, (X), by a further approximation argument. We
fix a Lipschitz function & valued in [a, b] with —1/2 < a < 0 < b and we
consider the increasing sequence of nonnegative cut-off functions &, (x) :=
0v (n —d(x, x)) A 1: they are uniformly 1-Lipschitz, have bounded support
and satisfy ¢, 1 1 as n — oo. It is easy to check that &, := ¢,& belong to
Lip,, (X) and take values in the interval [a, b] so that HLZa < P& <
for every n € N by (7.60).

Since &,(x) = 0ifd(x,x) > nand &,(x) = &(x) if d(x,x) <n —1, by
(7.58) we get

b
1+2b

P&, (x) =0 ifdx,x) >n+m/2,
P& (x) = P1E(x) ifdx,x) <n—1—m/2. (7.64)

Thus 1§, € Lip,,(X) and Z1&,(x) — Z1&(x) foreveryx € X asn — oo.
Applying the Lebesgue Dominated Convergence theorem we conclude that

lim | 21&,du —/ Sndl/«o:/ P& dp —/ & duo.
X X X

n—oo X
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7.7 Limiting cases: recovering the Hellinger—Kakutani distance and
the Kantorovich—Wasserstein distance

In this section we will show that we can recover the Hellinger—Kakutani and
the Kantorovich—Wasserstein distance by suitably rescaling the HK functional.
The Hellinger-Kakutani distance. As we have seen in Example E.5 of
Sect. 3.3, the Hellinger—Kakutani distance between two measures (11, 2 €
M(X) can be obtained as a limiting case when the space X is endowed with
the discrete distance

a ifx; #x;

due(x1, x2) := { with a € [z, 00]. (7.65)

0 ifx; = xp,
The induced cone distance in this case is

(ri—r2)? ifx; = xo,

7.66
(ri+r2)? if x1 # x2. (7.66)

d2([x1, 11, [x2, r2]) = {

and the induced cost function for the Entropy-Transport formalism is given by

0 if x| = xo,
CHe(x1, X2) := 7.67
He (X1, 2) {—i—oo otherwise. ( )

Recalling (3.21)—(3.22) we obtain

He? (1. 112) = LETHe (11, 112) = /X(\/E— V&)’ dy
with u; = 0y < v € M(X). (7.68)

Since Cye > € = £(d) for every distance function on X, we always have the
upper bound

HK(er, o) < He(uy, pp) forevery wy, o € M(X). (7.69)

Applying Lemma 3.9 we easily get

Theorem 7.22 (Convergence of KK to He) Let (X, t, d) be an extended metric
topological space and let HK; g be the Hellinger—Kantorovich distances in
M(X) induced by the distances d; := Ad, A, > 0. For every pair [i1, 12 €
M(X) we have

HGa (i1, 2) + He(uy, ) as a1 oo, (7.70)
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The Kantorovich—-Wasserstein distance. Let us first observe that whenever
U1, 2 € M(X) have the same mass their HK-distance is always bounded form
above by the Kantorovich—Wasserstein distance Wy (the upper bound is trivial
when 111 (X) # ua(X), since in this case Wy (e, 2) = 400).

Proposition 7.23 For every pair 1, na € M(X) we have
HK (1, u2) < Wa, ), (11, w2) < Walper, p12). (7.71)

Proof 1t is not restrictive to assume that Wéﬂ/z (ni, m2) = [ d% py <0 for
an optimal plan y with marginals p;. We then define the plan o := sy €
M(€ x €) where s(x1, x2) := ([x1, 1], [x2, 1]), so that f)izoz = pi. By using
(7.54) and the identity 2 — 2 cos?(d) = 4 sin?(d/2) we obtain

HCur,i2) =4 [ sin(dratr ) 2)da < [ &) dy
[ X
<Wg_, (11, w).
O

In order to recover the Kantorovich—Wasserstein distance we perform a
simultaneous scaling, by taking the limit of nHKq,, where HKy/,, is induced
by the distance d/n.

Theorem 7.24 (Convergence of KK to W) Let (X, t, d) be an extended metric
topological space and let HKq, be the Hellinger—Kantorovich distances in
M(X) induced by the distances A~'d for A > 0. Then, for all i1, 2 € M(X)
we have

MKa (1, m2) + Wa(pr, w2) as A 4 oo. (7.72)

Proof Let us denote by LET, = H(é /3 the optimal value of the LET-problem
associated to d/A. Since the Kantorovich—Wasserstein distance is invariant by
the rescaling AWgq,;, = Wq, estimate (7.71) shows that A\H g/, < Wyg.

Asx +— sin(xAm/2)isconcavein [0, 00), the function x > sin(x Ax/2)/x
is decreasing in [0, 00), so that « sin((d /@) A w/2) < Asin((d/1) A 7 /2) for
everyd > 0 and 0 < o < A. Combining (7.54) with (7.11b) we see that the
map A — AHKq/5 (11, (42) is nondecreasing.

It remains to prove that L := limy o0 AHKq 5 (101, 12) = sup; -1 AHKqg s
(w1, m2) > Wq(e1, (o). For this, it is not restrictive to assume that L is finite.

Let y; be an optimal plan for HKq/; (t1, 12) with marginals y, ; = ﬂéy)\.
We denote by .# the entropy functionals associated to logarithmic entropy
Ui (s) and by ¥ the entropy functionals associated to I; (s) as in Example E.3
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of Sect. 3.3. Since the transport part of the LET-functional is associated to the
costs

) ©66)
Ca(x1, x2) = A7€(d(xy, x2)/A) > d“(x1, x2),

we obtain the estimate

L? > W2LETy (1, o) > § :xzy“(yx,,-|m)+/ d?(x1, x2)dy,. (7.73)
X X
1

Proposition 2.10 shows that the family of plans (y;),> is relatively compact
with respect to narrow convergence in M(X x X). Since A2F(s) P 11 (s), pass-
ing to the limit along a suitable subnet (A(«))qea parametrized by a directed
set A, and applying Corollary 2.9 we get a limit plan y € M(X x X) with
marginals y; such that

> @ (ilu) < L7, which implies ¥ = ;.
i

In particular, we conclude that ;11 (X) = p (X x X) = u2(X). Since d is lower
semicontinuous, narrow convergence of y; 4 and (7.73) also yield

L2 = timin / A (x1. x2) dy ) = / o (x1. x2) dy = WA (1. 12).
X X

[01S]

7.8 The Gaussian Hellinger-Kantorovich distance

We conclude this general introduction to the Hellinger—Kantorovich distance
by discussing another interesting example.
We consider the inverse function g : Ry — [0, 77/2) of /:

¢(z2) 1= arccos(e = /2), giving g(0) = 0, ¢'(0) = 1, £(g(d)) = d>. (1.74)
Since +/¢ is a convex function, g is a concave increasing function in [0, c0)
with g(z) < zand lim;_, » g(z) = 7 /2.

It follows that g := g o d is a distance in X, inducing the same topology as

d. We can now introduce a distance H g associated to g. The corresponding
distance on € is given by

ge(n1, 2) := 1} 415 — 2rirp exp(—d (X1, X2)/2). (7.75)
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From g(z) < z we have g¢ < dg.
We can then apply Corollary 7.14, Theorems 7.15, 7.17, 7.20, and 6.3 to
obtain the following result.

Theorem 7.25 (The Gaussian Hellinger—Kantorovich distance) The func-
tional

GHC (w1, p2) = HKG (1, )

=min{/gé(m,gz) do : @ € M(€), he =m} (7.76)

defines a distance on M(X) dominated by HK. If (X, d) is separable (resp. com-
plete) then (M(X), GK) is a separable (resp. complete) metric space, whose
topology coincides with the weak convergence. We also have

G2 (i1, 12) =min{25f<y,-|m>+/Xd2<x1,xz) dy : y e M)

i

:sup{Z/(l—e‘”)dui : <p1€B<,02§d2}.
i (7.77)

We shall see in the next Sect. 8.2 that HK is the length distance induced by GHK
if d is a length distance on X.

8 Dynamic interpretation of the Hellinger—-Kantorovich distance

In this section we collect our main results concerning the dynamic interpreta-
tion of the Hellinger—Kantorovich distance: it reveals another deep connection
with Optimal Transport problems, in particular as a natural generalization of
the Benamou-Brenier [7] characterization of the Kantorovich—Wasserstein dis-
tance, see the next Sect. 8.4 and [30, Sect.4], where a more direct approach
has been adopted for the case X = R¢.

In order to deal with arbitrary geodesic spaces X and to obtain other impor-
tant results concerning general representation formulae for geodesics and
absolutely continuous curves (Sect. 8.2), lower curvature bounds (Sect. 8.3),
duality relations with subsolutions to Hamilton—Jacobi equations (Sects. 8.4
and 8.6), and contraction properties for diffusion semigroups (Sect. 8.7), we
adopted here the point of view of dynamic plans (i.e. probability measures on
continuous paths), which provide a powerful tool in Optimal Transport, cf. [2,
Chap. 8]. It is not difficult to imagine that the natural objects to deal with the
Hellinger—Kantorovich distance are dynamic plans in the cone €, so we will
devote the next section to recall the basic metric properties of curves in €.
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As in Sect. 7.5, in all this section we will suppose that (X, d) is a com-
plete and separable (possibly extended) metric space and t coincides with the
topology induced by d. All the results admit a natural generalization to the
framework of extended metric-topological spaces [1, Sect.4].

8.1 Absolutely continuous curves and geodesics in the cone €

Absolutely continuous curves and metric derivative. If (Z, dz) is a (pos-
sibly extended) metric space and / is an interval of R, acurve z : I — Z is
absolutely continuous if there exists m € L!(I) such that

1
dz(z(t9), z(t1)) < / m(t)dt wheneverrg,t] € I, ty < t1. (8.1)

fo

Its metric derivative |z’ |q , (we will omit the index dz when the choice of the
metric is clear from the context) is the Borel function defined by

1Z'|g,, () := lim sup dz(2(t + h), 2(D) (8.2)
h—0 |h|

and it is possible to show (see [2]) that the lim sup above is in fact a limit for
Z1-a.e. points in I and it provides the minimal (up to possible modifications
in .#!-negligible sets) function m for which (8.1) holds. We will denote by
ACP(I; Z) the class of all absolutely continuous curves z : I — Z with
|z'| € LP(I); when I is an open set of R, we will also consider the local
space ACI‘ZC(I; Z). If Z is complete and separable then AC” ([0, 1]; Z) is a
Borel set in the space C([0, 1]; Z) endowed with the topology of uniform
convergence. (This property can be extended to the framework of extended
metric-topological spaces, see [3].)
Acurve z : [0, 1] — Z is a (minimal, constant speed) geodesic if

dz(z(ty), z(t1)) = |t1 — t0ldz(z(0), z(1)) forevery 1y, € [0, 1]. (8.3)

In particular z is Lipschitz and |z'| = dz(z(1), z(t1)) in [0, 1]. We denote by
Geo(Z) C C([0, 1]; Z) the closed subset of all the geodesics.

By using the fact that [ f2d¢ > ([ fdr) with equality if and only if f
is constant a.e. in (0, 1), it is easy to check that a curve

1
z € AC?([0, 1]; Z) is a geodesic if and only if fo |2'13, dr <d7(2(0), z(1));

(8.4)
notice that the opposite inequality in (8.4) is satisfied along any curve.
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A metric space (Z, dz) is called a length (or intrinsic) space if the distance
between arbitrary pairs of points can be obtained as the infimum of the length of
the absolutely continuous curves connecting them; by a simple reparametriza-
tion technique (see e.g. [2, Lem. 1.1.4]), this property is equivalent to assume
that for every pair of points zg, z; € Z at finite distance and every x > 1 there
exists a Lipschitz curve z, : [0, 1] — Z such that

z(i) =z, i =0,1, |Z/|g,(t) <k dz(z0,21) foreveryr e [0,1]. (8.5)

(Z,dyz) is called a geodesic (or strictly intrinsic) space if every pair of points
20, z1 at finite distance can be joined by a geodesic (for which (8.5) holds with
Kk =1).

Geodesics in . If (X, d) is a geodesic (resp. length) space, then also € is a
geodesic (resp. length) space, cf. [10, Sect.3.6]. The geodesic connecting a
point § = [x, r] with o is

0(t) =[x, tr] =y -t fort e [0, 1]. (8.6)

If x1, xp € X withd(xy, x2) > 7, then a geodesic between y; = [x;, r;] can be
easily obtained by joining two geodesics connecting 1); to o as before; observe
that in this case de (1, h2) = r1 + 2.

In the case when d(x, x2) < 7 and ry, r, > 0, every geodesicy : [ — €
connecting 1 to 17 is associated to a geodesic x in X joining x; to x> and
parametrized with unit speed in the interval [0, d(xy, x2)]. To find the radius
r(t), we use the complex plane C and write the curve connecting z; =r; € C
to zo = rpexp(id(xy, x2)) € C in polar coordinates, namely

z(t) = r(t) exp(i0 (1)),
r2(1) = (1=0)2rf + 1213 4+ 2t (1=0)riry cos(d(x, x2)),  (8.7)
(1—=1)r1 + tro cos(d(xq, x2))

cos(6(1)) = o , 0(t) €10, 7],

and then the geodesic curve and the distance in € take the form

n(@) = [x@@), r®)], de®i,n2) =lz2 — 21l (8.8)

Absolutely continuous curves in €. We want to obtain now a simple charac-
terizations of absolutely continuous curves in €. If ¢t +— 1y(z) is a continuous
curve in €, with ¢ € [0, 1], is clear that r(¢) := r(y(¢)) is a continuous curve
with values in [0, c0). We can then consider the open set O, = r~! ((0, oo))
and the map x : [0, 1] — X defined by x(¢) := X(9(¢)), whose restriction to
O is also continuous. Thus any continuous curve §) : I — € can be lifted
toapairof mapsy =yony = (x,r) : [0, 1] — Y with r continuous and x
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continuous on Oy and constant on its complement. Conversely, it is clear that
starting from a pair y = (X, r) as above, then ) = p oy is continuous in €. We
thus introduce the set

C(0, 1Y) :={y=(x,1):[0,1] = ¥ :
r € C([0, 1]; Ry), X|o, is continuous} (8.9)

and for p > 1 the analogous spaces

ACP([0,1];Y) := {y = (x,1r) : r e ACP([0, 1]; Ry),
(8.10)
€ AC), (01 X), 1I¥| € LP(or)}.

X| loc

(@)
Ify=(x,1) € AVCP([O, 1]; Y) we define the Borel map |y’| : [0, 1] — R by
Y 12(0) i= [ (O + 120X 3() ift € Or, [y'|(z) = 0otherwise. (8.11)

For absolutely continuous curves the following characterization holds:

Lemma 8.1 Lety € C([0, 1]; ©) be lifted toy =y oy € C([0, 11 Y). Then
n € ACP(I; €) ifand only if y = (x, 1) € ACP([0, 11; Y) and

10 |g. (1) = 1Y'1(t) for L'-a.e.t €0, 1]. (8.12)

Proof By (7.5) one immediately sees that if ) = poy € ACP([0,1]; ©)
then r belongs to AC? ([0, 1]; R) and x € ACf;C(Or; X). Since v is absolutely
continuous, we can evaluate the metric derivative at a.e. t € O, where also r’

and |x'| exist: starting from (7.4) leads to the limit

. d2(n(t + h), v(1))

mm

hl0 h?

v+ h) —r@)* + 41t + hyr(t) sin?(3dz (x (¢ + h), x(1)))
no 12

=1 () + ()X 50

which provides (8.12).

__Moreover, the same calculations show that if the lifting y belongs to
ACP?([0, 1]; Y) then the restriction of 1 to each connected component of O;
is absolutely continuous with metric velocity given by (8.12) in L?(0, 1).
Since y is globally continuous and constant in [0, 1] \ O;, we conclude that
n € ACP ([0, 1]; €). O
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As a consequence, in a length space, we get the variational representation
formula

doo. o) = inf |

[0,11N{r>0}

(PO B0 + 1 0)F) di

(x,1) € AC2([0, 11; Y), [x(i), ()] =i, i =0, 1}.
(8.13)

Remark 8.2 (The Euclidean case) In the Euclidean case X = R? with the
usual Euclidean distance d(x;, x) := |x;—x2| we can give a more explicit
interpretation of the metric velocity (8.12) and write a simple duality formula
for the chain rule of smooth functions that will turn out to be useful in Sect. 8.5.

Fory = [x,1] € AC2([0, 1]; ©), we can define a Borel vector field t)’@ :
[0, 1] — Ré*+! by

(r(t)x'(t),1'(t)) whenever r(¢) # 0 and the derivatives exist,

Iy
De(t) = {(0, 0) otherwise.
(8.14)

Then, (8.12) yields |y'|q, (t) = IU’Q(t)IRdH for L'-ae.t € (0,1) and the
Euclidean norm of () corresponds to the Riemannian norm of v’ with respect
to the metric tensor gp (X, 7)) := r2|x|2 + 2.

For ¢ € C/(R? x [0,1]) we set ¢([x,r],t) := &(x,t)r? and obtain
¢ ([x,r], t) = 3:&(x, 1)r2. Now defining the Borel map D¢l : € —
(RdJrl)* via

Det(1) {E(r)],)gf(x’ ), 2r£(x, 1)) f)(ilrl:r\i/élsoe 515)

we see that the map # — ¢(9(¢), t) is absolutely continuous and satisfies
%C(U(I), 1) = 3,5 ((0), 1) + (DeS (1), 1), Y (1)) pa+ (8.16)
Zlae.in (0, 1). O

Note that the first component of D¢ ¢ contains the factor r rather than r2, since
he in (8.12) already has one factor r in its first component. The Euclidean
norm of D¢¢ corresponds to the dual Riemannian norm of the differential of

.

8.2 Lifting of absolutely continuous curves and geodesics

Dynamic plans and time-dependent marginals. Let (Z, dz) be a complete
and separable metric space. A dynamic plan & in Z is a probability measure
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in P(C(I; Z)), and we say that & has finite 2-energy if it is concentrated on

AC%(I; Z) and 1
/(/ 213, (1) dr) dx (2) < 0. (8.17)
0

We denote by e; the evaluation map on C(/; Z) given by €,(z) := z(t). If &
is a dynamic plan, o; = (&;)zm € M(Z) is its marginal at time r € I and
the curve t — «; belongs to C(/; (M(Z), Wy,)). If moreover & is a dynamic
plan with finite 2-energy, then o € AC2(1: (IM(2), Wi, )) (see [33, Thm. 4]).

We say that & is an optimal geodesic plan between ag, a; € P(Z) if
(e/)smr = «; fori = 0,1, if it is a dynamic plan concentrated on Geo(Z),
and if

1
[ e = [[ 17 arane =W, @, ©19)
0

Recalling (8.4), one immediately sees that for every dynamic plan & concen-
trated on AC2([0, 1]; Z) with (e;)zm = «; the condition

1
f/ |2/ dt dm (z) < W3 (a0, 1) (8.19)
0

is sufficient to conclude that x is an optimal geodesic plan for ag, o1 € P(Z).

When Z = € we will denote by btz =h2%o (e/)¢ the homogeneous marginal
at time ¢ € I. Since h? : P(€) — M(X) is 1-Lipschitz (cf. Corollary 7.13),
it follows that for every dynamic plan & with finite 2-energy the curve u, :=
hza, = f)tzn belongs to AC%(I; (M (X), HK)) and moreover

AR §/|n’|3€(t)dn(n) forae.t € (0, 1). (8.20)

A simple consequence of this property is that (M(X), HK) inherits the length
(or geodesic) property of (X, d).

Proposition 8.3 (M(X), HK) is a length (resp. geodesic) space if and only if
(X, d) is a length (resp. geodesic) space.

Proof Let us first suppose that (X, d) is a length space (the argument in the
geodesic case is completely equivalent) and let u; € M(X). By Corollary 7.7
we find o; € P»(€) such that h2«; = p; and HK(uy, na) = W, (@1, o).
Since Cis alength space, it is well known that P, (€) is alength space (see [47]);
recalling (8.5), for every k > 1 there exists « € Lip([0, 1]; (P2(€), Wy,))
connecting « to oy such that |oc’|Wd¢ <k Wdc(ozl, an). Setting w; = h%at
we obtain a Lipschitz curve connecting ¢ to pp with length < « HK(uq, wo).
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The converse property is a consequence of the next representation Theo-
rem 8.4 and the fact that if (P, (&), Wy) is a length (resp. geodesic) space, then
¢ and thus X are length (resp. geodesic) spaces.

We want to prove the converse representation result that every absolutely
continuous curve u : [0, 17 = (M(X), HK) can be written via a dynamic plan
T as uy = f)tzn. The argument only depends on the metric properties of the
Lipschitz submersion b.

Theorem 8.4 Let (14:):c[0,1] be a curve in ACP ([0, 1]; (M(X), HK)), p €
[1, ool, with

1
0= MO(X)+/() || dz. (8.21)

Then there exists a curve (a;)ef0,1] in ACP ([0, 1]; (P2(€), Wy, )) such that o,
is concentrated on €[O] for every t € [0, 1] and

=y in [0, 10, |ujli = lelwy, fora.e.t € 0, 1). (8.22)

Moreover, when p = 2, there exists a dynamic plan & € iP(ACZ([O, 1]; €©))
such that

ar = (e, w = h'm =ha, in[0, 1],

(8.23)
|M;|EK = |O‘;|\2Nd¢ =/|U/|é¢(t) dz (y) fora.e. t € (0, 1).

Proof By Lisini’s lifting Theorem [33, Theorem 5] (8.23) is a consequence of
the first part of the statement and (8.22) in the case p = 2. It is therefore suffi-
cient to prove that for a given u© € AC([0, 1]; (M(X), HK)) there exists a curve
a € AC([0, 17; (P2(€), Wy,)) such that u; = h2(er;) and || = |ay] ae. in
(0, 1). By a standard reparametrization technique (see e.g. [2, Lem. 1.1.4]), we
may assume that j is Lipschitz continuous and |u;| = L.

We divide the interval I = [0, 1] into 2V -intervals of size 277, namely
Il.N = [t,!!l, tl.N] with tiN =i2Nfori=1,...,2N, Setting ,ufv = N
we can apply the Gluing Lemma 7.11 (starting from i = 0 to 2"V) to obtain
measures alN € P»(€) such that

h(o") = ', Wael(e' ol}y) = KK wfly) =227 (8.24)

i

and concentrated on ¢€[® y] where

2N
On = Vo (X) + ) H(u . u1fY) < ©.
i=1

@ Springer



Optimal Entropy-Transport problems 1085

Thus if ¢ is a dyadic point, we obtain a sequence of probability measures
aN (1) € P»(€) concentrated on €[O] with hz(aN(t)) = u; and such that
de(ocN(t), aN(s)) <Lt —s|ifs =m2 N andt = n27N are dyadic points
in the same grid. By the compactness Lemma 7.3 and a standard diagonal
argument, we can extract a subsequence N (k) such that oy ) (¢) converges
to a(t) in (P2(€), Wy,) for every dyadic point ¢. Since Wy, (a(s), a(t)) <
L|t — s| for every dyadic s, f, we can extend « to a L-Lipschitz curve, still
denoted by «, which satisfies hz(a(t)) = ;. Since b2 is 1-Lipschitz, we
conclude that |o|(7) = |p;] a.e. in (0, 1). O

Corollary 8.5 Let (141)ic(0,1] be a curve in ACZ(0, 1];£JV[(X), H)) and let
©® as in (8.21). Then there exists a dynamic plan 7t in P(C([0, 1]; Y)) concen-

trated on AVCZ([O, 11; Y) such that a; = (&;)ym is concentrated in X x [0, ©],
that , = h*((e,)ym), and that

|M;|E,<=f|y/|2(z)dn(y) for £-a.e.t €0, 1), (8.25)

where |y'| is defined in (8.11).

Another important consequence of the previous representation result is a
precise characterization of the geodesics in (M(X), HK).

Theorem 8.6 (Geodesics in (M(X), HKK))

(1) If (e)iefo.1] is a geodesic in (M(X), HK) then there exists an optimal
geodesic plan it in P(Geo(€)) (recall (8.18)) such that
(a) m-a.e. curve v is a geodesic in €,
(b) [0,1] 5t > a; := (&)s7 is a geodesic in (P2(€), Wy, ), where all a;
are concentrated on €[®] with ©% = 2(uo(X) + I-KZ(,uo, 1)),
(©) ur = blzn' = hzat foreveryt € [0, 1], and
(d) (&y,€r)sm € Optyg (s, e) 0 <5 <t < L.

(ii) If (X, d) is a geodesic space, for every g, u1 € M(X) and every a €
Optyk (1o, (1) there exists an optimal geodesic plan ® € P(Geo(C)) such
that (€g, €1):w = a.

Proof The statement (i) is an immediate consequence of Theorem 8.4. Notice
that |M;|%K = H?(uo, 1) in (0, 1) since (i1)tef0.1] is a geodesic, so that
(8.23) yields

1 1
ffo [0'[3, (1) dr dze (n) = /0 1y By dr = H (0. 1) < W, (e, ),
so that & satisfies (8.19) in € and we deduce that it is an optimal geodesic plan.
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Statement (ii) is a well known property [33, Thm. 6] of the Kantorovich—
Wasserstein space (&, Wy,) in the case when € is geodesic. O

Theorem 8.4 also clarifies the relation between HK and GHK introduced in
Sect. 7.8.

Corollary 8.7 If (X,d) is separable and complete then ACZ([0, 1];
(M(X), GK)) coincides with AC%([0, 1]; (M(X), HK)) and for every curve
w e AC%([0, 1]; (M(X), GK)) we have

| |ak(®) = |1 k(@) for Laetel0,1]. (8.26)

In particular if (X, d) is a length metric space then HK is the length distance
generated by GHK.

Proof Since GHK < HKitis clearthatACz([O, 17; MM(X), KK)) C ACZ([O, 1];
(M(X), GK)).

In order to prove the opposite inclusion and (8.26) it is sufficient to notice
that the classes of absolutely continuous curves in € w.r.t. d¢ and gg coin-
cide with equal metric derivatives |0'[g, = [9'|g,. Since GK = Hg is the
Hellinger—Kantorovich distance induced by g, the assertion follows by (8.23)
of Theorem 8.4. O

8.3 Lower curvature bound in the sense of Alexandrov

Let us first recall two possible definitions of Positively Curved (PC) spaces
in the sense of Alexandrov, referring to [10] and to [11] for other equivalent
definitions and for the more general case of spaces with curvature > k, k €
R. In the case of a smooth Riemannian manifold (M, g) equipped with the
Riemannian distance dg all the local definitions are equivalent to assume that
the sectional curvature of M is nonnegative (or bounded by kg, in the case of
curvature > k).

According to Sturm [46], a metric space (Z, dz) is a Positively Curved (PC)

metric space in the large if for every choice of points zg, z1, ..., 2y € Z and
coefficients A1, ..., Axy € (0, 00) we have
N N
> rinjdZ iz <2 ) aikjdY(z0. 7)) (8.27)
i,j=1 i,j=1

If every point of Z has a neighborhood that is PC, then we say that Z is locally
positively curved.

When the space Z is geodesic, the above (local and global) definitions
coincide with the corresponding one given by Alexandrov, which is based on
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triangle comparison: for every choice of zg, z1,z2 € Z, every t € [0, 1], and
every point z; such that dz(z;, zx) = |k—t|dz(z0, z1) for k = 0, 1 we have

d2 (22, z1) = (1 —1) d% (22, 20) + 1 A% (22, 1) — 2t (1 — 1) A% (20, 21). (8.28)

When Z is also complete, the local and the global definitions are equivalent [46,
Corollary 1.5]. Next we provide conditions on (X, d) or (&, d¢) that guarantee
that (M(X), HK) is a PC space.

Theorem 8.8 Let (X, d) be a metric space.

(1) If X C Ris convex (i.e. an interval) endowed with the standard distance,
then (M(X), HKK) is a PC space.
(ii) If (€, d¢) is a PC space in the large, cf. (8.27), then (M(X), HK(X)) is a
PC space.
(iii) If (X, d) is separable, complete and geodesic, then (M(X), HK) is a PC
space if and only if (X, d) has locally curvature > 1.

Before we go into the proof of this result, we highlight that for a compact
convex subset 2 C R? with d > 2 equipped with the Euclidean distance, the
space (M(R2), HK) is not PC, see [30, Sect.5.6] for an explicit construction
showing the semiconcavity of the squared distance fails.

Proof Let us first prove statement (ii). If (€, d¢) is a PC space then also
(P2(€), Wy,.) is a PC space [47]. Applying Corollary 7.13, for every choice of
wi € M(X),i =0,..., N, we can then find measures 8; € P»(€) such that

Wa,e (Bo, Bi) = H(wo, i) fori=1,..., N, (8.29)

where it is crucial that By is the same for every i. It then follows that

N N N
D Mk HC iy ) < Y Md WG (B B) <2 ) hid WG (Bo. Bi)

ij=1 i,j=1 i,j=1

N
=2 Z A H (o, ).
ij=1

Let us now consider (iii) “=": If (M(X), HK) is PC, we have to prove that
(X, d) has locally curvature > 1. By Theorem [10, Thm. 4.7.1] it is sufficient
to prove that €\ {o} is locally PC to conclude that (X, d) has locally curvature
> 1. We thus select points ; = [x;,r;], i = 0,1, 2, in a sufficiently small
neighborhood of yy = [x, 7] with r > 0, so that d(x;, x;) < m/2 for every
i, j and r;,r; > 0. We also consider a geodesic v, = [x;,s;], ¢ € [0, 1],
connecting o to vy, thus satisfying de (v, v;) = |i — #|d(yo, y1) fori =0, 1.
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Setting w; := ri0y;, s := S$:0y,, it is easy to check (cf. [30, Sect. 3.3.1])
that
HK (i, ) = de(vi, n;) for i, j € {0, 1,2},

(8.30)
HK (e i) = Tk—1] HK (e, 1) for k € {0, 1}.

We can thus apply (8.28) to uo, i1, 42, 4 and obtain the corresponding
inequality for g, 11, 92, v;.

(iii) “<=": In order to prove the converse property we apply Remark 7.12.
For o, 1, m2, and w3 = uy € M(X) with ¢ € [0, 1] and HK(u3, i) =
|k —t|HK (1o, 1), we find aplan e € P(Xo x X x Xp x X3) (with the usual
convention to use copies of X) such that

b = i, /d%(ni’ v;) de = H* (i, 1) (8.31)
for (i, j) € A = {(0,3), (1, 3), (2, 3)}. The triangle inequality, the elemen-

tary inequality (1 — #)(a + b)2 < (1 — t)a® + tb?, and the very definition of
H yield for ¢ € (0, 1) the estimate

(1) H (g, 1) < 1(1 — z)/dé(m, 01) de
< / 1(1 = 1)((deMo, 93) + de (3, 91))° de

< /(1—t)dé(l)0, v3) + 1d2 (93, 91) der

= (1—)HK> (o, 13) + tH (3, 1) = t(1 — )HE (o, 1).

This series of inequalities shows in particular that

(1 — d2 (00, 93) + 1033, 1) = 1(1 — 1) (de (Mo, 13) + de (3, 91))°
=t(1 —1)d%(no, n1) a-ae.

so that

de (90, v3) = tde(ho, H1) and de(v3, 1) = (1 —)de(o, v1) a-ae.

Moreover, n;‘)’ma € Optk (1o, 111), so that (8.31) holds for (i, j) € A’ =
AU{(O, D}
By Theorem 7.20 we deduce that
d(x;,x;) <7/2 a-ae.for (i, j) € A
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If one of the points vy;, i = 0, 1, 2, is the vertex o, then it is not difficult to
check by a direct computation that

dZ(n2, 13) > (1-0)d3 (92, 9o) + td%(02, 1) — 26 (1—1)d3 (0o, n1). (8.32)

When y; € €\ {0} for every i = 0, 1,2, we use d(Xg, X1) + d(Xq, X2) +
d(xa, Xp) < %n < 2m,and Theorem [10, Thm.4.7.1] yields (8.32) because of
the assumption that X is PC. Integrating (8.32) w.r.t. &, by taking into account
(8.31), the fact that (7%, 71).& € Optyk (10, f21), and that

/d%(nz, n;) de > HK?(uo, ) fori =0, 1,
we obtain

H2 (o, 13) = (1—)HKE (o, 120) + tHK (o, 1) — 260 (1—1)HK2 (1o, 111)-

Finally, statement (i) is just a particular case of (iii). O

As simple applications of the Theorem above we obtain that M(R) and
M(S?~1) endowed with HK are Positively Curved spaces.

8.4 Duality and Hamilton-Jacobi equation

In this section we will show the intimate connections of the duality formula of
Theorem 7.21 with Lipschitz subsolutions of the Hamilton—Jacobi equation in
X x (0, 1) given by

1
dé + 5 IDx&I” + 267 =0 (8.33)
and its counterpart in the cone space
1 2
9 ¢t + §|D¢§z| =0. (8.34)
Indeed, the first derivation of HK via LET was obtained by solving (8.33) for
X = R4, see the remarks on the chronological development in Section A.

At a formal level, it is not difficult to check that solutions to (8.33) corre-
sponds to the special class of solutions to (8.34) of the form

¢ ([x, 1) i= & (x)r?. (8.35)

Indeed, still on the formal level we have the formula
1
De¢|* = —IDx¢* +13:¢1° = [Dx&°r® + 4677 if¢ =172 (8.36)
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Since the Kantorovich—Wasserstein distance on P, (&) can be defined in dual-
ity with subsolutions to (8.34) via the Hopf-Lax formula (see e.g. [3,50])
and 2-homogeneous marginals are modeled on test functions as in (8.35), we
can expect to obtain a dual representation for the Hellinger—Kantorovich dis-
tance on M(X) by studying the Hopf—Lax formula for initial data of the form

Co(x, 1) = Eo(x)r.

Slope and asymptotic Lipschitz constant. In order to give a metric interpre-
tation to (8.33) and (8.34), let us first recall that for a locally Lipschitz function
f : Z — R defined in a metric space (Z, dz) the metric slope |Dz f| and the
asymptotic Lipschitz constant |Dz f|, are defined by [2,3,12]

IDz f1(z) := lim sup M
x—z dz(x,2)
: lf(y) — f(x)]
Pl = P 8.37
Dz fla(2) rlﬁ)lx’yseug:(z) 4, ( )
y#X

with the convention that |Dz f|(z) = |[Dz f|.(z) = 0 whenever z is an isolated
point. It is not difficult to check that |Dz f |, can also be defined as the minimal
constant L > 0 such that there exists a function G; : Z x Z — [0, o0)
satisfying

If () = fO = Grx, y)dz(x,y), limsupGr(x,y) <L. (8.38)

X, y—>z2

Note that Dz f, is always an upper semicontinuous function clearly satisfying
IDz fla = |Dzf|. When Z is a length space, (8.5) and the chain rule along
Lipschitz curves easily yield

|f(x) = f(W)I =dz(x,y) sup Dz f| foreveryx,y € By (2),
Br(z)

sothat Dz f|, is the upper semicontinuous envelope of the metric slope [Dz f].
We will often write |D f|, |D f|, whenever the space Z will be clear from the
context.

Remark 8.9 The notion of locally Lipschitz function and the value [Dz f/q
does not change if we replace the distance dz with a distance dz of the form
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dz(z1,22) := h(dz(z1, 22)) forzy,z2 € Z,

. . h(@) (8.39)
with & : [0, c0) — [0, 00) concave and h?(} — = 1.
r r

In particular, the truncated distances dz A « with ¥ > 0, the distances
asin((dz A k)/a) witha > 0 and « € (0, arr /2], and the distance g = g(d)
given by (7.74) yield the same asymptotic Lipschitz constant.

In the case of the cone space € it is not difficult to see that the distance d¢
and d 2 ¢ coincide in suitably small neighborhoods of every pointy € €\ {0},
so that they induce the same asymptotic Lipschitz constants in € \ {o}. The
same property holds for ge¢. In the case of the vertex o, relation (7.12) yields

IDe fla(0) < [De.d, o) fla(®) < V2|De fla(o). (8.40)

O

The next result shows that the asymptotic Lipschitz constant satisfies for-
mula (8.36) for ¢ ([x, r]) = &(x)r?.

Lemma 8.10 For £ : X — Rlet¢ : € — R be defined by ¢([x,r]) =
E(x)r?.
(i) If ¢ is dg-Lipschitz in €[R], then & € Lip,(X) with

1 1
sup |§] < —5 sup [¢| < — Lip(¢, €[R]) and
X R? ¢(R R

. .
Lip(§, X) < ELIP(Z, ¢[R]). (8.41)
(ii) If& € Lip,(X), then ¢ is dg-Lipschitz in €[R] for every R > 0 with

sup [¢| < R*sup || and
C[R] X

Lip*(¢, €[] < R*(Lip* 6. (X, ) +4supléF).  (8.42)

where d := 2 sin(dy /2).
(ii1) In the cases (i) or (ii) we have, for every x € X and r > 0, the relation

(|DX§|§(x) —|—4§2(x)>r2 forr >0,
0 forr =0.

IDec |2 (lx, 1) = { (8.43)

The analogous formula holds for the metric slope |Dgl|([x, r]). More-
over, equation (8.43) remains true if g is replaced by the distance dr 2 ¢.
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Proof As usual we sety; = [x;,r;] and y = [x, r].

Let us first check statement (i). If ¢ is locally Lipschitz then |£(x)| =
1 ([x, R]) = ¢([x, 0])| < 4 Lip(¢; €[R]) for every R sufficiently small, so
that £ is uniformly bounded. Moreover, using (7.4) for every R > 0 we have

R2|&(x1) — £E(x2)| < |Z(x1, R) — £(x2, R)| < Lip(¢; €[R])RA(x1, x2)
< Lip(¢; €[R])RA(x1, x2),

so that £ is uniformly Lipschitz and (8.41) holds.
Concerning (ii), for & € Lip,(X) we set S := suplé| and L :=
Lip(&, (X, d)) and use the identity

(1) — ¢(2) = (E(x1) —Ex))riry + 25 (x)r(ry — r2)
+ w1, 92, 9)(r1 —r2), (8.44)

where w(91,92;0) = r1&(x1) + r&(x2) — 2r&(x) with limy, y, .y w (9,
n2; ) = 0. Since |w(y1, v2; 0)] < 2RS if vy; € C[R], equation (8.44) with
r = 0 yields

1£(1) — C(02)| < Ld(x1, x2)rir2 + 2RS|ry — 12|
< (L*+ 452)1/213 de(®1, 92).

Letting R | O the inequality above also proves (8.43) in the case r = 0.

In order to prove (8.43) when r # 0 let us set Lg = |D¢§|Z([x, r]),
Lx := |Dxé&|s(x), and let G be a function satisfying (8.38) with respect to
the distance d (see Remark 8.9). Equation (8.44) yields, for all y = [x, r], the
relation

1E(M1)—¢Mm2)| < GL(Xl,X2)a(X1,X2)V1r2+(2|§(x)|r+|w(01, n2; ) ri—ra|
5 172
= (G xrr + (I + 0112 0)*) e, 1),

Passing to the limit vy, ), — b and using the fact that x;, x; — x due to
1/2
r £ 0, we obtain Lg < r(Lg( n 4|§(x)|2) .

In order to prove the converse inequality we observe that for every L' < Ly
there exist two sequences of points (x; »),eN converging to x w.r.t. d such that
E(x1.n) — &E(x2,) > L'8, where 0 < 8, := d(x1,, x2.,) — 0. Choosing
rin :=randrp , = r(1 4+ A§,) for an arbitrary constant A € R with the same
sign as £(x), we can apply (8.44) and arrive at
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CO1) =02l o L4 21ECO) 1P A8, + 0(8,)

Lg > liminf > lim inf
n=oo de(1,n, D2,n) n—>oo /32262 4 r262 4 0(8,)
_ LH21E0)] 1A
A1

Optimizing with respect to A we obtain

L% > r*((L)* +4]&(x)[?), where L' < Ly is arbitrary.

This proves (8.43) for the asymptotic Lipschitz constant |D¢¢|,. The argu-
ments for proving (8.43) for metric slopes |Dg¢| are completely analogous.
O

Hopf-Lax formula and subsolutions to metric Hamilton—Jacobi equation
in the cone €. Whenever f € Lip, (€) the Hopf~Lax formula

s / 1 2 I
2, f(y) = J/Iéfc (f(U )+ 2—td¢(t), ) )) forye Candt >0,  (8.45)

provides a function t — 2, f which is Lipschitz from [0, co) to Cp(C),
satisfies the a-priori bounds

iféff <2 f <supf, Lip(Zf;¢€) <2Lip(f, ), (8.46)
¢
and solves
1
8;2%]”(3) + §|D¢Q[f|3(3) <0 forevery3e ¢, t >0, (8.47)

where 8,+ denotes the partial right derivative w.r.t. ¢.

It is also possible to prove that for every y € € the time derivative of 2, f ()
exists with possibly countable exceptions and that (8.47) is in fact an equality
if (€, de¢) is a length space, a property that always holds if (X, d) is a length
metric space. This is stated in our main result:

Theorem 8.11 (Metric subsolution of Hamilton—Jacobi equation in X) Let
& e Lip,(X) satisfy the uniform lower bound P := 1+ 2infx(§ A0) > 0
and let us set ¢ ([x, r]) := E(x)r?. Then, for every t € [0, 1] we have

2,8([x, 1)) = &)r?, where &(x) = P,£(x) and

< E(x") sinz(dn/zoc,x’)))

Z1§(x) == inf 142tE(x") 2t (142tE(x"))

x'eX

1
— inf —<1
x'ex 2t

_cos’(drpa(x, x’)))

1+ 26E(x") (848)
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Moreover, for every R > 0 we have

1
2 . / N2 42 oo
& (x)r —U/:[x/{rrlgee[R] (%‘(x ()" + 2td¢([x,r], [x' 7 ]))
forallx € X, r < PR. (8.49)

The map t — &; is Lipschitz from [0, 1] to Cp(X) with & € Lip,(X) for every
t € [0, 1]. Moreover, & is a subsolution to the generalized Hamilton—Jacobi
equation

3T E (x) + %|ngt|§(x) +2£2(x) <0 forx € Xandt € [0,1]. (8.50a)

For every x € X the map t +— &/(x) is time differentiable with at most
countable exceptions. If (X, d) is a length space, (8.50a) holds with equality
and |Dxé&|,(x) = |Dx&|(x) for every x € X and t € [0, 1]:

1
3, & (x) + ElDthlg(x) +267(x) =0, Dxé&la(x) = Dx&|(x). (8.50b)

Notice that when & (x) = £ is constant, (8.48) reducesto ;& = £/(142t&)
which is the solution to the elementary differential equation %E +2£2=0.

Proof Let us observe that inf;¢o,1],;ex(1 + 2t§(z)) = P > 0. A simple
calculation shows

1
ECN G + Zdéax, rl; [x', 7))
— %((1+2t§(x’))(r’)2 + 2 = 2r r' cos(dy (x, x’)))
1 2
= TGy (G = cosBeCr. )
n r2(2té(x/) + sin?(dy, (x, x')))].

Hence, if we choose

, [rcos(dn (v, X)) /(14266(x)) it d(x, x') < /2
= ) (8.51)
0 otherwise,
we find (notice the truncation at v /2 instead of 1)
. / / 1 /
inf £()07)” + S de(lr. i 1 D)
2
— r— / : 2 1
= AT (ZIS(X ) + sin2(dy 2 (x, x ))), (8.52)
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which yields (8.48). Now (8.49) also follows, since r’ < r/P in (8.51).

Equation (8.49) also shows that the function ; = & (x)r? coincides on
¢[P R] with the solution g“tR given by the Hopf-Lax formula in the metric
space C[R]. Since the initial datum ¢ is bounded and Lipschitz on €[R] we
deduce that g“tR is bounded and Lipschitz, so that ¢ +— & is bounded and
Lipschitz in X by Lemma 8.10.

Equation (8.50a) and the other regularity properties then follow by (8.43)
and the general properties of the Hopf-Lax formula in €[R]. O

Duality between the Hellinger-Kantorovich distance and subsolutions to
the generalized Hamilton-Jacobi equation. We conclude this section with
the main application of the above results to the Hellinger—Kantorovich dis-
tance.

Theorem 8.12 Let us suppose that (X, d) is a complete and separable metric
space.

) Ifu e AC2([0, 11; M (X), HK)) and & : [0, 1] — Lip,(X) is uniformly
bounded, Lipschitz w.r.t. the uniform norm, and satisfies (8.50a), then the
curve t — f &, du; is absolutely continuous and

d 1
2 f & dp < Sl (8.53)
X

(i) If (X, d) is a length space, then for every 1o, u1 and k € N U {oo} we
have

1
§H<2(Mo, 1) =sup{/xsl dp —/Xsoduo : & € CY([0, 17; Lip, (X)),

1
6 (x) + 3 D& *(x) + 267 (x) < 0in X x (0. 1)}.
(8.54)

Moreover, in the above formula we can also take the supremum over
functions & € ck(o, 11; Lip, (X)) with bounded support.

Proof If & satisfies (8.50a) then setting & ([x,r]) = S,(x)r2 we obtain a
family of functions t — ¢, t € [0, 1], whose restriction to every €[R] is
uniformly bounded and Lipschitz, and it is Lipschitz continuous with respect
to the uniform norm of C; (€[ R]). By Lemma 8.10 the function ¢ solves

1 .
O ¢ + §|D¢§,|§ <0 in€ x (0, 1).
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Accordingto Theorem 8.4 we find# > Oandacurvea € ACZ([0, 11; (P2(C[6]),
Wa,)) satistying (8.22). Applying the results of [6, Sect.6], the map ¢
Je ¢ day is absolutely continuous with

d 1 ,
5/4} doy < Sleflyy,, Z'-ae.in (0, 1).
¢

Since [, ¢ doy = [y & dyu; we obtain (8.53).

Let us now prove (ii). As a first step, denoting by S the right-hand side of
(8.54), we prove that I-KZ(pLo, wy) > S.If € € C([0, 1]; Lip, (X)) satisfies
the pointwise inequality

1
B (x) + 5|stt|2(x> +2&%(x) <0, (8.55)

then it also satisfies (8.50a), because (8.55) provides the relation

%|ng,|2(x) < —(8t§,(x)+2§,2(x)> for every (x,7) € X x (0, 1), (8.56)

where the right hand side is bounded and continuous in X . Equation (8.56) thus
yields the same inequality for the upper semicontinuous envelope of |Dx&;|
and this function coincides with |Dx&;|, since X is a length space.

We can therefore apply the previous point (i) by choosing A > 1 and a
Lipschitz curve pu : [0, 1] — M(X) joining po to w; with metric velocity
lur i < AHK(o, 1), whose existence is guaranteed by the length property
of X and a standard rescaling technique. Relation (8.53) yields

1
2/ & duy —2/ o dpo S/ 1) 17 dr < A2HC (o, ).
X X 0

Since A > 1 is arbitrary, we get I-Kz(,uo, nw1) > S.

In order to prove the converse inequality in (8.54) we fix n > 0 and apply the
duality Theorem 7.21 to get &y € Lip,,(X) (the space of Lipschitz functions
with bounded support) with inf & > —1/2 such that

2/ %sodul—z/soduozmz(uo,m—n. (8.57)
X X

Setting & := ;& we find a solution to (8.50a) which has bounded support, is
uniformly bounded in Lip, (X) and Lipschitz with respect to the uniform norm.
We have to show that (&;):¢[0,1] can be suitably approximated by smoother
solutions £° € C*°([0, 1]; Lip, (X)), € > 0, in such a way that fél.s du;, —
[&dpiase | Ofori =0, 1.
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We use an argument of [1], which relies on the scaling invariance of the
generalized Hamilton—Jacobi equation: If & solves (8.55) and A > 0, then
é,’\ (x) 1= A&xs44(x) solves (8.55) as well. Hence, by approximating &; with
AE(At+(1—X)/2,x) with 0 < A < 1 and passing to the limit A 1 1, it
is not restrictive to assume that £ is defined in a larger interval [a, b], with
a < 0,b > 1. Now, a time convolution is well defined on [0, 1], for which we
use a symmetric, nonnegative kernel k € C°(IR) with integral 1 defined via

£ (x) == (§(y(x) *ke) = fRSw(X)Kg(t—w) dw, (8.58)

where «. (1) := 8_11((1‘/8). It yields a curve £° € C*°([0, 1]; Lip, (X)) satis-
fying

1 .
3EF + E(|DX§(.)|2) ke +2(80)) # ke <0 in X x [0, 1].

By Jensen’s inequality, we have the two estimates 5(2_) * ke > (§() * ke )% and
IDx&() RETR (IDx&() k). Moreover, applying the following Lemma 8.13
we also get [Dx &y *xke > |DX.§§) |, so that the smooth convolution &/ satisfies
(8.55). Since & — &; uniformly in X for every ¢ € [0, 1], we easily get

5= tim2( [ e dw ~ [ & duo) = HCGu0. )
€0 X X

Since n > 0 is arbitrary the proof of (ii) is complete. O

The next result shows that averaging w.r.t. a probability measure 7 € P(£2)
does not increase the metric slope nor the asymptotic Lipschitz constant. This
was used in the last proof for the temporal smoothing and will be used for
spatial smoothing in Corollary 8.14.

Lemma 8.13 Let (X, d) be a separable metric space, let (2, B, ) be a
probability space (i.e. m(2) = 1) and let &, € Lip,(X), w € 2, be a
family of uniformly bounded functions such that sup,.q Lip(§,; X) < oo
and w +— &,(x) is B-measurable for every x € X. Then the function
x = &) = fQ &w(x) dm(w) belongs to Lip, (X) and for every x € X the
maps w + |Dx&,|(x) and w — |Dx&,|,(x) are B-measurable and satisfy

Dxélu) < [ IDxbula(¥)dr@). IDxEI) < [ Dol dr(@).
X X
(8.59)
Proof The fact that £ € Lip,(X) is obvious. To show measurability we fix
x € X and use the expression (8.37) for [Dx&|,(x). Itis sufficient to prove that
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foreveryr > Othemap w > sy, (x) 1= SUPy£ze B, (x) &0 (¥) —&w(2)1/d(y, 2)
is B-measurable. This property follows by the continuity of &, and the sep-
arability of X, so that it is possible to restrict the supremum to a countable
dense collection of points B, (x) in By (x). Thus, the measurability follows,
because the pointwise supremum of countably many measurable functions is
measurable. An analogous argument holds for [Dxé&,|.

Using the definition & := [ &,dm we have

E(y) — £(2)] 5/ S0 =80 4 ) fory # 2.
Q

d(y, z) d(y. z)
Taking the supremum with respect to y, z € B,(x) and y # z, we obtain

) — @) _

= Sr,w(x) dm (w).
y#z€B, (x) d()’9 2) /Q

A further limit as r | 0 and the application of the Lebesgue Dominated
convergence Theorem yields the first inequality of (8.59). The argument to
prove the second inequality is completely analogous. |

When X = R the characterization (8.54) of HK holds for an even smoother
class of subsolutions & of the generalized Hamilton—Jacobi equation.

Corollary 8.14 Let X = R? be endowed with the Euclidean distance. Then

H (0. 1) = 2 sup{fxsl duy —fxsoduo L& e CP®! [0, 1)),

|
8 (x) + §|Dx§,(x)|2 F262(x) <0 in X x (0, 1)}.
(8.60)

Proof We just have to check that the supremum of (8.54) does not change if we
substitute C*([0, 1]; Lip,, (R9)) with C°(R¥ x [0, 1]). This can be achieved
by approximating any subsolution & € C*°([0, 1]; Lip,, (R%)) via convolution
in space with a smooth kernel with compact support, which still provides a
subsolution thanks to Lemma 8.13. O

8.5 The dynamic interpretation of the Hellinger—-Kantorovich distance
‘““a la Benamou-Brenier”

In this section we will apply the superposition principle of Theorem 8.4 and

the duality result 8.12 with subsolutions of the Hamilton-Jacobi equation to
quickly derive a dynamic formulation “a la Benamou-Brenier” [7,37], [2,
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Sect. 8] of the Hellinger—Kantorovich distance, which has also been considered
in the recent [27]. In order to keep the exposition simpler, we will consider the
case X = R< with the canonical Euclidean distance d(x1, x2) := |x| — x|, but
the result can be extended to more general Riemannian and metric settings, e.g.
arguing asin [6, Sect. 6]. A different approach, based on suitable representation
formulae for the continuity equation, is discussed in our companion paper [30].

Our starting point is provided by a suitable class of linear continuity equa-
tions with reaction. In the following we will denote by 1; € M(R? x [0, 1)

the measure '
f Edup = / / £ (v) dpa (x) di 8.61)
0 R4

induced by a curve u € CO([0, 17; M(R%)).

Definition 8.15 Let ;v € C°([0, 1]; M(R%)), let (v, w) : RY x (0, 1) — R4*!
be a Borel vector field in L2(R¢ x (0, 1), u7; R4, thus satisfying

1
fo /Rd (Ivz(x)|2+w,2(x)) dps(x)dr =/|(v,w)|2d,u1 <o00. (8.62)

We say that u satisfies the continuity equation with reaction governed by (v, w)
if
e+ V- (vier) = wepy, holds in 2 (R? x (0, 1)), (8.63)

i.e. for every test function & € CZ° (R x (0, 1))

1
| [, (&0 + Dasomto + & om0 dprde = 0. .64
0 JRA

An equivalent formulation [2, Sect.8.1] of (8.63) is

d . /
T / §(x)du,(x) = / (Dxé(x)v,(x) + S(x)w,(x)) du; in 20, 1),
t JRrd

R4
(8.65)
for every £ € C¥ (RY). We have a first representation result for absolutely
continuous curves ¢t — 4y, whichrelies in Theorem 8.4, where we constructed
suitable lifted plans = € P(AC%([0, 1]; €)), i.e. 4, = h?m, where € is now
the cone over R?.

Theorem 8.16 Let (11,):¢[0.1] be a curve in AC*([0, 1]; (M(R?), KK)). Then
W satisfies the continuity equation with reaction (8.63) with a Borel vector
field (v, w) € L2(R? x (0, 1), ur; RITYY satisfying

1
o w) € @, [ (0P + GlwP)dus i (866)

for L'-a.e.t € (0, 1).
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Proof We will denote by I the interval [0, 1] endowed with the Lebesgue
measure A = Z'L[0, 1]. Recalling the map (x,r) : € — R? x [0, 00) we
define the maps X; : C(I; €) x I — R? x I and R: C(I; ) x [ — R, via
X;(z, 1) := (X(z(t)), t) and R(z, t) := r(z(1)).

Let & be adynamic plan in € representing (., as in Theorem 8.4. We consider
the deformed dynamic plan ; := (R?w) ® A, the measure [i; = (Xp)emy
and the disintegration (%), rerdx Of 1 With respect to fi;. Since & is
in fact a dynamic plan on €[®], where ® is given by (8.21), we notice that
wy < @2(n ® A) so that ;r; has finite mass and

1
= [0 8) @0, (8.67)
0
coincides with p; in (8.61), because for every & € B,(R? x I) we have

/ Edpy = / (), DP (1) d(x ® V) (2, 1)

1
=/ / St(X)dm(X)dtzfédm-
0 R4

Letu € LZ(ACZ(I; €) x I: & ® 1;: R4t1) be the Borel vector field uln,t) =
ne(2) for every curve y AC%(I;¢) and r € I, where he is defined as in
(8.14). By taking the density of the vector measure (X;):(um ) with respect
to ;17 we obtain a Borel vector field u; = (v, W) € L2(R? x I; puy; R4+
which satisfies

ur(x,t) = /udnx,, for wr-ae. (x,t) € R? x [ and
f(lvt|2+zb,2) dpe < )% (8.68)

Choosing a test function ¢([x, r], 1) = g(x)n(t)rz with & € C?O(Rd) and
n € CZ°(1) we can exploit the chain rule (8.16) in R4 and find

1
—/ n’f Edp, dr = —/ n (&) dug
0 R4 Rdx [

_ / Ex(0(1) @) (1) d(x @ 1)
__ / 8L (0(1). 1) d(w ® 1)

d
_ /<_ SO0, + <D¢c<n(t>,t),n’¢<f>>) d(r ® 1)
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I d
= / <f0 —af(n(t),t) dl) dr +/«DXS(XI)a2§(XI)),M)R2d(]t ®A)
=/ﬁ(ﬂ((DxS(X),zr‘?(x)),u1)dm

1
= [ 00 [ (05,0100 + 2508, dis .
0 R

Setting w, = 2w, the continuity equation with reaction (8.65) holds. O

The next result provides the opposite inequality, which will be deduced from
the duality between the solutions of the generalized Hamilton—Jacobi equation
and HK developed in Theorem 8.12.

Theorem 8.17 Let (1i/)se[0,1] be a continuous curve in M(R?) that solves
the continuity equation with reaction (8.63) governed by the Borel vector
field (v, w) € L>(R? x [0, 11, puy; RYTYY with g given by (8.61). Then . €
AC([0, 11; M (RY), HK)) and

|
Wl < fRd (Iv,|2+Z|w,|2) du, for L'-aet €(0,1).  (8.69)

Proof The simple scaling £(t, x) — (b—a)é(a+(b—a)t, x) transforms any
subsolution of the Hamilton—Jacobi equation in [0, 1] to a subsolution of the
same equation in [a, b]. Thus, Corollary 8.14 yields

HE (a0, 1) =2(b—a) sup | / £ dm—/d £.dpo : & € CE(RI x[a, b),
R R
1 2 .
() + 5[Dx &) + 2670 < 0 B! x (@, b)].
(8.70)
Let & € C° (R x [0, 1]) be a subsolution to the Hamilton—Jacobi equation
& + %ID&“I2 +2¢62 < 0in R? x [0, 1]. By a standard argument (see [2,

Lem.8.1.2]), the integrability (8.62), the weak continuity of ¢ +— u; and
(8.64) yield

131
2/ & dugy — 2] 1o Ay = 2f f <3z§t + (Dy&, vy) + ftwt) dp; de
R4 R4 o R4

1 1
< 2/ f (= IDe& P — 267 + (Dkr. v) + &y )y
fo JRA 2

" 2 Lo
< [ (1w ) duar.
fo R4 4
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Applying Corollary 8.14 and (8.70) we find

1 1
HC Gy i) < =) [ [ (1 + )
to R4 4

for every 0 < fy < t; < 1, which yields (8.69). O

Combining Theorems 8.16 and 8.17 with Theorem 8.4 and the geodesic
property of (M(R?), HKK) we immediately have the desired dynamic represen-
tation.

Theorem 8.18 (Representation of HK a la Benamou-Brenier) For every
wo, 11 € M(RY) we have

HC (10, 1) =min{/l/ (10 + e l?) g
0 Rd 4

w e C(0, 11; M(RY)), py—i = i,
e + V- () = wepy in 2'(RY x (0, 1))}. (8.71)

The Borel vector field (v, w) realizing the minimum in (8.71) is uniquely deter-
mined [L1-a.e. in RY x (0, 1).

The discussion in [30] reveals however that there may be many geodesic
curves, so in general p; is not unique. Indeed, the set of all geodesics con-
necting no = aody, and i1 = a8y, with ap, a1 > 0 and |x;—xo| = 7/2 is
infinite dimensional, see [30, Sect.5.2].

Remark 8.19 (Inf-convolution of length distances) Here we want to explain
why we may interpret the characterization (8.71) of HK as an infimal convo-
lution (shortly inf-convolution) of the Kantorovich—Wasserstein distance Wy
and the Hellinger—Kakutani distance He.

Let us first recall that if || - ||;, i = 1,2, are Hilbert norms on a linear
space V, the classical inf-convolution for convex functionals induces the inf-
convolution Hilbertian norm || - ||y defined by

2 2 2.
[0l = inf { forl + o213 = v =v1 +02 .

When a finite dimensional manifold M is endowed with two Riemannian
tensors g; and g», we can define the inf-convolution distance by computing
the inf-convolution of the metric tensors in each tangent space. This leads to
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the formula

1
dzv(-xo’ xl) = lnf{ /(; (|U1(s)|él(x(s))+|vz(s)léz(x(s)))ds :
x € CL([0, 1]; M), x(i) = x;,

X(s) = v1(s)+va(s) in Tx(s) (M) fora.e. s € (0, 1) }

By optimizing the decomposition X = v;+v; we easily find that the inf-
convolution distance is generated by the metric tensor gy whose dual g% is
given by g%, = g7 + g;. This formula reflects the fact that the Legendre
transform of an inf-convolution is the sum of the two Legendre transforms of
the convoluted functionals. One can think that (8.71) exhibits a non-smooth,
infinite dimensional example sharing the same structure. For another infinite-
dimensional application we refer to [8, Eq. (16)].

When d;, i = 1, 2, are length metrics on a given set Z, a purely metric inf-
convolution dy = lefdz respecting the local Hilbert-space structure reads

m

N
d2 (1. 22) _hmlnfmf{N Z(d (xi—1, yi —I—dz(y,,xl)) :

i=1

Xi,Yi € Z,X0 =121, YN = 12}.

One can expect that this inf-convolution applied to Wy and He exactly gener-
ates HK, namely HKK = Wd_foe.
m

8.6 Geodesics in M (R?)

As in the case of the Kantorovich—Wasserstein distance, one may expect that
geodesics (ir)refo,1] in (M(RR?), HK) can be characterized by the system (cf.
[30, Sect.5])

1
dpve + V- (g Dy = 48410, & + §|st,|2 +262=0. (8.72)

In order to give a precise meaning to (8.72) we first have to select an appro-
priate regularity for £. On the one hand we cannot expect C! smoothness for
solutions of the Hamilton—Jacobi equation (8.72) (in contrast with subsolu-
tions, that can be regularized as in Corollary 8.14) and on the other hand the
£ ae. differentiability of Lipschitz functions guaranteed by Rademacher’s
theorem is not sufficient, if we want to consider arbitrary measures p; that
could be singular with respect .2,
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A convenient choice for our aims is provided by locally Lipschitz functions
which are strictly differentiable at t;-a.e. points, where wy has been defined
by (8.61). A function f : R — R is strictly differentiable at x € R? if there
exists D f (x) € (R?)* such that

. SO = f&") =Df )" —x")
1m

x’,x”—>x |x/ _ x//|
x';éx”

=0. (8.73)

According to [15, Prop. 2.2.4] a locally Lipschitz function f is strictly dif-
ferentiable at x if and only if the Clarke subgradient [15, Sect.2.1] of f at x
reduces to the singleton {D f (x)}. In particular, denoting by D C R the set
where f is differentiable and denoting by . a smooth convolution kernel as
in (8.58), Rademacher’s theorem and [15, Thm. 2.5.1] yield

lim Df(x") =Df(x), LmD(f *«:)(x) =Df(x) forallx € D. (8.74)
x'—x £l0

x'eD
In the proofs we will also need to deal with pointwise representatives of the
time derivative of a locally Lipschitz function & : R x (0, 1) — R:if D(0:&)
will denote the set (of full 24+ measure) where £ is differentiable w.r.t. time
and 0,& the extension of 9, to 0 outside D(0;£), we set

(8r8) - (x) = lim inf (5 % ke) (). (@)™ (x) = lim sup (9% * ke) ().

e—0
(8.75)
It is not difficult to check that such functions are Borel; even if they depend
on the specific choice of ., they will still be sufficient for our aims (a more
robust definition would require the use of approximate limits).

We are now ready to characterize the set of all geodesic curves by giving a
precise meaning to (8.72). The proof that the conditions (i)—(iv) below are suf-
ficient for geodesic follows directly with the subsequent Lemma 8.21, whereas
the proof of necessity is more involved and relies on the existence of optimal
potentials r; for LET = HK? in Theorem 6.3(d), on the characterization of
subsolutions of the generalized Hamilton—Jacobi equation in Theorem 8.11,
and on the characterization of curves ¢ — 1, in AC*([0, 1]; (M(R?), HK)).

Theorem 8.20 Let i € CO([0, 1]; M(R?)) be a weakly continuous curve. If
there exists amap & € Lip;,.((0, 1); Cp, (R%)) such that

(1) & € Lipb(]Rd)for everyt € (0, 1) witht — Lip(&;, R%) locally bounded
in (0, 1) (equivalently, the map (x, t) — &:;(x) is bounded and Lipschitz
inR? x [a, b] for every compact subinterval [a, b] C (0, 1)),

(i1) & is strictly differentiable w.r.t. x at py-a.e. (x,t) € R? x (0, 1),
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(iii) & satisfies
3 + %|ngt(x)|2 +282(x) =0 2 ae inRY x (0,1), (8.76)

(iv) andthe curve (1u;)ic(0,1] Solves the continuity equation with reaction with
the vector field (D&, 4€) in every compact subinterval of (0, 1), i.e.

Oty + V- (uDx&) = 4E; in 7' R x (0, 1)), (8.77)

then 1 is a geodesic w.r.t. the KK distance. Conversely, if i is a geodesic then
it is possible to find & € Lip;,.((0, 1); Cp(RY)) that satisfies the properties
(i)—(iv) above, is right differentiable w.r.t. t in R? x (0, 1), and fulfills (8.50b)
everywhere in R? x (0, 1).

Notice that (8.76) seems the weakest natural formulation of the Hamilton—
Jacobi equation, in view of Rademacher’s Theorem. The assumption of strict
differentiability of & at p;-a.e. point provides an admissible vector field Dx&
for (8.77).

Proof The proof splits into a sufficiency and a necessity part, the latter having
several steps.

Sufficiency. Let us suppose that i, & satisfy conditions (i), ..., (iv).

Since D(0;£) has full 24+ _measure in R? x (0, 1), Fubini’s Theorem
shows that N := {r € (0,1) : Z%({x € R? : (x,1) ¢ D(9,£)}) > 0} is
Z!-negligible. By (8.76) we get

1 1
(06)-(x) = — limsup ((51Dx&i> +262) e ) () = =3 D 3 (x) =267 ()

el0
(8.78)
for every x € R and t € (0, 1) \ N.
We apply Lemma 8.21 below with v = D,§ and w = 4&: observing that
D& . (x) = |Dy&:(x)| at every point x of strict differentiability of &, we get,
forall0 <a <b < 1,

2 [ edm2 [ Gdnaz2[ (@8- +HDEWE +4570) ds
R4 R4 R4 x (a,b)

8.78 1
Paf o (GDasP + 262w du
R (a,b) 2

8.69) b 1
= / P dr = o HC G, )
a —da
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On the other hand, since R is a length space, Theorem 8.12 yields

|
— H (i, 1) = Zf &y dpup —2/ Eqditg,
—da Rd ]Rd

so that all the above inequalities are in fact identities and, hence,
HK (12a, pp) = (b —a) || ZL'-ace.in [a, b).

This shows that p is a geodesic. Passing to the limit asa | 0 and b 1 1 we
conclude the proof of the first part of the Theorem.

Necessity. Let (u;):c[0,1] be a HK-geodesic in M(RY) connecting o to uy;
applying Theorem 8.16 we can find a Borel vector field (v, w) € L2(RY x
O, ), ur; R4+1) such that (8.63) and (8.66) hold. We also consider an optimal
plan y € Optigr (i1, pn2).

Let 1, ¥y : R? — [—00,1] be a pair of optimal potentials given by
Theorem 6.3 d) and let us set & := —%wl and & = A& fort € (0,1).
Even if we are considering more general initial data & € B(R?; [—1 /2, 00])
in (8.48), it is not difficult to check that the same statement of Theorem 8.11
holds in every subinterval [a, b] withO <a < b < 1 and

ltiirg PE(x) = sup ZE(x) = E4(x), where &,(x):=lim inf &(x))

>0 rl0 x’eB,(x)
(8.79)
is the lower semicontinuous envelope of £. Moreover, setting
§1(x) = P16(x) ==1im& (x) = inf &(x), (8.80)
11 O<r<1

the function & is upper semicontinuous with values in [—o0, 1/2] and the
optimality properties stated in Theorem 6.3 d) yield

1 1
SV <& in RY, SV =& wiae in RY. (8.81)
By introducing the semigroup Z;& := —2,(—¢) and reversing time, we can
define B )
E = P21_(3v). (8.82)

By using the link with the Hopf-Lax semigroup in € given by Theorem 8.11,
the optimality of (¥1, ¥»), and arguing as in [50, Thm.7.36] it is not difficult
to check that

_ ' , 1 _
£ <& inRY, b0 = =—3v po-a.e. in RY. (8.83)
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Notice that the function x — — cos?(|x — x’| A 77/2) has bounded first and
second derivatives, so it is semiconcave. It follows that the map x +— & (x) is
semiconcave for every ¢t € (0, 1) and x — £,(x) is semiconvex.

Since > [ & dp, and t +— [ & dpu, are absolutely continuous in (0, 1),
Theorem 8.12(i) yields

1

d 1
5/& du, < §|u;|2 = 5H<2(uo, ), (8.84)

so that
b—a, -
Epdup — | adpa < TFK (o, (21)-

Passing to the limit first as @ | O and then as b 1 1 by monotone convergence
(notice that & < 1/2) and using optimality once again, we obtain

2 (0. 11) =/w1 duo+/lﬁzdm =2/a du —2/soduo

= 1l 2 dup — adug ).
a¢(1)filTl (/Sb b /S M)

(8.85)

By (8.84) it follows that

d 1 1

— dus = = |ul)? = =H (uo, in (0, 1). 8.86

3 [ & = Sl = SHC G ) .. 630
Reversing time, the analogous argument yields

d/éd L = S ) in (0, 1) (8.87)

_ = — = — , m . . .

dr t Ay 5 My 5 Mo, U1

Hence, we have proved that the maps ¢ > [& du, and ¢t +— [ & du, are
affine in [0, 1] and coincide at t = 0 and ¢ = 1, which implies that

/ gdu; = / &du, foreveryt € [0, 1]. (8.88)

Recalling (8.83), we deduce that the complement of the set Z; := {x € R4 .
£(x) = &(x)} is u,-negligible. Since & is Lipschitz and semiconcave (thus
everywhere superdifferentiable) for ¢ € (0, 1) and since &, is Lipschitz and
semiconvex (thus everywhere subdifferentiable), we conclude that &; is strictly
differentiable in Z;, and thus it satisfies conditions (i) and (ii).
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Since (iii) is guaranteed by Theorem 8.11 (R is a length space), it remains
to check (8.77). We apply the following Lemma 8.21 by observing that [3,
Prop.3.2,3.3] and Theorem 8.11 yield

lim sup 9,7&,(x") < limsup 9, & (x") < 8, & (x), liminf 8,7 (x") > 8,"& (x);

/
x'—x x'—x x'—x

since 9; & (x) = 0; & (x) pr-ae. we get (3,6)T = (8,6)- = 9, & p-ae.
and therefore (8.89) holds with equality.

Recalling that |D$,|Z(x) = |Dy& (x)]?* at every point of Z;, for every 0 <
a < b <1 wehave

b—a
2

8.89
(=)/ (8,*%‘+Dx$v+sw)dm
R9 % (a,b)

|‘K2(Mo,m)=/ ébdub—/ Eadpg
R4 R4

1
= [, (- 3D&P - 267+ Dk vt ) dus
R4 % (a,b)

[, (=30t = P =26 - qw? + S0P + gu?)a
= - = — v — - —w —|v —w
RY x (a,b) 2! ! 2 8 i

(8.66) 1 5 1, 1,
< - (51Ds8 = o + 26 — zw)?) dpr+ 5 [ P e
R4 % (a,b) 2 4 2 a

We deduce that v = D, & and w = 4& holds u;-a.e. O

The following lemma provides the “integration by parts” formulas that

where used in the sufficiency and necessity part of the previous proof of The-
orem 8.20. It is established by a suitable temporal and spatial smoothing,
involving a smooth kernel «, as in (8.58).
Lemma 8.21 Let n € ACIZOC((O, 1); M(RY), K)) satisfy the continuity
equation with reaction (8.63) governed by the field (v, w) € L?(RY4 x
(a,b), up) for every [a,b] C (0,1). If ¢ € Lip;,.((0, 1); Cp(R?)) satisfies
conditions (i, ii) of Theorem 8.20, then for all0 < a < b < 1 we have

[ (@& +Devrew)an = [ sdw - [ & du
R4 x (a,b) R4 R4

(8.89)
> [ (@&~ + Do+ w)dur
R9 % (a,b)

where (0,)%", (0,&)_ are defined in terms of a space convolution kernel Kk as
in (8.75).
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Proof We fix a compact subinterval [a, b] C (0, 1),b" € (b, 1), and set M :=
max;efq,p) e (R?) and L := Lip(&; R x [a, b']) + supga (4.7 €]

We regularize & by space convolution as in (8.58) by setting £° := & * «,
and perform a further regularization in time, viz.

58,1’( R 1 ! £ /
P= | gL @an 0<e < - (8.90)

Since £5'7 € C}7 (R? x [a, b]) and p is a weakly continuous solution to (8.63),
we can argue as in [2, Lem.8.1.2] and obtain, for every ¢ > 0 and 7 €
(0, b’ —b), the identity

/ £ dup — f £ Ay = / (6" +Dog™" v+ 6" Tw) dpy.
Rd R4 R9 x (a,b)

(8.91)
We first pass to the limit as © | 0, observing that £%% — &° uniformly
because £° is bounded and Lipschitz. Similarly, since D£*" = (D&?)" and
D&? is bounded and Lipschitz, we have DE®" — DE&® uniformly. Finally,
using

1 1
9" (x) = ;(Sfﬂ(X) —& () = /Rd ;(é‘fﬁ(x/) — & (e (x — x) dx’,

and the fact that N := {r € (0, 1) : Z9({x e R? : (x,1) ¢ D(3;&)}) > 0} is
Z1-negligible by the theorems of Rademacher and Fubini, an application of
Lebesgue’s Dominated Convergence Theorem yields

li% BISf’r(x)=8,§f(x) = ((0;&)*Kk:)(x) foreveryx € ]Rd, t € (a,b)\N.

(8.92)
Since R? x N is also j7-negligible, a further application of Lebesgue’s Dom-
inated Convergence Theorem yields

fR & dup — fR Endug = fR o (06" + D& v+ 6°w) dpsy. (8.93)
a X (a,

Now, (8.89) will be deduced by passing to the limit ¢ | 0 in (8.93) as fol-
lows. We observe that £¢ converges uniformly to & because & is bounded and
Lipschitz. Moreover, since lim, o D& (x) = D,&;(x) at every point x € R4
where &; is strictly differentiable, we obtain

ID,£°v| < LIv| € L'"R? x (a,b); p;) and
11301ng€ =D.& ps-ae inR? x [a, b],
£
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so that
li £.d = d ,
lim o §.pdla b fRd a.p Aita,b
/ (De&® v+ £°) dpus = / (D& v+ &) diy.
R4 % (a,b) R4 % (a,b)

Finally, since 9;&/ is also uniformly bounded, Fatou’s Lemma yields

lim sup / 0&  dpuy < / (&) dpur,

el0
R4 x (a,b) R4 % (a,b)
imint [ agtan = [ @s-au
&
R4 x (a,b) R4 x (a,b)
Thus, (8.89) follows from (8.93). m|

8.7 Contraction properties: convolution and Heat equation in
RCD(0, co) metric-measure spaces

We conclude this paper with a few applications concerning contraction prop-
erties of the HK distance. The first one concerns the behavior with respect
1-Lipschitz maps.

Lemma 8.22 Let (X, dy), (Y,dy) be separable metric spaces and let f :
X — Y be a 1-Lipschitz map. Then f; : M(X) — M(Y) is 1-Lipschitz
w.rt. HK:

HK(fapers frma) < HK(wi, po). (8.94)

Proof 1t is sufficient to observe that the map | : €x +— €y defined by

f([x, r]) :== [ f(x), r] satisfies dg, (f([x1, 71]), f([x2, r2])) < dg, ([x1, 1],
[x2, r2]) forevery [x;, ;] € €x. Thus f; is a contraction from (P2(Cx), Wdcx)

to (P2(Cy), Wdey)’ and hence f; satisfies (8.94). O

A second application concerns convolutions in R?.

Theorem 8.23 Let X = R? with the Euclidean distance and let v € M(RY).
Then the map i — u * v is contractive w.r.t. KK if v(RY) = 1 and, more
generally,
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H (11 % v, o % v) < vRDHC (ir, pa) for iy, pa € M(RY).  (8.95)

Proof The previous lemma shows that HK is invariant by isometries, in partic-
ular translations in R¢, so that

HK (1 % 8y, p2 % 8x) = HK (i1, o) for every 1, o € M(RY), x € RY.

By the subadditivity property (7.31), it follows that if v = ) ", iy, for some
ar > 0, then

H? (11 % v, o % v) = K2 (Zakm * Oy s Zakuz * Sxk)
k k

< Y aHC (% 8y, 1 # 8y
k

=Y arHC (1, m2) = vRDHC (1, pa).
k

The general case then follows by approximating v by a sequence of discrete
measure v,, converging to v in M(Rd) and observing that u; * v, — w; *v
weakly in M(R?). Since HK is weakly continuous by Theorem 7.15, we obtain
(8.95). O

An easy application of the previous result is the contraction property of
the (adjoint) Heat semigroup (P/");>0 in R4 with respect to HK. In fact, we
can prove a much more general result for the Heat flow in RCD(0, co) metric
measure spaces (X, d, m) [4,5]. It covers the case of the semigroups (P;);>0
generated by
(A) the Heat equation on a open convex domain  C R? with homogeneous
Neumann conditions

o = Au in Q2 x (0, 00), duu =0 onad2 x (0,00),

(B) the Heat equation on a complete Riemannian manifold (Md, g) with non-
negative Ricci curvature defined by

du = Agu in M9 x (0, 00),
where A, is the usual Laplace-Beltrami operator, and
(C) the Fokker-Planck equation in RY generated by the gradient of a convex

potentials V : R — R, viz.

du=Au—V-uDV) inRY x (0, ).
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Theorem 8.24 Let (X, d, m) be a complete and separable metric-measure
space with nonnegative Riemannian Ricci Curvature, i.e. satisfying the
RCD(0, 00) condition, and let (P)");>0 : M(X) — M(X) be the Heat semi-
group in the measure setting. Then

HK(P 1, Plpa) < HK(wr, p2) forall juy, o € M(X) and t > 0. (8.96)
Proof Recall that in RCD(0, oo) metric measure spaces the L?-gradient flow
of the Cheeger energy induces a symmetric Markov semigroup (P;);>0 in
L%(X,m) [4, Sect.6.1], which has a pointwise version satisfying the Feller
regularization property P;(B,(X)) C Lip,(X) for t > 0 and the estimate (cf.
[4, Thm. 6.2] or [5, Cor. 4.18])

IDx P f1*(x) < P,(IDx fI*)(x) for f € Lip,(X), x € X, £ > 0. (8.97)
Its adjoint (P;*);>0 coincides with the Kantorovich—Wasserstein gradient flow

in P>(X) of the Entropy Functional .% (-|m) where .% is induced by F(s) =
Ui(s) = slogs — s + 1 and defines a semigroup in M(X) by the formula

/ fd(P ) = / P, fdu forevery f € Bp(X) and u € M(X). (8.98)
X X

In order to prove (8.96) we use (8.54) (RCD-spaces satisfy the length property,
[4, Thm. 5.1]) and apply P; to a subsolution (¥4)sc[o,1] in clo, 17; Lip, (X))
of the Hamilton—Jacobi equation

1
doWo + Z|DXW|2 + Y2 <0 inX x(0,1). (8.99)

Since P; is a linear and continuous map from Lip, (X) to Lip, (X) the curve
0 — Yo = Pi(y) belongs to clo, 17; Lip,(X)). Now, (8.97) and the
Markov property yield

IDx P |*(x) < Pr(IDx Ve l?) (x),
(Prg)>(x) < P, (YD) (x) forx € X, 6 €[0,1], 1 > 0.

Thus, for every ¢ > 0 we obtain

1 .
doWo.r + Z|wa9,t|2 +y3, <0 inX x(0,1),
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and therefore
f Y1 d(PPy — / Yo d(PF) o
X X
=/ Py dpg —/ Podpo < HK (11, 120).
X X

We conclude by taking the supremum with respect to all the subsolutions of
(8.99) in C' ([0, 17; Lip, (X)) and applying (8.54). |
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A On the chronological development of our theory

In this section we give a brief account of the order in which we developed the
different parts of the theory. The beginning was the mostly formal work in [30]
on reaction-diffusion systems, where a distance on vectors u of densities over
a domain Q C R? was formally defined in the Benamou-Brenier sense via

|
d(uo, u1)? = inf/ / E, o Maitr(u) Er + &, - Kreace (1), dxdt
0o Ja

under the constraint of the continuity equation d;u; + V - (Maifr(u/) E;) =
Kreact(#;)&,. The central question was and still is the understanding of
diffusion equations with reactions in the gradient-flow form d,u = V -
(Mdiff(u)Véi}'(u)) — Kreact(®)8F (u), see [30, Sect.5.1].

It was natural to treat the scalar case first and to restrict to the case where
both mobility operator Migifr(#) and Kyeact(¢#) are linear in u. Only in that case
the formally derived system (1.29) for the geodesics (u;, &) decouples in the
sense that &; solves an Hamilton—Jacobi equation that does not depend on u.
Choosing Myifr(#) = ou and Kreae((#) = Bu with o, B > 0, the relevant
Hamilton—Jacobi equation reads

B

o 2 2
0:& + §|Dx§t| + Eft = 0.
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As in the other parts of this paper, we restrict to the case « = 1 and g = 4
subsequently, but refer to [30] for the general case. Thus, the conjectured
characterization (8.54) was first presented in Pisa at the Workshop “Optimal
Transportation and Applications” in November 2012.

During a visit of the second author in Pavia, the generalized Hopf—Lax for-
mula via the nonlinear convolution &7, (cf. (8.48)) was derived via the classical
method of characteristics. This led to the unsymmetric representation (1.26) for
HK. To symmetrize this relation we used that #2,&(x) = inf ®(£(y), |y—x|)
with ®(z, R) = %(1_M)’ where A(R) = cos? (R A (71/2)). Setting

142
Yo = —2&p and Y| = 2§ =22931, we have the equivalence

&= 2% <= U—=vo(x0)(1—y¥1(x1)) = A(lxo—x1]) for all x;.

Setting ¢; = — log(1—1;) we arrived at the cost function

—2log ( cos |xo—x1|) for |[xo—x1| < 7/2,
C(xp, x1) = —log A(|xo—x1]) = { g( ) . /
o0 otherwise,

for the first time and obtained the characterization (1.7), namely

HK (10, 111)* = D(pt0. i21) = sup { Z(go. @1l10. i11) : 9o ® @1 < C}.

It was then easy to dualize &, and the Logarithmic Entropy functional LET in
(1.20) was derived in July 2013.

While the existence of minimizers for LET (i, 1) = min & (y|uo, (1)
was easily obtained, it was not clear at all, why and how HK defined via
H? (o, ;1) = min & (| o, (1) generates a geodesic distance. The only thing
which could easily be checked was that the minimum was consistent with the
distance between two Dirac masses, which could easily be calculated via the
dynamic formulation.

So, in parallel we tried to develop the dynamic approach, which was not too
successful at the early stages. Only after realizing and exploiting the connection
to the cone distance in Summer and Autumn of 2013 we were able to connect
LET systematically with the dynamic approach. The crucial and surprising
observation was that optimal plans for & and lifts of measures u € M(X)
to measures A on the cone € could be identified by exploiting the optimality
conditions systematically. Corresponding results were presented in workshops
on Optimal Transport in Banff (June 2014) and Pisa (November 2014).

Already at the Banff workshop, the general structure of the primal and dual
Entropy-Transport problem as well as the homogeneous perspective formu-
lation were presented. Several examples and refinements where developed
afterwards. The most recent part from Summer 2015 concerns our Hamilton—

@ Springer



Optimal Entropy-Transport problems 1115

Jacobi equation in general metric spaces (X, d) and the induced cone € (cf.
Sect. 8.4) and the derivation of the geodesic equations in R? (cf. Sect. 8.6).
This last achievement now closes the circle, by showing that all the initial
steps, which were done on a formal level in 2012 and the first half of 2013,
have indeed a rigorous interpretation.
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