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The reduced dimensionality in two-dimensional materials leads to a wealth of unusual properties, which
are currently explored for both fundamental and applied sciences. In order to study the crystal structure, edge
states, the formation of defects and grain boundaries, or the impact of adsorbates, high-resolution microscopy
techniques are indispensable. Here we report on the development of an electron holography (EH) transmission
electron microscopy (TEM) technique, which facilitates high spatial resolution by an automatic correction of
geometric aberrations. Distinguished features of EH beyond conventional TEM imaging are gap-free spatial
information signal transfer and higher dose efficiency for certain spatial frequency bands as well as direct access
to the projected electrostatic potential of the two-dimensional material. We demonstrate these features with the
example of h-BN, for which we measure the electrostatic potential as a function of layer number down to the
monolayer limit and obtain evidence for a systematic increase of the potential at the zig-zag edges.
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I. INTRODUCTION

The discovery of graphene and its intriguing properties
more than ten years ago [1,2] has sparked large and ongoing
research efforts into two-dimensional materials (2DMs). The
synthesis of novel 2DMs, comprising, e.g., 2D topological
insulators, 2D magnets, or organic systems like 2D polymers,
with single to few layer thickness and high structural defini-
tion at the atomic/molecular level, is at the center of this field
(e.g., [3–6]). They exhibit a large range of physical properties
triggered by the reduced dimensionality in one direction such
as quantum confinement effects or weak dielectric screening
from the environment, yielding a significant enhancement
of the Coulomb interaction [3,7]. Another interesting aspect
is the formation of out-of-plane elastic modulations, which
stabilize the 2DM structure and modify its mechanical prop-
erties [8–10]. The missing third dimension also enhances the
proliferation and impact of defects, such as point and line
defects, grains, or multilayer morphologies, which inevitably
occur upon synthesis and often govern the functionality (e.g.,
reactivity and stability) of 2DMs in applications [11].
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Therefore the development of microscopic characterization
methods, which allow one to analyze the structure and elec-
tronic properties of the 2DMs including the edges, defects,
and grain boundaries, is at the center of the field. Transmission
electron microscopy (TEM) has been a cornerstone technique
(others are scanning tunneling microscopy and photoemis-
sion electron microscopy), offering high resolving power and
spectroscopic information. A breakthrough for TEM could be
achieved by employing chromatic aberration correction fa-
cilitating high-spatial resolution at low-acceleration voltages
[12]. Two central challenges required special attention and
have been addressed through various methodological devel-
opments of TEM techniques.

(A) 2D materials are typically more susceptible to various
beam damage mechanisms than their three-dimensional coun-
terparts [13–15]. That includes knock-on damage, radiolysis,
and chemical etching. The knock-on damage may be reduced
by lowering the acceleration voltage and hence the kinetic
energy of the beam electron below the knock-on threshold
of the pertinent chemical bonds in the 2DM (e.g., 90 keV
for the C-C bond in graphene [16] and 40 keV for the B-N
bond in monolayer h-BN [17]). Radiolysis and etching follow
more complicated reaction mechanisms [18]. Their magnitude
might be reduced by lowering the temperature and optimizing
the acceleration voltage [16].

(B) Most 2D materials belong to the family of weak scat-
terers (another important member is biological matter), which
implies that they only (weakly) shift the phase of the elec-
tron wave when traversing the sample, but do not modulate
the amplitude. Consequently, they are referred to as weak

2643-1564/2020/2(4)/043360(14) 043360-1 Published by the American Physical Society

https://orcid.org/0000-0001-8199-127X
https://orcid.org/0000-0001-5000-8578
https://orcid.org/0000-0003-3318-9877
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.2.043360&domain=pdf&date_stamp=2020-12-11
https://doi.org/10.1103/PhysRevResearch.2.043360
https://creativecommons.org/licenses/by/4.0/


FELIX KERN et al. PHYSICAL REVIEW RESEARCH 2, 043360 (2020)

phase objects (WPOs). This phase shift of the electron wave
cannot be measured directly, due to the quantum mechanical
phase problem. To solve this problem one can employ phase
plates, which enable the imaging of the phase shift introduced
by these materials as intensity contrast. The use of either
physical [19–22] or electron optical phase plates [19,23–25],
however, comes with some merits and disadvantages. The
former degrade [21,22,26] during use and create unwanted
diffuse scattering and beam blocking [27], whereas the latter
are typically constructed from materials that are prone to
charging. Notable exceptions are laser [28] and drift tube [25]
phase plates, which are very demanding constructionwise and
implementationwise. By far the most straightforward method
for transfer of phase contrast to intensity contrast, however,
is an additional defocus with respect to the object exit plane,
which has the negative side effect of introducing transfer gaps
at low spatial frequencies or an oscillating contrast transfer
for large spatial frequencies (see below). Introducing large
defoci also results in a reduction of the resolution due to the
partial transversal coherence of the electrons, which may be
expressed by an exponential envelope function in reciprocal
space.

In the following we address the phase problem in weak
scatterers (for the example of 2DMs) by advancing off-axis
electron holography, an interferometric technique allowing
one to reconstruct the phase shift of the electron wave over
the whole spatial frequency band, up to the information limit.
These advantages have triggered a small number of previous
studies on WPOs, notably for biological materials [29,30]
and 2DMs [31–36]. However, a persisting problem remains in
the defocus required for visualizing the sample during TEM
operation and other residual aberrations such as astigmatism,
which typically build up during acquisition [37]. Their cor-
rection, however, is mandatory for an analysis of the acquired
phase in terms of physical quantities such as potentials, charge
densities, and the atomic structure. In Winkler et al. [35,36]
this problem has been addressed by a model-based fitting
approach requiring a full model of the scattering potential
and hence the 2DM under investigation. Boureau et al. [38]
reconstructed the electrostatic potential and charge density of
an MoS2 monolayer from a series of holograms in order to
increase to effective exposure time. They corrected drifts of
defocus, twofold astigmatism, sample, and biprism in between
the different exposures using the averaging scheme proposed
by Niermann and Lehmann [39]; however, they did not pro-
vide information on how to determine the absolute values of
the aberrations.

Here we follow a different approach requiring no or only
minimal a priori knowledge of the sample, that is, stripping
the recorded data from any instrumental influences, notably
aberrations and noise. The resulting data may then be used
to extract certain specimen properties in a second step. This
approach has the advantage of requiring no a priori knowl-
edge about the specimen and a clear separation between
instrumental influences and characteristics of the specimen.
One key idea is to exploit very general discrete symmetries
pertaining to the scattered electron wave function: First of
all, the weak scattering property induces an odd symmetry
in the object phases in Fourier space, which allows one to
correct for symmetric aberrations. Second, a large class of

2DMs is centrosymmetric, introducing an even symmetry in
the Fourier object phases, which allows one to correct for
antisymmetric aberrations. This approach is based on the
original work of Fu et al. [40], who demonstrated how to
generically extract symmetric aberrations from holograms for
the example of amorphous carbon foils. Here, we go one step
further and autocorrect for the aberrations in the reconstructed
wave of 2DMs, which greatly facilitates the analysis of the
phase in terms of physical data, i.e., projected potentials.
In this regard, we follow Gabor’s original idea of hologra-
phy as a means to aberration correction [41]. The corrected
data are then subjected to a principle component analysis
(PCA) denoising, which reveals the meaningful phase data at
the atomic scale and enables extracting the underlying pro-
jected potential. Last but not least we compare those data to
ab initio density functional calculations to analyze the mea-
sured potentials in terms of charge (de)localizations.

The paper is organized as follows. We first recapitulate
the imaging principles of weak scatterers (phase objects) and
off-axis holography. From these, we derive how geometric
aberrations can be determined and automatically corrected
a posteriori from an acquired hologram without additional
measurements. We elaborate on the noise characteristics of
the thereby obtained aberration-corrected image phase and the
spatial resolution of the determined aberrations (e.g., defocus
due to out-of-plane modulations). We finally demonstrate the
feasibility of the approach for the example of h-BN. Amongst
others we reconstruct the number of layers, the mean inner
potential (MIP) of individual layers, and the structure of the
monolayer as well as the edges, and correlate this to material
properties such as the charge delocalization or the stability and
electronic properties of the edge states.

II. IMAGING PRINCIPLES

A. Conventional imaging and off-axis holography
of a weak phase object

Sufficiently thin TEM specimens (with the critical thick-
ness depending on the atomic scattering potential V of the
chemical constituents) behave as WPOs in TEM. In good
approximation they just impose a small phase shift

ϕobj(r) = CE

∫ +t/2

−t/2

V (r, z)dz (1)

on the beam electrons’ wave function Ψobj leaving the object
of thickness t . Here CE is an electron-energy-dependent inter-
action constant (0.01 rad/V nm at 80 keV), z is the direction
in which the electron beam transmits the sample, and r is the
2D position vector in the object plane. Since WPOs do not
modulate the amplitude A, Ψobj can be approximated by

Ψobj(r)
(WPO)≈ Aobj[1 + iϕobj(r)]. (2)

The dominant geometric aberrations of the objective lens are
described by a phase function χ (k) acting on the electron
wave spectrum by a complex factor e−iχ (k), the wave transfer
function (WTF), in reciprocal space. Moreover, the com-
bination of (transversal and longitudinal) partial coherence
and geometric aberrations leads to an exponential damping
of spatial frequencies in the wave function described by a
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FIG. 1. (a) Off-axis electron holography (EH) setup. (b) Signal
transfer for imaging a weak phase object (WPO) and signal-to-noise
(SNR) transfer functions for HRTEM in negative Cs conditions (−Cs)
and EH [see Eq. (9)]. In case of HRTEM, only the signal transfer
from object phase to image amplitude described by the phase contrast
transfer function (PCTF) contributes to the image. In case of EH,
also the signal transfer from object phase to image phase described
by the amplitude contrast transfer function (ACTF) contributes to
the image. Additionally, the corresponding transferred bands for
HRTEM in −Cs conditions with ± 2-nm defocus variation are also
plotted. A defocus drift of about 2 nm is commonly observed after
about 5 min in aberration-corrected TEM instruments [37].

real envelope function E (k) in reciprocal space. The Fourier
transform of the so-called image wave function taking into
account these modulations by the imaging system [Fig. 1(a)]
reads

Ψ̃img(k) = Ψ̃obj(k)e−iχ (k)E (k) (3)

(WPO)≈ Aob j
[
δ(k) + ie−i[χs (k)+χa(k)]E (k)ϕ̃obj(k)

]
. (4)

Here we separated the antisymmetric and symmetric aber-
rations, χa(k) and χs(k), respectively. The corresponding
conventional linear image intensity (neglecting the term
quadratic in ϕobj(r) and additional smearing due to the detec-
tor) reads

I (r) = |Ψimg(r)|2 (5)

≈ A2 + 2A2F−1

⎧⎨
⎩sin χs(k)E (k)︸ ︷︷ ︸

PCTF

e−iχa (k)

⎫⎬
⎭ ∗ ϕobj(r). (6)

Here we observe that only the so-called phase contrast
transfer function (PCTF) containing the symmetric aberra-
tions produces visible contrast by convolution (∗) with the
phase [Fig. 1(b)]. Several strategies have been developed to
optimize the transfer over certain spatial frequency bands.

Most notably, in state-of-the-art instruments equipped with
hardware-aberration correctors, the spherical aberration (Cs)
and defocus can be traded to produce a positive contrast trans-
fer for high-resolution TEM (HRTEM) over a band, ultimately
limited by the incoherent chromatic envelope of the instru-
ment (also referred to as negative Cs imaging conditions [42]).
The latter limitation could be largely eliminated by employing
chromatic aberration correctors [43], ultimately leading to an
image spread limited resolution (due to Johnson noise [44])

E (k) = exp
(−2π2σ 2

i k2
)

(7)

in such instruments [Fig. 1(b)]. Upon inspection of the PCTF
it becomes immediately clear that, if negative Cs conditions
are perfectly adjusted, it acts as a bandpass in HRTEM con-
ditions, mainly suppressing small spatial frequencies [−Cs in
Fig. 1(b)]. This property complicates for instance the analysis
of the 2DM’s morphology such as determining the layer num-
ber representing large scale spatial structures (see, e.g., [45],
for example on h-BN).

While the transfer of large spatial frequencies may be only
increased through further improved electron optics and/or re-
constructing multiple images with varying imaging conditions
(e.g., focal series [46], beam tilt series [47], or ptychogra-
phy [48]), both large and small spatial frequencies can be
transferred simultaneously by employing off-axis holography.
Here, the object is inserted halfway into the beam path, which
automatically restricts the field of view to edges of the 2D
material, whereas the other half space is occupied by the
undisturbed reference wave. Both parts are brought to super-
position by employing an electrostatic Möllenstedt biprism,
forming a hologram in the image plane [Fig. 1(a)]. From the
latter a complex wave function

Ψ̃hol(r) = F−1{μ(k)Ψ̃img(k)} (8)

is reconstructed [49] (see Appendix B for details). Here, the
contrast factor μ = μcMTF takes into account the detector
modulation transfer function (MTF) of the detector and the
illumination degree of coherence, inelastic scattering, and in-
strumental instabilities (wrapped up in μc). Since the whole
wave function is reconstructed only the incoherent envelopes
E (k) limit the transfer; in particular there is no damping of
small spatial frequencies by the PCTF. For simplicity we will
approximate the contrast factor μ(k) with that of the hologram
carrier frequency μ(kc) in the following.

In addition, the linear reconstruction principle allows one
to compute the noise transfer and hence the error (in terms
of variance) pertaining to the reconstructed phase from the
noise transfer function of the detector [50,51]. If we use
this result and compare conventional HRTEM of WPOs with
off-axis holography in terms of signal-to-noise ratio (SNR)
of the phase contrast for a particular spatial frequency (see
Appendix C for a detailed derivation), we obtain

SNRhol

SNRconv
= μc(kc)

√
DQE(0)

sin χs
√

DQE(kc)
. (9)

Here, DQE denotes a 2D generalization of the detection quan-
tum efficiency as detailed in Appendix C. If this ratio becomes
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larger than 1, i.e.,

μc(kc)
√

DQE(0)

sin χs
√

DQE(kc)
> 1, (10)

off-axis holography is more dose-efficient than conventional
phase contrast in terms of retrievable information per dose.
Noting that a realistic value for the fringe contrast in high-
resolution holograms recorded at modern TEMs equipped
with state-of-the-art detectors and field-emission guns can
reach several tens of percents (in this paper 30%, see below),
this condition is met in a broad range of low to medium spatial
frequencies [see Fig. 1(b)] but not for high spatial frequencies.
Note, however, that the slight inferiority of off-axis hologra-
phy at high spatial frequencies compared to HRTEM may be
overcome by the use of novel direct counting detectors with
largely reduced detector DQEs [52,53].

B. A posteriori correction of residual aberrations

Following Fu et al. [40] the symmetric aberrations can
be readily extracted from the phases ϕ̃img of the image wave
function in reciprocal space [Eq. (3)]:

χs(k) = −1

2
[ϕ̃img(k) + ϕ̃img(−k)] + π

2
+ πn(k), (11)

which follows from the antisymmetry of Fourier phases of
the original WPO (see Appendix A for a detailed derivation).
Here the appearance of the integer (n ε N )π ambiguity stems
from the 2πn ambiguity of the original wrapped phases. The
above relation is remarkable as it allows one to compute (and
therefore correct) the symmetric part of the phase plate χ (k)
(aberrations) without any a priori knowledge about the object
or the incoherent envelopes including the detector MTF. The
only condition for a successful practical application is that
the object spectra SNR must be large enough to suppress
error propagation of inevitable reconstructed noise and other
artifacts (e.g., Fresnel fringes).

A similar expression cannot be derived for the antisym-
metric aberrations, because they do not produce an amplitude
variation from the WPO [see Eq. (5)]. Similar to the well-
known Zemlin tableau method [54], they can be determined
from a tilt series (where lower-order symmetric aberrations
are induced by higher-order antisymmetric ones), or addi-
tional symmetry criteria. In particular, for the large class of
centrosymmetric 2DMs we have ϕ̃a = 0, π and hence

χa(k) = − 1
2 [ϕ̃img(k) − ϕ̃img(−k)] + πn(k). (12)

Here, (n ε N ) × π ambiguity stems from the π phases of the
object.

To finally correct for the aberrations from the holograph-
ically reconstructed wave functions, we multiply its Fourier
transform with the complex conjugate of the WTF, i.e.,

Ψ̃obj(k)E (k) = Ψ̃img(k)eiχ (k). (13)

Note, however, that this involves a phase unwrapping pro-
cedure removing the π ambiguity in the phase plate, which
can be challenging in practice, depending on the spectrum of
the object wave. This currently limits the scope of the auto-
correction scheme to precorrected imaging conditions (e.g.,
using hardware corrected TEMs), where only small residual

TABLE I. Holographic imaging conditions at the TEAM I micro-
scope adjusted for electron wave reconstruction of two-dimensional
materials.

Acceleration voltage Ua 80 kV
Cc and Cs(C3) <10 μm
Image spread σi 40 pm
Information limit 0.13 nm
Diffraction lens excitation 65%
Pixel size of hologram 0.054 nm
Mean counts per hologram pixel Ihol ≈10 000
Biprism voltage Ubi 160 V
Fringe visibility μ(kc ) [50] 0.3
DQE(kc ) [50] 0.5

aberrations and sufficiently small defoci are present, keeping
the phase range within π over a large band.

The above considerations are strictly correct for the WPO
only. In praxis, this condition may be violated to some extent,
e.g., when employing low acceleration voltages (resulting in
higher phase shifts) to reduce knock-on damage in a certain
class of 2DMs. Note, however, that the “constant-amplitude”
criterion also applies to pure phase objects and may be even
slightly generalized to weak amplitude objects by minimizing
a penalty term for the amplitude variations, e.g.,

χ (k) = arg min ‖∇|Ψ̃img(k)eiχ (k)|‖. (14)

Lehmann [55] and Ishizuka et al. [56] reported different ap-
proaches to this aberration assessment via direct amplitude
variation minimization for WPOs. It is currently an open ques-
tion, whether and under which conditions this generalization
yields unique solutions [57].

III. EXPERIMENTAL

To validate the autocorrection method we apply the above
machinery to a single to few atomic layer van der Waals 2DM,
namely, hexagonal boron nitride (h-BN). h-BN has a crystal
structure very similar to that of graphene [see Fig. 2(i)], but
possesses completely different electronic properties (notably
a large band gap and no Dirac points) [58,59]. The sample
was prepared using an exfoliation and reactive ion etching
process similarly to Ref. [45], with the only difference that,
instead of plasma-cleaning the sample, the latter was cleaned
and thinned inside the TEM instrument by an electron-beam
shower of about 20 nA. The electron holograms have been
recorded at a chromatic aberration (Cc) corrected TEM instru-
ment, the TEAM I at the Molecular Foundry at the National
Berkeley Laboratory, using the imaging conditions listed in
Table I. The Cc correction, notably, allowed us to resolve the
{2110} family of spatial frequencies not visible in a conven-
tional Cs (C3) corrected electron microscope. A 20-min-long
time series of holograms was acquired using a 2 × 2-k CCD
camera (Model 894 US1000, Gatan, Inc.), each with 8-s ex-
posure time owing to the great instrumental stability of the
microscope in order to enhance the SNR. For further analysis
we chose a single hologram from the time series, out of those
that do not exhibit notable sample drift during the exposure.
We had to slightly defocus the h-BN sample plane to have
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FIG. 2. Aberration correction of the h-BN image wave reconstructed by off-axis electron holography. (a), (b) As-reconstructed wave image
in amplitude and phase. The symmetric aberration phase plate (c) as determined numerically from Eq. (11) displays all spatial frequencies,
including those where noise is dominating because no object information is present. (d) The color-coded representation of panel (c) is overlayed
with the Fourier spectrum of the image wave (a), (b) to highlight the meaningful part of the numerical phase plate. (e), (f) Amplitude and phase
corrected for symmetric aberrations using the continuous phase plate (g) fitted from panel (c). (h), (i) Amplitude and phase corrected also for
antisymmetric aberrations (coma and threefold astigmatism) obtained from Eq. (12) using the phase plate (j). The crystal structure of a h-BN
monolayer is indicated in panel (i).

sufficient contrast for selecting the desired object position
into the field of view. We note that the defocus, as well as
the twofold astigmatism, were considerably drifting and that
the electron induced charging of the sample is changing at a
modest level over the time frame of the series. Significant,
presumably knock-on induced beam damage can be observed
over the 20 min, especially at the boundary to vacuum. The
recorded holograms were then processed off-line through a
removal of dead and hot pixels by an iterative local threshold
algorithm, as well as a masking out of Fresnel fringes [60].
In addition, a deconvolution of the CCD camera’s MTF and a
modest Wiener filtering [57] in Fourier space were employed
to increase the SNR of the holograms [57]. Within the holo-
graphic Fourier reconstruction method [49], one sideband was
masked with a circular tenth-order Butterworth filter with a
radius of 8.5 nm−1. The phase of the reconstructed wave was
subtracted by the phase reconstructed from an additionally
recorded and equally processed object-free empty hologram,

to correct for distortions induced by the fiber optics that cou-
ple the scintillator to the CCD camera. The as-reconstructed
amplitude and phase of a small region of overlapping h-BN
sheets are depicted in Figs. 2(a) and 2(b). Since the sample
is defocused, one observes an amplitude contrast described
by the PCTF (see also Fig. 6 for the HRTEM image, i.e.,
reconstructed centerband). Moreover, a rather large twofold
astigmatism and other residual aberrations seem to be present,
rendering a quantitative analysis almost impossible. We now
apply the autocorrection procedure outlined in Sec. II B. Fig-
ures 2(c)–2(j) show the results of the two autocorrection
steps; the correction of symmetric aberrations from the WPO
property [Figs. 2(e)–2(g)] and the final correction including
also antisymmetric aberrations after exploiting the centrosym-
metry of the h-BN lattice [Figs. 2(h)–2(j)]. Clearly, the
amplitude [Fig. 2(e)] is almost constant after removal of sym-
metric aberrations [Figs. 2(a) and 2(e) are displayed within
the same color levels], proving the experimental feasibility
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of the first autocorrection step. The numerical phase plate
[Fig. 2(c)] computed using Eq. (11) provides a good SNR only
where the reciprocal space is filled with specimen informa-
tion [i.e., h-BN systematic reflections, Fig. 2(d)]. These are,
however, sufficient to determine the geometrical aberration
coefficients (within 95% confidence intervals) of first-order
aberrations, namely, defocus, C1 = 4.0 ± 0.8 nm, and twofold
astigmatism, {A1 = 2.5 ± 1.1 nm, α1 = 54◦ ± 25◦}, by fitting
a smooth polynomial

χs = 2π

k0
k2[C1 + A1 cos (2α − α1)] (15)

[Fig. 2(g)] with the help of a Levenberg-Marquardt algorithm
(third-order symmetric aberrations are small and could safely
be neglected). We note that the correction with the numeri-
cally obtained phase plate [Fig. 2(c)] yields almost identical
results as the correction with the corresponding fitted phase
plate [Fig. 2(g)].

As stated above, the determination of the numerical anti-
symmetric phase plate is merely possible for centrosymmetric
samples. Ignoring the small difference in atomic species, h-
BN fulfills this symmetry condition for two different points,
the center of the BN hexagons and the midpoints between
the binding atoms. In order to find the most centrosymmet-
ric region of interest, the symmetric aberrations corrected
phase was split up into subimages, containing about 25 unit
cells. Subsequently, for all of them, a numerical measure for
the deviation from centrosymmetry was calculated. The most
centrosymmetric subimage was finally used to determine the
antisymmetric phase plate from Eq. (12), from which the
corresponding phase plate [Fig. 2(j)]

χa = 2π
k3

k2
0

[
1

3
A2 cos

(
3α − αA2

)1

1
+ B2 cos

(
α + αB2

)]
(16)

with a threefold astigmatism of {A2 = 158 ± 261 nm,

α2 = −90◦ ± 16◦} and an axial coma of {B2 = 67 ± 49 nm,

αB2 = −20◦ ± 54◦} was fitted. Note that the 95% confidence
intervals computed from the fit residual are rather large in this
case, which is due to the relatively small size of the symmetric
patch used for the fitting procedure.

In order to prepare the autocorrected high-resolution phase
data for interpretation we apply PCA denoising in a final step
(Fig. 3). Again, no a priori information about the material is
required for this procedure. We rather exploit the regular geo-
metric structure consisting of repeating honeycombs to create
statistical data, which can be treated by PCA (i.e., model-
free) denoising [61]. Our procedure consists of cutting out
patches slightly larger than one honeycomb, centering them,
and subjecting the stack of patches to a PCA (see Appendix F
for details). Inspecting the scree plot [Fig. 3(e)] we identified
11 non-noise components and truncated the data accordingly.
The thereby denoised image is shown in Fig. 3(b) together
with the original data [Fig. 3(a)]. The deviations to the origi-
nal data [Fig. 3(d)] exhibit a noise-like Gaussian distribution
[Fig. 3(c)] with the same standard deviation as the original
phase noise in vacuum. Moreover, it shows no particular struc-
ture except at the edges, where fluctuations due to radiation
damage occur during acquisition. We finally note that the

phase noise σϕ of the original data [Fig. 3(a)] is consistent
with that observed in the conventional HRTEM image data
σI (obtained from the noninterference terms of the recorded
hologram) after rescaling σ 2

ϕ ≈ DQE(0)DQE(kc)/σ 2
I μc(kc)2,

experimentally validating the noise considerations leading to
Eq. (9). Here, the phase noise is smaller than the noise in
the “raw” phase image because of the slight Wiener filtering
mentioned above.

IV. RESULTS AND DISCUSSION

After successful application of the autocorrection and de-
noising procedure we can now analyze the phase maps in
detail. The high-resolution data (Fig. 5) clearly reveal regions
of well-ordered honeycomb lattice with a multilayer morphol-
ogy including various defects and edge structures. There are
also regions, notably the bridge and some of the edges, where
no or only a smeared-out honeycomb lattice is visible (facets
are discernible though). These coincide with strongly oscillat-
ing parts of the sample, which were vanishing during the time
series due to the electron irradiation. We therefore ascribe the
loss of the high-spatial frequency data in this region to local
vibrations rather than some sort of amorphization. Similar
observations and quantification of the lattice distortion at the
edges and vacancies have also been observed by quantitative
phase contrast imaging as well as STEM imaging [62,63].

Indeed, the quantitative phase data allow for a direct com-
parison with the projected potential of the h-BN lattice. We
first focus on the low-frequency information (which might
have been obtained also with medium-resolution holography
modes and without the autocorrection of aberrations). To that
end the high-resolution data are convoluted with a round
top-hat function of the radius of a lattice constant (0.25 nm)
and divided by CE [see Eq. (1)] yielding the averaged pro-
jected Coulomb potential corresponding to the zeroth Fourier
component of the potential in a periodic lattice. It depends
sensitively on the charge (de)localization due to chemical
bonding [64] (see also Appendix D) and is proportional to
the diamagnetic susceptibility according to the Langevin the-
ory [65] amongst others. In our case the average potential
data reveal [Fig. 4(a)] the presence of different sample thick-
nesses, ranging from one to five atomic layers, visible as
areas of constant projected potential, interrupted by a small
number of defects. In the histogram Fig. 4(b) these regions
can be associated to clear distinct peaks. Moreover, the dif-
ferences of the peak positions determined by Gaussians fits
yield the average potentials of each layer [Fig. 4(c)], that
show a small decrease towards higher layer numbers. Noting
that the average potential corresponds approximately to the
sum of the second spatial moment (i.e., spatial extension,
see Appendix D for a derivation) of the charge distribution
of the contributing atoms, i.e., V̄ ∼ ∑ 〈r2〉at, this decrease
in average potential could reflect a growing localization of
the out-of-plane orbitals (3pz orbitals) in between h-BN lay-
ers as compared to the free surfaces. Indeed, the mono-
and bilayer average projected potential of about 4.5 V nm
rather fit with independent atom potentials computed from
Hartree-Fock [66] (4.4 V nm). The latter tend to be too de-
localized compared to those computed from a full density
functional theory (DFT) calculation (using FPLO-18 [67], see
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FIG. 3. Denoising of the aberration-corrected h-BN phase image reconstructed by off-axis electron holography. (a) Original autocorrected
data and corresponding standard deviations of phase σϕ and intensity σI in vacuum. (b) PCA-denoised data after truncation to the first 11
principal components. The selection criterion is the last kink in the scree plot (e). Both the difference (d) and the histogram (c) reveal no
noticeable deviation from Gaussian noise between the original and denoised image except at some structurally fluctuating edges.

Appendix E) including chemical bonds and correlation that
agrees with a value of 3.4 V nm better to three and more layers
[Fig. 4(c)]. Note furthermore that the structurally and atom-
weight-wise closely related graphene has a projected potential
of 4.5 V nm, which also reflects the stronger delocalization of
the shell electrons in conducting graphene. Another possible
explanation of the large potential values could be the positive
charging of the (insulating) h-BN in the beam (ejection of
secondary electrons).

A second noticeable feature is the potential increase visible
at the edges and steps of the sample (most prominent in the
double-layer bridge region). Different physical effects may be
attributed to this potential elevation.

(1) Formation of (covalent) interlayer bonds at the zig-zag
edges of bilayer h-BN, as proposed by Alem et al. [63], occurs
through the following mechanisms: a local compression of
the projected atomic positions or the tilting of the covalent
B-N bonds out of plane, both of which yield a raised pro-
jected potential. These interlayer bonds could also explain the
enhanced stability of even numbered layers under electron

irradiation and thus their dominant appearance in the data
set.

(2) Delocalization of in-plane s, px, and py orbitals into
vacuum could potentially lead to the observed increase of
the average potential. Indeed, DFT calculations reported in
literature predict the emergence of metallic edge states at the
zig-zag edges [68,69].

(3) Systematic adhesion of residual gas atoms occurs with
different atomic potentials at the edges, such as oxygen [70].

Further studies are necessary to clarify and disentangle
those effects quantitatively.

We now turn to the analysis of the autocorrected and
denoised high-resolution data shown in Fig. 5(a). The de-
noised high-resolution data of the monolayer allow one to
distinguish between the B and N sites in the monolayer
[Fig. 5(d)]. Comparing the holographically measured poten-
tials with the ab initio potentials, which have been smeared
out by multiplying the envelope function pertaining to the
TEAM I instrument at 80 kV [see Fig. 1(b)], we observe
good agreement with an additional smearing of the ex-
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FIG. 4. Average potential analysis of h-BN. The overview image in panel (a) contains several flakes of different layer numbers, shaped
by electron-beam irradiation. The potential data histogram in panel (b) reveals the presence of several monolayers, separated by well-defined
potential offsets 
V (c). The linescans in panel (d) provide local measurements for the latter and reveal the presence of potential bumps at
edges and steps.

perimental data along the bonding directions [Fig. 5(f)].
Whether this is due to thermal vibrations (not included in
our analysis) or other damping factors remains an open
question at this stage. Turning to the edge structures, we
observe that the zig-zag boundary is the prevalent con-
figuration [Figs. 5(b) and 5(c)], which coincides with the
ab initio predictions [71]. We further note occasional distor-
tions of the edge lattice, which may be attributed to some
out-of-plane bending or ongoing beam damage (see [62,63]).
Moreover, almost all edges reveal an increase in projected
potentials, which has been already discussed above. That no-
tably also includes steps [e.g., the step from two layer (2 L)
to four layer (4 L) in Fig. 5(c)]. As noted previously we at-
tribute these localized edge potentials to an increased electron
delocalization, most probably due to a reconstruction of the
edge structure along the z direction including the formation of
interlayer covalent bonds [63]. A detailed comparison to the
emergence of particular edge states and the electronic con-
figuration of defects [e.g., BN void depicted in Fig. 5(e)] is,

however, beyond the scope of this paper and will be conducted
elsewhere.

Summing up, we showed how autocorrected off-axis
holography may be used as a high-resolution and dose-
efficient probe for 2DMs. In this regard we performed a
parameter-free correction for antisymmetric aberrations based
on the aforementioned symmetry principles. Notably the pre-
sented aberration autocorrection scheme and the favorable
noise transfer properties of EH facilitate the reconstruction of
quantitative potential data over a large spatial frequency band
extending from zero to atomic resolution. The autocorrection
scheme enables a removal of residual aberrations and defocus
without the need to separately measure or fine tune them,
rendering it a suitable method for in situ studies, where long
time series need to be recorded. The high-structural order of
2DMs furthermore facilitated an efficient suppression of noise
by adopting a PCA noise removal algorithm. Using these
capabilities, we reveal several properties of h-BN. Notably,
the electronic orbitals in h-BN are significantly more localized
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FIG. 5. (a) High-resolution potential analysis. Insets: Zig-zag steps comprising two atomic layers (b), (c), a monolayer region (d), and a
BN void defect (e). The monolayer potential is depicted together with the DFT result in panel (f).

as in the structurally similar graphene, resulting in a compar-
atively low mean projected potential of 3.6 V nm. We could
confirm that edges favor the zig-zag configuration and found
a peculiar localized increase of the potential at the edges. The
latter is attributed to the delocalization of electron edge states.
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APPENDIX A: WEAK PHASE OBJECT PHASE PLATES

This Appendix contains derivations for the expressions
(11) and (12) relating holographic data and aberrations. We

start with rewriting the expression for the suitably normalized
Fourier-transformed image wave (3) using ϕ̃ = Aϕ̃eiPϕ̃ :

Ψ̃img − 2πδ(k)

A
= Ãimgeiφ̃img

= iAϕ̃ (k)e−i[χs (k)+χa (k)−Pϕ̃ (k)]E (k). (A1)

Since ϕ(r) is a real function we have Pϕ̃ (k) = −Pϕ̃ (−k) and
hence

Pϕ̃ (k)mod 2π + Pϕ̃ (−k)mod 2π = 2πn, nεN. (A2)

Consequently,

χs(k) = −1

2
[φ̃img(k) + φ̃img(−k)] + π

2
+ πn. (A3)

Following a similar line of reasoning and assuming a cen-
trosymmetric object, i.e., Pϕ̃ (k)ε{0, π}, we have

χa(k) = − 1
2 [φ̃img(k) − φ̃img(−k)] + πn. (A4)

Here the πn stems from the possible π phases of the real
centrosymmetric object.

APPENDIX B: OFF-AXIS HOLOGRAPHIC
RECONSTRUCTION AND COMPARISON TO HRTEM

By utilizing off-axis electron holography the phase of the
electron wave can be reconstructed; to that end one part
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of the electron wave, which has interacted with the sam-
ple [Ψimg(r)], is superimposed with a plane reference wave
[Ψref (r)] by means of an electrostatic Möllenstedt biprism [72]
[Fig. 1(a)]. The wavefronts of these waves are tilted towards
each other with an inclination angle β = kc

k0
. Denoting the

image wave Ψimg(r) = Aimg(r)ei kc
2 r+iϕimg(r) and the reference

wave Ψref (r) = Aref e−i kc
2 r, the detected hologram intensity

reads

Ihol(r) = |Ψimg(r) + Ψref |2

= A2
ref + A2

img(r)

+ 2μ(kc)ArefAimg(r) cos [kcr + ϕimg(r)]. (B1)

Starting from this interference pattern, the electron wave in
amplitude and phase is reconstructed using Fourier methods.
Accordingly, the hologram intensity Ihol(r) is Fourier trans-
formed:

F[Ihol(r)] = F
{[

A2
ref + A2

img(r)
] ∗ δ(k)

}
︸ ︷︷ ︸

centerband ICB(k)

+ ArefF[Aimg(r)e−iϕimg(r)] ∗ δ(k − kc)︸ ︷︷ ︸
sideband “−1′′ ISB−1(k)

+ ArefF[Aimg(r)e+iϕimg(r)] ∗ δ(k + kc)︸ ︷︷ ︸,
sideband “+1′′ ISB+1(k)

(B2)

separating the centerband and sideband in reciprocal space.
The amplitude [Aimg(r)] and phase [ϕimg(r)] of the electron
wave as well as the conventional centerband intensity can
now be reconstructed numerically by masking and recentering
them individually before transforming them back to position
space.

Beside analyzing the reconstructed wave individually (see
main text), it is also possible to compare the reconstructed
phase analysis to conventional HRTEM analysis based on the
normalized holographic centerband excluding the reference
intensity ICB = IHRTEM − 1 [see Eq. (B2) and Fig. 6]. Ac-
cordingly, the centerband carries the same information as an
HRTEM image, with similar noise properties. Most notably
it is also affected by residual aberrations (e.g., visible as dis-
tortions of atomic columns, B and N not distinguishable) that
drift during the time between correction and acquisition of the
hologram series due to unavoidable instrumental instabilities.
Contrary to the holographic autocorrection scheme discussed
in the main text, there is no way to correct those residual aber-
rations in an a posteriori fashion in HRTEM images, because
the phase information is lost. A further notable difference to
the holographic analysis is the missing low-spatial-frequency
band [see Fig. 1(b)], which, e.g., renders the steps between the
different layers barely detectable (see Fig. 6). The holographic
approach in principle also allows maximal contrast transfer
up to the information limit in the high-spatial-frequency limit.
Currently, however, high-spatial frequencies in the holograms
are additionally damped by the limited modulation transfer of
typical detectors, which is expected to improve considerably
with the advent of the latest generation of direct detection
cameras. Altogether these features allow a quantitative anal-
ysis in terms of local (atomic) potentials from holographic

FIG. 6. Normalized holographic centerband intensity from the
same hologram as used for high-resolution potential analysis (Fig. 5).

reconstructions only, whereas HRTEM analysis mainly fo-
cuses on (high-resolution) structural analysis of 2DMs.

APPENDIX C: NOISE TRANSFER

In the derivation of the SNR for off-axis holography and
conventional phase contrast HRTEM we used the generalized
Lenz model (uncorrelated shot and detector noise, commen-
surable sinc sideband mask, noise small compared to total
intensity), which gives good agreement with the observed
phase noise, in particular under weak contrast conditions as
present in the WPO [51]. Moreover, we assumed that the noise
characteristics (e.g., variance) do not depend significantly on
the position on the detector, which is again a good approxima-
tion for weakly scattering objects. Using these approximations
the variance of the reconstructed phase reads

σ 2
ϕ = 1

Iμc(kc)2DQE(kc)
. (C1)

Here, the DQE denotes a 2D generalization of detection quan-
tum efficiency defined as

DQE(kc) = MTF2(kc)

NPS(kc)
, (C2)

with the MTF denoting the modulation transfer and NPS
denoting the (normalized) white-noise power spectrum of the
detector. The phase SNR then reads

SNRhol = ϕobj

σϕ

=
√

E2ϕ2
objIμc(kc)2

DQE(kc)
. (C3)

The noise analysis for conventional weak phase contrast
HRTEM starts with the shot noise amplified by the detector:

σ 2
I = I NPS(0), (C4)
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from which the SNR is readily derived inserting the relation
between I and the phase (PCTF):

SNRconv =
√

I2PCTF2ϕ2
obj

I DQE(0)
. (C5)

We finally arrive at the ratio between both as noted in the main
text:

SNRhol

SNRconv
= μc(kc)

√
DQE(0)

sin χs
√

DQE(kc)
. (C6)

APPENDIX D: MEAN INNER POTENTIAL

Establishing a well-defined relationship between averaged
projected potential or projected mean inner potential of a 2DM
and the charge distribution holds some pitfalls in the infinite
crystal limit [73]. Indeed, a mean inner potential is not well
defined in this case and depends on fixing boundary condi-
tions or a reference. To circumvent this problem, ab initio
calculations of MIPs of bulk crystals have been carried out for
slab geometries, containing a sufficiently large vacuum region
fixing the reference. In case of a finite crystal (as observed
experimentally), we may start off with dividing the 2DM
domain into “atomic” cells:

V (r) =
∑

Vat (r), (D1)

which shall contain one atom each but are not further specified
at this stage. The projected average of the potential over a
certain area A, i.e.,

1

A

∫
A

V (r)d3r = 1

A

∫ ∑
Vat (r)d3r, (D2)

can now be computed as a sum of the atomic contributions,
which are contained within the area. This is most conveniently
done in Fourier space employing the Poisson equation

k2Ṽat (k) = ρ̃at (k)

ε0
. (D3)

The atomic averaged potential now corresponds to the value
at zero spatial frequency:

Ṽat (k = 0) = lim
k→0

ρ̃at (k, ϕk, θk )

ε0k2
, (D4)

which is not determined in the required limit as both nomi-
nator and denominator tend to zero. To solve that expression
we may apply l’Hôpital’s rule to the average over the full
solid angle of the previous expression (to remove the ϕ and θ

dependency):

Ṽat (k = 0)

= lim
k→0

∂2
k

〈ρ̃at (k)〉ϕk ,θk

2ε0

= lim
k→0

1

2ε0
∂2

k

∫
d3rρat (r)

×〈eikr(sin θk sin θr cos(ϕk−ϕr )+cos θk cos θr )〉
= − 1

2ε0

∫
dr3r2ρat (r)

×〈[sin θk sin θr cos(ϕk − ϕr ) + cos θk cos θr]2〉
= − 1

2ε0

∫
dr3r2ρat (r)

×〈sin2 θk sin2 θr cos2(ϕk − ϕr ) + cos2 θk cos2 θr〉
= − 2π

3ε0

∫
drr2ρat (r). (D5)

Note that we had to apply l’Hôpital’s rule twice, which re-
quires both the zeroth and any first moment with respect to r to
vanish. Consequently, the “atomic” cells, used for partitioning
the 2D domain, have to be charge neutral and dipole-moment
free. That condition restricts the allowed shapes and positions
of the initially undefined atomic patch choice. Noting that
dipole-free atomic cells are centered closely to the atomic
positions in h-BN, we have that the averaged potential is a
measure for the size of the electron cloud around the atoms.

APPENDIX E: DFT

Density-functional [74] band-structure calculations using
the all-electron full-potential local-orbital (FPLO-18) [67] cal-
culation scheme were employed to obtain the electronic
properties (e.g., electron density and potential) of single to
five layer h-BN and graphene for reference. The calculations
were scalar relativistic [75] and used the generalized gra-
dient approximation of the exchange-correlation functional
due to Perdew-Burke-Ernzerhof [76]. The in-plane structural
parameter a = 2.505 Å and the distance between the layers
d = 3.324 Å of h-BN were taken from literature [77] (and
agree well with our experimental findings).

APPENDIX F: PCA ANALYSIS

Principal component analysis allows one to find the
optimal (with respect to the Euclidean distance) linear de-
composition of a statistically varying signal into a truncated
basis. It is a well-established method in advanced statistical
analysis and machine learning [78], provided that a suffi-
ciently large statistical set of signals can be collected. In TEM
it finds application in the analysis of electron-energy-loss
spectroscopy and energy dispersive x-ray data amongst others
[61,79,80]. Here we apply it to the autocorrected phase dataset
decomposed into patches containing one honeycomb of the
2DM structure. Due to the high structural order of 2DMs
these patches contain a finite number of different species,
namely, one to four layer “bulk” honeycombs and correspond-
ing edges/steps. Because several thousand honeycombs are
contained in one hologram, the patches form a sufficiently
large statistical basis, except some particular edge states,
which were too sparse to come out in the PCA. In the PCA
analysis we closely followed the steps laid out in Ref. [61].

(1) Identify patches by locating the honeycomb minima. In
an iterative procedure the patch origin is refined by aligning
patches with their center of mass. We also subtracted the
average of each patch (which amounts to removing the first
principal component).

(2) Perform PCA of the data matrix, the rows of which
correspond to the different patches and the columns of which
represent the interlaced spatial coordinates of the patches.
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(3) Truncate the decomposition by removing
all components beyond a kink in the scree plot
(showing the magnitude-ordered principal compo-
nents). This filter is referred to as truncated PCA in
literature.

(4) Compute the difference between original and truncated
data, confirming the Gaussian noise nature of the remainder
[see Fig. 3(c) in the main text].

(5) Replace the patches in the original image with the PCA
truncated patches [Fig. 3(b)].
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