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ABSTRACT
We examine network formation and percolation of carbon black by means of Monte Carlo simulations and experiments. In the simulation,
we model carbon black by rigid aggregates of impenetrable spheres, which we obtain by diffusion-limited aggregation. To determine the input
parameters for the simulation, we experimentally characterize the micro-structure and size distribution of carbon black aggregates. We then
simulate suspensions of aggregates and determine the percolation threshold as a function of the aggregate size distribution. We observe a
quasi-universal relation between the percolation threshold and a weighted average radius of gyration of the aggregate ensemble. Higher order
moments of the size distribution do not have an effect on the percolation threshold. We conclude further that the concentration of large
carbon black aggregates has a stronger influence on the percolation threshold than the concentration of small aggregates. In the experiment,
we disperse the carbon black in a polymer matrix and measure the conductivity of the composite. We successfully test the hypotheses drawn
from simulation by comparing composites prepared with the same type of carbon black before and after ball milling, i.e., on changing only
the distribution of aggregate sizes in the composites.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0058503

I. INTRODUCTION

Carbon particles from pyrolysis have long been used as fillers
in elastomer composites, for example, to improve the mechanical
properties of tires and gaskets1,2 and to lend polymers electrical con-
ductivity in materials for electrostatic interference shielding or as
positive temperature coefficient materials.3,4 In response to a need
for robust elastic sensor and actuator materials, the coupling of
mechanical and elastic properties in elastomer–carbon particle com-
posites has moved into the focus of research.5–9 In all these types of
applications, the filler has a significant impact on the composites’
electrical and mechanical properties if the filler forms a connected
network throughout the material, i.e., if the concentration of the
filler is close to or above the percolation threshold.10,11 A thorough

understanding of the percolation process of filler materials is there-
fore of immediate practical relevance.

The formation of percolating networks from rod-shaped par-
ticles, such as carbon nanotubes, and plate-like particles, such as
graphene, has been studied extensively.12,13 The effect of the filler
particles’ geometry and simple interaction potentials on the per-
colating network has been studied theoretically and by means of
computer simulation for spherical, rod-like, and plate-like fillers as
well as their mixtures.14–32 To our knowledge, however, the per-
colation behavior of fractal structures, such as carbon black (CB),
has not yet been studied. Experimental work on the effect of CB
fillers on mechanical3,33,34 and electrical35–37 properties of elastomer
composites focused on the type of CB and its concentration but
not on the role of the fractal shape in percolation. Systematic
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FIG. 1. (a) Diffusion-limited aggregation (DLA) cluster containing 200 primary par-
ticles. (b) TEM image of CB used in this study. (c) Size distribution of CB dispersed
in toluene from analytical centrifugation.

experimental studies of CB percolation are complicated by the small
size of the quasi-spherical primary particles (typically below 100 nm)
and the wide size distribution of the fractal aggregates that they
form. Figure 1(a) shows an idealized cluster that represents a CB
aggregate as it was observed by transmission electron microscopy
(TEM) [Fig. 1(b)]. Primary particles are relatively uniform and
quasi-spherical, but they form aggregates with wide size distribu-
tions as shown in Fig. 1(c). The aggregates form weak bonds and
arrange into agglomerates. Experimental techniques alone cannot
provide a holistic image of CB percolation at present. We therefore
constructed a simulation model that is based on experimental data
obtained from a standard type of branched acetylene CB and used it
to study percolation. We finally compared the theoretical results to
our experimental observations.

In the following, we present a detailed analysis of percolation
in suspensions of fractal aggregates including polydispersity as well
as interactions. Our main conclusions are as follows: (1) The per-
colation threshold depends quasi-universally on the averaged radius
of gyration of the aggregates, i.e., the percolation threshold can be
inferred from a single macroscopic number characterizing the aggre-
gate ensemble, and (2) fractal particles have a lower percolation
threshold than rods; hence, contrary to intuition, CB can be more
efficient than, e.g., carbon nanotubes as a filler material.

II. MODELING AND SIMULATION PROCEDURE
The structure of CB is commonly described at three differ-

ent levels. The primary CB particles are densely coalesced spheroids
consisting of turbostratic graphene layers. The diameter of the pri-
mary spheres depends strongly on the production technique and
ranges from 5 to 100 nm. Within a specific grade of CB, the primary

particle size typically does not vary strongly. TEM images of the
CB we used for our experiments (see details below) show a narrow
distribution of primary particle diameters at roughly 40 nm.

At the first level of aggregation, the primary particles form
primary aggregates, which are the smallest dispersible units, i.e.,
they consist of strongly bound primary particles, which can only be
separated by fracture. The primary aggregates are self similar. The
size of an aggregate is related to its number of primary particles
through a power law. The exponent governing the aggregate growth
is called mass fractal dimension dm. For the majority of industrially
common CB, the mass fractal dimension varies between values of
2.2 and 2.8.38

At the second level, the primary aggregates form secondary
aggregates (we call those agglomerates henceforth to prevent con-
fusion) that are clusters of primary aggregates connected through
weaker van der Waals (vdW) forces. As the surface of the primary
aggregates can be extremely large, the sparse agglomerates form a
bonded unit themselves, which is the backbone that enhances the
mechanical strength of polymeric composites through filler materi-
als. The agglomerate growth is statistically described by a power law
with a smaller exponent ds, which has been reported as roughly 1.8
for a variety of commonly used CB.38,39 Remarkably, this value is
a good match to the fractal dimension of agglomerates generated
by cluster–cluster aggregation (CCA). Previous studies have thus
used networks formed by CCA clusters on a lattice for a quantitative
comparison to the conductivity of CB–rubber composites close to
the percolation threshold.40,41 Figure 2 schematically illustrates the
different hierarchic layers of of carbon black.

It is often difficult to experimentally distinguish agglomerates
from aggregates once they have formed. However, it is useful to treat
them as separate structural entities because materials are formed
by first dispersing CB as much as possible (such that ideally, only
aggregates remain connected) and to then add them to a matrix,
for example, a liquid elastomer precursor. Such liquids are imper-
fect solvents for CB, which leads to a certain level of attraction
between the aggregates and slow agglomeration that affects material
properties.

As the primary particles are approximately spherical, we model
them as spheres. To take into account the strong bonds inher-
ent to the primary structure, we model an aggregate as a rigid as
well as impenetrable body. For simplicity, we assign a universal
diameter d to our primary particles, which is a decent approxima-
tion to the almost monodisperse primary particle size distribution
of many carbon blacks, including the one we use for experimen-
tal comparison. In order to create suitable primary aggregates, a
formation scheme is required, which reproduces the appropriate
power law statistics. Diffusion-limited aggregation (DLA) has been
studied extensively in theory and simulation, and it is known to
produce aggregates characterized by a fractal dimension of roughly
2.5. This value is consistent with the fractal dimension of 2.57 that
we calculated from gas porosimetry experiments on our CB using
Brunauer–Emmett–Teller (BET) theory as shown in Fig. 3.

We create aggregates by 3D continuum diffusion-limited
aggregation of spheres that model primary particles. During the
aggregation process, single primary particles diffuse freely, one-by-
one, until they hit a pre-existing structure starting with a fixed pri-
mary particle as seed at the origin. When two primary particles over-
lap, they become rigidly linked to form an aggregate. We quantify the
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FIG. 2. The different structural levels of CB—colors are used to differentiate
different aggregates that form an agglomerate.

FIG. 3. Frenkel–Halsey–Hill (FHH) plot of the adsorption branch of the nitrogen
adsorption–desorption isotherms of CB powder. The slope of −0.43 indicates a
fractal dimension of 2.57.

size of an aggregate in terms of its radius of gyration

rg =

¿

Á
ÁÀ

1
N

N

∑

i=1
∣ri − rS∣2, (1)

where N denotes the number of primary particles per aggregate, rS
is the center of mass, and ri is the position of primary particle i.
We compute the average rg for aggregates of a fixed number of pri-
mary particles N and obtain the mass fractal dimension of the DLA
aggregation mechanism by means of a power law fit of the form

N ∝ (
rg

d
)

dm

(2)

FIG. 4. Average number of primary particles N in an aggregate as a function of its
radius of gyration rg in particle diameters. The solid line is a power law fit with an
exponent of 2.48.

for large aggregates (see Fig. 4). In accordance with the litera-
ture (e.g., Ref. 42), we find a fractal dimension of roughly 2.5 for
aggregates of more than 100 primary particles.

We take ensembles of these aggregates and carry out Monte
Carlo simulations, sampling their positions and orientations within
a box with periodic boundary conditions. Each simulation was
performed with at least 1000 aggregates corresponding to up to
several million primary particles. Two aggregates are considered
“connected,” i.e., part of a conductive cluster, if the distance between
at least one pair of primary particles of the corresponding aggre-
gates is smaller than a threshold distance d + ϵ. The connectivity
shell size ϵ roughly models the tunneling length of electrons between
aggregates so that we can relate the percolating cluster to a con-
ductive network. For a given aggregate ensemble, we vary the size
of the simulation box and observe whether a system spanning con-
nected component, i.e., a percolating cluster, exists. Averaging over
a couple of thousand independent realizations of the system, we
determine an ensemble average of the percolation probability. We
define the percolation threshold pc as the volume fraction for which
a sigmoidal fit to the percolation probability returns 0.5. Naturally,
periodic boundary conditions are not a perfect substitute of an
infinite system so that finite size effects have to be discussed (see
the Appendix A).

In this paper, we analyze how the percolation threshold
depends on the aggregate ensemble Γ, the connectivity shell size ϵ,
and small added interactions between the aggregates.

III. SIMULATION RESULTS
Using the procedure described above, we systematically probed

the influence of the aggregate composition on the percolation
threshold. Ultimately, as the industrial application of composite
materials often requires thrifty supplement of the filler material, a
small critical filler fraction and high conductivity of the percolating
network are generally desirable.

There are two different factors that impact the location of the
percolation threshold in the simulation of aggregates with purely
steric interaction—(A) the size distribution of aggregates and (B)
the connectivity shell size ϵ. In the following, we will analyze the
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influences of these parameters separately and draw conclusions
toward optimization.

A. Aggregate size distributions
We examine mono-disperse, bi-disperse, uniform, normal, and

log-normal distributions of the number of primaries per aggregate
N. The induced distribution of ⟨rg⟩ is the composition of the spe-
cific distribution with the power law describing the aggregate growth
[Eq. (2)]. Therefore, all distributions are inherently skewed. Exper-
imentally, the distribution of Stokes diameters in realistic carbon
black is often modeled as a log-normal distribution, which matches
our experimental observations (see below). In order to compare the
experiment to the simulations, we need to assume a relationship
between the measured Stokes diameter and the radius of gyration
of the associated aggregate. As both measures describe dimensions
of effective spheres, we assume proportionality. For a first set of sim-
ulations, we choose the connectivity shell diameter as ϵ = 0.2d, i.e.,
20% of the primary particle diameter. This value is essentially arbi-
trary and chosen as small as possible while still allowing to comfort-
ably equilibrate samples of large aggregates. Naturally, as ϵ becomes
arbitrarily large, the structure of an individual aggregate becomes
irrelevant, while for arbitrarily small connectivity shells, we observe
jamming rather than percolation. Thus, the range of reasonable
connectivity shell sizes is limited.

In order to compare different distributions, we define for a
given ensemble of aggregates Γ = (γi)i∈N the weighted average radius
of gyration ⟨rg⟩Γ as

⟨rg⟩Γ = (
1

∑γ∈Γnγ
)∑

γ∈Γ
nγ ⋅ (rg)γ, (3)

where nγ is the number of primary particles within aggregate γ. We
finally determine the percolation threshold by Monte Carlo Simula-
tion of a fixed aggregate ensemble in boxes of varying sizes. Figure 5
illustrates the findings.

The simulation results strongly suggest that the functional form
of the aggregate size distribution has no influence whatsoever on the

FIG. 5. Percolation threshold as a function of weighted ensemble averaged radius
of gyration for ϵ = 0.2d (top curve) and ϵ = 0.5d (bottom curve) for different aggre-
gate size distributions. Data for all tested distributions (symbols) of the same ϵ
coincide on one curve. The dashed lines correspond to fits of the form of Eq. (5)
differing only in the parameter A.

percolation threshold. Instead, the percolation threshold seems to
depend exclusively on the mass weighted average radius of gyration
of an aggregate ensemble. The percolation threshold decays mono-
tonically as a function of ⟨rg⟩Γ. Thus, large aggregates induce low
percolation thresholds.

However, the range of accessible radii of gyration is too small to
confirm an asymptotic power law relationship. Ensembles of aggre-
gates with ⟨rg⟩Γ > 10 are increasingly hard to equilibrate due to the
intricate individual structure of each aggregate. To make sure that
the quasi-universality prevails for different connectivity shell sizes,
we analyzed the same ensembles for a connectivity shell size of
ϵ = d/2. The result is again a unique relationship at an overall lower
level (see Fig. 5).

The quasi-universal dependence of the percolation threshold
on specific moments of size distributions has been observed before
in polydisperse ensembles of rod-like particles26 as well as fracture
networks.43 In Ref. 26, spherocylinders with different length distri-
butions were examined and percolation thresholds for all distribu-
tions collapsed onto a single function of the average aspect ratio ⟨ζ⟩.
To explain this behavior theoretically, a variation of the second virial
approximation of continuum percolation theory has been stud-
ied, which predicted a quasi-universal relationship though quantita-
tively inaccurate. The second virial approximation assumes that the
connected components grow tree-like until a percolating network
emerges, i.e., finite clusters do not contain loops.44 This has been
found to be a decent approximation for systems of rods with large
aspect ratios as in those systems the largest finite clusters remain
tree-like up to the critical density. Indeed, as the percolation thresh-
old decreases monotonically with the aspect ratio, we eventually
reach arbitrarily low densities so that thermodynamic correlations
become entirely negligible. In this limit, truncating a low density
expansion at second order is always justified, i.e., the second virial
expansion is expected to be asymptotically accurate. This applies to
DLA aggregates as well as rods. However, rods require aspect ratios
ζ > 100 before the second virial approximation becomes adequate
and rods with a smaller aspect ratio have consistently higher perco-
lation thresholds than DLA aggregates of the same radius of gyration
(see Fig. 6). This is a strong indication that carbon black is more

FIG. 6. Variation of the quasi-universal behavior with the connectivity shell size
ϵ. Open symbols correspond to DLA aggregate ensembles with varying ϵ. The
stars and an associated fit according to Eq. (4) (dotted line) denote data of
spherocylinders with ϵ = 0.2 taken from Ref. 25.
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efficient in forming conductive nano-composites than, for instance,
carbon nanotubes (on top of the obvious financial aspect). Yet, in
their natural form, carbon black aggregates are limited in size. The
major advantage of rod-like particles is therefore the accessibility
of very large radii of gyration eventually compensating their minor
efficiency.

Yet, the low density regime bears the disadvantage that the per-
colating cluster will be extremely scarce as well. The corresponding
conductive network will heavily rely on specific nodal links essential
to charge transport, i.e., there will be one or at most a few “red links,”
which carry the entire current. Those links can easily be severed
through external influences like shear deformation or temperature
variations. Therefore, scarce networks allow for highly sensitive sen-
sors and hence attracted a lot of attention. Previous studies have
experimentally combined conductivity measurements and rheolog-
ical measurements on molten CB composites, demonstrating that
sufficiently strong shear destroys the networks formed by carbon
fibers or carbon nanotubes.45–47 In contrast to that, the conduc-
tivity of CB composites can even increase by shearing. Moreover,
the conductivity of CB based composites was found to be rather
insensitive to temperature fluctuations.48 All these observations are
consistent with the network structures induced by the different filler
morphologies. The applicability of the second virial approximation
is accompanied by a lack of resilience against breaking contacts. In
contrast to that, the percolating network of DLA clusters features a
more complex backbone with several paths that carry almost equal
currents (see Fig. 7). It is hence more robust against external influ-
ences and thus more suited to technological applications that require
long lifetimes.

We return to the quasi-universal behavior of the percolation
threshold and note that, heuristically, the authors of Ref. 26 observed
that a function of the form

FIG. 7. Graph representation of a sample network of a barely percolating DLA
ensemble. The major circles (green and red) represent parallel planes in the simu-
lation box, the small circles correspond to individual aggregates and edges encode
conductive contacts with conductances depending on the distance between the
aggregates. The edge thickness illustrates the current flowing through an edge
if unit current is applied between the parallel planes. Multiple independent paths
connect the planes, and thus, the network is resilient.

f (ϵ, ζ) = B[A + (
ϵ
d
)(⟨ζ⟩ + C)]

−1
, (4)

with the aspect ratio ζ and constants A, B, and C excellently fit
the simulation results asymptotically, resulting in the 1

ζ -dependence
predicted by the second virial approximation. However, a function
of that form cannot adequately describe the percolation threshold of
DLA clusters. Yet, for a fixed connectivity shell size, a function of the
form

f ϵ(⟨rg⟩) =
B

(A +
√

⟨rg⟩)
2 (5)

allows for a remarkably accurate fit, which is displayed in Fig. 5.
Importantly, this fit suggests an asymptotic ⟨rg⟩

−1 decay of the
percolation threshold matching the behavior of the spherocylin-
ders. However, simulations of much larger DLA clusters would be
required to confidently resolve this regime.49

B. Connectivity shell size
Larger connectivity shells reduce the percolation threshold. Yet,

the influence of the connectivity shell diminishes when the aggre-
gates grow large. DLA aggregates are too dense in their core to
heavily intertwine so that a larger portion of volume corresponding
to conductive contact is effectively blocked. The accessible and con-
nected volume varies less rapidly with ϵ for large aggregates. Thus,
⟨rg⟩ and ϵ are coupled to each other, and the strength of this coupling
is connected to the aggregation method. Figure 6 illustrates the sim-
ulation results. In order to characterize the coupling, we consider the
crossover length

ξ = (
√

⟨rg⟩ + B
√

ϵ)
2

(6)

and, inspired by Eq. (4), fit our simulation data to

f (ξ) =
A

C + ξ
. (7)

The parameters A = 0.62, B = 2.63, and C = −0.89 lead to remark-
ably good agreement for all simulations with rg > 1. Thus, repre-
senting our simulation results for all distributions and connectivity
ranges in terms of ξ causes all percolation thresholds to coincide on
a common curve (see Fig. 8). This is true regardless of the parame-
ters A and C so that the crossover length is defined on the basis of a
one parameter fit to roughly 100 different aggregate ensembles.

C. Interactions and agglomerate formation
The model above only considers steric repulsion. Common

attractive interactions may additionally induce agglomeration of
the filler particles. Flandin et al. identified an interplay between
short-ranged vdW attraction and long-ranged Coulomb repulsion
as a dominating factor in the conductivity of CB–epoxy compos-
ites.50 Other works reported a crossover from a diffusion-limited
to a reaction-limited aggregation mechanism as the filler fraction
was increased.39 Attractive interactions may hence significantly alter
the volume fraction of the percolation transition. Structural anal-
ysis of the agglomerates can provide insight into the underlying
aggregation mechanism.
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FIG. 8. Percolation threshold as a function of the crossover length ξ. Circles cor-
responds to DLA simulations and stars correspond to spherocylinders. The solid
line shows Eq. (7), and the dashed line is a multiple of Eq. (7).

Industrial CB–elastomer composites often contain multiple
components that are processed at different temperatures and
undergo multiple chemical reactions. It is useful to reduce the num-
ber of components in order to study the possible formation of
agglomerates systematically. To this end, we prepared a simplified
composite by mixing our standard CB from above with a silicon elas-
tomer [polydimethylsiloxane (PDMS), SYLGARDTM 184] that can
be cross-linked at moderate temperatures through a hydrosilylation
process that does not affect CB chemistry. The mixture was prepared
by vigorous stirring of the dry CB powder with the liquid PDMS
precursor mixture, which yielded a highly viscous black paste.

Model composites were prepared using different volume
fractions of CB while keeping all other processing parameters
unchanged. The resulting materials were structurally analyzed using
ultra-small angle x-ray scattering (USAXS) at a synchrotron (DESY
in Hamburg, Germany) in order to examine the fractal structure of
the composite material. Scattering from a fractal results in a char-
acteristic power-law decay of the scattering intensity with the wave
vector. A comprehensive overview can be found in Ref. 51. We have
to distinguish two different types of fractals, mass fractals and sur-
face fractals. Mass fractals describe how the mass of a structure scales
with its size. For instance, the exponent we determined in Fig. 4 cor-
responds to a mass fractal as by construction the mass of our DLA
aggregates grows linear with the number of primary particles. The
scattering intensity I of a mass fractal on length scales smaller than
the size RM of the fractal object is governed by a power law

I ∝ (
RM

q
)

dm

, (8)

with the mass fractal dimension dm. The mass fractal dimension is
naturally smaller than the dimension of the embedding space, i.e.,
dm < 3. In contrast to that, surface fractals describe how the surface
of a fractal object grows with its size. The corresponding scattering
intensity IS scales like

I ∝
Rds

S
q2d−ds

, (9)

with the surface fractal dimension ds and the embedding dimension
d. Importantly, d − 1 < ds < d, which implies that scattering from a

surface fractal in a three-dimensional space always corresponds to a
power law decay with an exponent smaller than −3. We multiply our
scattering intensities I by q3 because scattering from all hierarchical
levels exhibits power-law-like behavior with exponents close to −3.
Our representation stresses the differences between those exponents,
thus emphasizing structural features. The relevant surface fractal in
our system is the roughness of the primary particles. We can decide
whether the primary source of scattering on a certain length scale is
the mass fractal of the aggregate or the surface fractal of the primary
particles by analyzing the slope of the scaled scattering intensity Iq3.
Figure 9 shows the scattering of the composites for different CB
loads.

We can clearly discern three hierarchical levels due to the local
extrema in the scaled scattering intensity. The regime of negative
slope corresponds to the primary particle surface fractal, which
dominates the scattering signal on length scales between roughly
5 and 25 nm. This is consistent with the diameter of the primary
spheres 40 nm that we reported above from TEM images. The mass
fractal that emerges on smaller length scales corresponds to the
internal structure of the primary particles, i.e., turbostratic sheets
of carbon. A power law fit to that regime yields an exponent of
roughly 2.5.

In both of the aforementioned regimes, no qualitative change in
the scattering signal with the CB load is observed. This is expected
as the primary particles are supposed to be indispersible. The same
would be expected for the aggregates; however, the arrangement of
aggregates changes. Due to the distinct polydispersity of the aggre-
gates, the small q-regime in Fig. 9 is a superposition of the aggre-
gate and the agglomerate level. As the carbon content increases,
the ascent in this regime becomes steeper, indicating a lower frac-
tal dimension and thus the formation of agglomerates. A quanti-
tative analysis of the aggregate fractal dimension is unfeasible due
to strong aggregate polydispersity (see also Fig. 1), which blurs the
borderlines between hierarchic levels. Therefore, owing to the lim-
ited information from USAXS, we cannot assign definite geometries

FIG. 9. Synchrotron USAXS data from composite samples with highly polydisperse
CB fillers. The scattered intensities were scaled by the cubed wave vector q in
order to emphasize the different hierarchical levels. The hatched q-range indicates
the area of negative slope, i.e., scattering primarily from the surface fractal of the
primary particles. Smaller wave vectors correspond to the aggregate mass fractal,
whereas larger wave vectors belong to the mass fractal of the carbon sheets that
form the individual primary particles.
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FIG. 10. Simulated percolation threshold depending on the depth of an added
square-well potential (legend values in units of kBT). The range of the well is d + ϵ
with ϵ = 0.2d and all aggregates in one ensembles have the same number of
primary particles N. The solid lines correspond to multiples of the fit, Eq. (7).

to the formed agglomerates. However, the experimental results are
consistent with short-ranged vdW attraction between the CB aggre-
gates that slowly diffuse in the PDMS matrix and form agglom-
erates. Large aggregate sizes and the high viscosity of typical CB
formulations slow down diffusion. It is therefore reasonable to
model the agglomeration process by adding a short-ranged attractive
interaction between the aggregates to the simulation.

We apply a square-well potential of depth ΔE and range [d, d
+ ϵ] between primary particles in order to render conductive con-
tacts between aggregates energetically beneficial. This supports the
formation of agglomerates from existing aggregates. We analyze the
impact of the strength of the interaction onto ensembles of con-
stant primary particle number—the results are displayed in Fig. 10.
We find that scaled versions of the previous fit, Eq. (7), accurately
describe the percolation threshold for all interaction strengths, i.e.,
all lines in Fig. 10 are parallel. This observation supports the idea
that the effective aggregate size is enhanced by a supplementary
attraction. We conclude that if agglomeration occurs, the percola-
tion threshold drops in general. In principle, the location of the
percolation threshold depends strongly on the size distribution of
the aggregates.

However, the homogeneous agglomeration enhancing poten-
tial we used only shifts the percolation threshold by a factor that does
not depend on the higher order moments of the size distribution.
Under realistic conditions, the agglomeration mechanism and force
might depend on the aggregate size, which adds a level of complexity
that exceeds the scope of this study.

IV. EXPERIMENTS ON AGGREGATE
SIZE DISTRIBUTION

The theoretical predictions made above suggest that larger CB
agglomerates reduce the percolation threshold. This result is unal-
tered by a short range attractive interaction and holds even for broad
aggregate size distributions.

It would be cumbersome to experimentally evaluate the predic-
tion using different CB types. Industrial CB types not only differ in
average agglomerate size but may also have different surface chem-
istry and electrical conductivity of the primary particles. Therefore,

TABLE I. The percolation threshold of the CB filler network increases as the mode of
the aggregate size distribution decreases as a result of progressively more intense
ball milling. The different protocols correspond to 2 h, 400 rpm ball milling with 60 g
zirconia balls (A) and 120 g zirconia balls (B).

Milling protocol No. A B

Size distribution mode (nm) 324 288 237
Percolation threshold (vol. %) 4.52 6.96 7.76
Conductivity exponent 1.82 1.62 3.88

we devised experiments based on our standard CB type and changed
the average aggregate size by ball milling, assuming that the primary
particles were left unchanged. Thus, CB powders were ground in a
planetary ball mill with the addition of isopropanol and loose grind
balls. In contrast to high-energy ball milling, our approach limits
the energy input and protects the primary particles because milling
ceases when the viscosity reaches a certain level.

To ensure that the structures formed can be related to the
experiment, we determined the hydrodynamic diameter distribution
by analytical centrifugation after dispersing the CB in toluene. The
diameter distribution of unground CB was monomodal with most
aggregate sizes between 60 and 800 nm, i.e., 1.5–20 primary diame-
ters. The measured distribution roughly followed a log-normal dis-
tribution as reported for CB aggregates in the literature52—a cor-
responding fit is depicted in Fig. 1. Table I illustrates the decrease
in the modal particle size during ball milling as a function of the
mass of milling balls, i.e., milling intensity. The modal particle size
consistently decreased with the intensity of ball milling and the over-
all distribution remained monomodal. We confirmed the effect of
milling using additional USAXS measurements, the results of which
are displayed in Fig. 11. Scattering from milled samples led to sim-
ilar results in the q-range pertaining to primary particles compared

FIG. 11. USAXS data from samples with different contents of ball-milled CB (milling
protocol B). To emphasize the different hierarchical levels, the scattered intensity
is scaled by the cubed wave vector q. The hatched q-range indicates scattering
primarily from primary particles corresponding to separations between roughly 4
and 12 nm. In comparison to the same regime for original CB (gray area) (cf.
Fig. 9) this q-range has distinctly shrunk. The intensity for small wave numbers is
strongly reduced compared to the unmilled sample. The scattering signal of the
original (unground) CB (3-vol. %) from Fig. 9 is included as a reference.
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to the unmilled sample (cf. Fig. 9) but changed for smaller q values.
The left turning point shifts from 0.044 to 0.089 nm−1, indicating
a change in the aggregates and agglomerates. As aggregates become
smaller, they contest the q-range previously dominated by primary
particles. Scattering intensity from aggregates generally shifts to
higher q values interfering with the unaltered primary particle scat-
tering while reducing the intensity for small q’s. This observation is
hence consistent with the analytical centrifugation (AC) measure-
ments. Yet, aggregate polydispersity still prevents a comprehensive
quantitative analysis of the fractals corresponding to the aggregate
and agglomerate levels, respectively.

The conductivity of PDMS-CB composites as a function of the
CB volume fraction is shown in Fig. 12. The results show that the
composite’s conductivity increased with CB volume fraction for each
carbon black set. Renormalization theory for continuum percolation
predicts the conductivity to scale as a power law on approach of the
percolation transition from the percolating regime

σ ∝ σ∞[
(η − ηc)

(1 − ηc)
]

t

, (10)

where η is the CB volume fraction, ηc is the volume fraction at
the percolation threshold, t is the conductivity exponent, σ is the
composite conductivity, and σ∞ is a prefactor characterizing the
asymptotic compound conductivity at η = 1. In experiments, expo-
nents different from the known theoretical value for the rudimentary
continuum percolation problem are frequently observed (see, for
instance, Ref. 41). Real chemically interacting systems contain addi-
tional layers of complexity so that it is expected to leave the univer-
sality class of the purely geometric percolation problem. Therefore,
the conductivity exponent is typically regarded as a fitting parame-
ter. We measured the conductivity as a function of CB load for three
different milling protocols and fitted the results to the scaling law
(10). The resultant percolation thresholds are displayed in Table I.
Reduction in the aggregate size through ball milling thus reduced
the conductivity of the sample at constant CB volume fraction and
shifts the percolation threshold to larger volume fractions. The val-
ues for the conductivity exponent should be interpreted with care

FIG. 12. Measured static electrical conductivities as a function of CB volume frac-
tions for CB before and after milling. The solid lines are fits to Eq. (10) that yield
percolation thresholds ηc of 4.52, 6.96, and 7.76 vol. % for original CB and CB that
underwent milling at increasing intensities.

because the number of fitted points and the range they cover are
simply insufficient for a reliable quantitative analysis. However, the
conductivity data for milling protocols “No” and “A” can be ade-
quately fitted to a power law with specified conductivity exponent
t ≈ 2.0, while this is not possible for protocol “B.” This means that
networks formed by unmilled CB and mildly milled CB are con-
sistent with the universal conductivity exponent, but the intensely
milled sample is not. In previous studies,53 a wider microscopic dis-
tribution of tunneling conductances could be linked to an anoma-
lous increase in the conductivity exponent. We are able to observe
the same phenomenon in simulations. We can adjust the distribu-
tion of tunneling conductances by varying the connectivity shell
size without changing the aggregate ensemble. Appendix B contains
details on the conductivity computation in simulations and exam-
ples of conductivity calculations for the same aggregate ensemble
showing both universal and non-universal conductivity exponents.
The simulation results underline that non-universal exponents can
be the consequence of microscopic reordering. The experimentally
measured non-universal exponent thus indicates such a reordering.
On top of that, the scattering data show the most pronounced dif-
ferences in the regime of small wave vectors, i.e., large length scales.
Therefore, we suggest that the destruction of large aggregates allows
smaller structures to disperse more freely, resulting in a macro-
scopically more disperse arrangement inducing the non-universal
conductivity exponent. Yet, ultimately, we cannot entirely exclude
the possibility of the primary CB being impacted by ball milling as
well. The combination of analytical centrifugation results, scatter-
ing experiments, and electrical measurements thus experimentally
confirms the trend observed in the simulations: large CB aggregates
significantly increase the electrical conductivity and reduce the per-
colation threshold. Thus, in order to construct highly conductive
composite materials with minimal addition of the filler material, the
CB should be prepared accordingly. Moreover, as previous experi-
mental studies already suggested,54 a low fractal dimension of aggre-
gates is desirable because it allows us to grow larger aggregates with
less material.

V. CONCLUSION
We have studied the percolation of fractal aggregates by means

of Monte Carlo simulation and experiments. The fractal aggre-
gates were modeled based on experimental data from analytical
centrifugation, porosimetry, and x-ray scattering of a specific type
of carbon black that is commonly used as a conductive filler. The
physical aggregates have broad size distributions that depend on
their processing history. Our simulations show that their percola-
tion thresholds coincide if they are expressed as a function of the
ensemble averaged radius of gyration of the aggregates. Aggregates
with larger average sizes reduced the percolation threshold; higher
order moments of the size distribution did not affect the percolation
threshold. A similar observation has been made in a study on frac-
ture networks43 in which percolation of two-dimensional polygons
in three-dimensional space was simulated. We tested this prediction
experimentally by decreasing the aggregates’ average sizes through
ball milling. This decrease increased the percolation threshold in a
way that was consistent with the predictions.

We found that the connectivity range (i.e., the distance over
which charges can be transported between aggregates) can also be

J. Chem. Phys. 155, 124902 (2021); doi: 10.1063/5.0058503 155, 124902-8

© Author(s) 2021

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

incorporated in a quasi-universal scaling law as well as the interac-
tion strength between the aggregates. Furthermore, we noted that
the backbones of percolating networks formed by fractal aggregates
consist of many conducting pathways, i.e., there is not just one “red
link” that carries the entire current. Hence, in contrast to networks
formed by rod-like particles, we expect networks of fractal aggre-
gates to be resilient against the fracture of individual bonds. In
addition, the fractal aggregates also have lower percolation thresh-
olds than rod-like particles, which suggests that they are interesting
materials as fillers in conductive composites.

Synchrotron ultra-small angle x-ray scattering experiments
indicated that the carbon black forms hierarchical structures when
added to a silicone polymer matrix. We modeled such agglomer-
ation processes by adding short-ranged attractive interactions to
the aggregates and found that in an ideal case, short-ranged attrac-
tion reduces the percolation threshold uniformly. The formation of
agglomerates in the actual material is affected by the polymer matrix
and process details such as the mixing technique, too. Notwithstand-
ing such limitations, we find that our prediction that smaller average
aggregate sizes generally result in larger percolation thresholds holds
experimentally, too, even when agglomeration was detected. This
shows that systematic studies comparing experiment and simulation
can be done even for a filler system as complex as carbon black.

VI. METHODS
Materials: Carbon black {carbon black, acetylene, 100% com-

pressed, 99.9+%, bulk density 170–230 g/l, Alfa Aesar [Chemi-
cal Abstracts Service Registry Number (CAS): 1333-86-4]}, poly-
dimethylsiloxane (SYLGARDTM 184 Silicone Elastomer Kit), and
toluene [toluene anhydrous, 99.8%, Sigma-Aldrich (CAS: 108-88-3)]
were used as received without further purification.

Ball milling of carbon blacks: We performed the ball milling
experiments to investigate the relationship between filler size and
composites’ conductivity. For all experiments, 1.5 g carbon black
powders were placed in a 50 ml zirconia grinding jar with 30 ml
isopropanol, and ball milling was performed at 400 rpm for 2 h,
with reversal of direction each 10 min. 60 and 120 g milling balls
(1 nm in diameter) were used, respectively, to reach two different
size distributions. The ball-milled carbon blacks were washed with
isopropanol and centrifuged and then dried at 100 ○C overnight.
The dried carbon blacks were hand-milled again and collected for
further use.

Size distribution characterization: Carbon black diameters were
analyzed by analytical centrifugation (AC) using a LUMiSizer 651
(LUM GmbH, Berlin, Germany). The carbon black/toluene sus-
pensions of 0.0014 wt. % were prepared using 30 min ultrasound
in an ultrasonic bath (Elmasonic S 100H). An ultralow concentra-
tion was used here, considering the transmittance and the stability
of the suspension. The temperature was set to 20 ○C for all tests.
For a typical AC test, the blue wavelength of 470 nm was used.
2 mm optical path length polyamide (PA) cells filled with 430 μl
suspensions were used for all experiments. Centrifugation tests
were performed immediately after the cells were filled. A volume-
weighted particle size distribution analysis was performed after the
measurement.

Composite preparation: The composites were prepared by
carbon black fillers and PDMS in different volume ratios in a

Speedmixer (DAC 600.2 VAC-P Vacuum Mixer System). First, car-
bon blacks and PDMS base were mixed at 2350 rpm for 3 min under
vacuum. Second, the curing agent was added to the PDMS-CB mix-
ture with 1/10 of the PDMS mass, and the mixture was then remixed
under the same condition. The mixture was cured at 100 ○C for
2 h. After cooling down, the conductivity of the samples was mea-
sured by a four-point probe method triggered by a Keithley 2450
source meter at room temperature. The CB density was deter-
mined as 1.7 g/cm3 using a helium Pycnometer AccuPyc 1330. The
density of PDMS was assumed to be identical to that of the liq-
uid 0.965 g/cm3. All volume fractions were calculated using these
values.55,56

Ultra-small angle x-ray scattering: The USAXS experiment in
transmission geometry was carried out at the P03/MiNaXS beam-
line at the synchrotron source PETRA III at Deutsches Elektronen-
Synchrotron (DESY), Hamburg, Germany.57 The experiments were
performed during two campaigns: (1) x-ray beam with the energy
12.85 keV (wavelength λ = 0.0965 nm, Δλ/λ = 10−4) and (2)
11.8 keV with a wavelength of λ = 0.105 nm. In both cases, the
x-ray beam was focused on the detector by beryllium compound
refractive lenses (CRL) with the Sample–Detector Distance SDD
= 9760 and 9348 mm, respectively. Transmission was calculated by a
diode inside the beamstop. To increase resolution, the beamstop was
deliberately shifted away from the transmitted x-ray direct beam.58

This allowed for reaching ultra-small scattering angles. A PILATUS
300 K detector (Dectris Ltd., Switzerland) with the pixel size of 172
× 172 μm2 and dimensions of 487 × 619 square pixels (83.8
× 106.5 mm2) was used as an area detector. Azimuthally averaged
radial distribution of intensity was performed after the analysis of
USAXS data using the DPDAK software package.59

Other characterizations: The TEM image was recorded using a
JEM 2010 (JEOL, Germany), working at 200 kV. The BET measure-
ment was carried out with Quadrasorb EVO, measured at 77.35 K.
The sample was filled in a sample cell and put in the degasser.
Under vacuum, it was heated up to 130 ○C and degassed for 10 h.
After cooling, the sample weight was determined, the filler rod was
inserted into the sample cell, and then the sample cell was set in the
measuring instrument.
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APPENDIX A: SIMULATION DETAILS

A standard Metropolis Monte Carlo algorithm was used sam-
pling rotational as well as translational degrees of freedoms of the
aggregates. As long as aggregates only interact hard, every allowed
configuration, i.e., configuration without overlap of hard structures,
is an equilibrium state. Due to the built-in randomness of the aggre-
gates, however, there is no straightforward systematic way to set up
the system in an allowed state. Therefore, we setup an aggregate
ensemble by positioning the center of mass of each aggregate on a
vertex of a cubic lattice with random orientation. Instead of the hard
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potential, we apply a potential that penalizes overlap between dif-
ferent aggregates based on the extent of mutual permeation. Then,
we slowly reduce the system temperature until all overlaps are elim-
inated so that we can switch to hard interaction. To make sure that
the system evolves away from the initial allowed state, we observe
the diffusive behavior of the mean square displacement. For systems
with a supplemental potential, we apply the same technique to obtain
an allowed state that is subsequently evolved until the system energy
fluctuates around a stable minimum. We then apply the same sanity
checks to check for ergodicity.

1. Aggregation process
One primary sphere is placed at the origin as the aggregate seed

before other primary particles randomly diffuse one by one until
they hit a pre-existing structure. Those singular primary particles are
randomly displaced with a maximum step length of 0.1d so that the
maximum overlap of primaries in the final aggregate is controlled.
The formed aggregate is stationary, i.e., its rotational diffusion is
neglected. This simplification physically encodes a time-scale sepa-
ration between the movement of the formed aggregate and primary
particle but is primarily chosen to keep the model as simple and
reproducible as possible. During the aggregation process, the box
size changes dynamically with the size of the formed aggregate. After
a primary sphere is attached to the designated aggregate, its center of
mass is shifted to the origin of the box. Adding three primary diam-
eters to the maximum norm of a constituent primary particle of the
aggregate becomes half the new box length. The next mobile particle
commences diffusion from a surface of a sphere with the diameter of
the new box length. Naturally, the primary spheres forming the final
aggregate permeate each other so that their combined volume is less
than the sum of two sphere volumina. The actual hard volume of
each aggregate can be computed analytically as all overlap volumes
can be decomposed into pairwise sphere–sphere intersections. For
simplicity, however, we instead obtain an accurate approximation to
the hard volume by brute force Monte Carlo integration. We vary
the volume fraction exclusively via the box length so that the hard
particle content never changes. For each volume fraction simulated,
we probe the box at 107 independent spots and calculate the corre-
sponding estimate for the hard volume. Finally, we take the average
over all box lengths. It is this hard volume that we report as reference
for our simulation results.

2. Percolation threshold
Using periodic boundary conditions, a cluster of aggregates is

percolating if a member of that cluster is connected to one of its mir-
ror images. In turn, two aggregates are connected if the connectivity
shells of any of their corresponding primary particles overlap. In
order to determine the percolation threshold, we measure the per-
colation probability Θ(η) as a function of the volume fraction η, i.e.,
for a given volume fraction, we take 10 000 decorrelated snapshots
of the system and probe for the existence of a percolating cluster.
The ratio of percolating snapshots is the simulational estimate for
the percolation probability. In an infinite system, Θ(η) would be a
step function with the step demarcating the percolation threshold
pc. Periodic boundary conditions, however, induce finite size effects,
which give Θ(η) a sigmoidal shape. Following a common protocol,60

we fit the percolation probability to a hyperbolic tangent of the form

Θ(η) =
1
2
[1 + tanh(a∗(η − pc))], (A1)

where a is the parameter characterizing the width of the percolation
probability.

3. Finite size scaling
The simulation results presented above were obtained using

cubic boxes of finite size with periodic boundary conditions. As the
correlation length diverges in proximity to a critical point, finite size
effects have to be taken into account. Thus, this section discusses
how the observed percolation thresholds depend on the length L of
the encompassing box.

Since we always determined the percolation threshold of an
aggregate ensemble by varying the box size, we need to simulate
aggregate ensembles of different sizes to systematically probe for
finite size effects.

Figure 13 displays the percolation probability in the vicin-
ity of the percolation threshold for equivalent aggregate ensem-
bles of varying sizes. Clearly, even for the largest system sampled
corresponding to L > 140d, the percolation probability still differs
significantly from the step function expecting an infinite system.
As expected, the smaller the system, the broader the transition.
The width of the percolation probability can be used to determine
the critical exponent ν governing the divergence of the correlation
length. The fitting parameter a from the sigmoidal fits to the perco-
lation probability like a−1

∝ L−1/ν. Treating ν as a fit parameter, we
recover the expected universal exponent of three-dimensional per-
colation ν ≈ 0.8774.61 Recall that we chose the volume fraction at
percolation probability 0.5 as percolation threshold. Figure 13 shows
that this value substantially drifts to smaller values as the system size
is increased. Percolation theory quantifies this drift as

peff − p∞ ∝ L−1/ν, (A2)

FIG. 13. Percolation probability as a function of the volume fraction for aggregate
ensembles with 100 primary particles per aggregate, ϵ = 0.2, and varying num-
ber of aggregates #agg, implicitly altering the system size. Lines correspond to
sigmoidal fits to the simulation results.
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FIG. 14. Finite size scaling for the percolation threshold of aggregates with 100
primary particles and ϵ = 0.2. The line corresponds to a fit according to (A2).

with peff being the observed percolation threshold, p∞ being the
percolation threshold of the infinite system, and ν being the criti-
cal exponent. Having previously verified that ν takes the expected
value, we can determine the pre-factor of the power law Eq. (A2) as
well as p∞ by a linear fit to the simulation results for peff. Note that
the values for L that we use in that fit are the box lengths at per-
colation probability 0.5. As the box lengths are varied to adjust the
volume fraction while the number of aggregates Nagg is kept con-
stant, one might consider Nagg the more natural scaling variable.
As Nagg ∝ L3 at constant volume fraction, we can equivalently use
peff − p∞ ∝ N−1/(3ν)

agg to obtain the same estimate for p∞.
Figure 14 illustrates that the percolation threshold as initially

evaluated overestimates the percolation threshold of the infinite sys-
tem by roughly 2.5%, which is less than the marker size in the
corresponding figures in the main text. The pre-factor according
to the fit above is roughly 0.31; however, this pre-factor may vary
strongly with the aggregate ensemble. A rigorous finite-size scal-
ing for every ensemble we analyzed would require disproportion-
ate effort. Nevertheless, we repeated the procedure for aggregates
with 50 and 200 primary particles, respectively, and deviation due to
finite size effects is almost the same although the pre-factor grows
slightly with the number of primary particles. For the remaining
ensembles, the width of the percolation probability curve as shown
in Fig. 13 is a good indicator of the strength of finite size effects.
For all percolation thresholds reported above, the system size was
chosen so that the range between percolation probabilities 0.2 and
0.8, respectively, was smaller than 10% of the volume fraction at
probability 0.5. Thus, we expect the percolation thresholds dis-
played in the main text to be collectively overestimated by roughly
2.5% without altering the relationships found and the conclusions
drawn above.

APPENDIX B: CONDUCTIVITY SIMULATIONS

We analyze the simulated aggregate networks by assuming
aggregates to be perfectly conductive rendering tunneling contacts
the only source of resistance. The tunneling conductance is set to
unity for hard contact between aggregates and decays exponentially
to 0.01 for a surface separation of 2ϵ, i.e., when the connectivity
shells just barely still overlap. Beyond a surface separation of 2ϵ,
there is no tunneling contact. We can now vary the microscopic con-
ductance distribution by adjusting ϵ. We pick two opposite faces

FIG. 15. Simulation results for the conductivity for aggregates consisting of 50
primary spheres and ϵ = 0.2.

FIG. 16. Simulation results for the conductivity for aggregates consisting of 50
primary spheres and ϵ = 0.5.

of the simulation box for which we suppress periodic boundary
conditions. Instead, we consider each aggregate permeating one of
the faces as connected to a plate in a parallel-plate capacitor setup.
Finally, we apply a unit current between the plates and solve the
ensuing random resistor network for the resistance between the par-
allel plates. We find that simulations with ϵ = 0.2 are consistent with
the universal exponent t ≈ 2.0 irrespective of the aggregate size dis-
tribution. Conversely, simulations with ϵ = 0.5 are not consistent
with the universal exponent but can be adequately fitted to a power
law with a larger exponent. Figures 15 and 16 show how the con-
ductivity changes with the volume fraction. Notice that each data
point corresponds to an average over 400 networks generated from
decorrelated equilibrium configurations. The error bars mark the
standard deviation of each set of conductivities. Non-percolating
networks are treated as non-conductive.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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