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Analysis and optimal control theory for a
phase field model of Caginalp type

with thermal memory
Pierluigi Colli, Andrea Signori, Jürgen Sprekels

Abstract

A nonlinear extension of the Caginalp phase field system is considered that takes thermal
memory into account. The resulting model, which is a first-order approximation of a thermody-
namically consistent system, is inspired by the theories developed by Green and Naghdi. Two
equations, resulting from phase dynamics and the universal balance law for internal energy, are
written in terms of the phase variable (representing a non-conserved order parameter) and the
so-called thermal displacement, i.e., a primitive with respect to time of temperature. Existence
and continuous dependence results are shown for weak and strong solutions to the correspond-
ing initial-boundary value problem. Then, an optimal control problem is investigated for a suitable
cost functional, in which two data act as controls, namely, the distributed heat source and the initial
temperature. Fréchet differentiability between suitable Banach spaces is shown for the control-to-
state operator, and meaningful first-order necessary optimality conditions are derived in terms of
variational inequalities involving the adjoint variables. Eventually, characterizations of the optimal
controls are given.

1 Introduction

This paper is concerned with a phase field model for a non-isothermal phase transition with non-
conserved order parameter describing the evolution in a container in terms of two physical variables.
Well-posedness issues for weak and strong solutions and optimal control problems are investigated in
detail. At first, we introduce the system of partial differential equations and related conditions.

1.1 The initial and boundary value problem

We assume that the phase transformation takes place in a fixed container Ω ⊂ Rd, d ∈ {2, 3},
which is an open and bounded domain with smooth boundary Γ := ∂Ω. For a positive fixed final time
horizon T , we set,

Qt := Ω× (0, t), 0 < t ≤ T , Q := QT , Σ := Γ× (0, T ).

Then the model under study reads as

∂tϕ−∆ϕ+ γ(ϕ) + 2
θc
π(ϕ)− 1

θ2c
∂tw π(ϕ) 3 0 in Q, (1.1)

∂ttw − α∆(∂tw)− β∆w + π(ϕ)∂tϕ = u in Q, (1.2)

∂nϕ = ∂n(α∂tw + βw) = 0 on Σ, (1.3)

ϕ(0) = ϕ0, w(0) = w0, ∂tw(0) = v0 in Ω. (1.4)
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The primary variables of the system are ϕ, the order parameter of the phase transition, and w, the
so-called thermal displacement or freezing index. The latter is directly connected to the absolute tem-
perature θ of the system through the relation

w(·, t) = w0 +

∫ t

0

θ(·, s) ds, t ∈ [0, T ]. (1.5)

Moreover, α and β stand for prescribed positive coefficients that are related to the heat flux, θc for a
(positive) critical temperature, and u for a distributed heat source. Besides, the nonlinearities γ : R→
2R and π : R → R indicate, in this order, a maximal monotone graph and a Lipschitz continuous
function. Finally, the symbol ∂n represents the outward normal derivative on Γ, whereas ϕ0, w0, and
v0 stand for some prescribed initial values.

Notice that the inclusion in (1.1) is of Allen–Cahn type and is suited for the case of non-conserved order
parameters (while the case of a conserved order parameter would require a Cahn–Hilliard structure).
The inclusion originates from the possibly multivalued nature of the graph γ. Typically, the maximal
monotone graph γ is obtained as the subdifferential of a convex and lower semicontinuous function
γ̂ : R → [0,+∞], and well-known examples are given by the regular, logarithmic, and double
obstacle potentials, defined, in the order, by

γ̂reg(r) =
r4

4
, r ∈ R , (1.6)

γ̂log(r) =


κ
2
[(1 + r) ln(1 + r) + (1− r) ln(1− r)], if r ∈ (−1, 1),

κ ln(2), if r ∈ {−1, 1},
+∞, otherwise,

(1.7)

γ̂dob(r) = I[−1,1](r), (1.8)

with a positive constant κ, where, for every subset A ⊂ R, IA(·) stands for the indicator function of
A and is specified by

IA(r) :=

{
0 if r ∈ A,
+∞ otherwise.

Let us point out that the inclusion (1.1) simply reduces to an equality in the case of (1.6) and of (1.7)
for −1 < ϕ < 1, since the regularity of γ̂ ensures γ to be single valued.

Next, we present a possible physical derivation of the system in (1.1)–(1.4), trying to meet the require-
ment of thermodynamic consistency as much as possible. On the other hand, different approaches
may be appealed and, in particular, we quote [2, 3, 4, 10, 19, 23, 24] as related references.

1.2 Thermodynamic derivation and modeling considerations

We start from the local specific Helmholtz free energy, acting on the absolute temperature θ > 0
and the dimensionless order parameter ϕ. With physical constants β1, β2, β3, the specific local free
energy F is assumed in the form

F (θ, ϕ) = cV θ(1− ln(θ/θ1)) + β1π̂(ϕ) + β2θ γ̂(ϕ) +
β3

2
θ |∇ϕ|2, (1.9)
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where cV > 0 denotes the specific heat (assumed constant), θ1 > 0 is some fixed reference
temperature, γ̂(ϕ) has been introduced above, and the real-valued function π̂ stands for a primitive of
π. The last summand in (1.9) is a contribution that accounts for nearest-neighbor interactions.

By virtue of the general relations between the thermodynamic potentials, the expressions for local
specific entropy S and local specific internal energy E are then given by

S(θ, ϕ) = −∂θF (θ, ϕ) = cV ln(θ/θ1)− β2 γ̂(ϕ)− β3

2
|∇ϕ|2, (1.10)

E(θ, ϕ) = F (θ, ϕ) + θS(θ, ϕ) = cV θ + β1π̂(ϕ). (1.11)

Now, we come to the evolution laws. As always, the universal balance law of internal energy must be
obeyed. Under the assumption that velocity effects may be discarded, it has the general form

ρ ∂tE(θ, ϕ) + div q = ρu, (1.12)

where q denotes the heat flux, ρ is the mass density and ρu stands for the possible presence of
distributed heat sources/sinks. Here, we consider the case when ρ varies only little during the phase
transition and can be assumed constant.

Usually the Fourier law is assumed for q, i.e.,

q = −κV∇θ, (1.13)

where κV is the (positive) heat conductivity coefficient, together with the no-flux condition q · n = 0
on the boundary.

In the present paper, we adopt a different approach for q, the Fourier law (1.13) being generalized
in the light of the works by Green and Naghdi [15, 16, 17] and Podio-Guidugli [24]. Indeed, these
authors introduced a different approach for the study of heat conduction theory that leads to the no-
tion of thermal displacement. We recall (1.5) and note that there w0 represents a given datum at
the (initial) reference time. This datum accounts for a possible previous thermal history of the phe-
nomenon. Making use of this new variable w, Green and Naghdi proposed three theories for heat
transmission labeled as type I–III. Let us now employ the symbols α and β for the coefficients which
are assumed constant and positive. Type I theory, after suitable linearization, brings us back to the
standard Fourier law

q = −α∇(∂tw) (type I), (1.14)

while linearized versions of type II and III yield the following heat-conduction laws:

q = −β∇w (type II), (1.15)

q = −α∇(∂tw)− β∇w (type III). (1.16)

We point out that the thermal displacement w is useful to describe type II and III laws, whereas the
type I law can be stated in terms of the temperature θ = ∂tw alone.

This paper is concerned with the general type III theory. In fact, in view of (1.12) and (1.16), we infer
that

ρ
(
cVwtt + β1π(ϕ)∂tϕ

)
− α∆(∂tw)− β∆w = ρu. (1.17)

Observe that the no-flux condition q ·n = 0 then gives rise to the second boundary condition in (1.3).
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It remains to derive the equation governing the evolution of the order parameter. To this end, we intro-
duce the total entropy functional, which at any fixed time instant t ∈ [0, T ] is given by the expression

S[θ(t), ϕ(t)] =

∫
Ω

ρ S(θ(t), ϕ(t)) ,

with the usual notation θ(t) = θ(·, t), ϕ(t) = ϕ(·, t).

For the dynamics of the order parameter, we postulate that it runs at each time instant t ∈ (0, T ] in a
direction as to maximize total entropy subject to the constraint that the balance law (1.12) of internal
energy be satisfied. To this end, observe that integration of (1.12) over Ω× [0, t], using (1.11) and the
no-flux boundary condition for q, yields the identity

0 =

∫
Ω

ρ
(
cV θ(t)− cV θ0 + β1π̂(ϕ(t))− β1π̂(ϕ0)−R(t)

)
,

where we again use the notation R(t) = R(·, t), and R(x, t): =
∫ t

0
u(x, s) ds, x ∈ Ω. We now

consider the augmented entropy functional

Sλ[θ(t), ϕ(t)] := S[θ(t), ϕ(t)] + ρ

∫
Ω

λ(·, t)
(
cV θ(t)− cV θ0 + β1π̂(ϕ(t))− β1π̂(ϕ0)−R(t)

)
= ρ

∫
Ω

[
cV ln(θ(t)/θ1)− β2 γ̂(ϕ(t))− β3

2
|∇ϕ(t)|2

+λ(·, t)
(
cV θ(t)− cV θ0 + β1π̂(ϕ(t))− β1π̂(ϕ0)−R(t)

)]
,

where λ(t) = λ(x, t), x ∈ Ω, plays the role of a Lagrange multiplier. The search for critical points
leads to the Euler–Lagrange equations obtained by taking the variational derivatives of Sλ with respect
to ϕ and θ, namely,

δϕSλ[θ(t), ϕ(t)] = ρ
[
−β2γ(ϕ(t)) + β3∆ϕ(t) + λ(t) β1π(ϕ(t))

]
3 0,

δθSλ[θ(t), ϕ(t)] = ρ
[
cV /θ(t) + λ(t) cV

]
= 0.

Then, from the second relation we can identify λ as −1/θ, while we postulate that the evolution of ϕ
runs in the direction of δϕSλ at a rate which is proportional to it. More precisely, we assume that the
evolution of ϕ is governed by the equation

aV (θ, ϕ)∂tϕ = δϕSλ(θ, ϕ),

that corresponds to

aV (θ, ϕ)∂tϕ = ρ
[
−(β1/θ)π(ϕ)− β2 γ(ϕ) + β3 ∆ϕ

]
, (1.18)

where aV is a positive coefficient (assumed constant).

At this point, we simplify the exposition by generally assuming in the following that the numerical values
of all of the physical constants cV , ρ, β1, β2, β3, aV equal unity, while their physical dimensions will be
kept active so that they still match. This will have no bearing on the subsequent mathematical analysis
and should not lead to any confusion. However, in a practical application of the model with real physical
data, this would have to be accounted for. Under these premises, the balance of internal energy (1.17)
takes the form (1.2), and (1.18) becomes

∂tϕ−∆ϕ+ γ(ϕ) +
1

θ
π(ϕ) 3 0. (1.19)
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From (1.19) we arrive at (1.1) with the help of (1.5) and of the first-order approximation

1

θ
≈ 1

θc
− 1

θ2
c

(θ − θc)

about the critical temperature θc.

Initial conditions for ϕ, w, ∂tw are prescribed in (1.4) to complete the initial boundary value problem.

1.3 Comments and results

The full set of equations (1.1)–(1.4) turns out to be a variation of the Caginalp phase field model [4].
Some mathematical discussion of a simpler problem for (1.1)–(1.2) has already been given in [23]. The
papers [5, 6] dealt with well-posedness issues and asymptotic analyses with respect to the positive
coefficients α, β as one of them approaches zero. Other concerned results for this class of systems
may be found in [13, 14]. Finally, let us notice that sliding mode control problems were investigated in
[10].

The existence of a weak solution for (1.1)–(1.4) and its continuous dependence with respect to data
are for the first time examined in the present paper, under very general assumptions on the convex
function γ̂. Then, the regularity issue for obtaining strong solutions of the system is analyzed and an
improved continuous dependence estimate is proved in a restricted framework for γ̂ that still allows for
the cases (1.6) and (1.7) of regular and logarithmic potentials. However, the point of emphasis for this
paper is the study of the optimal control problem, whose precise formulations is given at the beginning
of Section 3 (cf. (3.1)–(3.2)). A tracking-type functional has to be minimized with respect to the variation
of the distributed heat source u in (1.2) and of the initial value v0 for the temperature ∂tw. Indeed,
both these data are taken as controls, and the existence of optimal controls is investigated along with
first-order necessary optimality conditions. More specifically, the linearized problem is introduced, and
it is shown that the control-to-state mapping is Fréchet differentiable between suitable spaces. The
optimal controls are eventually characterized in terms of variational inequalities for the associated
adjoint variables.

About optimal control problems for phase field systems, in particular of Caginalp type, we can quote
the pioneering work [18]; one may also see the specific sections in the monograph [26]. For other
contributions, we mention the article [21], dedicated to a thermodynamically consistent version of the
phase field system described above, and the more recent papers[8] and [9], where the interested
reader can find a list of related references.

1.4 Preliminaries

Let us set the notation we are going to employ throughout the paper. Given a Banach space X ,
we denote by ‖·‖X the corresponding norm, by X∗ its topological dual space, and by 〈·, ·〉X the
related duality pairing between X∗ and X . The standard Lebesgue and Sobolev spaces defined on
Ω, for every 1 ≤ p ≤ ∞ and k ≥ 0, are denoted by Lp(Ω) and W k,p(Ω), and the associated
norms by ‖·‖Lp(Ω) = ‖·‖p and ‖·‖Wk,p(Ω), respectively. For the special case p = 2, these become
Hilbert spaces, and we denote by ‖·‖ = ‖·‖2 the norm of L2(Ω) and employ the usual notation
Hk(Ω) := W k,2(Ω).

DOI 10.20347/WIAS.PREPRINT.2863 Berlin 2021
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For convenience, we also introduce the notation

H := L2(Ω) , V := H1(Ω) , W := {v ∈ H2(Ω) : ∂nv = 0 on Γ}. (1.20)

Besides, for Banach spacesX and Y , we introduce the linear spaceX∩Y , which becomes a Banach
space when equipped with its natural norm ‖v‖X∩Y := ‖v‖X + ‖v‖Y , for v ∈ X ∩ Y . To conclude,
for normed spaces X and v ∈ L1(0, T ;X), we set

(1 ∗ v)(t) :=

∫ t

0

v(s) ds, t ∈ [0, T ], (1.21)

and also introduce the notation

(1 ~ v)(t) :=

∫ T

t

v(s) ds, t ∈ [0, T ]. (1.22)

Throughout the paper, we employ the following convention: the capital-case symbol C is used to
denote every constant that depends only on the structural data of the problem such as T , Ω, α, β, θc,
the shape of the nonlinearities, and the norms of the involved functions. For this reason, its meaning
may vary from line to line and even within formulas. Moreover, when a positive constant δ enters the
computation, the related symbol Cδ denotes constants that depend on δ in addition.

1.5 Plan of the paper

The rest of the work is organized in the following way. Section 2 is devoted to the mathematical analysis
of system (1.1)–(1.4). We prove the existence and uniqueness of a weak solution in a very general
framework that includes singular and nonregular potentials like the double obstacle one. We then
show that in the case of regular and logarithmic potentials, under natural assumptions for the initial
data, the system admits a unique strong solution and that the phase variable enjoys the so-called
separation property. This latter is of major importance for the mathematical analysis of phase field
models involving singular potentials as it guarantees that the singularity of the potential γ is no longer
an obstacle for the mathematical analysis. In fact, it ensures the phase field variable ϕ to range in
some interval in which the potential is smooth. Next, in Section 3, by the results shown in Section 2,
we discuss a nontrivial application to optimal control, where we seek optimal controls in the form of
a distributed heat source and an initial temperature. The existence of an optimal strategy as well as
first-order necessary optimality conditions are addressed.

2 Analysis of the system

The following assumptions will be in order throughout this paper.

A1 α, β, and θc are positive constants.

A2 γ̂ : R → [0,+∞] is convex and lower semicontinuous with γ̂(0) = 0, so that γ := ∂γ̂ is
a maximal monotone graph with γ(0) 3 0. Moreover, we denote the effective domain of γ by
dom(γ).

DOI 10.20347/WIAS.PREPRINT.2863 Berlin 2021
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A3 π : R → R is a Lipschitz continuous function. Let π̂ ∈ C1(R) denote a primitive of π, i.e.,
π(r) = π̂ ′(r) for every r ∈ R.

The first result concerns the existence of weak solutions.

Theorem 2.1. Assume that A1–A3 hold. Moreover, let the initial data fulfill

ϕ0 ∈ V, γ̂(ϕ0) ∈ L1(Ω), w0 ∈ V, v0 ∈ H, (2.1)

and, for the heat source, suppose that

u ∈ L2(0, T ;H). (2.2)

Then there exists a weak solution (ϕ,w, ξ) to the system (1.1)–(1.4) in the sense that

ϕ ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ),

ξ ∈ L2(0, T ;H), ϕ ∈ dom(γ) and ξ ∈ γ(ϕ) a.e. in Q,

w ∈ H2(0, T ;V ∗) ∩W 1,∞(0, T ;H) ∩H1(0, T ;V ),

and that the variational equalities∫
Ω

∂tϕv +

∫
Ω

∇ϕ · ∇v +

∫
Ω

ξv +
2

θc

∫
Ω

π(ϕ)v − 1

θ2
c

∫
Ω

∂tw π(ϕ)v = 0 , (2.3)

〈∂ttw, v〉V + α

∫
Ω

∇(∂tw) · ∇v + β

∫
Ω

∇w · ∇v +

∫
Ω

π(ϕ)∂tϕv =

∫
Ω

uv , (2.4)

are satisfied for every test function v ∈ V and almost everywhere in (0, T ). Moreover, it holds that

ϕ(0) = ϕ0, w(0) = w0, ∂tw(0) = v0.

Furthermore, there exists a constant K1 > 0, which depends only on Ω, T, α, β, θc and the data of
the system, such that

‖ϕ‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;H2(Ω)) + ‖γ̂(ϕ)‖1/2

L∞(0,T ;L1(Ω))

+ ‖w‖H2(0,T ;V ∗)∩W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ K1. (2.5)

Let us emphasize that the above result is very general and includes all of the choices for the potentials
introduced in (1.6)–(1.8). Besides, notice that the second condition in (2.1) follows from the first one
in the case of (1.6). In fact, we have that γ̂reg(r) = O(r4) as |r| → ∞, and in the three-dimensional
case it turns out that ϕ0 ∈ V ⊂ L6(Ω). In view of the regularity of the solution, note that the initial
conditions make sense at least in H , since, in particular, ϕ ∈ C0([0, T ];V ) and w ∈ C1([0, T ];H)
by interpolation properties. Moreover, terms like the last integrals on the left-hand sides of (2.3) and
(2.4) are well defined thanks to Hölder’s inequality, since ∂tw ∈ L2(0, T ;V ), π(ϕ) ∈ L∞(0, T ;V ),
∂tϕ ∈ L2(0, T ;H), and V ⊂ Lp(Ω) for 1 ≤ p ≤ 6.

Proof of Theorem 2.1. We proceed by formal estimates, referring, e.g., to the papers [7, 9] for the
details on a regularization and Faedo–Galerkin approximation of a similar but abstract system.

First estimate: Note that (1.1) or, more precisely,

∂tϕ−∆ϕ+ ξ +
2

θc
π(ϕ)− 1

θ2
c

∂tw π(ϕ) = 0 in Q, (2.6)

DOI 10.20347/WIAS.PREPRINT.2863 Berlin 2021
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with ξ ∈ γ(ϕ) almost everywhere inQ, and (1.2) are the equations related to the variational equalities
(2.3) and (2.4), respectively. We test (2.6) by θ2

c∂tϕ and (1.2) by ∂tw. Then we add the resulting

equalities and to both sides the term θ2c
2

(
‖ϕ(t)‖2 − ‖ϕ0‖2

)
= θ2

c

∫
Qt
ϕ∂tϕ. Note that there is a

cancellation of two terms. Integrating by parts, we obtain that

θ2
c

∫
Qt

|∂tϕ|2 +
θ2
c

2
‖ϕ(t)‖2

V + θ2
c

∫
Ω

γ̂(ϕ(t))

+
1

2
‖∂tw(t)‖2 + α

∫
Qt

|∇(∂tw)|2 +
β

2
‖∇w(t)‖2

≤ θ2
c

2
‖ϕ0‖2

V + θ2
c

∫
Ω

γ̂(ϕ0) +
1

2
‖v0‖2 +

β

2
‖∇w0‖2

− 2θc

∫
Qt

π(ϕ)∂tϕ+

∫
Qt

u ∂tw + θ2
c

∫
Qt

ϕ∂tϕ.

The first four terms on the right-hand side are easily bounded due to the assumption (2.1) on the initial
data. As for the other three terms, we have, using (2.2), Young’s inequality and the Lipschitz continuity
of π, that

−2θc

∫
Qt

π(ϕ)∂tϕ+ θ2
c

∫
Ω

ϕ∂tϕ ≤
θ2
c

2

∫
Qt

|∂tϕ|2 + C

∫
Qt

(|ϕ|2 + 1),∫
Qt

u ∂tw ≤
1

2

∫
Qt

|∂tw|2 + C.

Now, we can apply Gronwall’s lemma, which finally entails that

‖ϕ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖γ̂(ϕ)‖1/2

L∞(0,T ;L1(Ω)) + ‖w‖W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ C. (2.7)

Second estimate: Next, we take an arbitrary function v ∈ L2(0, T ;V ) in (2.4), then use the linear
growth of π, Hölder’s inequality, and the continuous inclusion V ⊂ L6(Ω), to infer that∣∣∣ ∫ T

0

〈∂ttw, v〉V dt
∣∣∣

≤ C

∫ T

0

(
‖∇(∂tw)‖‖∇v‖+ ‖∇w‖‖∇v‖+ ‖u‖‖v‖

)
dt+ C

∫
Q

(|ϕ|+ 1)|∂tϕ||v|

≤ C

∫ T

0

(
‖∇(∂tw)‖+ ‖∇w‖+ ‖u‖+ (‖ϕ‖3 + 1)‖∂tϕ‖

)
‖v‖V dt

≤ C‖v‖L2(0,T ;V ).

Thus, it is a standard matter to conclude that

‖∂ttw‖L2(0,T ;V ∗) ≤ C. (2.8)

Third estimate: Next, we notice that (2.6) can be rewritten as the elliptic equation

−∆ϕ+ ξ= g, with g := − ∂tϕ−
2

θc
π(ϕ) +

1

θ2
c

∂tw π(ϕ)

DOI 10.20347/WIAS.PREPRINT.2863 Berlin 2021



Analysis and optimal control for a phase field model of Caginalp type with thermal memory 9

and ξ ∈ γ(ϕ) almost everywhere in Q. Due to the estimate (2.7), g is bounded in L2(0, T ;H):
indeed, it turns out that ∂tw ∈ L2(0, T ;L4(Ω)) and π(ϕ) ∈ L∞(0, T ;L4(Ω)). Thus, formally
testing by −∆ϕ and using monotonicity to infer that

∫
Q
ξ(−∆ϕ) ≥ 0, we find that

‖∆ϕ‖L2(0,T ;H) + ‖ξ‖L2(0,T ;H) ≤ C.

Then, from (2.6), the smooth boundary condition (1.3) for ϕ, and well-known elliptic regularity results
(see, e.g., [1]), it follows that

‖ϕ‖L2(0,T ;H2(Ω)) ≤ C. (2.9)

This ends the proof of the estimate (2.5), whence Theorem 2.1 is completely proved.

Theorem 2.2. Suppose that A1–A3 hold. Then there exists a unique weak solution (ϕ,w, ξ) to the
system (1.1)–(1.4) in the sense of Theorem 2.1. Moreover, let us denote by {(ϕi, wi, ξi)}i=1,2 a pair
of weak solutions obtained by Theorem 2.1 and related to the initial data {ϕ0,i, w0,i, v0,i}i=1,2 and
heat sources {ui}i=1,2 fulfilling (2.1) and (2.2), respectively. Then it holds that

‖ϕ1 − ϕ2‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖w1 − w2‖H1(0,T ;H)∩L∞(0,T ;V )

≤ K2

(
‖ϕ0,1 − ϕ0,2‖+ ‖w0,1 − w0,2‖V + ‖v0,1 − v0,2‖

)
+K2‖1 ∗ (u1 − u2)‖L2(0,T ;H) (2.10)

with a positive constant K2 that depends only on Ω, T, α, β, θc and the data of the system.

Proof of Theorem 2.2. We aim to prove the stability estimate (2.10). This will in turn guarantee the
uniqueness of weak solutions. For convenience, let us set

ϕ := ϕ1 − ϕ2, w := w1 − w2, ξ := ξ1 − ξ2, (2.11)

ρi := π(ϕi) for i = 1, 2, ρ := ρ1 − ρ2, (2.12)

ϕ0 := ϕ0,1 − ϕ0,2, w0 := w0,1 − w0,2, v0 := v0,1 − v0,2, u := u1 − u2. (2.13)

Using this notation, we take the difference of the weak formulation (2.3)–(2.4) written for {(ϕi, wi, ξi)}i=1,2

and {ϕ0,i, w0,i, v0,i, ui}i=1,2, obtaining that the differences fulfill∫
Ω

∂tϕv +

∫
Ω

∇ϕ · ∇v +

∫
Ω

ξv +
2

θc

∫
Ω

ρ v − 1

θ2
c

∫
Ω

∂tw ρ1v −
1

θ2
c

∫
Ω

∂tw2 ρ v = 0, (2.14)

〈∂ttw, v〉V + α

∫
Ω

∇(∂tw) · ∇v + β

∫
Ω

∇w · ∇v +

∫
Ω

∂t(π̂(ϕ1)− π̂(ϕ2))v =

∫
Ω

uv, (2.15)

for all v ∈ V and almost everywhere in (0, T ). Note that, thanks to A3, we could write the terms
ρi ∂tϕi appearing in (1.2) as ∂tπ̂(ϕi), i = 1, 2. Of course, also the initial conditions

ϕ(0) = ϕ0, w(0) = w0, ∂tw(0) = v0, hold a.e. in Ω. (2.16)

First, we add the term
∫

Ω
ϕv to both sides of (2.14), then take v = ϕ and integrate with respect to

time. We deduce that

1

2
‖ϕ(t)‖2 +

∫ t

0

‖ϕ(s)‖2
V ds+

∫
Qt

ξ ϕ

=
1

2
‖ϕ0‖2 +

∫
Qt

(
ϕ− 2

θc
ρ
)
ϕ+

1

θ2
c

∫
Qt

∂tw ρ1 ϕ+
1

θ2
c

∫
Qt

∂tw2 ρϕ (2.17)
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for all t ∈ [0, T ]. Due to the monotonicity of γ, we immediately conclude that the third term on the
left-hand side is nonnegative. Using the Lipschitz continuity of π along with the regularities ∂twi ∈
L∞(0, T ;H)∩L2(0, T ;V ), ϕi ∈ H1(0, T ;H)∩L∞(0, T ;V ), i = 1, 2, we infer from Theorem 2.1
that ∫

Qt

(
ϕ− 2

θc
ρ
)
ϕ ≤ C

∫
Qt

|ϕ|2 ,

and, with the help of Hölder’s inequality and of the continuous embedding V ⊂ L4(Ω),

1

θ2
c

∫
Qt

∂tw ρ1ϕ ≤ C

∫ t

0

‖∂tw‖
(
‖ϕ1‖4 + 1

)
‖ϕ‖4 ds

≤ C
(
‖ϕ1‖L∞(0,T ;V ) + 1

)∫ t

0

‖∂tw‖ ‖ϕ‖V ds ≤ 1

4

∫ t

0

‖ϕ‖2
V ds+D1

∫
Qt

|∂tw|2,

where D1 is a computable and by now fixed constant. Moreover, we have that

1

θ2
c

∫
Qt

∂tw2 ρϕ ≤ C

∫ t

0

‖∂tw2‖4 ‖ϕ‖‖ϕ‖4 ds

≤ C

∫ t

0

‖∂tw2‖V ‖ϕ‖ ‖ϕ‖V ds ≤ 1

4

∫ t

0

‖ϕ‖2
V ds+ C

∫ t

0

‖∂tw2‖2
V ‖ϕ‖2 ds,

where the function t 7→ ‖∂tw2(t)‖2
V belongs to L1(0, T ) due to Theorem 2.1. Therefore, collecting

the above estimates, it follows from (2.17) that

1

2
‖ϕ(t)‖2 +

1

2

∫ t

0

‖ϕ(s)‖2
V ds

≤ 1

2
‖ϕ0‖2 + C

∫ t

0

(
1 + ‖∂tw2‖2

V

)
‖ϕ‖2 ds+D1

∫
Qt

|∂tw|2. (2.18)

Next, we integrate (2.15) with respect to time using (2.16), then take v = ∂tw, and integrate once more
over (0, t), for an arbitrary t ∈ [0, T ]. Addition of the terms α

2

(
‖w(t)‖2 − ‖w0‖2

)
= α

∫
Qt
w ∂tw to

both sides leads to∫
Qt

|∂tw|2 +
α

2
‖w(t)‖2

V =

∫
Qt

v0 ∂tw +

∫
Qt

(π̂(ϕ0,1)− π̂(ϕ0,2))∂tw

+ α

∫
Qt

∇w0 · ∇(∂tw) +
α

2
‖w0‖ − β

∫
Qt

(1 ∗ ∇w) · ∇(∂tw)

−
∫
Qt

(π̂(ϕ1)− π̂(ϕ2))∂tw +

∫
Qt

(1 ∗ u)∂tw + α

∫
Qt

w ∂tw. (2.19)

We estimate each term on the right-hand side individually. Let us recall that the mean value theorem
and the Lipschitz continuity of π yield the existence of a positive constant C such that

|π̂(r)− π̂(s)| ≤ C(|r|+ |s|+ 1)|r − s| for all r, s ∈ R. (2.20)

By Young’s inequality, we easily have∫
Qt

v0 ∂tw ≤
1

8

∫
Qt

|∂tw|2 + C‖v0‖2.
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Using integration over time, Hölder’s inequality, (2.20), and the continuous embedding V ⊂ L4(Ω),
we find that ∫

Qt

(π̂(ϕ0,1)− π̂(ϕ0,2))∂tw =

∫
Ω

(π̂(ϕ0,1)− π̂(ϕ0,2))(w(t)− w0)

≤ C
∥∥|ϕ0,1|+ |ϕ0,2|+ 1

∥∥
4
‖ϕ0,1 − ϕ0,2‖

(
‖w(t)‖4 + ‖w0‖4

)
≤ C

(
‖ϕ0,1‖V + ‖ϕ0,2‖V + 1

)
‖ϕ0‖

(
‖w(t)‖V + ‖w0‖V

)
≤ α

8

(
‖w(t)‖2

V + ‖w0‖2
V

)
+ C

(
‖ϕ0,1‖2

V + ‖ϕ0,2‖2
V + 1

)
‖ϕ0‖2.

Next, the third term on the right-hand side of (2.19) can be bounded as

α

∫
Qt

∇w0 · ∇(∂tw) = α

∫
Ω

∇w0 · (∇w(t)−∇w0) ≤ α

8
‖∇w(t)‖2 + C‖∇w0‖2.

Then, by using the identity∫
Qt

(1 ∗ ∇w) · ∇(∂tw) =

∫
Ω

(1 ∗ ∇w(t)) · ∇w(t)−
∫
Qt

|∇w|2,

the fact that ‖1 ∗ ∇w(t)‖2 ≤
( ∫ t

0
‖∇w‖

)2

≤ T
∫
Qt
|∇w|2, and Young’s inequality, we infer that

−β
∫
Qt

(1 ∗ ∇w) · ∇(∂tw) ≤ α

8
‖∇w(t)‖2 + C

∫
Qt

|∇w|2.

To handle the sixth term on the right-hand side of (2.19), we owe once more to (2.20) and the contin-
uous and compact embedding V ⊂ Lp(Ω), 1 ≤ p < 6. By the Hölder and Young inequalities, and
thanks to (2.5) and the Ehrling lemma (see, e.g., [22, Lemme 5.1, p. 58]), we can deduce that

−
∫
Qt

(π̂(ϕ1)− π̂(ϕ2))∂tw ≤ C

∫ t

0

∥∥|ϕ1|+ |ϕ2|+ 1
∥∥

4
‖ϕ1 − ϕ2‖4‖∂tw‖ ds

≤ 1

8

∫
Qt

|∂tw|2 + C(‖ϕ1‖2
L∞(0,T ;V ) + ‖ϕ2‖2

L∞(0,T ;V ) + 1)

∫ t

0

‖ϕ‖2
4 ds

≤ 1

8

∫
Qt

|∂tw|2 + δ

∫ t

0

‖ϕ‖2
V ds+ Cδ

∫
Qt

|ϕ|2 ,

for any positive coefficient δ (yet to be chosen). Lastly, Young’s inequality easily produces∫
Qt

(1 ∗ u)∂tw + α

∫
Qt

w ∂tw ≤
1

4

∫
Qt

|∂tw|2 + C

∫
Qt

|1 ∗ u|2 + C

∫
Qt

|w|2.

Thus, in view of (2.19), upon collecting the above computations, we realize that

1

2

∫
Qt

|∂tw|2 +
α

8
‖w(t)‖2

V

≤ C‖v0‖2 + C
(
‖ϕ0,1‖2

V + ‖ϕ0,2‖2
V + 1

)
‖ϕ0‖2 + C‖w0‖2

V

+ δ

∫ t

0

‖ϕ‖2
V ds+ Cδ

∫
Qt

|ϕ|2 + C

∫
Qt

|1 ∗ u|2 + C

∫ t

0

‖w‖2
V ds. (2.21)
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At this point, we multiply (2.21) by 4D1 and add it to (2.18); then, fixing δ > 0 such that 4D1δ < 1/2,
and applying the Gronwall lemma, we obtain the estimate

‖ϕ‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖w‖H1(0,T ;H)∩L∞(0,T ;V )

≤ C(‖ϕ0‖+ ‖w0‖V + ‖v0‖+ ‖1 ∗ u‖L2(0,T ;H)),

where C depends also on ‖ϕ0,i‖V , i = 1, 2. Due to our notation in (2.11)–(2.13), this is actually
(2.10), and the proof of Theorem 2.2 is complete.

To improve the regularity results of Theorem 2.1, as well as the stability estimate (2.10), we are forced
to require more regularity on structural elements, in particular, for the nonlinearity γ̂. In the following
lines, we state general conditions under which we are able to extend the existence and uniqueness
results to a stronger framework.

B1 There exists an interval (r−, r+) with −∞ ≤ r− < 0 < r+ ≤ +∞ such that the restriction
of γ̂ to (r−, r+) belongs to C2(r−, r+). Thus, γ coincides with the derivative of γ̂ in (r−, r+).

B2 It holds that limr↘r− γ(r) = −∞ and limr↗r+ γ(r) = +∞.

B3 γ ∈ C2(r−, r+) and π ∈ C2(R).

Notice that B1–B3 are fulfilled by the regular and the logarithmic potentials (1.6) and (1.7), whereas
the double obstacle nonlinearity (1.8) is no longer allowed. Again, we remark that, due to B1, we no
longer need to consider any selection ξ ∈ ∂γ(ϕ) as γ = γ̂ ′ in (r−, r+) . This also entails that (1.1)
becomes an equality.

The next result dealing with regularity of the solution does not need the condition B3.

Theorem 2.3. Assume that A1–A3 and B1–B2 are fulfilled. Furthermore, let the heat source u fulfill
(2.2), and let the initial data, in addition to (2.1), satisfy

ϕ0 ∈ W, v0 ∈ V, ϕ′0 := ∆ϕ0 − γ(ϕ0)− 2
θc
π(ϕ0) + 1

θ2c
v0π(ϕ0) ∈ H. (2.22)

Then there exists a strong solution (ϕ,w) to system (1.1)–(1.4) in the sense that

ϕ ∈ W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (2.23)

w ∈ H2(0, T ;H) ∩W 1,∞(0, T ;V ) ∩H1(0, T ;W ), (2.24)

and that the equations (1.1)–(1.4) are fulfilled almost everywhere in Q, on Σ, or in Ω, respectively. In
addition, assume that the heat source u fulfills

u ∈ L∞(0, T ;H) (2.25)

and that

w0, v0 ∈ L∞(Ω), r− < min
x∈Ω

ϕ0(x) ≤ max
x∈Ω

ϕ0(x) < r+. (2.26)

Then it holds that

∂tw ∈ L∞(Q) ,
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and the phase variable ϕ enjoys the so-called separation property, which means that there exist two
values r∗, r∗, depending only on Ω, T, α, β, θc and the data of the system, such that

r− < r∗ ≤ ϕ ≤ r∗ < r+ a.e. in Q. (2.27)

Furthermore, there exists a constant K3 > 0 such that

‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;H2(Ω))

+ ‖w‖H2(0,T ;H)∩W 1,∞(0,T ;V )∩H1(0,T ;H2(Ω)) + ‖∂tw‖L∞(Q) ≤ K3. (2.28)

Here, we point out that the regularities in (2.24) imply w ∈ C0(Q) thanks to the Sobolev embedding
results. Moreover, since the embedding W ⊂ C0(Ω) is compact, it follows from [25, Sect. 8, Cor. 4]
that also ϕ ∈ C0(Q). In particular, the separation property (2.27) is valid even pointwise in Q.

Proof of Theorem 2.3. In what follows, we perform the estimate directly on the system (1.1)–(1.4)
underlying that now also equation (1.1) turns to an equality as γ(·) = γ̂ ′(·) is single valued. A
rigorous proof would need some approximation, but please take into account that we already have
proved the existence and uniqueness of the weak solution.

First estimate: To begin with, we formally differentiate (1.1) with respect to time and multiply the
resulting identity by θ2

c∂tϕ; then we add (1.2) tested by ∂ttw, and integrate over Qt. Note that a
cancellation occurs and that, after some rearrangements, one obtains

θ2
c

2
‖∂tϕ(t)‖2 + θ2

c

∫
Qt

|∇(∂tϕ)|2 + θ2
c

∫
Qt

γ′(ϕ)|∂tϕ|2 +

∫
Qt

|∂ttw|2 +
α

2
‖∇(∂tw)(t)‖2

≤ θ2
c

2
‖ϕ′0‖2 +

α

2
‖∇v0‖2 − 2θc

∫
Qt

π′(ϕ)|∂tϕ|2 +

∫
Qt

∂tw π
′(ϕ)|∂tϕ|2

− β
∫
Qt

∇w · ∇(∂ttw) +

∫
Qt

u ∂ttw.

Owing to the monotonicity of γ, we infer that the third term on the left-hand side is nonnegative. The
first two terms on the right-hand side are controlled due to the conditions (2.22) on the initial data. As
for the third term on the right-hand side, we note that ∂tπ(ϕ) makes sense as π′(ϕ)∂tϕ, in view of
the global Lipschitz continuity of π. Now, we use the boundedness of π′ and estimate (2.5), obtaining
that

−2θc

∫
Qt

π′(ϕ)|∂tϕ|2 ≤ C

∫
Qt

|∂tϕ|2 ≤ C.

Next, as V ⊂ L4(Ω) with compact embedding, we employ Hölder’s inequality, (2.5), and Ehrling’s
lemma, to deduce that∫

Qt

∂tw π
′(ϕ)|∂tϕ|2 ≤ C

∫ t

0

‖∂tw‖‖∂tϕ‖2
4 ds

≤ C

∫ t

0

‖∂tϕ‖2
4 ds ≤ θ2

c

2

∫
Qt

|∇(∂tϕ)|2 + C

∫
Qt

|∂tϕ|2.
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The fifth term on the right-hand side can be controlled by integrating by parts and using the above
estimate along with Young’s inequality and assumptions (2.22), so that

− β
∫
Qt

∇w · ∇(∂ttw)

= β

∫
Qt

|∇(∂tw)|2 − β
∫

Ω

∇w(t) · ∇(∂tw(t)) + β

∫
Ω

∇w0 · ∇v0

≤ β

∫
Qt

|∇(∂tw)|2 +
α

4
‖∇(∂tw)(t)‖2 + C‖w‖2

L∞(0,T ;V ) + C(‖w0‖2
V + ‖v0‖2

V ).

Finally, the last term can be easily handled by Young’s inequality, namely,∫
Qt

u ∂ttw ≤
1

2

∫
Qt

|∂ttw|2 +
1

2
‖u‖2

L2(0,T ;H).

Hence, upon collecting the above computations, the Gronwall lemma yields that

‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;V ) + ‖w‖H2(0,T ;H)∩W 1,∞(0,T ;V ) ≤ C. (2.29)

Second estimate: By comparison in equation (1.1), we deduce that

‖−∆ϕ+ γ(ϕ)‖L∞(0,T ;H) ≤ C.

Then, arguing as in the proof of Theorem 2.1 (cf. the Third estimate there), and using the elliptic
regularity theory, we infer that

‖ϕ‖L∞(0,T ;H2(Ω)) + ‖γ(ϕ)‖L∞(0,T ;H) ≤ C. (2.30)

Third estimate: We then rewrite (1.2) as a parabolic equation in the new variable y := α∂tw + βw.
Thanks to equations (1.3)–(1.4), we have that

1
α
∂ty −∆y = g := u− π(ϕ)∂tϕ+ β

α
∂tw in Q,

∂ny = 0 on Σ,

y(0) = y0 := αv0 + βw0 in Ω.

(2.31)

By analyzing system (2.31), we realize that g ∈ L2(0, T ;H) and y0 ∈ V , so that the parabolic
regularity theory entails that

‖y‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;H2(Ω)) ≤ C. (2.32)

In fact, since the ODE relation α∂tw + βw = y holds true in Q, then

w(t) = e−βt/αw0 +
1

α

∫ t

0

e−β(t−s)/αy(s)ds, t ∈ [0, T ]. (2.33)

Thus, w and its derivative ∂tw possess the same regularity as y and satisfy estimates like (2.32),
where the constant on the right-hand side has the same dependencies. Therefore, we eventually
conclude that

‖w‖H2(0,T ;H)∩W 1,∞(0,T ;V )∩H1(0,T ;H2(Ω)) ≤ C. (2.34)
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Fourth estimate: Let us consider again system (2.31). Due to the above estimates and to (2.25), we
have that g is bounded in L∞(0, T ;H). Thanks to (2.1), (2.22), and the first condition in (2.26), it
turns out that the initial datum y0 is bounded in V ∩ L∞(Ω). Hence, an application of [20, Thm. 7.1,
p. 181] yields that

‖y‖L∞(Q) = ‖α∂tw + βw‖L∞(Q) ≤ C.

Moreover, arguing as above, this in particular leads to

‖w‖L∞(Q) + ‖∂tw‖L∞(Q) ≤ C. (2.35)

As a consequence, by virtue of (2.29), (2.30), and (2.34), the estimate (2.28) eventually follows.

Separation property: Now, with the help of the regularity result proved above, we are in a position
to prove the separation property for the phase variable ϕ. This can be shown by following the same
lines of argumentation as in [11, Proof of Theorem 2.2] (see also [12]). Observe that ϕ is bounded in
L∞(Q) due to (2.30) and the Sobolev embedding H2(Ω) ⊂ L∞(Ω) (as noted above, we even have
ϕ ∈ C0(Q)). Hence, if we rewrite (1.1) as

∂tϕ−∆ϕ+ γ(ϕ) = g, where now g: = − 2
θc
π(ϕ) + 1

θ2c
∂tw π(ϕ), (2.36)

then it turns out that g is bounded in L∞(Q), due to A3 and (2.35). This entails the existence of a
positive constant g∗ for which ‖g‖L∞(Q) ≤ g∗. Furthermore, the growth assumptions B1–B2 ensure
the existence of some constants r∗ and r∗ such that r− < r∗ ≤ r∗ < r+ and

r∗ ≤ min
x∈Ω

ϕ0(x), r∗ ≥ max
x∈Ω

ϕ0(x), (2.37)

γ(r) + g∗ ≤ 0 ∀r ∈ (r−, r∗), γ(r)− g∗ ≥ 0 ∀r ∈ (r∗, r+). (2.38)

Then, if we set λ = (ϕ − r∗)+, where (·)+ := max{· , 0} denotes the positive part function, and
multiply equation (2.36) by λ, then integration over Qt and by parts leads to

1

2
‖λ(t)‖2 +

∫
Qt

|∇λ|2 +

∫
Qt

(γ(ϕ)− g)λ = 0,

for all t ∈ [0, T ], where we also applied (2.37) to conclude that λ(0) = 0. Moreover, (2.38) yields
that the last term on the left-hand side of the above identity is nonnegative, so that it follows λ =
(ϕ − r∗)+ = 0, which means that ϕ ≤ r∗ almost everywhere in Q. The same argument can
be applied with the choice λ = −(ϕ − r∗)−, with ( ·)− := −min{0, ·}, to derive the other bound
ϕ ≥ r∗ almost everywhere inQ. Thus, we end up with the property (2.27) and conclude the proof.

Finally, in the more regular framework we can provide a refined continuous dependence result that
complements Theorem 2.2.

Theorem 2.4. Suppose that A1–A3 and B1–B3 hold. Denote by {(ϕi, wi)}i=1,2 two pairs of strong
solutions obtained by Theorem 2.3 in correspondence with the initial data {ϕ0,i, w0,i, v0,i}i=1,2 fulfill-
ing (2.1), (2.22), (2.26), and heat sources {ui}i=1,2 as in (2.25). Then it holds that

‖ϕ1 − ϕ2‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W ) + ‖w1 − w2‖H2(0,T ;H)∩W 1,∞(0,T ;V )∩H1(0,T ;W )

≤ K4

(
‖ϕ0,1 − ϕ0,2‖W + ‖w0,1 − w0,2‖V + ‖v0,1 − v0,2‖V

)
+K4‖u1 − u2‖L2(0,T ;H), (2.39)

with a positive constant K4 that depends only on Ω, T, α, β, θc and the data of the system.
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Proof of Theorem 2.4. First, let us recall the notation introduced in (2.11)–(2.13) and again consider
the variational system (2.14)–(2.15). Now, owing to the regularity assumption B1, we have ξi = γ(ϕi)
for i = 1, 2. Moreover, the separation property (2.27) enjoyed by both ϕi, i = 1, 2, combined with
B1–B2, yields that γ is Lipschitz continuous when restricted to [r∗, r

∗]. Besides, due to the improved
regularity at disposal, we may now express the difference ∂t(π̂(ϕ1)− π̂(ϕ2)) in (2.15) as ρ1∂tϕ1 −
ρ2∂tϕ2 = ρ∂tϕ1 + ρ2∂tϕ.

Let us now move on checking the estimate (2.39).

First estimate: We test (2.14) by ∂tϕ, (2.15) by ∂tw, add the resulting identities, and integrate over
(0, t) to infer that∫

Qt

|∂tϕ|2 +
1

2
‖∇ϕ(t)‖2 +

1

2
‖∂tw(t)‖2 + α

∫
Qt

|∇(∂tw)|2 +
β

2
‖∇w(t)‖2

=
1

2
‖∇ϕ0‖2 +

1

2
‖v0‖2 +

β

2
‖∇w0‖2 −

∫
Qt

(
γ(ϕ1)− γ(ϕ2)

)
∂tϕ

− 2

θc

∫
Qt

ρ ∂tϕ+
1

θ2
c

∫
Qt

∂tw ρ1 ∂tϕ+
1

θ2
c

∫
Qt

∂tw2 ρ ∂tϕ

−
∫
Qt

ρ ∂tϕ1 ∂tw −
∫
Qt

ρ2 ∂tϕ∂tw +

∫
Qt

u ∂tw. (2.40)

The fourth, fifth, and last terms on the right-hand side can be easily handled using Young’s inequality
and the Lipschitz continuity of π and γ, namely,

−
∫
Qt

(
γ(ϕ1)− γ(ϕ2)

)
∂tϕ−

2

θc

∫
Qt

ρ ∂tϕ+

∫
Qt

u ∂tw

≤ 1

4

∫
Qt

|∂tϕ|2 + C

∫
Qt

(|ϕ|2 + |u|2 + |∂tw|2).

Due to Theorem 2.3, we have that ϕi, and consequently ρi, are uniformly bounded in L∞(Q) for
i = 1, 2, so that also the sixth and ninth terms can be easily controlled in a similar fashion as

1

θ2
c

∫
Qt

∂tw ρ1 ∂tϕ−
∫
Qt

ρ2 ∂tϕ∂tw

≤ 1

4

∫
Qt

|∂tϕ|2 + C
(
‖ρ1‖2

L∞(Q) + ‖ρ2‖2
L∞(Q)

) ∫
Qt

|∂tw|2.

As for the remaining two terms, we recall that ‖∂tϕi‖L∞(0,T ;H) and ‖∂twi‖L∞(0,T ;V ) are bounded for
i = 1, 2, so that the Hölder and Young inequalities and the continuous embedding V ⊂ L4(Ω) imply
that

1

θ2
c

∫
Qt

∂tw2 ρ ∂tϕ−
∫
Qt

ρ ∂tϕ1 ∂tw

≤ C

∫ t

0

‖∂tw2‖4 ‖ϕ‖4 ‖∂tϕ‖ ds+ C

∫ t

0

‖ϕ‖4 ‖∂tϕ1‖ ‖∂tw‖4 ds

≤ 1

4

∫
Qt

|∂tϕ|2 + C ‖∂tw2‖2
L∞(0,T ;V )

∫ t

0

‖ϕ‖2
V ds

+
α

2

∫
Qt

(
|∂tw|2 + |∇(∂tw)|2

)
+ C ‖∂tϕ1‖2

L∞(0,T ;H)

∫ t

0

‖ϕ‖2
V ds.
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At this point, we can collect the above estimates and combine them with (2.40). Then we either apply
the Gronwall lemma or take advantage of the already shown inequality (2.10) to bound the right-hand
side. Thus, we arrive at

‖ϕ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖w‖W 1,∞(0,T ;H)∩H1(0,T ;V )

≤ C
(
‖ϕ0‖V + ‖w0‖V + ‖v0‖ + ‖u‖L2(0,T ;H)

)
. (2.41)

Second estimate: Arguing as in (2.31), we can rewrite (2.15) as a parabolic system in the variable
y = α∂tw + βw with source term g := u− ρ∂tϕ1 − ρ2∂tϕ+ β

α
∂tw. Since

‖ρ ∂tϕ1‖2
L2(0,T ;H) ≤ C

∫ T

0

‖ϕ‖2
4 ‖∂tϕ1‖2

4 ds ≤ C‖ϕ‖2
L∞(0,T ;V )‖∂tϕ1‖2

L2(0,T ;V ),

and as (2.28) holds, it turns out that

‖g‖L2(0,T ;H) ≤ C
(
‖ϕ0‖V + ‖w0‖V + ‖w′0‖ + ‖u‖L2(0,T ;H)

)
.

Moreover, the initial value y(0) = αv0 + βw0 lies in V . Therefore, using parabolic regularity and the
representation given in (2.33) (which holds as well), we easily infer that

‖w‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;H2(Ω)) + ‖∂tw‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;H2(Ω))

≤ C
(
‖ϕ0‖V + ‖w0‖V + ‖v0‖V + ‖u‖L2(0,T ;H)

)
. (2.42)

Third estimate: First, we observe that (2.14) can be rewritten as∫
Ω

∂tϕv = −
∫

Ω

∇ϕ · ∇v +

∫
Ω

hv for every v ∈ V , a.e. in (0, T ). (2.43)

Here, recalling the notation in (2.11)–(2.13), h is specified by

h = −γ(ϕ1) + γ(ϕ2)− 2

θc
(π(ϕ1)− π(ϕ2)) +

1

θ2
c

(
∂tw π(ϕ1) + ∂tw2(π(ϕ1)− π(ϕ2))

)
.

Now, in view of the regularity properties in (2.27) and (2.28) that hold for both (ϕ1, w1) and (ϕ2, w2),
we can check that every term of h belongs to H1(0, T ;H) and that

∂th = −(γ′(ϕ1)− γ′(ϕ2))∂tϕ1 − γ′(ϕ2)∂tϕ−
2

θc
(π′(ϕ1)− π′(ϕ2))∂tϕ1 −

2

θc
π′(ϕ2)∂tϕ

+
1

θ2
c

(
∂ttw π(ϕ1) + ∂tw π

′(ϕ1) ∂tϕ1 + ∂ttw2(π(ϕ1)− π(ϕ2))
)

+
1

θ2
c

(
∂tw2(π′(ϕ1)− π′(ϕ2))∂tϕ1 + ∂tw2 π

′(ϕ2)∂tϕ
)
. (2.44)

Moreover, from (2.43) we can recover the expression of ∂tϕ(0), which is given by (cf. (2.22))

∂tϕ(0) = ϕ′0,1 − ϕ′0,2 := ∆ϕ0 − (γ(ϕ0,1)− γ(ϕ0,2))− 2

θc
(π(ϕ0,1)− π(ϕ0,2))

+
1

θ2
c

(
v0 π(ϕ0,1) + v0,2(π(ϕ0,1)− π(ϕ0,2))

)
(2.45)

DOI 10.20347/WIAS.PREPRINT.2863 Berlin 2021



P. Colli, A. Signori, J. Sprekels 18

and belongs to H , due to the assumptions on the initial data. Therefore, since we also have that
ϕ = ϕ1 − ϕ2 is in H1(0, T ;V ), a comparison in (2.43) yields that ∂tϕ ∈ H1(0, T ;V ∗), and
consequently we can differentiate (2.43) with respect to time and then test by v = ∂tϕ ∈ L2(0, T ;V ).
A subsequent integration leads to

1

2
‖∂tϕ(t)‖2 +

∫
Qt

|∇(∂tϕ)|2 =
1

2
‖∂tϕ(0)‖2 +

∫
Qt

∂th ∂tϕ , (2.46)

for all t ∈ [0, T ] (indeed, we also have ∂tϕ ∈ C0([0, T ];H)). Now, in view of (2.45) and (2.22),
(2.26), it is straightforward to check that

1

2
‖∂tϕ(0)‖2 ≤ C

(
‖ϕ0‖2

W + ‖v0‖2
H

)
,

while, on account of the boundedness and Lipschitz continuity of γ and π in [r∗, r
∗] (cf. (2.27)), the

Hölder and Young inequalities, and the continuous embedding V ⊂ L4(Ω), we can infer from (2.44)
that∫

Qt

∂th ∂tϕ

≤ C

∫ t

0

‖ϕ‖4‖∂tϕ1‖4‖∂tϕ‖ ds+ C

∫
Qt

|∂tϕ|2 + C

∫
Qt

|∂ttw|2

+ C

∫ t

0

‖∂tw‖4‖∂tϕ1‖4‖∂tϕ‖ ds+ C

∫ t

0

‖∂ttw2‖‖ϕ‖4‖∂tϕ‖4 ds

≤ C
(
‖ϕ‖L∞(0,T ;V ) + ‖∂tw‖L∞(0,T ;V )

)
‖∂tϕ1‖L2(0,T ;V )‖∂tϕ‖L2(0,T ;H) + C‖∂tϕ‖2

L2(0,T ;H)

+ C‖∂ttw‖2
L2(0,T ;H)

(
1 + ‖ϕ‖2

L∞(0,T ;V )

)
+

1

2

∫
Qt

(
|∂tϕ(t)|2 + |∇(∂tϕ)|2

)
.

Then, by virtue of (2.41) and (2.42), combining the last two inequalities with (2.46) plainly leads to the
estimate

‖ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ C
(
‖ϕ0‖W + ‖w0‖V + ‖v0‖V + ‖u‖L2(0,T ;H)

)
. (2.47)

Fourth estimate: Now, from (2.43), that reproduces (2.14), and the regularity of solutions we deduce
that

−∆ϕ = h− ∂tϕ a.e. in Q,

with the right-hand side that is under control in L∞(0, T ;H). Then, by elliptic regularity we easily
derive the estimate

‖ϕ‖L∞(0,T ;H2(Ω)) ≤ C
(
‖ϕ0‖W + ‖w0‖V + ‖v0‖V + ‖u‖L2(0,T ;H)

)
. (2.48)

Therefore, upon collecting (2.41), (2.42), (2.47), and (2.48), we obtain (2.39) and conclude the proof
of Theorem 2.4.
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3 Optimal control theory

In this section, we aim at solving an optimal control problem whose governing state equation is given
by the system (1.1)–(1.4) analyzed in the previous section. We seek optimal controls in the form of
a distributed heat source, represented by u in (1.2), and an initial temperature, which corresponds to
v0 in (1.4). As we aim at covering the cases of polynomial and regular singular potentials, including,
in particular, (1.6) and (1.7), we are from now on restricting ourselves to the framework of strong
solutions (cf. Theorems 2.3 and 2.4).

The control problem under investigation reads as follows:

CP Minimize the cost functional

J(u, v0, ϕ, w) :=
k1

2
‖ϕ− ϕQ‖2

L2(Q) +
k2

2
‖ϕ(T )− ϕΩ‖2 +

k3

2
‖w − wQ‖2

L2(Q)

+
k4

2
‖w(T )− wΩ‖2 +

k5

2
‖∂tw − w′Q‖2

L2(Q) +
k6

2
‖∂tw(T )− w′Ω‖2

+
ν1

2
‖u‖2

L2(Q) +
ν2

2
‖v0‖2

V (3.1)

subject to the state system (1.1)–(1.4) and to the control constraint

(u, v0) ∈ Uad,

where U := L∞(Q)× (V ∩ L∞(Ω)) and the set of admissible controls is

Uad :=
{

(u, v0) ∈ U : u∗ ≤ u ≤ u∗ a.e. in Q,

v∗ ≤ v0 ≤ v∗ a.e. in Ω, ‖v0‖V ≤M
}
. (3.2)

Above, the symbols k1, ..., k6 and ν1, ν2 denote some nonnegative constants which are not all zero,
while ϕQ, wQ, w

′
Q ∈ L2(Q) and ϕΩ, wΩ, w

′
Ω ∈ L2(Ω) denote some prescribed targets. As for

the set of admissible controls Uad, we assume that u∗ and u∗ are prescribed functions in L∞(Q);
moreover, v∗ and v∗ are given in L∞(Ω), and M > 0 is a fixed constant such that

Uad is a nonempty, closed and convex subset of the control space U.

Note that closedness and convexity can be easily verified from (3.2). Furthermore, we can select a
value R > 0 big enough such that the open ball

UR :=
{

(u, v0) ∈ U : ‖(u, v0)‖U < R
}

contains Uad. (3.3)

Let us remark that from a physical viewpoint it is more relevant investigating the evolution of ∂tw in-
stead that of w, as the first one denotes the temperature of the system. This is the reason why the
terms in (3.1) related to k5 and k6 are more significant than the ones associated with k3 and k4;
nonetheless, we believe that those less physical terms are still worth considering from a mathemat-
ical viewpoint through the way in which they appear in the adjoint system (cf. system (3.35)–(3.38)).
Also, note that the quantities v∗ and v∗ appearing in (3.2) represent threshold values for the initial
temperature distribution v0, while the condition ‖v0‖V ≤ M prevents extremely large variations for
this distribution.
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By virtue of Theorems 2.1–2.4, the control-to-state operator

S : UR ⊂ U→ Y, S : (u, v0) 7→ (ϕ,w),

is well-defined as a mapping from U into the solution space Y, with the latter being defined by (cf.
Theorem 2.3)

Y :=
(
W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W )

)
×
(
H2(0, T ;H) ∩W 1,∞(0, T ;V ) ∩H1(0, T ;W )

)
. (3.4)

Moreover, we also set

X :=
(
H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W )

)
×
(
H2(0, T ;H) ∩W 1,∞(0, T ;V ) ∩H1(0, T ;W )

)
and observe that Y ⊂ X with continuous embedding. Then, the solution operator allows us to define
the reduced cost functional as follows:

Jred : U→ R, Jred(u, v0) := J
(
u, v0, S(u, v0)

)
. (3.5)

Moreover, notice that Theorems 2.2 and 2.4 already ensure that the solution operator S is Lipschitz
continuous in UR when viewed as a mapping from L2(Q)× V into the space Y. Namely, for arbitrary
controls (ui, v0,i) ∈ UR, i = 1, 2, the stability estimate (2.39) yields that

‖S(u1, v0,1)− S(u2, v0,2)‖Y ≤ C
(
‖u1 − u2‖L2(0,T ;H) + ‖v0,1 − v0,2‖V

)
.

For the control problem, some additional assumptions are in order:

C1 γ̂ ∈ C3(r−, r+) and π̂ ∈ C3(R).

C2 k1, k2, k3, k4, k5, k6, ν1, ν2 are nonnegative constants, not all zero.

C3 The target functions fulfill ϕQ, wQ, w′Q ∈ L2(Q), ϕΩ, wΩ ∈ H , and w′Ω ∈ V .

C4 The functions u∗, u∗ belong to L∞(Q) with u∗ ≤ u∗ a.e. in Q, and v∗, v∗ are fixed in L∞(Ω)
such that v∗ ≤ v∗ a.e. in Ω. Moreover, M > 0, and the set Uad defined by (3.2) is nonempty.

The first result we address concerns the existence of an optimal strategy, that is of an optimal control
pair.

Theorem 3.1. Suppose that A1–A3, B1–B3, C2–C4 hold in addition to the assumptions (2.1), (2.22),
(2.26) on ϕ0, w0. Then the minimization problem CP admits a solution, that is, there exists at least
one optimal pair (u, v0) ∈ Uad such that

Jred(u, v0) ≤ Jred(u, v0) ∀(u, v0) ∈ Uad.

Proof of Theorem 3.1. The existence of a minimizer (u, v0) plainly follows from applying the direct
method of the calculus of variations. In fact, we can pick a minimizing sequence {(un, v0,n)}n ⊂ Uad

for the functional Jred, and let, for every n ∈ N, (ϕn, wn) = S(un, v0,n) denote the corresponding
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strong solution to the system (1.1)–(1.4). Then, due to (3.2), by compactness it turns out that there
exist a subsequence, still denoted by {(un, v0,n)}n, and a pair (u, v0) ∈ Uad such that

un → u weakly star in L∞(Q),

v0,n → v0 weakly star in V ∩ L∞(Ω),

as n↗∞. Correspondingly, in view of Theorem 2.3, and taking advantage of [25, Sect. 8, Cor. 4], it
turns out that there is a pair (ϕ,w) satisfying

ϕn → ϕ weakly star in W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W )

and strongly in C0(Q), (3.6)

wn → w weakly star in H2(0, T ;H) ∩W 1,∞(0, T ;V ) ∩H1(0, T ;W )

and strongly in C1([0, T ];H) ∩H1(0, T ;V ), (3.7)

in principle for another subsequence. Indeed, as for (3.6) note that W ⊂ C0(Ω) with compact em-
bedding. At this point, it is a standard matter to check that passage to the limit as n ↗ ∞ in the
system (1.1)–(1.4), written for {ϕn, wn, un, v0,n}, leads to the same system written for the limits
{ϕ,w, u, v0}. Then, taking into account Theorem 2.4 as well, we infer that (ϕ,w) = S(u, v0), (3.6)
and (3.7) hold for the selected subsequence, and, by the lower semicontinuity of norms,

Jred(u, v0) ≤ lim inf
n→∞

Jred(un, v0,n).

Hence, (u, v0) is a global minimizer for Jred, as Jred(un, v0,n) converges to the infimum of Jred. The
assertion is thus proved.

We are now interested in finding optimality conditions that every minimizer has to satisfy. To this end,
recall the reduced form (3.5) and the fact that Uad is a nonempty, closed, and convex subset of the
control space U. Standard results of convex analysis (see, e.g., [26]) entail the first-order necessary
condition for Jred at every minimizer (u, v0) in terms of a suitable variational inequality of the form

DJred(u, v0)(u− u, v0 − v0) ≥ 0 ∀(u, v0) ∈ Uad, (3.8)

where DJred stands for the derivative of the reduced cost functional in a proper mathematical sense
(cf. Theorem 3.3). The quadratic structure of J directly yields its Fréchet differentiability, so that it
suffices to show the differentiability of the solution operator S in order to derive the first-order necessary
conditions from (3.8) by means of the chain rule.

For this purpose, we fix a control pair (u, v0) ∈ UR with corresponding state (ϕ,w) = S(u, v0). We
introduce the linearized system to (1.1)–(1.4), which reads, for every (h, h0) ∈ L2(Q)× V ,

∂tξ −∆ξ + γ′(ϕ)ξ + 2
θc
π′(ϕ)ξ − 1

θ2c
∂tη π(ϕ)− 1

θ2c
∂tw π

′(ϕ)ξ = 0 a.e. in Q, (3.9)

∂ttη − α∆(∂tη)− β∆η + π′(ϕ)ξ∂tϕ+ π(ϕ)∂tξ = h a.e. in Q, (3.10)

∂nξ = ∂n(α∂tη + βη) = 0 a.e. on Σ, (3.11)

ξ(0) = 0, η(0) = 0, ∂tη(0) = h0 a.e. in Ω. (3.12)

Its well-posedness is stated in the following result.

Theorem 3.2. Assume that A1–A3 and B1–B3 are fulfilled in addition to the assumptions (2.1), (2.22),
(2.26) on ϕ0, w0. Let (u, v0) ∈ UR be given and (ϕ,w) = S(u, v0). Then the linearized system
(3.9)–(3.12) has for every (h, h0) ∈ L2(Q)× V a unique solution (ξ, η) ∈ X.
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Proof of Theorem 3.2. Since the problem is linear, we can prove existence and, at the same time,
uniqueness, by performing suitable estimates on the solution (ξ, η) ∈ X in terms of the data (h, h0) ∈
L2(Q)× V , with linear dependence. As in the case of the state problem, we here avoid to implement
a Faedo–Galerkin scheme and argue directly on the linearized problem.

First estimate: We first add ξ to both sides of (3.9) and then test (3.9) by θ2
c∂tξ and (3.10) by ∂tη.

Next, we sum up the resulting equalities and integrate by parts to infer that a cancellation occurs,
obtaining the identity

θ2
c

∫
Qt

|∂tξ|2 +
θ2
c

2
‖ξ(t)‖2

V +
1

2
‖∂tη(t)‖2 + α

∫
Qt

|∇(∂tη)|2 +
β

2
‖∇η(t)‖2

=
1

2
‖h0‖2 +

∫
Qt

(
θ2
c − θ2

cγ
′(ϕ)− 2θcπ

′(ϕ))ξ ∂tξ

+

∫
Qt

∂tw π
′(ϕ)ξ ∂tξ −

∫
Qt

π′(ϕ)∂tϕ ξ ∂tη +

∫
Qt

h ∂tη =:
5∑
i=1

Ii.

Since (ϕ,w) is a strong solution to (1.1)–(1.4), we deduce from (2.27)–(2.28) that γ′(ϕ),
π′(ϕ), ∂tw ∈ L∞(Q) and ∂tϕ ∈ L∞(0, T ;H) ∩ L2(0, T ;V ). We thus have that

I2 + I3 ≤
θ2
c

2

∫
Qt

|∂tξ|2 + C

∫
Qt

|ξ|2 ,

and, with the help of the continuous embedding V ⊂ L4(Ω),

I4 ≤ C

∫ t

0

‖∂tϕ‖4‖ξ‖4‖∂tη‖ ds ≤ C

∫ t

0

‖∂tϕ‖2
V ‖ξ‖2

V ds+ C

∫
Qt

|∂tη|2 ,

where the function t 7→ ‖∂tϕ(t)‖2
V belongs to L1(0, T ). As for the last term, we simply employ

Young’s inequality and obtain

I5 ≤ C

∫
Qt

(|h|2 + |∂tη|2).

We collect the above estimates and apply Gronwall’s lemma. Then, observing that (cf. (3.12)) ‖η(t)‖2
V ≤

T
∫
Qt
‖∂tη‖2

V for t ∈ [0, T ], by the Hölder inequality, we can conclude that

‖ξ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖η‖W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ C(‖h‖L2(Q) + ‖h0‖). (3.13)

Second estimate: Next, (3.13) (in particular, the boundedness of ‖∂tξ‖L2(0,T ;H)) and a comparison
of terms in (3.9) easily produce that

‖∆ξ‖L2(0,T ;H) ≤ C(‖h‖L2(Q) + ‖h0‖),

so that elliptic regularity entails that

‖ξ‖L2(0,T ;W ) ≤ C(‖h‖L2(Q) + ‖h0‖). (3.14)

Third estimate: As done in the third estimate of Theorem 2.3, we add to both sides of (3.10) the term
β
α
∂tη and rewrite it as a parabolic equation in terms of the new variable y := α∂tη + βη. Precisely,
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we deduce that 
1
α
∂ty −∆y = g in Q,

∂ny = 0 on Σ,

y(0) = αh0 in Ω,

with g := −π′(ϕ)ξ∂tϕ − π(ϕ)∂tξ + h + β
α
∂tη, here. Due to (3.13), we have that the norm of g

in L2(0, T ;H) is under control. Besides, we are assuming that h0 ∈ V , so that parabolic regularity
theory entails that

‖α∂tη + βη‖H1(0,T ;H)∩L∞(0,T ;V )∩L2(0,T ;W ) ≤ C(‖h‖L2(Q) + ‖h0‖V ). (3.15)

Now, arguing as in (2.33), it follows that (3.15) implies the same estimate for η and ∂tη, whence

‖η‖H2(0,T ;H)∩W 1,∞(0,T ;V )∩H1(0,T ;W ) ≤ C(‖h‖L2(Q) + ‖h0‖V ). (3.16)

Then, by collecting (3.13), (3.14), and (3.16), we end the proof.

After proving Theorem 3.2, we are in a position to show that the control-to-state operator S is Fréchet
differentiable as a mapping between suitable Banach spaces. Here is the related result.

Theorem 3.3. Suppose that the conditions A1–A3, B1–B3, and C1 are fulfilled. Moreover, let the ini-
tial data ϕ0 and w0 satisfy (2.1), (2.22), (2.26), and let (u, v0) ∈ UR with (ϕ,w) = S(u, v0). Then
the solution operator S is Fréchet differentiable at (u, v0) as a mapping from U into X. Moreover,
for every h := (h, h0) ∈ U, the Fréchet derivative DS(u, v0) ∈ L(U,X) is given by the iden-
tity DS(u, v0)(h) = (ξ, η), where (ξ, η) is the unique solution to the linearized system (3.9)–(3.9)
associated with h.

Proof of Theorem 3.3. Since UR is open, provided that we consider small ε-perturbations in the U-
norm, we surely have that (u + h, v0 + h0) ∈ UR as well, that is, there exists some ε > 0 such
that

(u+ h, v0 + h0) ∈ UR ∀h ∈ U such that ‖h‖U ≤ ε.

For the rest of the proof, we agree that this condition is met by all of the appearing increments h.

We claim that DS(u, v0)(h) = (ξ, η), with (ξ, η) being the unique solution to the linearized system
(3.9)–(3.12). We prove this claim directly by showing that

S(u+ h, v0 + h0) = S(u, v0) + (ξ, η) + o(‖h‖U) in X as ‖h‖U → 0. (3.17)

Upon setting

(ϕh, wh) = S(u+ h, v0 + h0), ψ := ϕh − ϕ− ξ, z := wh − w − η, (3.18)

the condition (3.17) becomes

‖(ψ, z)‖X = o(‖h‖U) as ‖h‖U → 0, (3.19)
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which is the identity we are going to prove. Accounting for the notation in (3.18), we infer that the
variables ψ and z solve the initial-boundary value problem

∂tψ −∆ψ + Λ1 − 1
θ2c
π(ϕ)∂tz = 0 in Q , (3.20)

∂ttz − α∆(∂tz)− β∆z + Λ2+π(ϕ)∂tψ = 0 in Q , (3.21)

∂nψ = ∂n(α∂tz + βz) = 0 on Σ, (3.22)

ψ(0) = 0, z(0) = 0, ∂tz(0) = 0 in Ω, (3.23)

where the terms Λ1 and Λ2 are defined by

Λ1 = [γ(ϕh)− γ(ϕ)− γ′(ϕ)ξ] + 2
θc

[π(ϕh)− π(ϕ)− π′(ϕ)ξ]

− 1
θ2c

(
(π(ϕh)− π(ϕ))(∂tw

h − ∂tw) + ∂tw [π(ϕh)− π(ϕ)− π′(ϕ)ξ]
)
,

Λ2 = (π(ϕh)− π(ϕ))(∂tϕ
h − ∂tϕ) + ∂tϕ [π(ϕh)− π(ϕ)− π′(ϕ)ξ].

Before moving on, let us recall that the continuous dependence result in Theorem 2.4, applied to the
solutions (ϕh, wh) and (ϕ,w), yields that

‖ϕh − ϕ‖W 1,∞(0,T ;H)∩H1(0,T ;V )∩L∞(0,T ;W ) + ‖wh − w‖H2(0,T ;H)∩W 1,∞(0,T ;V )∩H1(0,T ;H2(Ω))

≤ K4

(
‖h‖L2(Q) + ‖h0‖V

)
. (3.24)

Besides, (ϕh, wh) and (ϕ,w), as strong solution to (1.1)–(1.4), satisfy (2.27) and (2.28). Moreover,
we recall Taylor’s formula with integral remainder: let g : R → R be a differentiable function with
Lipschitz continuous derivative g′. Then, for x ∈ R it holds that

g(x) = g(x) + g′(x)(x− x) + (x− x)2

∫ 1

0

g′′(x+ s(x− x))(1− s) ds, x ∈ R. (3.25)

An application of (3.25) to π and γ yields that

γ(ϕh)− γ(ϕ)− γ′(ϕ)ξ = γ′(ϕ)ψ +Rh
γ (ϕh − ϕ)2, (3.26)

π(ϕh)− π(ϕ)− π′(ϕ)ξ = π′(ϕ)ψ +Rh
π (ϕh − ϕ)2, (3.27)

with the remainders

Rh
γ :=

∫ 1

0

γ′′(ϕ+ s(ϕh − ϕ))(1− s) ds, Rh
π :=

∫ 1

0

π′′(ϕ+ s(ϕh − ϕ))(1− s) ds.

Due to assumptions C1, it directly follows that

‖Rh
γ‖L∞(Q) + ‖Rh

π‖L∞(Q) ≤ C. (3.28)

We now prove some estimates that will imply (3.19).

First estimate: Add ψ to both sides of (3.20) and test it by θ2
c∂tψ; then, test (3.21) by ∂tz and sum

up the resulting equalities. After integration by parts, we obtain that a cancellation occurs and that

θ2
c

∫
Qt

|∂tψ|2 +
θ2
c

2
‖ψ(t)‖2

V +
1

2
‖∂tz(t)‖2 + α

∫
Qt

|∇(∂tz)|2 +
β

2
‖∇z(t)‖2

= θ2
c

∫
Qt

(ψ − Λ1)∂tψ −
∫
Qt

Λ2 ∂tz.
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The first term on the right-hand side can be controlled by employing Taylor’s formulae (3.26)–(3.27),
the uniform bounds (2.27)–(2.28) for (ϕ,w), the Young and Hölder inequalities, the stability estimates
(3.24), (3.28), and the continuous embedding V ⊂ L4(Ω). We infer that

θ2
c

∫
Qt

(ψ − Λ1)∂tψ

≤ θ2
c

∫
Qt

∣∣ψ − γ′(ϕ)ψ −Rh
γ (ϕh − ϕ)2

∣∣|∂tψ|+ 2θc

∫
Qt

∣∣π′(ϕ)ψ +Rh
π(ϕh − ϕ)2

∣∣|∂tψ|
+

∫
Qt

|π(ϕh)− π(ϕ)||∂twh − ∂tw||∂tψ|+
∫
Qt

|∂tw|
∣∣π′(ϕ)ψ +Rh

π(ϕh − ϕ)2
∣∣|∂tψ|

≤ δ

∫
Qt

|∂tψ|2 + Cδ

∫
Qt

|ψ|2 + Cδ

∫ t

0

‖ϕh − ϕ‖4
4 ds

+ Cδ

∫ t

0

‖ϕh − ϕ‖2
4‖∂twh − ∂tw‖2

4 ds

≤ δ

∫
Qt

|∂tψ|2 + Cδ

∫
Qt

|ψ|2 + Cδ

∫ t

0

‖ϕh − ϕ‖2
V

(
‖ϕh − ϕ‖2

V + ‖∂twh − ∂tw‖2
V

)
ds

≤ δ

∫
Qt

|∂tψ|2 + Cδ

∫
Qt

|ψ|2 + Cδ
(
‖h‖4

L2(Q) + ‖h0‖4
V

)
, (3.29)

for a positive δ yet to be chosen. Similar arguments allow us to bound the second term on the right-
hand side, concluding that

−
∫
Qt

Λ2 ∂tz

≤
∫
Qt

|π(ϕh)− π(ϕ)||∂tϕh − ∂tϕ||∂tz|+
∫
Qt

∣∣∂tϕ|∣∣π′(ϕ)ψ +Rh
π (ϕh − ϕ)2

∣∣|∂tz|
≤ C

∫ t

0

‖ϕh − ϕ‖4‖∂tϕh − ∂tϕ‖4‖∂tz‖ ds+ C

∫ t

0

‖∂tϕ‖6‖∂tz‖
(
‖ψ‖3 + ‖ϕh − ϕ‖2

6

)
ds

≤ C

∫ t

0

(
1 + ‖∂tϕ‖2

V

)
‖∂tz‖2 ds+ C‖ϕh − ϕ‖2

L∞(0,T ;V )

∫ t

0

‖∂tϕh − ∂tϕ‖2
V ds

+ C

∫ t

0

‖ψ‖2
V ds+ C

∫ t

0

‖ϕh − ϕ‖4
V ds

≤ C

∫ t

0

(
1 + ‖∂tϕ‖2

V

)
‖∂tz‖2 ds+ C

∫ t

0

‖ψ‖2
V ds+ C

(
‖h‖4

L2(Q) + ‖h0‖4
V

)
, (3.30)

where we notice that the function t 7→ (1 + ‖∂tϕ‖2
V ) is in L1(0, T ), due to (2.28). Upon choosing

0 < δ < θ2
c , Gronwall’s lemma yields that

‖ψ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖z‖W 1,∞(0,T ;H)∩H1(0,T ;V ) ≤ C
(
‖h‖2

L2(Q) + ‖h0‖2
V

)
. (3.31)

Second estimate: A closer inspection of the estimate in (3.29), along with the bound (3.31), shows
that ‖Λ1‖L2(0,T ;H) is bounded as well by an analogous term. Then, a comparison argument in (3.20)
directly leads to

‖∆ψ‖L2(0,T ;H) ≤ C
(
‖h‖2

L2(Q) + ‖h0‖2
V

)
,
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so that (3.31) and elliptic regularity yield that

‖ψ‖L2(0,T ;W ) ≤ C
(
‖h‖2

L2(Q) + ‖h0‖2
V

)
. (3.32)

Third estimate: Repeating the argument employed in the third estimate of the proof of Theorem 2.3
(cf., in particular, (2.31)), we can in view of (3.21)–(3.23) state a parabolic system in the variable
y = α∂tz+βz, with source term β

α
∂tz−Λ2−π(ϕ)∂tψ and null initial value. With the help of (3.31),

it is not difficult to verify that∥∥β
α
∂tz − Λ2 − π(ϕ)∂tψ

∥∥
L2(0,T ;H)

≤ C
(
‖h‖2

L2(Q) + ‖h0‖2
V

)
.

Therefore, using parabolic regularity and the fact that

z(t) =
1

α

∫ t

0

e−β(t−s)/αy(s)ds, t ∈ [0, T ],

we can deduce that

‖z‖H2(0,T ;H)∩W 1,∞(0,T ;V )∩H1(0,T ;W ) ≤
(
‖h‖2

L2(Q) + ‖h0‖2
V

)
. (3.33)

A combination of the estimates (3.31)–(3.33) concludes the proof, since the continuous embedding of
U ⊂ L2(Q)× V , namely,

‖h‖L2(0,T ;H) + ‖h0‖V ≤ C‖h‖U for every h = (h, h0) ∈ U,

ensures that (3.19) is fulfilled.

Remark 3.4. Let us point out that the Fréchet differentiability of S at the fixed control pair (u, v0)
is defined from UR into X and not from an open bounded subset of L2(Q) × V , as it may appear
(incorrectly) from the estimates above. The reason is that for controls (u, v0) just in L2(Q) × V
we cannot guarantee the existence of a strong solution (cf. Theorem 2.3). Nevertheless, the above
estimates show that, due to the density of the embedding of U in L2(Q) × V , the Fréchet deriva-
tive DS(u, v0) ∈ L(U,X) can be continuously extended to a linear and continuous operator from
L2(Q)×V into X. In particular, denoting that extension with the same symbolDS(u, v0), the identity
DS(u, v0)(h) = (ξ, η) continues to hold also for h = (h, h0) ∈ L2(Q)× V .

It is now a standard matter to derive the first-order optimality conditions for CP by combining (3.8),
Theorem 3.3, and the chain rule.

Theorem 3.5. Suppose that A1–A3, B1–B3, C1–C4 are satisfied. Moreover, let the initial data ϕ0 and
w0 satisfy (2.1), (2.22), (2.26), and let (u, v0) be an optimal control with (ϕ,w) = S(u, v0). Then the
optimal pair (u, v0) necessarily fulfills the variational inequality

k1

∫
Q

(ϕ− ϕQ)ξ + k2

∫
Ω

(ϕ(T )− ϕΩ)ξ(T ) + k3

∫
Q

(w − wQ)η + k4

∫
Ω

(w(T )− wΩ)η(T )

+ k5

∫
Q

(∂tw − w′Q)∂tη + k6

∫
Ω

(∂tw(T )− w′Ω)∂tη(T ) + ν1

∫
Q

u(u− u)

+ ν2

∫
Ω

(
v0(v0 − v0) +∇v0 · ∇(v0 − v0)

)
≥ 0 ∀(u, v0) ∈ Uad, (3.34)

where (ξ, η) denotes the unique solution of the linearized system (3.9)–(3.12) associated with the
choice h = (u− u, v0 − v0).
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We now want to rewrite the optimality conditions in terms of the solution to the adjoint problem, in order
to simplify the above variational inequality. The backward-in-time system characterizing the adjoint
problem is given, in a strong form, by

− ∂tp− π(ϕ) ∂tq −∆p+ γ′(ϕ) p+ 2
θc
π′(ϕ) p− 1

θ2c
∂tw π

′(ϕ) p

= k1(ϕ− ϕQ) in Q, (3.35)

− ∂tq − α∆q + β∆(1 ~ q)− 1
θ2c
π(ϕ) p

= k3(1 ~ (w − wQ)) + k5(∂tw − w′Q) + k4(w(T )− wΩ) in Q, (3.36)

∂np = ∂nq = 0 on Σ, (3.37)

p(T ) = k2(ϕ(T )− ϕΩ)− k6π(ϕ(T ))(∂tw(T )− w′Ω),

q(T ) = k6(∂tw(T )− w′Ω) in Ω, (3.38)

where the product ~ is defined in (1.22). For convenience, let us denote by fq the source term in
(3.36), that is,

fq := k3(1 ~ (w − wQ)) + k5(∂tw − w′Q) + k4(w(T )− wΩ)

and notice that the last part k4(w(T ) − wΩ) is constant in time. Moreover, due to C3 and to the fact
that w is a strong solution in the sense of Theorem 2.3, fq satisfies

‖fq‖L2(0,T ;H) ≤ C(‖w‖H2(0,T ;H)∩W 1,∞(0,T ;V )∩H1(0,T ;H2(Ω)) + 1) ≤ C, (3.39)

where the above constant certainly depends on T .

The above system reveals why we did also include the possibly redundant objective terms associated
to k3 and k4 in (3.1). Indeed, the way they appear in the adjoint system above is nonstandard. An-
other remark concerns the fact that only first-order time derivatives appear in (3.35)–(3.36), while the
corresponding state system, as well as the linearized one, contains an equation with a second-order
time derivative as well. However, note that if (3.36) is interpreted as an equation in the time-integrated
variable 1 ~ q, then it turns out that −∂tq = ∂tt(1 ~ q), and the system (3.35)–(3.38) looks more
natural.

The well-posedness result, as well as the notion of solution to the above system, is specified in the
following theorem.

Theorem 3.6. Assume that A1–A3, B1–B3, C1–C3 hold true. Let the initial data ϕ0 and w0 satisfy
(2.1), (2.22), (2.26), and let (u, v0) ∈ Uad be an optimal control for CP with the associated state
(ϕ,w) = S(u, v0). Then the adjoint system (3.35)–(3.38) admits a unique weak solution (p, q) with

p ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;H) ∩ L2(0, T ;V ), (3.40)

q ∈ H1(0, T ;H) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), (3.41)

that satisfies the variational equalities

− 〈∂tp, v〉V −
∫

Ω

π(ϕ) ∂tq v +

∫
Ω

∇p · ∇v +

∫
Q

γ′(ϕ) p v

+
2

θc

∫
Q

π′(ϕ) p v − 1

θ2
c

∫
Ω

∂tw π
′(ϕ) p v =

∫
Ω

k1(ϕ− ϕQ) v, (3.42)

−
∫

Ω

∂tq v + α

∫
Ω

∇q · ∇v − β
∫

Ω

∇(1 ~ q) · ∇v − 1

θ2
c

∫
Ω

π(ϕ)p v =

∫
Ω

fqζ, (3.43)
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for every v ∈ V , almost everywhere in (0, T ), and the final conditions

p(T ) = k2(ϕ(T )− ϕΩ)− k6π(ϕ(T ))(∂tw(T )− w′Ω) a.e. in Ω, (3.44)

q(T ) = k6(∂tw(T )− w′Ω) a.e. in Ω. (3.45)

Proof of Theorem 3.6. We again proceed formally by pointing out the estimates that will imply the ex-
istence of a solution. These computations can however easily be reproduced in a rigorous framework.
Moreover, before moving on, let us set QT

t := Ω× (t, T ).

First estimate: We take v = p in (3.42), v = −θ2
c∂tq in (3.36), add the resulting equalities and note

that two terms cancel out. Then, integration over (t, T ) and by parts yields

1

2
‖p(t)‖2 +

∫
QT

t

|∇p|2 +

∫
QT

t

γ′(ϕ)|p|2 + θ2
c

∫
QT

t

|∂tq|2 +
αθ2

c

2
‖∇q(t)‖2

=
1

2
‖p(T )‖2 +

αθ2
c

2
‖∇q(T )‖2 + k1

∫
QT

t

(ϕ− ϕQ)p− 2

θc

∫
QT

t

π′(ϕ) p2

+
1

θ2
c

∫
QT

t

∂tw π
′(ϕ) p2 + βθ2

c

∫
QT

t

∇(1 ~ q) · ∇(∂tq)− θ2
c

∫
QT

t

fq ∂tq. (3.46)

Notice that the third term on the left-hand side is nonnegative due to the monotonicity of γ. As for
the sixth term on the right-hand side, we note that (1 ~ q)(T ) = 0 in Ω, thus the Young and Hölder
inequalities allow us to deduce that

βθ2
c

∫
QT

t

∇(1 ~ q) · ∇(∂tq)

= −βθ2
c

∫
Ω

∇(1 ~ q)(t) · ∇q(t) + βθ2
c

∫
QT

t

|∇q|2

≤ αθ2
c

4
‖∇q(t)‖2 + C

∫
QT

t

|∇q|2.

Concerning the third and last terms on the right-hand side, we recall that (ϕ,w) satisfies (2.27)–(2.28)
and that C3 and (3.39) hold as well. Hence, it follows from Young’s inequality that

k1

∫
QT

t

(ϕ− ϕQ)p− θ2
c

∫
QT

t

fq ∂tq ≤
θ2
c

2

∫
QT

t

|∂tq|2 + C

∫
QT

t

(
|p|2 + 1

)
.

Still on the right-hand side, the first terms involving the terminal conditions are bounded by a constant
due to (3.38) and C3, while for the remaining terms we owe to the fact that ϕ, ∂tw ∈ L∞(Q) (cf.
Theorem 2.3). Hence, with the help of C1, we have that

− 2

θc

∫
QT

t

π′(ϕ) p2 +
1

θ2
c

∫
QT

t

∂tw π
′(ϕ) p2 ≤ C

∫
QT

t

|p|2.

Upon collecting the above computations, we can apply the Gronwall lemma and infer that

‖p‖L∞(0,T ;H)∩L2(0,T ;V ) + ‖q‖H1(0,T ;H)∩L∞(0,T ;V ) ≤ C.

Second estimate: Next, we proceed with comparison in equation (3.36) to deduce that∥∥∆
(
αq + β(1 ~ q)

)∥∥
L2(0,T ;H)

≤ C.
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Then, setting g = αq+ β(1~ q), the elliptic regularity theory entails that ‖g‖L2(0,T ;W ) ≤ C. Hence,
solving the equation αq + β(1 ~ q) = g with respect to 1 ~ q (which is equal to 0 at the time T ), we
eventually obtain that

‖1 ~ q‖L2(0,T ;W ) + ‖q‖L2(0,T ;W ) ≤ C.

Third estimate: Finally, we take an arbitrary test function v ∈ L2(0, T ;V ) in (3.42) and compare the
terms. Using the above estimates, it is then a standard matter to realize that

‖∂tp‖L2(0,T ;V ∗) ≤ C.

This concludes the proof. In fact, let us recall that the above estimates also imply the uniqueness of
the weak solution, as the system (3.42)–(3.45) is linear.

By combining Theorem 3.5 with Theorem 3.6, we can obtain a more effective version of the variational
inequality (3.34).

Theorem 3.7. Suppose that A1–A3, B1–B3, and C1–C4 are satisfied. Moreover, assume that the
initial data ϕ0 and w0 satisfy (2.1), (2.22), (2.26), and let (u, v0) ∈ Uad be an optimal control for CP
with associated state (ϕ,w) = S(u, v0). Finally, let (p, q) be the unique solution to the adjoint system
(3.35)–(3.38) as given by Theorem 3.6. Then the optimal pair (u, v0) necessarily verifies∫

Q

(q + ν1u)(u− u) +

∫
Ω

(q(0) + ν2v0)(v0 − v0)

+ ν2

∫
Ω

∇v0 · ∇(v0 − v0) ≥ 0 ∀(u, v0) ∈ Uad. (3.47)

Remark 3.8. Let us point out that the regularity in (3.41) entails that q ∈ C0([0, T ];H), so that q(0)
makes sense in L2(Ω).

Proof of Theorem 3.7. Starting from Theorem 3.5 and comparing (3.34) with (3.47), we realize that,
in order to prove Theorem 3.7, it suffices to check that∫

Q

qh+

∫
Ω

q(0)h0 ≥ k1

∫
Q

(ϕ− ϕQ)ξ + k2

∫
Ω

(ϕ(T )− ϕΩ)ξ(T )

+ k3

∫
Q

(w − wQ)η + k4

∫
Ω

(w(T )− wΩ)η(T )

+ k5

∫
Q

(∂tw − w′Q)∂tη + k6

∫
Ω

(∂tw(T )− w′Ω)∂tη(T ), (3.48)

with (ξ, η) denoting the unique solution to (3.9)–(3.12) associated with the increment (h, h0) = (u−
u, v0 − v0). To this end, we test (3.9) by p, (3.10) by q, and integrate over time and by parts to infer
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that

0 =

∫
Q

[
∂tξ −∆ξ + γ′(ϕ)ξ + 2

θc
π′(ϕ)ξ − 1

θ2c
∂tη π(ϕ)− 1

θ2c
∂tw π

′(ϕ)ξ
]
p

+

∫
Q

[
∂ttη − α∆(∂tη)− β∆η + π′(ϕ)ξ∂tϕ+ π(ϕ)∂tξ

]
q −

∫
Q

hq

= −
∫ T

0

〈∂tp, ξ〉V dt+

∫
Q

∇p · ∇ξ

+

∫
Q

[
γ′(ϕ)p+ 2

θc
π′(ϕ)p− 1

θ2c
∂tw π

′(ϕ) p− ∂tq π(ϕ)
]
ξ

+

∫
Q

[
− ∂tq ∂tη + α∇q · ∇(∂tη) + β∇(1 ~ q) · ∇(∂tη)− 1

θ2c
π(ϕ)p ∂tη

]
+

∫
Ω

[
p(T )ξ(T ) + ∂tη(T )q(T ) + π(ϕ(T ))ξ(T )q(T )

]
−
∫
Q

qh−
∫

Ω

q(0)h0.

By using (3.42)–(3.45), we simplify the above identity, obtaining that

0 = k1

∫
Q

(ϕ− ϕQ)ξ + k2

∫
Ω

(ϕ(T )− ϕΩ)ξ(T )

+

∫
Q

(
k3(1 ~ (w − wQ)) + k4(w(T )− wΩ)

)
∂tη

+ k5

∫
Q

(∂tw − w′Q)∂tη + k6

∫
Ω

(∂tw(T )− w′Ω)∂tη(T )

−
∫
Q

qh−
∫

Ω

q(0)h0.

Now, we integrate by parts the second line, using the initial condition η(0) = 0 and the fact that
1 ~ (w − wQ)(T ) = 0. Then, it is shown that (3.48) holds, and the proof is concluded.

Finally, let us notice that from (3.47) we obtain the standard characterization for the minimizers u and
v0 if ν1 and ν2 are positive. Prior to the statement, we recall the definition (3.2) of Uad.

Corollary 3.9. Suppose that the assumptions of Theorem 3.7 hold, and let ν1 > 0. Then, u is the
L2(0, T ;H)-orthogonal projection of −ν−1

1 q onto the closed and convex subspace {u ∈ L∞(Q) :
u∗ ≤ u ≤ u∗ a.e. in Q}, and

u(x, t) = max
{
u∗(x, t),min{u∗(x, t),−ν−1

1 q(x, t)}
}

for a.a. (x, t) ∈ Q.

Likewise, if ν2 > 0, then we infer from Stampacchia’s theorem (see, e.g., [1, Thm. 5.6, p. 138]) that v0

is characterized by

ν2

2
‖v0‖2

V +

∫
Ω

q(0)v0 = min
v0∈C

{ν2

2
‖v0‖2

V +

∫
Ω

q(0)v0

}
,

where C denotes the nonempty, closed and convex subset

{v0 ∈ V : v∗ ≤ u ≤ v∗ a.e. in Ω, ‖v0‖V ≤M}.
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