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Abstract. Different paleoclimate proxy records evidence re-
peated abrupt climate transitions during previous glacial in-
tervals. These transitions are thought to comprise abrupt
warming and increase in local precipitation over Greenland,
sudden reorganization of the Northern Hemisphere atmo-
spheric circulation, and retreat of sea ice in the North At-
lantic. The physical mechanism underlying these so-called
Dansgaard–Oeschger (DO) events remains debated. A recent
analysis of Greenland ice core proxy records found that tran-
sitions in Na+ concentrations and δ18O values are delayed
by about 1 decade with respect to corresponding transitions
in Ca2+ concentrations and in the annual layer thickness dur-
ing DO events. These delays are interpreted as a temporal lag
of sea-ice retreat and Greenland warming with respect to a
synoptic- and hemispheric-scale atmospheric reorganization
at the onset of DO events and may thereby help constrain
possible triggering mechanisms for the DO events. However,
the explanatory power of these results is limited by the uncer-
tainty of the transition onset detection in noisy proxy records.
Here, we extend previous work by testing the significance
of the reported lags with respect to the null hypothesis that
the proposed transition order is in fact not systematically
favored. If the detection uncertainties are averaged out, the
temporal delays in the δ18O and Na+ transitions with respect
to their counterparts in Ca2+ and the annual layer thickness
are indeed pairwise statistically significant. In contrast, un-
der rigorous propagation of uncertainty, three statistical tests
cannot provide evidence against the null hypothesis. We thus

confirm the previously reported tendency of delayed transi-
tions in the δ18O and Na+ concentration records. Yet, given
the uncertainties in the determination of the transition on-
sets, it cannot be decided whether these tendencies are truly
the imprint of a prescribed transition order or whether they
are due to chance. The analyzed set of DO transitions can
therefore not serve as evidence for systematic lead–lag re-
lationships between the transitions in the different proxies,
which in turn limits the power of the observed tendencies to
constrain possible physical causes of the DO events.

1 Introduction

In view of anthropogenic global warming, concerns have
been raised that several subsystems of the earth’s climate sys-
tem may undergo abrupt and fundamental state transitions
if temperatures exceed corresponding critical thresholds
(Lenton and Schellnhuber, 2007; Lenton et al., 2008, 2019).
Under sustained warming, the Atlantic Meridional Over-
turning Circulation (AMOC), the Amazon rainforest, or the
Greenland ice sheet are, among others, possible candidates
to abruptly transition to new equilibrium states that may dif-
fer strongly from their current states (Lenton et al., 2008).
Understanding the physical mechanisms behind abrupt shifts
in climatic subsystems is crucial for assessing the associated
risks and for defining safe operating spaces in terms of cumu-
lative greenhouse gas emissions. To date, empirical evidence
for abrupt climate transitions only comes from paleoclimate
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proxy records encoding climate variability in the long-term
past. First discovered in the δ18O records from Greenland
ice cores, the so-called Dansgaard–Oeschger (DO) events
are considered the archetype of past abrupt climate changes
(see Fig. 1) (Johnsen et al., 1992; Dansgaard et al., 1993;
Bond et al., 1993; North Greenland Ice Core Project mem-
bers, 2004). These events constitute a series of abrupt re-
gional warming transitions that punctuated the last and pre-
vious glacial intervals at millennial recurrence periods. Am-
plitudes of these decadal-scale temperature increases reach
from 5 to 16.5 ◦C over Greenland (Kindler et al., 2014; Hu-
ber et al., 2006; Landais et al., 2005). The abrupt warming
is followed by gradual cooling over centuries to millennia
before the climate abruptly transitions back to cold condi-
tions. The relatively cold (warm) intervals within the glacial
episodes have been termed Greenland stadials (GSs) (Green-
land interstadials (GIs)). GSs typically show millennial-scale
persistence before another abrupt warming starts a new cy-
cle (Rasmussen et al., 2014; Ditlevsen et al., 2007). Despite
being less pronounced, a global impact of DO events on cli-
mate and ecosystems is evident in many proxy records (e.g.
Moseley et al., 2020; Buizert et al., 2015; Lynch-Stieglitz,
2017; Kim et al., 2012; Fleitmann et al., 2009; Voelker, 2002;
Cheng et al., 2013).

Apart from δ18O, other Greenland ice core proxy records,
such as Ca2+ and Na+ concentrations as well as the annual
layer thickness λ, also bear the signature of DO cycles, as
can be seen in Fig. 1 (e.g., Erhardt et al., 2019; Fuhrer et al.,
1999; Ruth et al., 2007). While δ18O is interpreted as a qual-
itative proxy for ice core site temperatures (e.g. Gkinis et al.,
2014; Jouzel et al., 1997; Johnsen et al., 2001), changes in
Ca2+ concentrations – or equivalently dust – are believed to
reflect changes in the atmospheric circulation (Ruth et al.,
2007; Erhardt et al., 2019). Na+ concentration records indi-
cate past sea-salt aerosol concentrations and are thought to
negatively correlate with North Atlantic sea-ice cover (Er-
hardt et al., 2019; Schüpbach et al., 2018). The annual layer
thickness depends on past accumulation rates at the drilling
site and hence indicates local precipitation driven by synop-
tic circulation patterns (Erhardt et al., 2019). According to
this proxy record interpretation, DO events comprise not only
sudden warming but also a sudden increase in local precip-
itation amounts, retreat of the North Atlantic sea-ice cover,
and changes in hemispheric circulation patterns.

In the search for the mechanism(s) causing or triggering
DO events, several attempts have been made to deduce the
relative temporal order of these abrupt changes by analyz-
ing the phasing of corresponding abrupt shifts detected in
multi-proxy time series from Greenland ice cores (Erhardt
et al., 2019; Thomas et al., 2009; Steffensen et al., 2008; Ruth
et al., 2007). While Thomas et al. (2009) and Steffensen et al.
(2008) report delayed Greenland warming with respect to at-
mospheric changes for the onsets of GI-8 and GI-1 and the
Holocene, Ruth et al. (2007) find no systematic lead or lag
across the onsets of GI-1 to GI-24. However, the comprehen-

sive study conducted by Erhardt et al. (2019) concludes that,
on average, initial changes in both terrestrial dust aerosol
concentrations (Ca2+) and local precipitation (λ) have pre-
ceded the changes in local temperatures (δ18O) and sea-salt
aerosol concentrations (Na+) by roughly 1 decade at the on-
set of DO events during the last glacial cycle.

These observation-based studies are complemented by nu-
merous conceptual theories and modeling studies that ex-
plore a variety of mechanisms to explain the DO events.
Many studies emphasize the role of the AMOC in the emer-
gence of DO events (Broecker et al., 1985; Clark et al., 2002;
Ganopolski and Rahmstorf, 2001; Henry et al., 2016). In
this context, Vettoretti and Peltier (2018) identified a self-
sustained sea-salt oscillation mechanism to initiate transi-
tions between stadials and interstadials in a comprehensive
general circulation model (GCM) run, while Boers et al.
(2018) proposed a coupling between sea-ice growth, subsur-
face warming, and AMOC changes to explain the DO cycles.
Moreover, Li and Born (2019) draw attention to the subpolar
gyre, a sensitive region that features strong interactions be-
tween atmosphere, ocean, and sea ice. In line with the empir-
ical studies that suggest a delayed Greenland warming with
respect to atmospheric changes, Kleppin et al. (2015) and
Zhang et al. (2014) find DO-like transitions in GCM studies
triggered by an abrupt reorganization of atmospheric circula-
tion patterns.

Here, we refine the investigation of a potential pairwise
lead–lag relationship between the four climate proxies Ca2+,
Na+, δ18O, and the annual layer thickness λ at DO transition
onsets, as previously presented by Erhardt et al. (2019), by
rigorously taking into account the uncertainties of the DO
onset detection in the different proxy records. We use the
same data and the same probabilistic transition onset detec-
tion method as provided by Erhardt et al. (2019). The data
comprise piecewise high-resolution (7 years or higher) multi-
proxy time series around 23 major DO events from the later
half of the last glacial cycle, from the NEEM and the NGRIP
ice cores (Erhardt et al., 2019). The fact that high-frequency
internal climate variability blurs abrupt transitions limits the
ability to precisely detect their onset in the proxy data and
thereby constitutes the main obstacle for the statistical anal-
ysis of the succession of events. The method designed by
Erhardt et al. (2019) very conveniently takes this into ac-
count and instead of returning scalar estimators it quantifies
the transition onsets in terms of Bayesian posterior probabil-
ity densities that indicate the plausibility of a transition onset
at a certain time in view of the data. This gives rise to a set
of uncertain DO transition onset lags for each pair of proxies
under study, whose statistical interpretation is the goal of this
study.

While Erhardt et al. (2019) report transition onsets, mid-
points, and endpoints, we restrict our investigation to the
transition onset points, since we consider the leads and lags
between the initial changes in the different proxy records to
be the relevant quantity for a potential identification of the
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Figure 1. Time series of δ18O (blue), annual layer thickness λ (cyan), Ca2+ (orange), and Na+ (green) from the NGRIP ice core, together
with time series of Ca2+ (red) and Na+ (light green) from the NEEM ice core on the GICC05 timescale in ky b2k, at 10-year resolution.
Light blue vertical lines mark the timings of major DO events. All time series are retrieved from Erhardt et al. (2019), and for the DO event
timings and Greenland interstadial (GI) notation we followed Rasmussen et al. (2014). Originally, the δ18O record was published by NGRIP
project members (2004) as 50-year mean values and later at higher resolution (5 cm) as a Supplement to Gkinis et al. (2014). The GICC05
age scale for the NGRIP ice core was compiled by Vinther et al. (2006), Rasmussen et al. (2006), Andersen et al. (2006), and Svensson et al.
(2008). For the NEEM ice core, the GICC05 presented by Rasmussen et al. (2013) is used here.

physical trigger of the DO events. We extend the previous
work by interpreting the sets of uncertain lags as samples
generated in random experiments from corresponding un-
known populations – each proxy pair is associated with its
own population of lags. This allows for the investigation of
whether the reported average lags (Erhardt et al., 2019) are
a systematic feature or whether they might have emerged by
chance. In order to review the statistical evidence for poten-
tial systematic lags, we formalize the notion of a “systematic
lag”: we call a lag systematic if it is enshrined in the random
experiment in form of a population mean different from 0.
Samples generated from such a population with a non-zero
mean would systematically (and not by chance) exhibit sam-
ple means different from 0. Accordingly, we formulate the
null hypothesis that the proposed transition sequence is in
fact not physically favored. In mathematical terms this corre-
sponds to an underlying population of lags with a mean equal
to 0 or with reversed sign with respect to the observed lags.
A rejection of this null hypothesis would statistically cor-
roborate the interpretation that transitions in δ18O and Na+

systematically lag their counterparts in λ and Ca2+. On the
other hand, acceptance of the hypothesis would prevent us
from ruling out that the observed lag tendencies are a coinci-
dence and not a systematic feature. We have identified three
different statistical tests suitable for this task, which all rely
on slightly different assumptions. Therefore, in combination
they yield a robust assessment of the observations. Most im-

portantly, we propagate the uncertainties that arise from the
transition onset detection to the level of p values of the dif-
ferent tests.

We will show that, if the uncertainties are averaged out at
the level of the individual transition onset lags – thus ignoring
the uncertainties in the onset detection – all tests indicate sta-
tistical significance (at 5 % confidence level) of the observed
tendencies toward delayed δ18O and Na+ transition onsets
with respect to the corresponding onsets in λ and Ca2+. Rig-
orous uncertainty propagation, however, yields substantial
probabilities for the observed transition onset lags to be non-
significant with respect to the null hypothesis. We thus argue
that the uncertainties in the transition onset detection are too
large to infer a population mean different from 0 in the direc-
tion of the observed tendencies. In turn, this prevents the at-
tribution of the observed lead–lag relations to a fundamental
mechanism underlying the DO events. We discuss the differ-
ence between our approach and the one followed by Erhardt
et al. (2019) in detail below.

In addition to the quantitative uncertainty discussed here,
there is always qualitative uncertainty about the interpreta-
tion of climate proxies. Clearly, there is no one-to-one map-
ping between proxy variables and the climate variables they
are assumed to represent. To give an example, changes in the
atmospheric circulation will simultaneously impact the trans-
port efficiency of sea-salt aerosols to Greenland. Schüpbach
et al. (2018) discuss in detail the entanglement of transport
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efficiency changes and source emission changes for aerosol
proxies measured in Greenland ice cores. We restrict our
analysis to those proxy pairs that have been found to show
decadal-scale time lags by Erhardt et al. (2019) and leave
aside those pairs which show almost simultaneous transition
onsets according to Erhardt et al. (2019).

This article is structured as follows: first, the data used for
the study are described. Second, we introduce our methodol-
ogy in general terms, in order to facilitate potential adapta-
tion to structurally similar problems. Within this section, we
pay special attention to clarifying the differences between the
approaches chosen in this study and by Erhardt et al. (2019).
This is followed by the presentation of our results including a
comparison to previous results. In the subsequent discussion,
we give a statistical interpretation and explain how the two
lines of inference lead to different conclusions. The last sec-
tion summarizes the key conclusions that can be drawn from
our analysis.

2 Data

In conjunction with their study, Erhardt et al. (2019) pub-
lished 23 highly resolved time series for Ca2+ and Na+ con-
centrations from the NGRIP and NEEM ice cores for time
intervals of 250 to 500 years centered around DO events
from the later half of the last glacial. The data set covers
all major interstadial onsets from GI-17.2 to the Holocene,
as determined by Rasmussen et al. (2014). The time reso-
lution decreases from 2 to 4 years with increasing depth in
the ice cores due to the thinning of the core. In addition, Er-
hardt et al. (2019) derived the annual layer thickness from
the NGRIP aerosol data and published these records likewise
for the time intervals described above. Furthermore, contin-
uous 10-year resolution versions of the proxy records were
published, which cover the period 60–10kyrBP, shown in
Fig. 1 (Erhardt et al., 2019). Finally, the NGRIP δ18O record
at 5cm resolution (corresponding to 4–7 years for the re-
spective time windows) (North Greenland Ice Core Project
members, 2004) completes the data set used in the study by
Erhardt et al. (2019) and correspondingly in our study.

While Ca2+ and Na+ mass concentrations are interpreted
as indicators of the past state of the atmospheric large-scale
circulation and the past North Atlantic sea-ice extent, respec-
tively, the annual layer thickness and δ18O records give qual-
itative measures of the local precipitation and temperature,
respectively (Erhardt et al., 2019, and references therein).
The high resolution and the shared origin of the time series
make them ideally suited to study the succession of events at
the beginning of DO transitions. On top of that, the aerosol
data have been co-registered in a continuous flow analysis al-
lowing for the highest possible comparability (Erhardt et al.,
2019).

For their analysis, Erhardt et al. (2019) only considered
time series around DO events that do not suffer from sub-

stantial data gaps. For the sake of comparability, we adopt
their selection. From Fig. 2 it can be inferred which proxy
records around which DO events have been included in this
study. For details on the data and the proxy interpretations
we refer to Erhardt et al. (2019) and the manifold references
therein.

3 Methods

We first briefly review the probabilistic method that we
adopted from Erhardt et al. (2019) in order to estimate the
transition onset time t0 of each proxy variable for each
DO event comprised in the data (see Fig. 3). The Bayesian
method accounts for the uncertainty inherent to the determi-
nation of t0 by returning probability densities ρT0 (t0) instead
of scalar estimators. From these distributions, corresponding
probability distributions for the pairwise time lags between
two proxies can be derived for all DO events. Second, a sta-
tistical perspective on the series of DO events is established.
For a given proxy pair, the set of transition onset lags from
the different DO events is treated as a sample of observations
from an unknown underlying population. In this very com-
mon setup, naturally one would use hypothesis tests to con-
strain the population. In particular, the question of whether
any lag tendencies observed in the data are a systematic fea-
ture or whether they have instead occurred by chance can
be assessed by testing a convenient null hypothesis. How-
ever, the particularity that the individual observations that
comprise the sample are themselves subject to uncertainty
requires a generalization of the hypothesis tests. We propa-
gate the uncertainty of the transition onset timings to the p
values of the tests and hence obtain uncertain p values in
terms of probability densities (see Figs. 4 and 7). While in
common hypothesis tests the scalar p value is compared to
a predefined significance level, here we propose two criteria
to project the p-value distribution onto the binary decision
between acceptance and rejection of the null hypothesis. Af-
ter this general characterization of the statistical problem, we
introduce the tests which we employ for the analysis. Finally,
we compare our approach to the one followed by Erhardt
et al. (2019).

3.1 Transition onset detection

Consider a fluctuating time series D = {x(ti)}i=1,...,n with n
data points, which includes one abrupt transition from one
level of values to another, as shown in Fig. 3b. For this set-
ting, Erhardt et al. (2019) have designed a method to estimate
the transition onset time t0 in a probabilistic, Bayesian sense.
The application of the method to NGRIP Ca2+ and Na+ con-
centration data around the onset of GI-12c is illustrated in
Fig. 3. Instead of a point estimate, their method returns a so-
called posterior probability density that indicates the plausi-
bility of the respective onset time in view of the data (see
Fig. 3a). For technical reasons, this probability density can-
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Figure 2. DO events (Greenland interstadial onsets) for which Erhardt et al. (2019) provide high-resolution proxy data (Ca2+,Na+, and
λ) for windows centered around the transitions. δ18O data for the corresponding windows were retrieved from continuous δ18O time series
measured in 5 cm steps in the NGRIP ice core (see Fig. 1). The posterior probability densities for the transition onsets with respect to the
timing of the DO events according to Rasmussen et al. (2014) are shown in arbitrary units for all proxies. They were recalculated using the
data and the method provided by Erhardt et al. (2019). The uncertain transition onsets are only shown for those transitions investigated in
this study – the selection is adopted from Erhardt et al. (2019) to guarantee comparability.

Figure 3. (a) Posterior probability distribution ρT0 (t0) for the onset
of NGRIP Ca2+ and Na+ transitions associated with the onset of
GI-12c, derived from Ca2+ (orange) and Na+ (green) values around
the GI-12c onset at 2-year resolution, using the probabilistic ramp-
fitting shown in (b). The black lines in (b) indicate the expected
ramp, i.e., the average over all ramps determined by the posterior
distributions of the ramp parameters. The grey shaded area indi-
cates the 5th–95th percentiles of these ramps. (c) Histogram sam-
pled from the posterior distribution for the transition onset lag 1t
between the two proxies (violet), together with the corresponding
Gaussian kernel density estimate (KDE, blue).

not be derived in form of a continuous function but only in
form of a representative set of values generated from it by
means of a Markov chain Monte Carlo (MCMC) algorithm
(Goodman and Weare, 2010).

The key idea is to model the transition as a linear ramp
L(ti) perturbed by red noise ε(ti), which is an autoregressive
process of first order:

y(ti)=


y0 ti ≤ t0

y0+1y
ti−t0
τ

t0 < ti < t0+ τ

y0+1y t ≥ ti + τ︸ ︷︷ ︸
liner ramp L(ti )

+ ε(ti)︸︷︷︸
AR(1)σ,α

. (1)

This model is fully determined by the four ramp parameters
{t0,y0,τ,1y}, the amplitude σ , and the autoregressive coef-
ficient α of the AR(1) process. For a given configuration θ of
these six parameters, the probability of this stochastic model
to exactly reproduce the data D reads

π (D|θ ) := π (y(ti)= x(ti)∀i ∈ {1, . . .,n}|θ )

=
1(√

2πσ 2
)n n∏

i=1
exp

(
−

1
2

(δi −αδi−1)2

σ 2

)
, (2)

where δi = x(ti)−L(ti) denotes the residuals between the lin-
ear ramp and the observations and δ0 = 0. Bayes’ theorem
immediately yields the posterior probability density for the
model parameters π (θ |D) upon introduction of convenient

https://doi.org/10.5194/cp-17-1751-2021 Clim. Past, 17, 1751–1775, 2021



1756 K. Riechers and N. Boers: Uncertainties of DO event phasing

Figure 4. (a) Schematic representation of an uncertain observation of a sample (purple) generated from a population (blue) in a random
experiment. The blue line indicates the probability density of the generating population PX . Green lines indicate the true value of a sample
x = (x1, . . .,x6) realized from PX . If the observational process involves uncertainty, a second level of randomness is introduced and the
values can at best be approximated by probability density functions depicted in purple. These uncertainty distributions indicate the informed
estimate of the observer about how likely a certain value ŷi for the estimator Ŷi is to coincide with the true value xi . Depending on the
measurement process, the uncertainty distributions of the sample members may all exhibit individual shapes or they may share a common
one. (b) Distribution of the uncertain test statistic 8̂= φ(Ŷ ) derived from the uncertain sample (purple) together with the corresponding
value derived from the true sample (green). In olive, the distribution of 8 under the null hypothesis is shown. The dotted red line separates
the rejection region (left) from the acceptance region in a one-sided test setup. (c) Distribution of the uncertain p value corresponding to the
uncertain sample. In green, the p value of the certain sample is marked. The red line indicates the significance level α.

priors π (θ ):

π (θ |D)=
π (D|θ ) π (θ )

π (D)
, (3)

where the normalization constant π (D)=
∫
π (D|θ )π (θ )dθ

is the a priori probability of the observations. Since the pa-
rameter space is six-dimensional, Eq. (3) cannot be evaluated
explicitly on a grid with reasonably fine spacing. Instead,
an MCMC algorithm is used to sample a representative set
{θ1, . . .,θm} of parameter configurations from the posterior
distribution that approximates the continuous distribution in
the sense that for smooth functions f∫
f (θ )ρ2(θ ) dθ '

∫
f (θ )ρ2(θ ) dθ =

1
m

m∑
j=1

f (θ j ), (4)

where the notion of a so-called empirical distribution
ρ2(θ )= 1

m

∑m
j=1δ(θ − θ j ) has been used. The use of the

MCMC algorithm further allows us to omit the normaliza-
tion constant π (D). The number m of individuals comprised
in the MCMC sample must be chosen large enough to ensure
a good approximation in Eq. (4). The marginal distribution
for the parameter t0 relevant for our study can be obtained by
integration over the remaining parameters θ∗:

ρT0|D(t0)=
∫
π (θ |D) dθ∗, (5)

which reads

ρT0 (t0)=
1
m

m∑
j=1

δ(t0− t0,j ) (6)

in terms of the empirical density induced by the MCMC sam-
ple.

Given the probability densities for the transition onsets of
two proxy variables p and q at a chosen DO event i, the prob-
ability density for the lag 1tp,qi = t

p,i

0 − t
q,i

0 between them
reads

ρ1T p,qi

(
1t

p,q
i

)
=

∫∫
δ
(
t
p,i

0 − t
q,i

0 −1t
p,q
i

)
ρ
p,i
T0

(
t
p,i

0

)
× ρ

q,i
T0

(
t
q,i

0

)
dtp,i0 dtq,i0 . (7)

1T
p,q
i was chosen to denote the time lag which inher-

its the uncertainty from the transition onset detection and
must thus mathematically be treated as a random variable.
1t

p,q
i denotes a potential value that 1T p,qi may assume.

The set of probability densities {ρ1T p,qi
(1tp,qi )}i derived

from the different DO events conveniently describes the ran-
dom vector of uncertain DO onset lag observations1T p,q =
(1T p,q1 , . . .,1T

p,q
n ) for the (p,q) proxy pair in the sense that

ρ1T p,q (1tp,q )=
n∏
i=1
ρ1T p,qi

(
1t

p,q
i

)
. (8)
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Note that the entries 1T p,qi of the random vector 1T p,q are
independent from each other and follow their individual dis-
tributions ρ1T p,qi

(1tp,qi ), such that the joint distribution is
given by the product of the individual distributions. A cross-
core comparison is not possible because the relative dating
uncertainties between the cores exceed the magnitude of the
potential time lags.

For the sake of simplicity, we omit the difference between
the posterior density distribution and the empirical poste-
rior density distribution induced by an MCMC sample. It
is shown in Appendix A that all methods can be equiva-
lently formulated in terms of the empirical posterior density
distribution. The numerical computations themselves have
of course been carried out with the empirical densities ob-
tained from the MCMC sampler. Appendix B discusses the
construction of numerically manageable empirical densities
ρ1T p,q (1tp,q ). Since a substantial reduction in the available
MCMC sampled data is required, a control group of alter-
native realizations of ρ1T p,q (1tp,q ) is introduced. The high
agreement of the results obtained from the control group with
the results discussed in the main text confirms the validity of
the initial ρ1T p,q (1tp,q ) construction.

In the following, all probability densities that represent un-
certainties with origin in the transition onset observation will
be referred to as uncertainty distributions or uncertainty den-
sities. This helps to distinguish them from probability dis-
tributions that generically characterize random experiments.
The random variables described by uncertainty distributions
will be termed uncertain variables and will be marked with
a hat. Generally, we denote all random (uncertain) variables
by capital letters X (X̂), while realizations will be denoted
with lower-case letters x (x̂). Furthermore, distributions will
always be subscripted with the random variables that they
characterize, e.g., ρX(x) (ρ

X̂
(x̂)). For the sake of readabil-

ity, sometimes we omit the index p,q when it is clear that a
quantity refers to a pair of proxies (p,q).

3.2 Statistical setting

Despite their diversity in terms of temperature amplitude, du-
ration, and frequency across the last glacial, the reoccurring
patterns and their common manifestation in different prox-
ies suggest that the DO events follow a common physical
mechanism. If this assumption holds true, this mechanism
prescribes a fixed pattern of causes and effects for all DO
events – at least on the scale of interactions between climatic
subsystems represented by the proxies under study. However,
natural variability randomly delays or advances the individ-
ual parts of the event chain of the DO mechanism in each
single realization, without violating the mechanistic causal-
ity. The observed pairwise transition onset lags can thus be
regarded as realizations of independent and identically dis-
tributed (i.i.d.) random variables generated in a random ex-
periment (�,F ,Pp,q1T ) on the sample space �= R. Here, F
is a σ algebra defined on � and may be taken as the Borel

algebra. Pp,q1T – the so-called population – denotes a proba-
bility measure with respect to F and fully characterizes the
random lag1T p,q between the proxies p and q. Importantly,
if any of the proxy variables investigated here was to repre-
sent a climate variable associated with the DO event trigger,
we would expect an advanced initial change in the record of
this proxy with respect to other proxies at DO events. In turn,
a pronounced delay of a proxy record’s transition onset con-
tradicts the assumption that the proxy represents a climate
variable associated with the trigger. Therefore, the identifi-
cation of leads and lags between the transition onsets in the
individual proxy time series may help in the search for the
trigger of the DO events. Here, we formalize the investiga-
tion of systematic lead–lag relationships between the proxy
transitions. The random experiment framework allows us to
relate a suspected transition sequence to a mean of the gen-
erating population Pp,q1T differing from 0 in the according
direction. Evidence for the suspected sequence can then be
obtained by testing the null hypothesis of a population mean
equal to 0 or with a sign opposed to the suspected lag di-
rection. If this null hypothesis can be rejected based on the
observations, this would constitute a strong indication of a
systematic, physical lag and would hence potentially yield
valuable information on the search for the mechanism(s) and
trigger(s) of the DO transitions.

According to the data selection by Erhardt et al. (2019)
as explained in Sect. 2, for all studied pairs of proxies
we compute either 16 or 20 transition lags from the dif-
ferent DO events, which we interpret as samples 1tp,q =
(1tp,q1 , . . .,1t

p,q
n ) from their respective populations Pp,q1T .

Studying these samples, Erhardt et al. (2019) deduced a
decadal-scale delay in the transition onsets in Na+ and δ18O
records with respect to their counterparts in Ca2+ and λ. In
order to test if the data support evidence for this lag to be sys-
tematic in a statistical sense, the notion of a “systematic lag”
first needs to be formalized mathematically. We argue that a
physical process that systematically delays one of the proxy
variable transitions with respect to another must in the ran-
dom experiment framework be associated with a population
that exhibits a mean different from 0: µp,q = E(1T p,q ) 6= 0.
The outcomes of such a random experiment will systemati-
cally exhibit sample means different from 0 in accordance
with the population mean. Samples generated from a pop-
ulation with a mean equal to 0 may as well yield sample
means that strongly differ from 0. However, their occur-
rence is not systematic but rather a coincidence. Given a lim-
ited number of observations, hypothesis tests provide a con-
sistent yet not unambiguous way to distinguish systematic
from random features. If the mean of the observed sample
up,q (1tp,q )= 1

n

∑
1t

p,q
i indicates an apparent lag between

the proxies p and q, testing whether the sample statistically
contradicts a population that favors no (µp,q = 0) or the op-
posite lag (or sign(µp,q ) 6= sign(up,q )) can provide evidence
at the significance level α for the observed mean lag to be
systematic in the sense that sign(µp,q )= sign(up,q ). How-
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ever, as long as the null hypothesis cannot be rejected, the
observed average sample lag cannot be regarded as statistical
evidence for a systematic lag.

Before we introduce the tests deployed for this study, we
discuss the particularity that the individual observations of
the i.i.d. variables that comprise our samples are themselves
subject to uncertainty and hence are represented by probabil-
ity densities instead of scalar values. The common literature
on hypothesis tests assumes that an observation of a random
variable yields a scalar value. Given a sample of n scalar ob-
servations

x = (x1,x2, . . .,xn) , (9)

the application of hypothesis tests to the sample is in gen-
eral straight forward and has been abundantly discussed (e.g.
Lehmann and Romano, 2006). In short, a test statistic φx =
φ(x) is computed from the observed sample, where

φ : Rn→ R,x 7−→ φ(x) (10)

denotes the mapping from the space of n-dimensional sam-
ples to the space of the test statistic and φx denotes the ex-
plicit value of the function when applied to the observed sam-
ple x. Subsequently, integration of the so-called null distribu-
tion over all values φ′, which under the null hypothesis H0
are more extreme than the observed φx , yields the test’s p
value. In this study, a hypothesis on the lower limit of a pa-
rameter will be tested. In this one-sided left-tailed application
of hypothesis testing, the p value explicitly reads

px =

φx∫
−∞

ρ0
8(φ′) dφ′, (11)

which defines the mapping

p : R→ [0,1],φx 7−→ p(φx)= px . (12)

Analogous expressions may be given for one-sided right-
tailed and two-sided tests. The null distribution ρ0

8(φ′) is the
theoretical distribution of the random test statistic 8= φ(X)
under the assumption that the null hypothesis on the popula-
tion PX holds true. If px is less than a predefined significance
level α, the observed sample x is said to contradict the null
hypothesis at the significance level α, and the null hypothesis
should be rejected.

In contrast to this setting, the DO transition onset lags
1t

p,q
i between the proxies p and q, which are thought to

have been generated from the population Pp,q1T , are observed
with uncertainty. In our case, the entries in the vector of
observations are uncertain variables themselves, which are
characterized by the previously introduced uncertainty dis-
tributions ρ

1T̂
p,q
i

(1t̂p,qi ). Figure 4a illustrates this situation:
from an underlying population PX a sample x = (x1, . . .,x6)
is realized, with xi denoting the true values of the individual

realizations. However, the exact value of xi cannot be mea-
sured precisely due to measurement uncertainties. Instead,
an estimator Ŷi is introduced together with the uncertainty
distribution ρ

Ŷi
(ŷi) that expresses the observer’s belief about

how likely a specific value ŷi for the estimator Ŷi is to agree
with the true value xi . The Ŷi correspond to the 1T̂ p,qi . For
the xi there is no direct correspondence in the problem at
hand because this quantity cannot be accessed in practice and
is thus not denoted explicitly. We call the vector of estima-
tors Ŷ = (Ŷ1, . . ., Ŷn) an uncertain sample in the following.
Omitting the (p,q) notation, we denote an uncertain sample
of time lags as

1T̂ =
(
1T̂1,1T̂2, . . .,1T̂n

)
, (13a)

with

ρ
1T̂

(1t̂)=
n∏
i=1
ρ
1T̂i

(1t̂i). (13b)

Note that the uncertainty represented by the uncertain sam-
ple originates from the observation process – the sample no
longer carries the generic randomness of the population P1T
it was generated from. The 1T̂i are no longer identically but
yet independently distributed.

A simplistic approach to test hypotheses on an uncertain
sample would be to average over the uncertainty distribu-
tion and subsequently apply the test to the resulting expected
sample

E(1T̂ )=
(

E(1T̂1), . . .,E(1T̂n)
)

=

(∫
1t̂1 ρ1T̂1

(1t̂1) d1t̂1, . . .,∫
1t̂n ρ1T̂n

(1t̂n) d1t̂n

)
. (14)

Averaging out uncertainties, however, essentially implies that
the uncertainties are ignored and is thus always associated
with a loss of information. The need for a more thorough
treatment, with proper propagation of the uncertainties, may
be illustrated by a simple consideration. Assume that a ran-
dom variable X can be observed at a given precision σobs,
where σobs may be interpreted as the typical width of the
corresponding uncertainty distribution. For any finite num-
ber of observations of X, the measurement uncertainty lim-
its the ability to infer properties of the population. For ex-
ample, one cannot distinguish between potential candidates
µ0 and µ1 for the population mean, whose difference 1µ=
|µ0−µ1| is a lot smaller than the observational precision,
unless the number of observations tends to infinity. If uncer-
tainties are averaged out, testing H0 : µ= µ0 against the al-
ternative H1 : µ= µ1 can eventually still yield significance,
even in the case where |µ0−µ1| � σobs. For relatively small
sample sizes, such an attested significance would be statisti-
cally meaningless. The uncertainties in the individual mea-
surements considered here are on the order of a few decades,
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while the proposed size of the investigated time lag is roughly
1 decade. In combination with the relatively small sample
sizes of either 16 or 20 events, the scales involved in the anal-
ysis require a suitable treatment of the measurement uncer-
tainties.

The uncertainty propagation relies on the fact that apply-
ing a function f : R→ R to a real valued random (uncer-
tain) variable X yields a new random (uncertain) variable
G= f (X), which is distributed according to

ρG(g)=
∫
δ (f (x)− g) ρX(x) dx. (15)

Analogously, the uncertain test statistic 8̂= φ(1T̂ ) follows
the distribution

ρ
8̂

(φ̂)=
∫
δ(φ(1t̂)− φ̂) ρ

1T̂
(1t̂) d1t̂ . (16)

Repeated application of Eq. (15) yields the uncertainty dis-
tribution of a given test’s p value P̂ = p(φ(1T̂ )):

ρ
P̂

(p̂) =
∫
δ
(
p(φ̂)− p̂

)
ρ
8̂

(φ̂) dφ̂

=

∫ ∫
δ
(
p(φ̂)− p̂

)
δ
(
φ(1t̂)− φ̂

)
× ρ

1T̂
(1t̂) d1t̂ dφ̂

=

∫
δ
(
p(φ(1t̂))− p̂

)
d1t̂ . (17)

In the example shown in Fig. 4 the initial uncertainties in
the observations translate into an uncertain p value that fea-
tures both probability for significance and probability for
non-significance. This illustrates the need for a criterion to
project the uncertain p value onto a binary decision space
comprised of rejection and acceptance of the null hypothe-
sis. We propose to consider the following criteria to facilitate
an informed decision:

– The hypothesis shall be rejected at the significance level
α if and only if the expected p value is less than α, that
is

1∫
0

p̂ ρ
P̂

(p̂) dp̂ < α . (18)

– The hypothesis shall be rejected at the significance level
α if and only if the probability of p to be less than α is
greater than a predefined threshold η (we propose η =
90%), that is

π (P̂ < α)=

α∫
0

ρ
P̂

(p̂) dp̂ > η . (19)

While the p value of a certain sample indicates its extreme-
ness with respect to the null distribution, the expected p value
may be regarded as a measure of the uncertain sample’s ex-
tremeness. Given the measurement uncertainty, the quantity
π (P̂ < α) constitutes an informed assessment of how likely
or plausible the true value of the measured sample is to be
statistically significant with respect to the null hypothesis.
Thus, the first criterion assesses how “strongly” the uncer-
tain sample contradicts the null hypothesis, while the second
criterion evaluates the likelihood of the uncertain sample to
contradict the null hypothesis. The choice of η is arbitrary
and may be tailored to the specific circumstances of the test.
In some situations, one might want to reject the null hypoth-
esis only in the case of a high probability of significance and
therefore choose a large value for η – e.g., when mistakenly
attested significance is associated with high costs. In other
situations, even small probabilities for significance may be
important, e.g., if a significant test result would be associ-
ated with high costs or with high risks. We propose to assess
the two criteria in combination. In the case of them not yield-
ing the same result, the weighing between the criteria must
be adapted to the statistical problem at hand.

3.3 Hypothesis tests

We have introduced the notion of uncertain samples and its
consequences for the application of hypothesis tests. Here,
we briefly introduce the tests used to test our null hypothe-
sis that the observed tendency for delayed transition onsets
in Na+ and δ18O with respect to Ca2+ and λ has occurred
by chance and that the corresponding populations Pp,q1T that
characterize the pairwise random lags 1T p,q in fact do not
favor the tentative transition orders apparent from the obser-
vations. Mathematically, this can be formulated as follows:

– Let ρp,q1T (1t) be the probability density associated with
the population of DO transition onset lags P1tp,q be-
tween the proxy variables p and q and let the ob-
servations 1T̂ p,q suggest a delayed transition of the
proxy q – that is, the corresponding uncertainty dis-
tributions ρ

1T̂
p,q
i

(1t̂p,qi ) indicate high probabilities for

negative 1T̂ p,qi across the sample according to Eq. (7).
We then test the hypothesisH0: The mean value µp,q =∫
ρ
p,q
1T (1t) d1t of the population Pp,q1T is greater than

or equal to zero.

We identified three tests that are suited for this task, namely
the t test, the Wilcoxon signed-rank (WSR) test, and a boot-
strap test. The WSR and the t test are typically formulated in
terms of paired observation {xi,yi} that give rise to a sample
of differences {di = xi − yi} which correspond to the time
lags {1tp,qi } of different DO events (Rice, 2007; Lehmann
and Romano, 2006, e.g.). The null distributions of the tests
rely on slightly different assumptions regarding the popula-
tions. Since we cannot guarantee the compliance of these as-
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sumptions, we apply the tests in combination to obtain a ro-
bust assessment.

3.3.1 t test

The t test (Student, 1908) relies on the assumption that the
population of differences PD is normally distributed with
mean µ and standard deviation σ . For a random sample
D = (D1, . . .,Dn) the test statistic

Z(D)=
U (D)−µ
S(D)/

√
n

(20)

follows a t distribution tn−1(z) with n−1 degrees of freedom.
Here, U = 1

n

∑
Di is the sample mean and S = 1

n−1
∑

(U −
Di)2 is the samples’ standard deviation. This allows us to
test whether an observed sample d = (d1, . . .,dn) contradicts
a hypothesis on the mean µ. To compute the p value for the
hypothesis H0 : µ≥ 0 (left-handed application) the null dis-
tribution is integrated from −∞ to the observed value z(d):

pz(z(d))=

z(d)∫
−∞

tn−1(z′)dz′. (21)

The resulting p value must then be compared to the prede-
fined significance level α.

The t test can be generalized for application to an uncer-
tain sample of the form1T̂ = (1T̂1, . . .,1T̂n) as follows: let
ρ
1T̂

(1t̂) denote the uncertainty distribution of1T̂ . Then ac-
cording to Eq. (15) the distribution of the uncertain statistic
Ẑ(1T̂ ) reads

ρ
Ẑ

(ẑ)=
∫
δ

(
u(1t̂)

s(1t̂)/
√
n
− ẑ

)
ρ
1T̂

(1t̂) d1t̂ . (22)

Finally, the distribution of the uncertain p value may again
be computed according to Eq. (15)

ρ
P̂z

(p̂z) =
∫
δ
(
pz(ẑ)− p̂z

)
ρ
Ẑ

(ẑ) dẑ

=

∫
δ

 ẑ∫
−∞

tn−1(z) dz− p̂z

 ρ
Ẑ

(ẑ) dẑ (23)

and then be evaluated according to the two criteria formu-
lated above.

3.3.2 Wilcoxon signed rank

Compared to the t test, the WSR test (Wilcoxon, 1945) al-
lows us to relax the assumption of normality imposed on the
generating population PD and replaces it by the weaker as-
sumption of symmetry with respect to its mean µ in order to

test the null hypothesis H0 : µ≥ 0. The test statistic W for
this test is defined as

W (D)=
n∑
i=1

R(|Di |) 2(Di), (24)

where R(|Di |) denotes the rank of |Di | within the sorted
set of the absolute values of differences {|Di |}. The Heavi-
side function 2(Di) guarantees that exclusively Di > 0 val-
ues are summed. The derivation of the null distribution is
a purely combinatorial problem and its explicit form can be
found in lookup tables. BecauseW ∈ N[0,n(n+1)/2] we denote
the null distribution by P0

W (w) to signal that this is not a con-
tinuous density. Explicitly, the null distribution can be de-
rived as follows: first, the assumption of symmetry around 0
(for the hypothesis H0 : µ≥ 0, the relevant null distribution
builds on µ= 0) guarantees that the chance forDi to be pos-
itive is equal to 1

2 . Hence, the number of positive outcomesm
follows a symmetric binomial distribution π (m)=

(
n
m

)
( 1

2 )n.
For m positive observations, there are

(
n
m

)
different sets of

ranks {r1, . . ., rm} that they may assume and which are again,
due to the symmetry of PD , equally likely. Hence, for a given
number of positive outcomes m the probability to obtain a
test statistic w is given by the share of those

(
n
m

)
config-

urations that yield a rank sum equal to w. Summing these
probabilities over all possible values of m yields the null dis-
tribution for the test statistic w.

For a given sample d we test the hypothesis H0 : µ≥ 0 by
computing the corresponding one-sided p value pw, which is
given by the cumulative probability that the null distribution
assigns to w′ values smaller than the observed w(d):

pw(w(d))=
n∑
i=1

P0
W (w′i) 2(w(d)−w′i). (25)

Since W ∈ N[0,n(n+1)/2] it follows that Pw assumes only dis-
crete values in [0,1] with the null distribution determining
the mapping between these two sets.

The generalization of the WSR test to the uncertain sample
1T̂ can be carried out almost analogously to the t test. How-
ever, the fact that W ∈ N[0,n(n+1)/2] makes it inconvenient to
use a continuous probability density distribution. We denote
the distribution for the uncertain Ŵ (1T̂ ) by

P
Ŵ

(ŵ)=
∫
δ

(
n∑
i=1

R(|1t̂i |) 2(1t̂i)− ŵ

)
ρ
1T̂

(
1t̂
)

d1t̂ . (26)

Given the one-to-one map from all w ∈ N[0,n(n+1)/2] to the
set of discrete potential values pw for Pw in [0,1] determined
by Eq. (25), the probability to obtain p̂w is already given by
the probability to obtain the corresponding ŵ. Hence, we find

P
P̂w

(pw(Ŵ )= p̂w)= P
Ŵ

(ŵ). (27)
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3.3.3 Bootstrap test

Given an observed sample of differences d = (d1, . . .,dn), a
bootstrap test constitutes a third option to test the compati-
bility of the sample with the hypothesis that the population
of differences features a mean equal to or greater than 0:
H0 := µ0 ≥ 0. Guidance for the construction of a bootstrap
hypothesis test can be found in Lehmann and Romano (2006)
and Hall and Wilson (1991). The advantage of the bootstrap
test lies in its independence from assumptions regarding the
distributions’ shape. Lehmann and Romano (2006) propose
the test statistic

v =
√
nu, (28)

with u(d)= 1
n

∑n
i=1di denoting the sample mean. In contrast

to the above two tests, the bootstrap test constructs the null
distribution directly from the observed data. In the absence
of assumptions, the best available approximation of the pop-
ulation PD is given by the empirical density

PD(d)∼
1
n

n∑
i=1

δ(d − di). (29)

However, the empirical density does not necessarily comply
with the null hypothesis and it thus has to be shifted accord-
ingly:

ρ̃D(d)=
n∑
i=1

δ(d − di + u). (30)

ρ̃D(d) corresponds to the borderline case of the null hypoth-
esis µ= 0. The null distribution for v is then derived by re-
sampling m synthetic samples d̃j = (d̃1, . . ., d̃n)j of size n
from ρ̃D(d) and computing ṽj = v(d̃j ) for each of them. This
corresponds to randomly drawing n values from the set d−u
with replacement and computing v for the resampled vec-
tors m times, where the index j labels the iteration of this
process. The resulting set {ṽj }j induces the data-driven null
distribution for the test statistic

ρ0
V (v)=

1
m

m∑
j=1

δ(v− ṽj ). (31)

Settingm= 10000 we obtain robust null distributions for the
two cases relevant here (n= 16 and n= 20). The p value of
this bootstrap test is then computed as before in a one-sided
manner:

pv(v(d))=

v(d)∫
−∞

ρ0
V (v) dv =

1
m

m∑
j=1

2
(
v(d)− ṽj

)
, (32)

where the right-hand side equals the fraction of resampled ṽj
that are smaller than v(d) of the original sample.

In the case where the sample of differences is uncertain,
as for1T̂ = (1T̂1, . . .,1T̂n), the construction scheme for ρ0

V

needs to be adjusted to reflect these uncertainties. In princi-
ple, each possible value 1t̂ for the uncertain 1T̂ is associ-
ated with its own null distribution ρ0

V (v,1t̂). In this sense,
the value for the test statistic v(1t̂) should be compared to
the corresponding ρ0

V (v,1t̂) to derive a p value for this 1t̂ .
Equations (31) and (32) define a mapping from1t̂ to its cor-
responding p value. To compute the uncertainty distribution
for the p value, this map has to be evaluated for all potential
1t̂ , weighted by the uncertainty distribution ρ

1T̂
(1t̂):

ρ
P̂v

(p̂v)=
∫
δ(p̂v −pv(1t̂))ρ

1T̂
(1t̂)d1t̂ . (33)

The three tests are applied in combination in order to com-
pensate for their individual deficits. If the population P1T
was truly Gaussian, the t test would be the most power-
ful test; i.e., its rejection region would be the largest across
all tests on the population mean (Lehmann and Romano,
2006). Since normality of P1T cannot be guaranteed, the less
powerful Wilcoxon signed-rank test constitutes a meaningful
supplement to the t test, relying on the somewhat weaker as-
sumption that P1T is symmetric around 0. Finally, the boot-
strap test is non-parametric and in view of its independence
from any assumptions adds a valuable contribution.

3.4 Comparison to previous analysis

For the derivation of the transition lag uncertainty distribu-
tions ρ

1T̂
p,q
i

(1t̂p,qi ) of the ith DO event between the prox-
ies p and q, we have directly adopted the methodology de-
signed by Erhardt et al. (2019). However, our statistical in-
terpretation of the resulting sets of uncertainty distributions
{ρ
1T̂

p,q
1

(1t̂p,q1 ), . . .,ρ
1T̂

p,q
n

(1t̂p,qn )} derived from the set of
DO events differs from the one proposed by Erhardt et al.
(2019). In this section we explain the subtle yet important
differences between the two statistical perspectives.

Given a pair of variables (p,q), Erhardt et al. (2019) de-
fine what they call “combined estimate” ρ1T ∗ (1t∗) as the
product over all corresponding lag uncertainty distributions:

ρ1T ∗ (1t∗)∝
n∏
i=1
ρ
1T̂i

(1t∗). (34)

This implicitly assumes that all DO events share the exact
same time lag 1t∗ between the variables p and q. This is
realized by inserting a single argument1t∗ into the different
distributions ρ

1T̂i
(·). Hence, the product on the right-hand

side of Eq. (34) in fact indicates the probability that all DO
events assume the time lag1t∗, provided that they all assume
the same lag:

ρ1T ∗ (1t∗)= ρ1T ∗ (1t∗|1t̂1 = . . .=1t̂n =1t∗)

=

∏
ρ
1T̂i

(1t∗)∫
�

∏
ρ
1T̂i

(1t̂i) d1t̂i
,�= {1t̂ :1t̂i =1t̂j ∀i,j}. (35)
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The denominator on the right-hand side equals the proba-
bility that all DO events share a common time lag. Equa-
tion (34) strongly emphasizes those regions where all un-
certainty distributions ρ

1T̂i
(1t̂i) are simultaneously substan-

tially larger than 0. The combined estimate answers the ques-
tion: provided that all DO events exhibit the same lag be-
tween the transition onsets of p and q, then how likely is it
that this lag is given by 1t∗. Drawing on this quantity, Er-
hardt et al. (2019) conclude that δ18O and Na+ “on average”
lag Ca2+ and λ by about 1 decade.

Thinking of the DO transition onset lags as i.i.d. ran-
dom variables of a repeatedly executed random experiment
takes into account the natural variability between different
DO events, and hence it removes the restricting a priori as-
sumption 1t̂1 = . . .=1t̂n. In our approach we have related
the potentially systematic character of lags to the population
mean. Since the sample mean is the best point estimate of a
population mean, we consider it to reasonably indicate po-
tential leads and lags, whose significance should be tested in
a second step. Thus, we ascribe to the sample mean a similar
role as Erhardt et al. (2019) ascribe to the combined estimate,
and therefore we present a comparison of these two quanti-
ties in Sect. 4.1.

The mean of an uncertain sample Û = u(1T̂ ) is again an
uncertain quantity and its distribution reads

ρ
Û

(û)=
∫
δ(û− u(1t̂))ρ

1T̂
(1t̂) d1t̂ . (36)

While the combined estimate multiplies the distributions
ρ
1T̂i

(1t∗), the uncertain sample mean convolutes them pair-
wise (see Appendix C). We thus expect the distributions for
uncertain sample means to be broader than the correspond-
ing distributions for the combined estimate. This can be mo-
tivated by considering the simple example of two Gaussian
variables X and Y . According to the convolution their sam-
ple mean U = X+Y

2 is normally distributed with variance

σ 2
x∗y =

σ 2
x+σ

2
y

4 . In contrast, a combined estimate would yield

a normal distribution with variance σ 2
xy =

σ 2
x+σ

2
y

σ 2
x σ

2
y

. Thus, the

convolution will appear broader for all σ 2
x σ

2
y > 4, which is

the case for the distributions considered in this study.

4 Results

In the following we apply the above methodology to the dif-
ferent pairs of proxies that Erhardt et al. (2019) found to
exhibit a decadal-scale time lag, based on an assessment
of the combined estimate, namely (Ca2+,Na+), (λ,Na+),
(Ca2+,δ18O), and (λ,δ18O) from the NGRIP ice core and
(Ca2+,Na+) from the NEEM ice core. For each individual
proxy we estimate the uncertain transition onsets relative to
the timing of the DO events as given by Rasmussen et al.
(2014) (see Fig. 2). From these uncertain transition onsets,
the uncertainty distributions for the sets of uncertain lags

1T̂ p,q between the proxies p and q are derived according
to Eq. (7). As mentioned previously, we study the same se-
lection of transitions evidenced in the multi-proxy records as
Erhardt et al. (2019). This selection yields sample sizes of
either 16 or 20 lags per pair of proxies but not 23, which is
the total number of DO events present in the data.

We first study the uncertain sample means. As already
mentioned, the sample mean is the best available point esti-
mate for the population mean. Hence, sample means different
from 0 may be regarded as first indications for potential sys-
tematic lead–lag relationships and thus motivate the applica-
tion of hypothesis tests. We compare the results obtained for
the uncertain sample means with corresponding results for
the combined estimate. Both quantities indicate a tendency
towards a delayed transition in Na+ and δ18O. Accordingly,
in the subsequent section we apply the generalized hypothe-
sis tests introduced above to the uncertain samples of transi-
tion lags to test the null hypothesis that pairwise, the apparent
transition sequence is not systematically favored, that is, that
the populations have mean equal to or greater than 0.

4.1 Uncertain sample mean and combined estimate

Based on their assessment of the combined estimate, Er-
hardt et al. (2019) concluded that on average, transitions in
Ca2+ and λ started approximately 1 decade earlier than their
counterparts in Na+ and δ18O. Figure 5 shows a reproduc-
tion of their results together with the uncertainty distribu-
tions of the sample means for all proxy pairs under study
((Ca2+,δ18O) and (λ,δ18O) are not shown in Erhardt et al.,
2019). For an uncertain sample of lags 1T̂ p,q between the
proxies p and q, the combined estimate and the uncertain
sample mean are computed according to Eqs. (35) and (36),
respectively. The reproduction of the combined estimate de-
viates from the original publication by no more than 1 year
with respect to the mean and the 5th and 95th percentiles
across all pairs. These deviations might originate from the
stochastic MCMC-sampling process used for the analysis.

With the sample mean being the best point estimator of
the population mean, it serves as a suitable indicator for a
potential population mean different from 0. The expectations

E(Û )=
∫
û ρ

Û
(û) dû (37)

for the sample means of all proxy pairs do in fact suggest a
tendency towards negative values in all distributions, i.e., a
delay of the Na+ and δ18O transition onsets with respect to
Ca2+ and λ. This indication is weakest for (Ca2+,Na+) and
(Ca2+,δ18O) from NGRIP, since for these pairs we find a
non-zero probability of a positive sample mean. For the other
pairs the indication is comparably strong, with the 95th per-
centiles of the uncertainty distributions for the sample mean
still being less than 0. Overall, the results for the uncertain
mean confirm the previously reported tendencies, and in very
rough terms, the distributions qualitatively agree with those
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Figure 5. Comparison between the uncertain sample means (this
study) and “combined estimates” according to Erhardt et al. (2019).
The probability densities for the combined estimate are derived
from the samples of uncertain time lags according to Eq. (34). Cor-
respondingly, the uncertain sample means are computed according
to Eq. (36). The numbers in the plots indicate the mean, the 5th, and
the 95th percentile of the respective quantity. Both computations
use Gaussian kernel density estimates of the MCMC-sampled tran-
sition onsets lags. Panels (a–d) refer to proxy pairs from the NGRIP
ice core, and panel (e) shows results from the NEEM ice core. The
distributions for both the combined estimate and the uncertain sam-
ple mean point towards a delayed transition onset in δ18O and Na+

with respect to λ and Ca2+.

for the combined estimate. In agreement with the heuristic
example from Sect. 3.4, we find the sample mean distri-
butions to be broader than the combined estimate distribu-
tions in all cases. The expected sample means indicate less
pronounced lags for (Ca2,Na+) (Fig. 5a) and (Ca2+,δ18O)
(Fig. 5c) from the NGRIP ice core compared to the expecta-

tions of the corresponding combined estimate. In combina-
tion with the broadening of the distribution, this yields con-
siderable probabilities for U > 0 of 12 % and 14 %, respec-
tively, indicating a delayed transition of Ca2+ in the sample
mean with respect to Na+ or δ18O. Contrarily, for (λ,Na+)
(NGRIP, Fig. 5b) and (Ca2+,Na+) (NEEM, Fig. 5e) the ex-
pected sample means point towards more distinct lags than
reported by Erhardt et al. (2019) based on the combined es-
timate. For (λ,δ18O) (NGRIP, Fig. 5d) the sample mean and
the combined estimate are very close. Note that the analysis
of the uncertain sample values yields a more inconsistent pic-
ture with regard to the (Ca2+,Na+) lag in the two different
cores. While the distribution is shifted to less negative (less
pronounced lag) for the NGRIP data, it tends to more nega-
tive values in the case of NEEM (stronger lag), suggesting a
slight discrepancy between the cores.

Both quantities, the uncertain sample mean and the com-
bined estimate point towards delayed transition onsets in
Na+ and δ18O with respect to Ca2+ and λ, with major frac-
tions of their uncertainty densities being allocated to negative
values. This provides motivation to test whether the obser-
vations significantly contradict the hypothesis of a popula-
tion mean equal to or greater than 0. Accordingly, the sub-
sequent section presents the results obtained from the appli-
cation of three different hypothesis tests that target the pop-
ulation mean. As discussed in Sect. 3, the tests have been
modified to allow for a rigorous uncertainty propagation and
return an uncertainty distribution for their corresponding p
values rather than scalars.

4.2 Statistical significance of the proposed lead–lag
relations

Above, we identified three tests for testing the hypothesis
that the samples 1T̂ p,q were actually generated from pop-
ulations that on average feature no or even reversed time lags
compared to what the sign of the corresponding uncertain
sample mean suggests. Mathematically, this is equivalent to
testing the hypothesis that the mean µp,q of the population
Pp,q1T is greater than or equal to 0: H0 : µ

p,q
≥ 0. A rejection

of this hypothesis would confirm that the assessed sample is
very unlikely to stem from a population with µp,q ≥ 0 and
would thereby provide evidence for a systematic lag. Under
the constraints indicated above this would in turn yield ev-
idence for an actual lead of the corresponding climatic pro-
cess. We have chosen a significance level of α = 0.05, which
is a typical choice. Figure 7 summarizes the final uncertainty
distributions of the three tests for all proxy pairs under study.
Corresponding values are given in Table 1.

Figure 6 exemplarily illustrates the application of the three
tests to the empirical densities obtained for 1T̂ (Ca2+,Na+)
(NGRIP). In Fig. 6 the initial uncertainty in the observations
– i.e., the uncertainty encoded by the distributions of tran-
sition onset lags – is propagated to an uncertain test statis-
tic according to Eq. (16). In turn, the uncertain test statistic
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Table 1. Results from the application of the t test, the WSR test, and a bootstrap test to uncertain samples of DO transition onset lags1T̂ p,q .
E(P̂ ) denotes the expected p value, derived from the uncertainty-propagated p-value distribution. The probability of significant test results
associated with the same distribution is indicated by π (P̂ < 0.05). For comparison, the p values from the application of the tests to the
expected sample E(1T̂ )=

∫
ρ
1T̂

(1t̂)1t̂ d1t̂ are given in the bottom row.

NGRIP NEEM

(Ca2+,Na+) (λ,Na+) (Ca2+,δ18O) (λ,δ18O) (Ca2+,Na+)

t test WSR BS t test WSR BS t test WSR BS t test WSR BS t test WSR BS

E(P̂ ) 0.22 0.17 0.22 0.09 0.09 0.09 0.23 0.18 0.23 0.13 0.11 0.13 0.08 0.08 0.07
π (P̂ < 0.05) 0.26 0.32 0.3 0.47 0.48 0.52 0.24 0.31 0.26 0.37 0.44 0.41 0.57 0.58 0.61
p(E(1T̂ )) 0.04 0.01 0.02 0.02 0.02 0.02 0.04 0.01 0.04 0.02 0.01 0.02 0.01 0.01 0.01

yields an uncertain p value (see Eq. 17). Since the numer-
ical computation is based on empirical densities as gener-
ated by the MCMC sampling, we show the corresponding
histograms instead of continuous densities – for ρ

1T̂i
(1t̂i),

Gaussian kernel density estimates are presented only for the
sake of visual clarity. On the level of the test statistics the
red dashed line separates the acceptance from the rejection
region, based on the null distributions given in black. Quali-
tatively, the three tests yield the same results. The histograms
clearly indicate non-zero probabilities for the test statistic in
both regions. Correspondingly, the histograms for the p val-
ues stretch well across the significance threshold. The shapes
of the histograms resemble an exponential decay towards
higher p values. This results from the non-linear mapping of
the test statistics to the p values. Despite the pronounced bulk
of empirical p values below the significance level, the prob-
ability of non-significant p values is still well above 50 %
for the three tests (see Table 1). Also, the expected p value
exceeds the significance level for all tests. Hence, neither of
the two criteria for rejecting the null hypothesis formulated in
Sect. 3.2 is met for the proxy pair (Ca2+,Na+). In contrast, if
the observational uncertainties are averaged out on the level
of the transition onset lags, all tests yield p values below the
significance level, which would indicate that the lags were
indeed significant. Hence, the rigorous propagation of uncer-
tainties qualitatively changes the statistical assessment of the
uncertain sample of lags 1T̂ (Ca2+,Na+) (NGRIP). While
the expected sample rejects the null hypothesis, rigorous un-
certainty propagation leads to acceptance. This holds true for
all tests.

Figure 7 summarizes the results obtained for all proxy
pairs under study. Qualitatively, our findings are the same
for the other pairs as for the (Ca2+,Na+) (NGRIP) case dis-
cussed in detailed above. All expected p values, as indicated
by the pink bars, are above the significance level. Also, the
probability for significance is below 60 % for all pairs and all
tests as shown by the pie charts. Therefore, for all proxy pairs
and for all tests, the formulated decision criteria do thus not
allow us to reject the null hypothesis of a population mean
greater than or equal to 0. In contrast, all expected samples

are significant across all tests with corresponding p values
indicated by the yellow bars. The proxy pairs with the low-
est expected p values and the highest probability of P̂ < α
are (λ,Na+) from NGRIP and (Ca2+,Na+) from NEEM, as
already suggested by the analysis of the uncertain sample
mean. For the NGRIP ice core the delay of Na+ and δ18O
with respect to Ca2+ has a very low probability to be signif-
icant (approximately one-third). The pair (λ,δ18O) ranges in
between the latter two.

5 Discussion

Erhardt et al. (2019) have reported an average time lag be-
tween the transition onsets in Na+ and δ18O proxy values
and their counterparts in Ca2+ and λ at the onset of DO
events. This statement is based on the assessment of the
combined estimate derived from uncertain samples of time
lags 1T̂ p,q . The samples were obtained by applying a well-
suited Bayesian transition onset detection scheme to high-
resolution time series of the different proxies. The combined
estimate indicates leads of the Ca2+ and λ transition onsets
with respect to Na+ and δ18O by approximately 1 decade,
with the 90 % confidence interval ranging from 0 to approx-
imately 15 years. The combined estimate implicitly assumes
that for a given proxy pair all DO events share a common
time lag (1T̂ p,qi =1T̂

p,q
j ).

We argue that the variability across different DO events
cannot be ignored in the assessment of the data. Although
the DO events are likely to be caused by the same physical
mechanism, changing boundary conditions and other natu-
ral climate fluctuations will lead to deviations in the exact
timings of the different processes involved in triggering the
individual DO events. Figure 2 clearly shows that the differ-
ent events exhibit different time lags. Provided that the DO
events were driven by the same process, physically they con-
stitute different realizations, and they exhibit great variability
also in other variables such as the amplitude of the temper-
ature change (Kindler et al., 2014) or the waiting times with
respect to the previous event (Ditlevsen et al., 2007; Boers
et al., 2018). The random experiment framework introduced
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Figure 6. Exemplary application of the analysis to the proxy pair
(Ca2+,Na+) from the NGRIP ice core. Panel (a) shows 16 uncer-
tain time lags 1T̂i derived from the proxy data around DO events.
The continuous densities have been obtained via a Gaussian ker-
nel density estimate from the corresponding MCMC samples (see
Sect. 3.1). In panel (b) the uncertain test statistics induced by the
uncertain sample are shown for the t test (blue), the WSR test (or-
ange), and a bootstrap test (green). The values that comprise the his-
tograms are immediately derived from the MCMC samples. Panel
(c) shows the empirical uncertainty distribution for the p values of
the three tests, following from the uncertain test statistics in panel
(b). Dotted red lines separate rejection from acceptance regions in
panels (b) and (c). In the case of the bootstrap test, the rejection re-
gions cannot be defined consistently on the level of the test statistic,
since each possible value 1t̂ for the uncertain 1T̂ generates its in-
dividual null distribution. The null distribution shown here is in fact
the pooled distribution of resampled ṽj obtained from all MCMC-
sampled values for 1T̂ . For the other proxy pairs investigated in
this study, corresponding plots would appear structurally similar.

in this study allows us to relax the constraint of a common
time lag 1t∗ shared across all events and reflects the fact
that natural variability will cause different expressions of the
same mechanism across different DO events. Moreover, this
framework relates potential systematic leads and lags in the
physical process that drives DO events to a corresponding
non-zero mean of a population of lags between proxy vari-
ables. This allows for the physically meaningful formulation
of a statistical hypothesis and a corresponding null hypothe-
sis. By applying different hypothesis tests we have followed
a well-established line of statistical inference. Motivated by
the apparent transition onset delays in Na+ and δ18O with
respect to the transitions in λ and Ca2+, as reported by Er-

hardt et al. (2019) and confirmed here on the level of un-
certain sample means, we tested the null hypothesis that the
corresponding populations do not favor the proposed transi-
tion sequence. Rejection of this hypothesis would have pro-
vided evidence that the observed lag tendency is an imprint
of the underlying physical process and therefore a system-
atic feature. However, generalized versions of three different
hypothesis tests consistently fail to reject the null hypothesis
under rigorous propagation of the observational uncertainties
originating from the MCMC-based transition onset detec-
tion. This holds true for all proxy pairs. The fact that the tests
rely on different assumptions on the population’s shape but
nonetheless qualitatively yield the same results makes our as-
sessment robust. We conclude that the possibility that the ob-
served tendencies towards advanced transitions in Ca2+ and
λ have occurred simply by chance cannot be ruled out. If the
common physical interpretation of the studied proxies holds
true, our results imply that the hypothesis that the trigger of
the DO events is associated directly with the North Atlantic
sea-ice cover rather than the atmospheric circulation – be it
on a synoptic or hemispheric scale – cannot be ruled out. We
emphasize that our results should not be misunderstood as
evidence against the alternative hypothesis of a systematic
lag. In the presence of a systematic lag (µ < 0) the ability of
hypothesis tests to reject the null hypothesis of no systematic
lag ((H0 : µ= 0)) depends on the sample size n, the ratio be-
tween the mean lag |µ|, the variance of the population, and
the precision of the measurement. Neither of these quantities
is favorable in our case, and thus it is certainly possible that
the null hypothesis cannot be rejected despite the alternative
being true.

Our main purpose was the consistent treatment of observa-
tional uncertainties and we have largely ignored the vibrant
debate on the qualitative interpretation of the proxies. Sur-
prisingly, we could not find any literature on the application
of hypothesis tests to uncertain samples of the kind discussed
here. The theory of fuzzy p values is in fact concerned with
uncertainties either in the data or in the hypothesis. How-
ever, it is not applicable to measurement uncertainties that are
quantifiable in terms of probability density functions (Filz-
moser and Viertl, 2004). We have proposed to propagate the
uncertainties to the level of the p values and to then consider
the expected p values and the share of p values which indi-
cate significance, in order to decide between rejection and ac-
ceptance. The p value measures the extremeness of a sample
with respect to the null distribution, and we hence regard the
expected p value to be a suitable measure for the uncertain
samples’ extremeness. In cases of a high cost of a wrongly re-
jected null hypothesis, one might want to have a high degree
of certainty that the uncertain sample actually contradicts the
null hypothesis and hence a high probability of the uncertain
p value being smaller than α. In contrast, if the observational
uncertainties are averaged out beforehand, crucial informa-
tion is lost. The expected sample may either be significant or
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Figure 7. Results of the hypothesis tests applied to the uncertain samples of transition onset lags1T̂ p,q
i

. The violin plots show the Gaussian
kernel density estimates of the empirical uncertainty distributions for p values (see Fig. 6) obtained for all tests and for all proxy pairs
investigated. Pink bars indicate the corresponding expected p values E(P̂ ) and yellow bars indicate the p values obtained from testing the
expected samples E(1T̂ ). All expected p values are above the significance level α = 0.05 (red dotted line), while the expected samples
appear to be significant consistently across all proxy pairs and all tests. The pie charts indicate the probability of the respective p values to
be less then α.

not, but the uncertainty about the significance can no longer
be accurately quantified.

The potential of the availability of data from different sites
has probably not been fully leveraged in this study. Naively,
one could think of the NEEM and NGRIP (Ca2+,Na+) lag
records as two independent observations of the same entity.
However, given the discrepancies in the corresponding sam-
ple mean uncertainty distributions, changes in sea-ice cover
and atmospheric circulation could in fact have impacted both
cores differently. Proxy-enabled modeling studies as pre-
sented by Sime et al. (2019) could shed further light on the
similarity of the signals at NEEM and NGRIP as a function
of change in climatic conditions. Also, a comparison of the
NGRIP and NEEM records on an individual event level could
provide further insights into how to combine these records
statistically. There might be ways to further exploit the ad-
vantage of having two recordings of the same signal.

6 Conclusions

We have presented a statistical reinterpretation of the high-
resolution proxy records provided and analyzed by Erhardt
et al. (2019). The probabilistic transition onset detection also
designed by Erhardt et al. (2019) very conveniently quan-
tifies the uncertainty in the transition onset estimation by
returning probability densities instead of scalar estimates.
While the statistical quantities “combined estimate” (Erhardt
et al., 2019) and “uncertain sample mean” (this study) indi-
cate a tendency for a pairwise delayed transition onset in Na+

and δ18O proxy values with respect to Ca2+ and λ, a more
rigorous treatment of the involved uncertainties shows that
these tendencies are not statistically significant. That is, at
the significance level α = 5% they do not contradict the null

hypothesis that no or the reversed transition sequence is in
fact physically favored. Thus, a pairwise systematic lead–lag
relation cannot be evidenced for any of the proxies studied
here. We have shown that if uncertainties on the level of tran-
sition onset lags are averaged out beforehand, the samples of
lags indeed appear to be significant, which underpins the im-
portance of rigorous uncertainty propagation in the analysis
of paleoclimate proxy data. We have focused on the quantita-
tive uncertainties and have largely ignored qualitative uncer-
tainty stemming from the climatic interpretation of the prox-
ies. However, if the common proxy interpretations hold true,
our findings suggest that, for example, the hypothesis of an
atmospheric trigger – either of hemispheric or synoptic scale
– for the DO events should not be favored over the hypothe-
sis that a change in the North Atlantic sea-ice cover initiates
the DO events.

Even though we find that the uncertainty of the transition
onset detection combined with the small sample size pre-
vents the deduction of statistically unambiguous statements
on the temporal order of events, we think that multi-proxy
analysis is a promising approach to investigate the sequential
order at the beginning of DO events. In this study, we re-
frained from analyzing the lags between the different proxies
in a combined approach and focused on the marginal pop-
ulations. However, a combined statistical evaluation – that
is, treating the transition onsets of all proxy variables as a
four-dimensional random variable – merits further investiga-
tion. Also, we propose to statistically combine measurements
from NEEM and NGRIP (and potentially further ice cores)
of the same proxy pairs. Finally, hierarchical models may be
invoked to avoid switching from a Bayesian perspective in
the transition onset estimation to a frequentist perspective in
the statistical interpretation of the uncertain samples. Finally,
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effort in conducting modeling studies should be sustained.
Especially proxy-enabled modeling bears the potential to im-
prove comparability between model results and paleoclimate
records. Together, these lines of research are promising to
further constrain the sequence of events that have caused the
abrupt climate changes associated with DO events.
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Appendix A: Numerical treatment of
high-dimensional probability densities

In Sect. 3.1 we introduced the probabilistic transition onset
detection designed by Erhardt et al. (2019). Given a single
time series, the formulation of a stochastic ramp model in-
duces a posterior probability density for the set of model pa-
rameters θ in a Bayesian sense:

π (θ |D)=
π (D|θ ) π (θ )

π (D)
. (A1)

However, a classical numerical representation of this density
on a discretized grid is inconvenient. Due to its high dimen-
sionality for a reasonable grid spacing the number of data
points easily overloads the computational power of ordinary
computers. For example, representing each dimension with
a minimum of 100 points would amount to a total of 1012

data points. On top of that, the application of any methods to
such a grid is computationally very costly. Here, the MCMC
sampler constitutes an efficient solution. By sampling a rep-
resentative set {θ j }j from the posterior probability density it
may be used to construct an empirical density in the sense
of Eq. (4). For the sake of simplicity in the main text we
have formulated the methods in terms of continuous prob-
ability densities, although all computations in fact rely on
empirical densities obtained from MCMC samples. Here, we
show that all steps in the derivation of the methods can be
performed equivalently under stringent use of the empirical
density. With regards to hypothesis tests, the use of empiri-
cal densities for the uncertain transition lag samples 1T p,qi
essentially boils down to an application of the tests to each
individual value comprised in the respective empirical den-
sity.

For a given proxy and a given DO event, in a first
step the MCMC algorithm samples from the joint posterior
probability density for the models parameter configuration
θ = (t0,τ,y0,1y,α,σ ), giving rise to the empirical density
ρ2(θ )= 1

m

∑
δ(θ−θ j ). Integration over the nuisance param-

eters then yields the marginal empirical density for the tran-
sition onset:

ρ
p,i
T0

(
t
p,i

0

)
=

1
m

m∑
j=1

δ
(
t
p,i

0 − t
p,i

0,j

)
, (A2)

where the index i indicates the DO event and p denotes the
proxy variable while j runs over the MCMC sampled val-
ues. We use bars to mark empirical densities in contrast to
continuous densities. The uncertainty distribution for the lag
1T

p,q
i between the variables p and q as defined by Eq. (7)

may then be approximated as follows (omitting the index i):

ρ
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∫∫
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Thus, the empirical uncertainty distribution for the time lag is
induced by the set of all possible differences between mem-
bers of the two MCMC samples for the respective transition
onsets:{
1t

p,q
j

}
j∈[1,m2]

=

{
t
p

0,k − t
q

0,l

}
p,q∈[1,m]

. (A4)

For this study m= 6000 values have been sampled with the
MCMC algorithm for each transition under study. This yields
m2
= 36× 106 potential values for the empirical 1T uncer-

tainty distribution. To keep the computation efficient, the sets
of lags were restricted to combinations k = l and thus to 6000
empirical values. We thus approximate

ρ
p,q
1T (1tp,q )'

1
m

m∑
j=1

δ
(
t
p

0,j − t
q

0,j −1t
p,q
)
. (A5)

This drastic reduction in values certainly requires justifica-
tion, which we give later by comparing final results of the
analysis to those obtained from control runs. The control runs
analogously construct the empirical densities for the transi-
tion onset lags from 6000 out of the 36× 106 possible val-
ues, but use randomly shuffled versions of the original sets
of transition onset times for the variables p and q:

ρ
p,q,ctrl
1T (1tp,q )'

1
m

m∑
j=1

δ
(
t
p

0,s(j )− t
q

0,s′(j )−1t
p,q
)
. (A6)

Here, s and s′ denote randomly chosen permutations of the
set {1,2, . . .,m}.

As in the main text, in the following we denote uncertain
quantities with a hat. For a given proxy pair the starting point
for the statistical analysis however, is the uncertain sam-
ple1T̂ p,q = (1T̂ p,q1 , . . .,1T̂

p,q
n ), which is characterized by

the n-dimensional uncertainty distribution ρ
1T̂ p,q

(1t̂p,q )=∏
ρ
1T̂

p,q
i

(1t̂p,qi ). Its empirical counterpart is given by
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ρ
1T̂ p,q

(1t̂p,q ) =
n∏
i=1
ρ
1T̂

p,q
i

(
1t̂

p,q
i

)
=

1
mn

n∏
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m∑
j=1

δ
(
1t̂

p,q
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p,q
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)
. (A7)

This empirical density is comprised ofmn possible values for
the n-dimensional random vector 1T̂ p,q , and again, a sub-
stantial reduction in the representing set is required for prac-
tical computation. Defining the reduced empirical density for
1T̂ p,q as

ρ̃
1T̂ p,q

(1t̂p,q ) =
1
m

m∑
j=1

n∏
i=1
δ
(
1t̂

p,q
i −1t

p,q
i,j

)
=

1
m

m∑
j=1

δ
(
1t̂p,q −1t

p,q
j

)
(A8)

constrains the set that determines ρ̃
1T̂ p,q

(1t̂p,q ) tom values,
where those values from different DO events with the same
MCMC index j are combined:

1t
p,q
j =

(
1t

p,q

1,j , . . .,1t
p,q
n,j

)
. (A9)

Again, the validity is checked by randomly permuting the
sets {1tp,qi,j } for the individual DO events with respect to the
index j before the set reduction in the control runs.

Having found a numerically manageable expression for
the empirical uncertainty distribution of the sample1T̂ p,q it
remains to be shown how the hypothesis tests can be formu-
lated on this basis. If {1tj }j denotes the set of n-dimensional
vectors forming the empirical uncertainty distribution for the
sample of lags obtained from n DO events, then the naive in-
tuition holds true and the corresponding set {φj = φ(1tj )}j
represents the empirical uncertainty distribution of the test
statistic and correspondingly {pφ(φj )}j characterizes the un-
certain p value. In the following, we exemplarily derive this
relation for the t test – the derivations for the WSR and the
bootstrap test are analogous.

Recall the statistic of the t test:

z(d)=
u(d)−µ
s(d)/
√

(n)
. (A10)

The empirical uncertainty distribution for a sample 1T̂ in-
duces a joint uncertainty distribution for the sample’s mean
and standard deviation:

ρ
Û,Ŝ

(û, ŝ) =
∫
δ

(
u−

1
n

n∑
i=1

1t̂i

)

× δ

(
s−

1
n− 1

n∑
i=1

(u−1t̂i)2

)

×
1
m

m∑
j=1

n∏
i=1
δ(1t̂i −1ti,j ) d1t̂1. . .d1t̂n

=
1
m

m∑
j=1

δ

(
û−

1
n

n∑
i=1

1ti,j

)

× δ

(
ŝ−

1
n− 1

n∑
i=1

(û−1ti,j )2

)
. (A11)

Let uj =
1
n

∑n
i=11ti,j and sj =

1
n−1

∑n
i=1(uj −1ti,j )2.

Then, the empirical uncertainty distribution for (Û, Ŝ) can
be written as

ρ
Û,Ŝ

(û, ŝ)=
1
m

m∑
j=1

δ
(
û− uj

)
δ
(
ŝ− sj

)
. (A12)

The (uj , sj ) that forms the empirical uncertainty distribu-
tion is simply the mean and standard deviation of those
1tj = (1t1,j ,1t2,j , . . .,1tn,j ) that form the vector valued
empirical uncertainty distribution for 1T̂ . From ρ

Û,Ŝ
(û, ŝ),

the empirical uncertainty distribution for the uncertain test
statistic Ẑ can be computed as follows:

ρ
Ẑ

(ẑ) =
∫
δ

(
ẑ−

û−µ

ŝ/
√

(n)

)
ρ
Û,Ŝ

(û, ŝ) dû dŝ

=
1
m

m∑
j=1

δ

(
ẑ−

uj −µ

sj/
√

(n)︸ ︷︷ ︸
=zj

)
. (A13)

This shows that for a given empirical uncertainty distribution
for a sample of time lags ρ

1T̂
(1t̂)= 1

m

∑m
i=1δ

(
1t̂ −1tj

)
,

the corresponding distribution for the test statistic Ẑ =

z(1T̂ ) is formed by the set {z(1tj )|j ∈ [1,m]} where each
1tj is a vector in n dimensions. The uncertain (left-handed)
p value remains to be derived from ρ

Ẑ
(ẑ):

ρ
P̂z

(p̂z) =
∫
δ

p̂z− ẑ∫
−∞

tn−1(z) dz

 ρ
Ẑ

(ẑ) dẑ

=
1
m

m∑
j=1

δ

(
p̂z−

zj∫
−∞

tn−1(z′)

︸ ︷︷ ︸
=pz,j

dz′
)
. (A14)

Finally, the practical computation of the uncertain p values
boils down to an application of the test to all members of
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the set 1tj that originates from the MCMC sampling used
to approximate the posterior probability density for the ramp
parameter configuration 2. For the WSR test the expression

ρ
P̂w

(p̂w)=
1
m

m∑
j=1

δ
(
p̂w −pw,j

)
(A15)

with

pw,j = pw(1tj )

can be derived analogously. The bootstrap test bears the par-
ticularity that each1tj induces its own null distribution. Yet,
the application of the test to each individual1tj induces a set
of pv,j = pv(1tj ) that determines the empirical density:

ρ
P̂v

(p̂v)=
1
m

m∑
j=1

δ
(
p̂v −pv,j

)
. (A16)

Appendix B: Results of the analysis for the control
group

As explained in Sect. A, we drastically reduce the cardinality
of the sets that form the empirical densities ρ

1T̂ p,q
(1t̂p,q ) at

two points in the analysis. First, for the representation of the
uncertain time lag 1T̂ p,qi between the proxies p and q at a
given DO event, only 6000 out of the 60002 possible values
are utilized. Second, the set of vectors considered in the rep-
resentation of ρ

1T̂ p,q
(1t̂)= 1

6000
∑6000
j=1 δ(1t̂

p,q
−1t

p,q
j ) is

comprised of only 6000 out of the 600016 theoretically avail-
able vectors. To cross-check the robustness of the results ob-
tained within the limits of this approximation, we applied our
analysis to a control group of nine alternative realizations of
the empirical uncertainty density for 1T̂ p,q for each proxy
pair. The control group uncertainty densities are constructed
as follows: first, the empirical uncertainty distributions for
the event-specific lags 1T̂ p,qi are obtained via Eq. (A6). In
a second step, the joint empirical uncertainty distribution for
1T̂ p,q is constructed from randomly shuffled empirical sets
1t

p,q

i,si (j ) of each DO event:

ρ̃ctrl
1T̂ p,q

(1t̂p,q )=
1
m

m∑
j=1

n∏
i=1
δ
(
1t̂

p,q
i −1t

p,q

i,si (j )

)
. (B1)

Here si denotes an event-specific permutation of the index set
{1, . . .,6000}. Thus the empirical1tp,qi,j recombines between
events and gives rise to a new set of 6000 vectors that consti-
tute 6000 empirical realizations of the uncertain 1T̂ p,q .

The results obtained from the control runs show only mi-
nor deviations from the results presented in the main text and
thus confirm the validity of the reduction in the correspond-
ing sets. Table B1 summarizes the results obtained by the
application of the hypothesis tests to the control group.

Appendix C: Computation of the uncertain sample
mean

In the main text, we stated that the uncertain sample mean
is given by the pairwise convolution of the individual uncer-
tainty distributions that describe the uncertain sample mem-
bers. Here, we show how the uncertain sample mean can
be computed if the individual uncertainty distributions are
known.

Consider n random variables which are independently yet
not identically distributed:

X = (X1, . . .,Xn) with Xi ∼ ρXi (xi) dxi (C1)

in analogy to the

1T̂ p,q =
(
1T̂

p,q

1 , . . .,1T̂
p,q
n

)
with 1T̂ p,qi ∼ ρ

1T̂
p,q
i

(
1t̂

p,q
i

)
(C2)

from the main text. Further, let

U =
1
n

n∑
i=1

Xi (C3)

denote the mean of the sample of random variables, which is
in turn a random variable by itself. In order to compute the
distribution ρU (u) du we introduce the variable V = nU and
the sequence of variables

Vj =

j∑
i=1

Xi, (C4)

such that Vn = V . From Eq. (C4) it follows that

Vj+1 = Vj +Xj+1 (C5)

and hence

ρVj+1 (vj+1) dvj+1

=

∞∫
−∞

∞∫
−∞

ρVj (vj ) ρXj+1 (xj+1)

× δ(vj+1− vj − xj+1) dxj+1 dvj dvj+1

=

∞∫
−∞

ρVj (vj ) ρXj+1 (vj+1− vj ) dvj dvj+1. (C6)
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Table B1. Results obtained from the application of hypothesis tests to the control group. Reported are the mean p values E(p(1T̂ )) together
with the probability of the uncertain sample to yield a p value below the significance level π (p(1T̂ )< 0.05) and the p values of the expected
samples p(E(1T̂ )) for all three tests. All results were derived from the corresponding empirical densities ρ

1T̂ p,q
(1t̂p,q ). The column sub-

labels z, w, and bs indicate results obtained from the t test, the WSR test, and the bootstrap test. The results presented in the main text are
given by the p–q–0 run for each proxy variable. The data presented here are provided in the Supplement to this article.

Proxies Run E(P̂ ) π (P̂ < 0.05) p(E(1T̂ ))

z w bs z w bs z w bs

NGRIP: Ca2+-Na+ 0 0.219 0.168 0.217 0.258 0.324 0.299 0.044 0.009 0.02
NGRIP: Ca2+-Na+ 1 0.218 0.166 0.215 0.246 0.316 0.292 0.044 0.009 0.019
NGRIP: Ca2+-Na+ 2 0.219 0.165 0.216 0.258 0.324 0.294 0.044 0.009 0.018
NGRIP: Ca2+-Na+ 3 0.22 0.166 0.217 0.254 0.322 0.295 0.044 0.009 0.02
NGRIP: Ca2+-Na+ 4 0.219 0.166 0.217 0.255 0.32 0.296 0.044 0.009 0.02
NGRIP: Ca2+-Na+ 5 0.218 0.166 0.216 0.254 0.319 0.293 0.044 0.009 0.019
NGRIP: Ca2+-Na+ 6 0.219 0.167 0.217 0.255 0.319 0.299 0.044 0.009 0.021
NGRIP: Ca2+-Na+ 7 0.219 0.167 0.217 0.252 0.319 0.295 0.044 0.009 0.019
NGRIP: Ca2+-Na+ 8 0.219 0.164 0.217 0.257 0.316 0.3 0.044 0.009 0.02
NGRIP: Ca2+-Na+ 9 0.218 0.165 0.216 0.261 0.32 0.302 0.044 0.009 0.02
NGRIP: λ-Na+ 0 0.093 0.091 0.086 0.469 0.484 0.524 0.023 0.017 0.017
NGRIP: λ-Na+ 1 0.092 0.091 0.085 0.467 0.482 0.516 0.023 0.017 0.014
NGRIP: λ-Na+ 2 0.093 0.092 0.086 0.462 0.489 0.519 0.023 0.017 0.015
NGRIP: λ-Na+ 3 0.092 0.09 0.085 0.465 0.482 0.516 0.023 0.017 0.016
NGRIP: λ-Na+ 4 0.093 0.09 0.086 0.471 0.488 0.529 0.023 0.017 0.014
NGRIP: λ-Na+ 5 0.093 0.092 0.086 0.468 0.492 0.522 0.023 0.017 0.015
NGRIP: λ-Na+ 6 0.092 0.089 0.085 0.47 0.488 0.521 0.023 0.017 0.013
NGRIP: λ-Na+ 7 0.092 0.091 0.085 0.461 0.486 0.515 0.023 0.017 0.016
NGRIP: λ-Na+ 8 0.093 0.091 0.086 0.477 0.486 0.525 0.023 0.017 0.015
NGRIP: λ-Na+ 9 0.093 0.091 0.086 0.475 0.488 0.524 0.023 0.017 0.015
NGRIP: Ca2+-δ18O 0 0.234 0.182 0.233 0.235 0.306 0.262 0.042 0.015 0.037
NGRIP: Ca2+-δ18O 1 0.234 0.182 0.232 0.231 0.294 0.257 0.042 0.015 0.035
NGRIP: Ca2+-δ18O 2 0.234 0.18 0.232 0.226 0.3 0.254 0.042 0.015 0.039
NGRIP: Ca2+-δ18O 3 0.234 0.182 0.233 0.236 0.314 0.261 0.042 0.015 0.036
NGRIP: Ca2+-δ18O 4 0.234 0.181 0.232 0.234 0.308 0.261 0.042 0.015 0.031
NGRIP: Ca2+-δ18O 5 0.233 0.181 0.231 0.23 0.304 0.253 0.042 0.015 0.032
NGRIP: Ca2+-δ18O 6 0.234 0.181 0.232 0.228 0.306 0.253 0.042 0.015 0.037
NGRIP: Ca2+-δ18O 7 0.234 0.18 0.232 0.235 0.31 0.261 0.042 0.015 0.033
NGRIP: Ca2+-δ18O 8 0.234 0.183 0.232 0.236 0.313 0.263 0.042 0.015 0.034
NGRIP: Ca2+-δ18O 9 0.234 0.182 0.232 0.231 0.307 0.257 0.042 0.015 0.035
NGRIP: λ-δ18O 0 0.133 0.11 0.129 0.369 0.436 0.414 0.024 0.009 0.017
NGRIP: λ-δ18O 1 0.134 0.111 0.129 0.37 0.441 0.416 0.024 0.009 0.016
NGRIP: λ-δ18O 2 0.133 0.11 0.127 0.379 0.44 0.422 0.024 0.009 0.017
NGRIP: λ-δ18O 3 0.135 0.112 0.13 0.38 0.435 0.42 0.024 0.009 0.017
NGRIP: λ-δ18O 4 0.134 0.111 0.129 0.378 0.442 0.419 0.024 0.009 0.018
NGRIP: λ-δ18O 5 0.133 0.109 0.128 0.373 0.437 0.416 0.024 0.009 0.018
NGRIP: λ-δ18O 6 0.133 0.111 0.128 0.384 0.446 0.426 0.024 0.009 0.017
NGRIP: λ-δ18O 7 0.133 0.109 0.128 0.376 0.445 0.416 0.024 0.009 0.017
NGRIP: λ-δ18O 8 0.134 0.11 0.129 0.381 0.443 0.424 0.024 0.009 0.018
NGRIP: λ-δ18O 9 0.134 0.11 0.129 0.376 0.441 0.418 0.024 0.009 0.019
NEEM: Ca2+-Na+ 0 0.08 0.076 0.074 0.566 0.584 0.61 0.008 0.007 0.006
NEEM: Ca2+-Na+ 1 0.08 0.076 0.074 0.57 0.581 0.61 0.008 0.007 0.006
NEEM: Ca2+-Na+ 2 0.079 0.075 0.073 0.571 0.587 0.614 0.008 0.007 0.005
NEEM: Ca2+-Na+ 3 0.079 0.076 0.073 0.573 0.586 0.615 0.008 0.007 0.006
NEEM: Ca2+-Na+ 4 0.08 0.077 0.074 0.572 0.584 0.612 0.008 0.007 0.005
NEEM: Ca2+-Na+ 5 0.08 0.076 0.074 0.571 0.579 0.608 0.008 0.007 0.005
NEEM: Ca2+-Na+ 6 0.08 0.077 0.074 0.565 0.577 0.609 0.008 0.007 0.006
NEEM: Ca2+-Na+ 7 0.08 0.077 0.074 0.57 0.583 0.612 0.008 0.007 0.006
NEEM: Ca2+-Na+ 8 0.079 0.075 0.073 0.57 0.58 0.614 0.008 0.007 0.006
NEEM: Ca2+-Na+ 9 0.078 0.075 0.072 0.567 0.576 0.608 0.008 0.007 0.006
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Self-iteration of Eq. (C6) yields

ρVj+1 (vj+1) dvj+1

=

∞∫
−∞

∞∫
−∞

ρVj−1 (vj−1) ρXj (vj − vj−1) dvj−1

︸ ︷︷ ︸
=ρVj (vj )

× ρXj+1 (vj+1− vj ) dvj dvj+1

= . . .

=

∞∫
−∞

. . .

∞∫
−∞

j+1∏
i=1

ρXi (vi − vi−1) dvi−1 dvj+1, (C7)

where v0 = 0. With Vn/n= U , the distribution for the uncer-
tain sample mean reads

ρVn (vn) dVn = ρVn (nu) n du= ρU (u) du, (C8)

and thus

ρU (u) du=

∞∫
−∞

n∏
i=1
ρXi (vi − vi−1) dvi−1 n du, (C9)

with v0 = 0 and vn = nu.
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Code and data availability. The 10-year resolution time series of
Ca2+ and Na+ for both the NEEM and NGRIP ice cores, together
with corresponding data for δ18O and the annual layer thickness
for the NGRIP ice core as shown in Fig. 1, are available from
https://doi.org/10.1594/PANGAEA.896743 (Erhardt et al., 2018).
The high-resolution data around major DO events for the same
proxies and ice cores are available from the same archive.

Please note that the δ18O data were originally published at
5 cm resolution together with corresponding GICC05 ages as a
Supplement to Gkinis et al. (2014) and can be downloaded from
https://www.iceandclimate.nbi.ku.dk/data/NGRIP_d18O_and_
dust_5cm.xls (last access: 19 August 2021).

All data in preprocessed form, together with the software used
to generate samples from the posterior distributions of the transi-
tion onsets for all proxies at all interstadial onsets under study, were
directly obtained from https://doi.org/10.5281/zenodo.2645176 (Er-
hardt, 2019).

The numerical implementation of the analysis presented here,
building upon the aforementioned samples from the posterior
distributions of transition onsets, is publicly available under
https://doi.org/10.5281/zenodo.5217533 (Riechers, 2021).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/cp-17-1751-2021-supplement.
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