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Computational modelling and simulation of cancer growth and
migration within a 3D heterogeneous tissue: The effects of fibre

and vascular structure
Cicely K. Macnamara, Alfonso Caiazzo, Ignacio Ramis-Conde, Mark A. J. Chaplain

Abstract

The term cancer covers a multitude of bodily diseases, broadly categorised by having cells
which do not behave normally. Since cancer cells can arise from any type of cell in the body, can-
cers can grow in or around any tissue or organ making the disease highly complex. Our research
is focused on understanding the specific mechanisms that occur in the tumour microenvironment
via mathematical and computational modeling. We present a 3D individual-based model which
allows one to simulate the behaviour of, and spatio-temporal interactions between, cells, extracel-
lular matrix fibres and blood vessels. Each agent (a single cell, for example) is fully realised within
the model and interactions are primarily governed by mechanical forces between elements. How-
ever, as well as the mechanical interactions we also consider chemical interactions, for example,
by coupling the code to a finite element solver to model the diffusion of oxygen from blood vessels
to cells. The current state of the art of the model allows us to simulate tumour growth around an
arbitrary blood-vessel network or along the striations of fibrous tissue.

1 Introduction

The World Health Organisation estimates that approximately 50% of the world’s population will receive
a cancer diagnosis during their lifetime, and as the second-leading cause of death worldwide one in
six deaths will be caused by it. The term cancer covers a multitude of diseases, broadly categorised
by having cells which do not behave normally. Since cancer cells can form from any type of cell in
the body, cancers can arise from and grow in any tissue or organ making the disease highly complex.
Moreover, ideally, treatment for cancer should target the tumour cells while having limited or no effect
on the surrounding healthy cells and tissue microenvironment. One of the Hallmarks of Cancer [19,
20] is tissue invasion and metastasis. Tumour cells proliferate and occupy whole areas of tissue.
Additionally they interact with surrounding cells, tissue structures, vasculature and the extracellular
matrix in a variety of ways. While some cancer behaviour is well understood (such as avascular growth
and tumour angiogenesis) we are yet to elucidate all of the mechanisms by which cancer cells take
hold of, use, and affect the body. Mathematical modelling and simulation can complement traditional
biological and experimental approaches to cancer research.

Mathematical modelling of biological processes and systems can trace its roots back over 100 years
to the seminal work of D’Arcy Thompson “On Growth and Form"[38]. More recently, in the past twenty
five years or so, there has been increased interest in the mathematical modelling of cancer growth and
treatment, leading to the development of a field in its own right - mathematical oncology. Much of this
research focuses on the interaction of cancer cells with their local tissue, “the tumour microenviron-
ment". At the same time, there has also been increased interest in computational tools and simulation
techniques, so called in silico models, which aim to provide the biologist with additional insight without
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potentially high economic, time and ethical costs. Cancer research is a prime example of a field for
which the use of in silico modelling is gathering pace. One particular branch of in silico models for
solid tumours, and of particular interest here, is that of agent-based models. For a review of cell-based
computational modelling in cancer biology see [29]. In an agent- or individual-based (IB) model one
seeks to learn more about the whole system under study by examining the actions and interactions
of its individual parts or components. An IB model of a solid tumour may reproduce the behaviour of
various tumour components, for example, the individual cancer cells; the vessels forming the tumour
vasculature and components of the tumour microenvironment. It is precisely such a model which we
present here.

IB modelling of such a complex system as a solid tumour is certainly an ambitious approach, since
there will be a large number of parameters and variables across multiple scales. However, implement-
ing these realistic models offers a constructive tool that truly complements experimental methods. In
clinical and experimental practice, scientists are able to track only a limited number of parameters us-
ing specific and well established markers. On the one hand, this top-down approach (from macroscopic
markers to microscopic biological parameters) ensures that the model reproduces the major biological
processes. On the other hand, as the number of variables is very large (in the form of cells, proteins,
particles or similar complexes and interactions between them), the complexity reduction might yield a
large amount of side masking effects. Multiscale and IB modelling offers a bottom-up approach that,
starting from the processes at the level of individual cells, has the capability to isolate a small number
of variables and can complement real and macroscopic observations.

Due to the realistic simulations they offer, IB models are now used widely within mathematical oncology
and in many other areas of biomedical systems research. Here we focus particularly on a model of
solid tumour growth but other researchers have used and are using IB models to look at tumour-
immune interactions (e.g., [30, 23, 24, 25]), invasion (e.g., [1, 40, 34]) and metastatic spread (e.g.,
[2, 15]). Our model is a force-based (centre-based) lattice-free model, and much pioneering work in
this area has been carried out by Drasdo and colleagues (see, e.g., [11, 16, 12, 33]). Other authors
working in this area include [26, 6, 7, 8]. For a comprehensive review of IB force-based models of
tumour growth see [39] and references therein.

In this paper we present a summary of the development of the IB force-based model presented in [5].
The model presented there had previously been developed from a 2D model first presented in [33]
and developed in [35, 36]. In this paper, by presenting examples of different simulations for cancer
related scenarios we show the diversity and current state-of-the-art of the code. In Section 2 we
give a detailed overview of the governing equations and mechanisms governing the cells within the
model. The main improvements to the model concern the introduction of interactions with a vasculature
network (Section 3) and fibrous tissue (Section 4). In Section 3 we show how a growing solid tumour
interacts with pre-existing vasculature and how diffusion of oxygen from the blood vessel network
affects the growth of the cancer cells. As discussed in this Section the underlying computational code
has been developed in two particular ways. Firstly, vessels are modelled explicitly in the IB model, and
this means that tumour cells can adhere to vessels and that the model can take into account a physical
force between vessels and cells. Secondly, the coupling of the IB model with a continuum model for
oxygen diffusion (using a finite element approach) has been improved in several ways: (i) using a more
realistic non-linear reaction model; (ii) using an adaptive mesh, refined near the vessels; (iii) dynamical
evaluation of when a new solution of the diffusion equation is needed, based on the variation in cell
density; (iv) using Robin boundary conditions at the boundary of the continuous domain, in order to
account for a more realistic effect of the surrounding tissue. In Section 4 we show how the growth of
a tumour mass is affected by the local tissue structures; how its shape is altered by the alignment of
extracellular matrix (ECM) fibres. The model has been developed to include the fibres as additional
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agents in order to take into account the mechanical interplay between fibres and cells. We note that in
the previous work of [35] fibres were also incorporated. However, the model presented there is 2D, and
in this current paper moving to a 3D domain has added significantly to the complexity of the cell-fibre
interactions. In Section 5 we summarise the current capabilities of the model and discuss plans for
further development of the code.

2 Individual-based model of cancer growth

In this Section we describe our model for solid tumour growth. Specifically, since we employ an IB
approach, each cancer cell is considered to be an agent that grows, divides, acquires a certain phe-
notypic status and interacts with other neighbouring cells (and later in the paper, with both blood
vessels and individual fibres constituting the ECM). We will focus first on describing the cell-cell in-
teractions. As discussed in the introduction, this is a force-based model and so the interactions are
primarily mechanical and each cell is governed by an equation of motion.

2.1 The equation of motion

Firstly, we note that we model each cell as a viscoelastic sphere subjected to small deformations. It
is true that the shape of cancer cells can vary depending on the type of tumour, environment and
on the degree of differentiation. Furthermore, individual cellular behaviour at the tumour interface is
dependent on specific molecular-scale interactions that result in cytoplasmic deformations. However,
when a growing solid tumour (which reaches a size consisting of thousands of individual cells) it
is acceptable to make this simplification on the cell geometry (i.e. spherical cells). Formally, then,
each cell is described by a set of state variables including the cell centre position, x, cell radius, (r),
cellular phenotype, σ, oxygen concentration, c(x, t) and the stage in the cell cycle. Cell dynamics are
governed by the following set of ordinary differential equations (one for each cell):

Γvi(t)︸ ︷︷ ︸
friction

+ arfi(t)︸ ︷︷ ︸
random fluct.

=

Ncells(t)∑
j=1

Fi,j(t)︸ ︷︷ ︸
cell-cell forces

, (1)

where vi = ẋi denotes the velocity of cell i and Γ is a 3-dimensional tensor that models the physical
structure of the environment, for simplicity assumed to be isotropic, i.e., Γl,k = γδl,k. The term
arfi(t), where fi is a normal function with zero mean and unit variance, models the active random
forces exerted by cellular mechanisms as a process of exploration of the nearby space, as well as other
normally distributed spatial fluctuations that may happen at the cellular scale [17]. Finally, Ncells(t)
denotes the total number of cells at time t and Fi,j(t) is the force exerted on a cell i by a neighbouring
cell j, consisting of a combination of repulsive and attractive forces (see Section 2.2).

We solve the model numerically based on an explicit discretisation of (1), where the cell position is
computed, at time tn+1, via

xi(t
n+1) = xi(t

n) +
∆t

γ

−arfi(tn) +

Ncells(tn)∑
j=1

Fi,j(t
n)

 , (2)

where ∆t denotes the time step.
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2.2 Cell-cell interaction

This Section briefly describes the forces governing the cell-cell interactions. For more details on this,
we refer the reader to [5]. An interaction is assumed to only take place between two cells in contact
with each other, and is composed of both a repulsive and an adhesive component. Let us consider two
cells (denoted by i and j), letRi andRj be their radii, and let dij denote the spatial vector connecting
their cell centres, oriented from the centre of cell i to the centre of cell j. In what follows, we will
consider the case |dij| ≤ Ri + Rj , i.e., when the cells are in contact, introducing also the length of
“overlap"between cells given by

hij = Ri +Rj − ‖dij‖. (3)

Denoting withEi andEj the cells’ Young’s moduli and with νi and νj their Poisson ratios, the repulsive
force term, Frep

i,j , is computed from the Hertz model [22] (assuming sufficiently small deformations) and
is given as

|Frep
i,j | =

4

3
E∗R∗1/2hij

3/2. (4)

In (4), R∗ = RiRj/(Ri + Rj) is the effective radius and E∗ is the effective Young’s Modulus calcu-
lated from

1

E∗
=

1− ν2
i

Ei
+

1− ν2
j

Ej
. (5)

The adhesion force between cells is produced by adhesive molecules that travel to the cellular mem-
brane, stimulated by the the proximity of the neighbouring cell. Therefore, the adhesion force, Fadh

i,j ,
between two overlapping cells, is assumed be proportional to the contact surface between them, de-
noted by Sadh [32]. Since we assume small cell deformations, the contact surface between the two
cells is computed as the average value between the area of a spherical cap of height the overlap
between the cells, hij , and surface of the circle underlying the cap. Thus,

Sadh
ij =

1

2

[
2πRihij + π

(
R2
i − (Ri − hij)2

)]
(6)

yielding the force

|Fadh
i,j | = α∗

(
Ri −

hij
4

)
hij. (7)

In (7), α∗ = 2πα, and α is the adhesion constant, which is currently assumed to be constant among
the cell population. Note that this adjusted adhesion coefficient α∗ will be referred from here on as the
adhesion coefficient. The advantage of using this adhesion approach (instead of a linear term as in
[33]) resides in the fact that it considers a suction effect as a consequence of the increasing density of
effective bonds between the cells.

The total cell-cell interaction force is directed along the vector joining the centres of cells i and j, it is

Fi,j =
(
Frep
i,j − Fadh

i,j

) dij
‖dij‖

(8)

and can be determined using equations (4) and (7). Notice that in equation (8) we assume, without
loss of generality, that positive forces for cell i are directed outwards.

For the simulations shown in this paper we shall suppose that all cells have the same maximum radii,
Young’s moduli, Poisson ratios and adhesion constant, denoted by R, E ν and α∗, respectively. The
values for the parameters used in model Equation (2) are given in Table 1 (see also [5, 33, 32]). With
these choices, the potential is minimised (and thus forces are in equilibrium) when cell centres are
approximately 8.5µm apart, causing a small deformation to the spherical cell.

DOI 10.20347/WIAS.PREPRINT.2597 Berlin 2019



Modelling and simulation of cancer growth and 3D heterogeneous tissue 5

Parameter Description Value
R maximum cell radius 5µm
E Young’s modulus 1e−3µN/µm2

ν Poisson ratio 0.5
α∗ adhesion coefficient 3.72e−4µN/µm2

∆t timestep 1 min
γ cell-medium friction constant 0.01µNµm/min
ar amplitude of random forces 4× 10−3µN

Table 1: Parameter values for Equation (2) used in the simulations throughout this paper.

2.3 Cell cycle, growth and birth

Besides the mechanical interactions between cells, cells are also subject to changes due to biological
factors, such as the cell cycle, mitosis and mutations. In particular, the cell cycle is modelled by as-
suming that each cell increases in size at a given growth rate (specifically, 0.1µmin) until it achieves
a prescribed maximum radius, Rµm. Once the cell has grown to its proliferating size (at least 99% of
this maximum) it may undergo mitosis, dividing into two daughter cells. Mitosis is assumed to happen
with a probability pmitosis = 1

TCC
, i.e., equal to the inverse of the cell cycle time TCC . For the simu-

lations shown here, TCC is equivalent to 1 000 timesteps or approximately 16.5 hours. After division,
the daughter cells grow rapidly until they too achieve proliferating size. However, cell division does not
only depend on the cell cycle time, but also on the environment surrounding the cells. In particular,
mitosis is not possible if the cell experiences an excessive compression force due to the neighbouring
cells. To take this into account, mitosis is only allowed as long as (i) the repulsive force of the modified
Hertz model (see Equation (4)) is below a given threshold F ∗c,m

1, and (ii) the number of total contact
neighbours of the cell is below a given threshold n∗c,m (approximately 16 neighbours, as in [5, 32]).

For the purposes of this paper we do not consider cell mutations specifically. However, biologically,
cells can have different phenotypes, and phenotypic mutations may arise, depending on the problem
under consideration, as a function of the environment surrounding the cell and/or on the cell status.
A change in phenotype may manifest in a change of cell behaviour, for example, see Section 3.3.1.
Cell evolution might also depend on several additional biophysical processes, such as the availability
of nutrients (see Section 3) or the structure of the extra-cellular matrix (see Section 4).

2.4 Implementation details

The individual cell model has been implemented in a C++ solver, in which each cell is an independent
object with a given set of properties (radius, position, phenotype, etc.). Each iteration is composed of a
global step, in which each Cell obtains information about its neighbours, and a local step, comprising
all operations that are performed cell by cell (computing forces and velocities, mitosis, mutations). The
domain is divided into boxes, and each cell is uniquely assigned to the box containing its centre. This
subdivision speeds up the search for neighbours of a given cell, by restricting the operations to the
cells in the neighbouring boxes.

In [5] solid tumour growth was simulated, and the model was given as above but the tumour grew within
a domain diffused with oxygen from “vesselßources. In the next Section we develop this approach
by introducing additional agents (vessels) so that we may model mechanical as well as chemical

1The threshold force is currently calculated as the value of the repulsion force of 12 cells at a contact distance of 8.5µm
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interactions between solid tumours and a pre-existing vasculature.

3 Growth Around Blood Vessels

This Section describes in detail the coupling between the IB model described in Section 2 and updated
to include an IB treatment of the vessels, with a finite element solver for simulating oxygen diffusion
within the tissue.

In order to setup an efficient computational approach, we consider an extension of the multiscale
model recently proposed in [5]. Namely, we simulate oxygen diffusion within the tissue solving a
reaction-diffusion equation with a finite element method, in which the vascular tree is taken into ac-
count as an immersed singular source. As observed in [5], this approach allows us to efficiently treat
arbitrary vascular structure, without the need of adapting the finite element mesh.

3.1 Mathematical Model

Oxygen uptake is a variable of extreme importance when determining the dynamics of cancer growth.
Depending on availability of oxygen in the surrounding tissues, cancer cells might undergo different
biophysical processes. In the case of hypoxia (lack of oxygen), cancer cells typically increase their
motility but eventually, as oxygen levels continue to drop, become necrotic. As oxygen is provided
by the blood vessels perfusing the tissue, understanding the interplay between cancer cells, cancer
growth and vasculature is crucial.

To formulate the model, let us denote with Ω ⊂ R3 the space occupied by the whole tissue domain and
by Ωv the domain of blood vessels. The oxygen concentration is governed by the following reaction-
diffusion equation and boundary conditions assuming that oxygen diffuses within the cellular tissue
homogeneously with a known diffusion constant.

∂tc−DO2∆c+
αnρn + αhρh
c(T ) + c

c = 0, in Ω,

∂c

∂n
= φv =

1

Jv
(cv − c), on ∂Ωv,

∂c

∂n
=

1

ηDO2

(c+∞ − c) , on ∂Ω/∂Ωv,

(9)

where c(x, t) denotes the oxygen concentration. In the reaction-diffusion equation (9)1, DO2 is the
diffusion coefficient of oxygen, ρn and ρh stand for the density of normoxic and hypoxic cells, respec-
tively, αn and αh are model parameters regulating oxygen uptake and c(T ) is the saturation constant
(the oxygen level at which the consumption rate is halved). The last term on the left-hand side models
the oxygen/nutrient uptake by different cell types, modelled through Michaelis-Menten type kinetics.
The boundary conditions are of Robin-type. Equation (9)2 models the filtration from vessels to tissue,
while Equation (9)3 imposes a condition on the external boundaries of the tissue sample, i.e. those
boundaries not adjacent to any vessel wall. In particular, we consider that blood vessels are sources
of oxygen, from which oxygen is constantly diffused into the domain at a rate φv, based on a filtration
law in which cv denotes the oxygen concentration inside the vessel and Jv is the filtration coefficient
(assumed to be known). In this way the oxygen flux, φv, through the boundary, ∂Ωv, is assumed to
be proportional to the concentration difference between the vessel and the tissue. We consider c+∞
to be a far field concentration. Notice that small values of the model parameter η corresponds, from a
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mathematical point of view, to imposing c = c+∞ i.e. a Dirichlet boundary condition, while large values
of η or c+∞ = 0 are both equivalent to imposing a homogeneous Neumann boundary condition.

Equation (9)1 is a time-dependent non-linear partial differential equation for the concentration c(x, t).
In order to obtain an efficient solution method, within our computational model we considered the
following hypothesis. Firstly, we assume a strong scale separation between the oxygen diffusion (time
to reach an equilibrium state) and the cellular tissue growth. Hence, for the purposes of the coupled
model equation (9)1 can be replaced by its steady counterpart

−DO2∆c+
αnρn(t̂m) + αhρh(t̂m)

c(T ) + c
c = 0, in Ω, (10)

where t̂m denotes the m-time iteration in the time scale of the cells, and specifies the current cell
configuration.

Secondly, we assume that the oxygen distribution does not change excessively from one iteration of
the diffusion solver to another (provided the cell distribution remains close). This assumption is used to
linearise the reaction terms in equation (10), replacing the unknown concentration c at a time iteration
t̂m with the previously calculated c(t̂m−1). Hence, the continuum equation that is considered for the
coupling with the individual-based model is given by

−DO2∆c+
αnρn(t̂m) + αhρh(t̂m)

c(T ) + c(t̂m−1)
c = 0, in Ω. (11)

3.2 Finite element approximation

In order to solve equation (11) numerically, we consider a tetrahedral mesh Th of the computational
domain Ω and the discrete (finite element) space Vh = P2(Th) of the piecewise quadratic functions
on the elements of Th. Moreover, let us denote with (·, ·)Ω the standard L2 scalar product defined by

(p, q)Ω =

∫
Ω

pq dΩ,

for all p, q ∈ Vh.

The finite element method for the diffusion equation (11) is derived starting from its weak formulation.
Namely, we first multiply equation (11) by an arbitrary function q ∈ Vh (a so-called test function) and
then integrate by parts, obtaining the following equivalent problem: Find c ∈ Vh such that

(DO2∇c,∇q)Ω +
∑

α=N,H

(µαR
cells
α (tcells)c, q)Ω

+

(
1

Jv
(c− cv), q

)
∂Ωv︸ ︷︷ ︸

Φv

+

(
1

ηDO2

(c− c+∞), q

)
∂Ω\∂Ωv

= 0,
(12)

for all q ∈ Vh.

We consider a vascular network in the domain Ωv composed of blood vessel segment. Each seg-
ment, collectively representing the source of oxygen, is assumed to be a thin tube, with radius much
smaller than the characteristic length of the three-dimensional domain. In order to avoid an excessive
refinement of the mesh close to the vessels, the source term on the boundary of ∂Ωv is treated in a
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multi-scale fashion, adopting the immersed boundary formulation proposed in [10]. In this approach,
each vessel segment is described by a one-dimensional manifold Γv, representing the vessel axis
(centre-line), which does not need to be fully resolved by the finite element mesh, and it is immersed
in the three-dimensional domain, in the sense that it enters the diffusion equation (12) only as a sin-
gular flux term. In practice, the term Φv in equation (12) is approximated by

Φ̃v =

(
1

Jv
(c− cv), q

)
Γv

=

∫
Ω

1

Jv
(c− cv)q δhΓv

dΩ. (13)

where δhΓv
stands for a discrete approximation of the Dirac delta function of the vessel centre-line.

The main advantages of this approach is that it allows us to use a coarser spatial discretisation. In
practice, the finite element mesh needs only to be refined around blood vessels, but it does not need
to fully resolve the vessel geometry. Hence, the formulation can handle arbitrary vessel configurations.

3.3 Coupling with the individual-based model

3.3.1 Cell phenotype

Within the model, each cell is characterised by a particular phenotypic state, depending on the amount
of oxygen available. In particular, we distinguish between normoxic, hypoxic, and necrotic states (see,
e.g., [5, 27, 28, 31]). By default, cells are normoxic, and they remain in this state, as long as the oxygen
concentration at their spatial location remains above a specified threshold (τhypo), performing aerobic
metabolism. If the oxygen concentration falls below τhypo, the cell activates anaerobic metabolism
(i.e., it consumes oxygen at a lower rate so that αh < αn), stops proliferating and acquires additional
motility. The increased motility is modelled by increasing the magnitude of the random movement term,
arfi(t), of Equation (2) by a factor vhypo (see, e.g., [27]). Hypoxic cells that move into locations where
oxygen levels are reverted to physoxia may revert their phenotype back to normoxic [3]; following
our previous work [5], we consider that when oxygen levels rise over the hypoxia threshold (τhypo)
cells may revert to normoxic with a probability p = 1/24 hours. Ultimately, however, if the oxygen
concentration decreases below a dramatic threshold (τdead), the cells undergo apoptosis by anoxia
[27], becoming biologically inactive. These dead cells remain in the system as a part of the debris in
necrotic regions and they move only as a consequence of mechanical forces.

3.4 Implementation details

The stationary equation (11) is solved numerically using a P2 finite element method implemented
within the library FreeFem++ [21]. In order to couple the finite element solver with the individual cell
solver, the two models have to be defined on the same computational domain. However, this relies
on different discretization strategies. For practical implementation, we considered a cubic domain –
subdivided into smaller boxes (to simplify the search operations, see Section 2.4) – and generated a
tetrahedral mesh using Gmsh [18] and TetGen [37].

3.4.1 Time-stepping and up-scaling of the cell distribution

As discussed in Section 3.1, the feedback of the cell model on the diffusion equation (11) is driven
by the density of normoxic and hypoxic cells (as necrotic cells do not consume nutrients), which is
assumed to be constant in the short time needed by the diffusion problem to reach an equilibrium.
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The cell density, ρ = ρn + ρh, has been computed directly in the discrete finite element setting, i.e.,
approximating ρ as a piece-wise constant function on each mesh tetrahedra. To this end, we pre-
computed a map, assigning, to each tetrahedra, the box containing its barycentre. This step allows us
to efficiently evaluate the piece-wise approximation of cell density by mapping each cell from its box
to a given tetrahedra, and summing up the contribution for each tetrahedra.

Another observation allows for a further gain in computational efficiency. Since the spatial configuration
of the cell undergoes only limited changes between time steps, the finite element solver is not launched
at each time iteration. Instead, at each time step only the up-scaled cell density (a piecewise constant
function on the tetrahedral mesh) is computed and stored. The solution to the steady diffusion equation
is only updated when the relative difference (inL2-norm) between the current density and the one used
in the previous finite element iteration used is above a certain threshold. In our numerical simulations,
we relaunched the finite element solver whenever the relative difference was above 5%. However,
a rigorous multiscale analysis would be necessary, in order to derive an optimal scale separation
strategy. This issue is subject of current investigation.

3.4.2 Individual-based treatment for vessels

Besides providing available nutrient concentration, the blood vessels are also handled within the IB
model as independent geometrical entities, this is not the case in [5] and is one of the major changes
to the model presented here. We consider an adhesion-repulsion interaction model in order to model
cell adhesion to vessel walls without, at least in this instance, allowing cells to penetrate the space
occupied by blood vessels. From the computational point of view, vessels segments are treated as
additional agents, characterised by their extrema, their orientation and their radius. Let us introduce
the vectorial distance between cell and vessel surface hiv, i.e., the vector connecting the centre of cell
i with vessel v, and perpendicular to the vessel axis. The cell-vessel interaction force is computed as
the sum of a repulsion and an adhesive term, as:

Fi,v =

[
4

3
ÊR

1
2
i ‖hiv‖

3
2 − αvesselSiv

]
hiv
‖hiv‖

(14)

with 1

Ê
=

1−ν2i
Ei

+ 1−ν2v
Ev

(where Ei, νi and Ev, νv denote the Young’s moduli and Poisson ratios of
cell i and vessel v, respectively), αvessel is an adhesion coefficient and Siv is the surface of cell-vessel
contact, which is approximated analogously to the cell-cell adhesion surface (Equation (6)). When
solving for the cell position, this contribution is added to the right-hand side of Equation (2).

3.5 Computational results

We consider a tissue sample of size 600µm×400µm×400µm, with six vessel segments arranged as
depicted in the left-hand panel of Figure 1. In the right-hand panel of Figure 1 we show the oxygen
concentration without the presence of cells. The model parameters are summarised in Table 2.

In Figure 2 we give the results of a simulation of the vascularised tumour growth model after 16 000
timesteps, when the population size has reached approximately 20 000 cells. The plots show two
different views of the cell population, which has been coloured according to oxygen concentration. It
shows that the tumour grows between the vessel network without penetrating the vasculature and,
intuitively, the cells closest to the vessel segments have higher O2-levels. Figure 3 depicts the level
curves of oxygen concentration computed with the finite element solver within the vascular tissue,
showing the effect of the sink terms due to the cell consumption.
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Parameter Description Value
Ev vessel Young’s modulus 1e−3µN/µm2

ν vessel Poisson ratio 0.5
αvessel cell-vessel adhesion coefficient 3.72e−4µN/µm2

c(T ) O2 saturation constant 2.5mmHg
αn normoxic consumption coefficient 0.3
αh hypoxic consumption coefficient 0.06
η determines boundary condition type 0.02
Jv coefficient for filtration term 1e−3
τhypo hypoxia O2 threshold 7.0mmHg
τdeath necrosis O2 threshold 0.7mmHg
vhypo hypoxic motility variance factor 10.0

Table 2: Parameter values for the vessel interactions used in simulations.

Figure 1: Left: the vessel geometry considered in the simulation. Notice that the plot shows the contour
surfaces of the concentration equal to 60mmHg, since vessels are not explicitly resolved within the
computational mesh. Right: concentration field in three different cross-sections without the presence
of cancer cells.

Figure 2: Cancer growth simulation after 16 000 time steps (approximately 20 000 cells). The cells are
coloured according to available oxygen concentration. In the two panels we show the domain from
different viewpoints.
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Figure 3: Cancer growth simulation after 16 000 time steps. The plot depicts the contour surfaces of
the concentration field.

4 Cell-fibre interactions

While interactions with any local vasculature obviously play an important role in the growth and evo-
lution of a solid tumour, interactions with other components of the surrounding stroma also play a key
role. Fibrous connective tissue performs a wide variety of functions within the healthy body but in terms
of cancer development the structure of the extra-cellular matrix (ECM) and the interaction with indi-
vidual fibres of the matrix drives cell migration. Malignant cells activate the integrin migration pathway
and crawl towards the protein network of the ECM. Migration through the protein network results in the
rearrangement of the ECM structure as cancer cells use the integrin pathway to cut-off the fibres and
re-orient the ECM. Cell migration can happen as a collective process that presents in different ways
depending on the tumour type and the nearby environment leading to different migration structures
[13, 14].

In this Section, we describe an extension of the IB model presented in Section 2 that takes into
account a three-dimensional fibrous ECM, where fibres of arbitrary shape and orientation interact with
the individual cells.

4.1 Mathematical Model

Each individual fibre is modelled explicitly in the first instance by a thin cylinder (described by its
extrema and radius), and we assume that the whole three-dimensional computational domain is filled
by fibres with a given distribution of positions and orientations.

4.1.1 Forces on the cell

Let us consider a cell i in contact with a fibre f . In order to model the interaction, we assume that each
cell moves in response to a fibre in two directions. In particular, a cell in contact with a fibre will feel an
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adhesive force, parallel to fibre orientation and a repulsive force orthogonal to the fibre (see, e.g., [9]).

The adhesive force is modelled as

F‖ = αfibre

(
1− ‖vi‖

vmax

)(
|vi · lf |
‖vi‖

)s
lf . (15)

The force is directed along the normalised direction of fibre f , lf (with (‖lf‖ = 1), and depends on
the normalised scalar product between lf and vi, the velocity of cell i. Moreover, the force depends
on an adhesion coefficient, αfibre, and on a threshold velocity, vmax, which limits the pulling effect of
fibres. The additional parameter s > 0 can be used to model additional effects which might increase
(s < 1) or decrease (s > 1) the pulling effect. For the simulation showed in this work, we use s = 1.

Conversely, the repulsion force is modelled via an additional friction exerted by the fibre, again de-
pending on the normalised scalar product between lf and vi, and directed parallel to cell velocity and
depending on the component of cell velocity orthogonal to the fibre:

F⊥ = βfibre

(
‖vi‖2 − |vi · lf |2

‖vi‖2

)r
vi . (16)

In (16), βfibre is the friction coefficient and the exponent r > 0 can be used to model nonlinear effects
which increase (r < 1) or decrease (r > 1) the repulsion forces. For the simulation showed in this
work, we use r = 1. The cell-fibre interaction force is computed as the sum of the repulsion and
adhesive terms, Fi,f = F‖ − F⊥, when solving for the cell position, this contribution is added to
Equation (2).

4.1.2 Fibre degradation

A further biologically relevant aspect is the possibility that the fibres are degraded by the cells. To
take this aspect into account, we include the possibility that, during the interaction between a cell and
a fibre, the latter is partially or totally broken. Specifically, at present, each fibre is equipped with an
additional flag variable δf ∈ {0, 1}, equal to 1 if the fibre is degraded. For each cell in close proximity
to a given fibre, f , the fibre is degraded with probability pcontact if the cell is moving towards the fibre
and in general with probability pdiffusion. For the simulations shown in this paper very few fibres per
simulation are degraded.

4.2 Implementation details

From the technical point of view, the model for the fibres is implemented within the same solver used
for the cells. In particular, the Fibre class is a special computational agent which can interact with
neighbouring Cell agents.

4.3 Computational results

We investigate the growth of a solid tumour as a function of fibre distribution, i.e., depending on density,
orientation and interaction parameters (primarily the adhesion force). In the following simulation we
consider a computational domain of size 500µm × 2000µm × 500µm containing 75 000 fibres.
Fibre length is assumed to be normally distributed with mean 75µm and standard deviation 5µm [35],
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Parameter Description Value
αfibre cell-fibre adhesion coefficient 0.005− 0.02N
βfibre resistive coefficient orthogonal to fibre 10−3Nminµm−1

vmax maximum fibre-induced cell velocity 10µmmin−1

pcontact fibre contact degradation rate (per cell) 10−3min−1

pdiffusion fibre diffusion degradation rate (per cell) 10−6min−1

Table 3: Parameter values for the fibre-cell force components used in simulations

Figure 4: Example of a simulation with cell-fibre adhesion parameter set to 0.03N and using uniformly
distributed fibres along the y-axis, after 9 000 time steps. Cells are represented by red spheres, fibres
in grey. Left: view orthogonal to the fibre orientation (xz-plane). Right: view in the yz-plane, cropped
on the left side.

while fibre radius is set to 2µm. With these choices, we obtain a total fibre volume ratio comparable
with the one used in [35]. The parameters for the fibre-cell force components are given in Table 3.

In the first simulation we show how a tumour grows oriented with fibres which are uniformly distributed
aligned with the y-axis. We place a single cancer cell within our fibrous domain, the result after 9 000
timesteps (approximately 6 days) of a sample simulation (with a relatively high adhesion coefficient)
are shown in Figure 4. Whereas in the absence of fibres we typically see a spherical tumour mass (as
in Figure 2), here the growth has been stretched out along the fibrous tissue.

We investigate how the shape of the tumour changes depending on key parameters, namely, the
adhesion coefficient αfibre, the fibre density (number of fibres) and the variance of the fibre orientation
distribution. For different simulation settings, we run 200 simulations in each case, computing the final
shape of the tumour with the quantity

δ =

√
3ay√

a2
x + a2

y + a2
z

(17)

where ay is the length of the tumour mass in the y direction etc. As such δ measures the anisotropy
along the y-axis, which is the main axis of orientation of fibres. The results are shown in Figure 5. We
show that if we increase either the cell-fibre adhesion coefficient or the number of fibres the tumour
grows preferentially in the y-direction. Conversely as we increase the variance of the fibre orientation
the tumour grows more isotropically.

In the next numerical test we investigate the motion of a single cell (non-proliferating) within a given
anisotropic fibre distribution. The cell is placed at (250,50,250), while fibres are generated with a
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Figure 5: The shape of the distribution of cells within the domain, given by Equation (17). We vary the
fibre adhesion coefficient, number of fibres and variance of fibre orientation in the left, middle and right
plots, respectively. In each plot, the red square indicates the baseline simulation (αfibre = 0.01N).
The y-axis represents the mean value of the indicator, δ, for the set of simulations, while the vertical
error bar corresponds to the variance.

fibre volume ratio as above (i.e. 75 000 fibres over a domain 500µm × 2000µm × 500µm), and
oriented along the y-axis. We run 100 simulations for 10 000 timesteps, monitoring the path of the cell
within the fibrous domain. The results are shown in Figure 6. We observe that the y-orientated fibrous
distribution induces the cell to move along the y-axis parallel to the direction of the fibres (Figure 6 ,
top left), with a smaller diffusive effect along the x and z axes (Figure 6, top right). The bottom panel
of 6 compares the mean and variance of the displacement along each axial direction, showing greater
movement along y.

In the final numerical test, we investigate how the statistics of the motion of a single cell (non prolifer-
ating and placed at (250,50,250)) changes as we vary parameters affecting the interaction between
the cell and the fibrous tissue. In particular, we monitor the dispersive behavior of the motion, i.e., the
difference between the movement along the y-axis (which is the preferential orientation of the fibres)
and in its orthogonal plane. We run 100 simulations for 10 000 timesteps, monitoring the path of the
cell within the fibrous domain.

The results (showing the path of the cell for a single run of the simulation and the general dispersion
behaviour for all 100 runs) are shown in Figure 7. The top figures show the results if we reduce the
cell-fibre adhesion from 0.03N to 0.01N, hence decreasing the “pulling” effect in the direction of the
fibres. We observe that the cells still predominantly move in the y-direction (with a smaller diffusive
effect in the x- and z-directions) but do not move as far into the domain as observed in Figure 6.
Moreover, the variance of the motion along x and z increases. The middle figures in Figure 7 show
the effect of reducing fibre density (decreasing the number of fibres from 75 000 to 25 000). In this
case cells come into contact with fewer fibres and as such the “pull” the cell feels in the direction of
the fibres is again reduced, yielding similar results as the ones shown in the top panel of 7. Finally, the
bottom figures in Figure 7 show the effect of increasing the variance of fibre orientation distribution.
Specifically, instead of a uniformly oriented fibre distribution (along the y-direction), we sample fibre
orientation from a normal distribution with mean (0, 1, 0) (along y-direction) and variance of elevation
and azimuthal angles equal to 0.8. Hence, fibres are now oriented in all directions. In this case the cells
continue to feel a strong “pull” from the fibres but the direction of cell migration, while still seemingly
directed, is no longer solely parallel to the y-axis; the dispersion in the x and z-axes directions is more
marked and more comparable to the dispersion in the y-direction.
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Figure 6: Results of 100 simulations of a single cell (initial position at (250,50,250)) moving within a
fibrous domain. Top Panel: the initial position is indicated by a blue circle, while final positions (for
each simulation) are marked in red. The trajectories are indicated by the light grey lines. Left: y-z
plane. Right: x-z plane. In the left hand plot we indicate the mean path with the dark grey line. Bottom
Panel: The dispersion in each of the axial directions for the 100 simulations.
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Figure 7: Results of 100 simulations of a single cell (initial position at (250, 50, 250)) moving within a
fibrous domain under changes to parameters. Left Panels: a single cell path shown in the y-z and x-z
planes; the initial position is indicated by a blue circle, and the final position is marked by a red circle.
Right Panel: The dispersion in each of the axial directions for the 100 simulations. Top Panel: reduction
of the fibre adhesion parameter αfibre. Middle Panel: reduction in the number of fibres. Bottom Panel:
increase in the fibre orientation variance.
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5 Discussion and Conclusions

The evolution from the first mathematical models of biological systems to the present computational
approaches indicates both the difficulties that science has faced in this field but also the great ad-
vances that have been made. As experimentalists come to a deeper understanding of cellular be-
haviour as multiscale complex systems of interactions, the modelling community is endeavouring to
reconstruct the biology ever more faithfully. In the last few decades particularly, a range of powerful
computational exploratory tools has been created.

In this “proof of concept"paper we have detailed our in silico IB model of solid tumour growth within
the tumour microenvironment in which cancer cells interact not only with each other but also with the
local vasculature and fibrous tissue. The code has been developed from that in [5] to include these
vessel/fibre interactions. We have shown that the basic model can reproduce important key biological
aspects. Tumour shape, for example, is driven both by fibre orientation in the domain as seen in
Section 4 and local vascular structure as seen in Section 3. Cell migration is also led by interactions
with the environment as cells move preferentially along fibres (Section 4) or in search of sources of
nutrient (namely oxygen) due to oxygen phenotypic profiles which is dealt with extensively in [5].

The model as it stands presents many significant avenues for further development, and we detail a
selection of these here. With regards to cell-vessel interaction we seek to couple the model with the
angiogenesis model of [4], in such a way that not only can we model the interactions between cells
and existing vasculature but also that we can investigate solid tumour dynamics under vascularisation.
This would involve modelling the diffusion of, for example, vascular endothelial growth factor (VEGF)
from hypoxic cancer cells into the surrounding tissue. VEGF is a protein produced by cancer cells
that provide the initial signals for endothelial cells to form new blood vessels. We intend to model the
production and diffusion of VEGF in an analogous way to the modelling of oxygen diffusion in Section
3.

Since blood vessels are now physically represented in the IB model this would permit us to couple
the cell model with a flow model, taking into account the pressure of the cells on the vessel boundary
to model, for example, vessel collapse. Equally, we could develop the physical interactions between
cells and vessels to incorporate the possibility of intra- and extra-vasation of cells into and out of blood
vessels. This would be a first major stepping stone in piecing together an individual-based force-based
model of metastatic spread. With the ability to model both local invasion and metastasis we will have
a better understanding of one of cancer’s most deadly Hallmarks [19, 20] and a platform from which
to investigate ways of stopping the spread of the disease.

With regards to the cell-fibre interactions, we can incorporate more detailed aspects of ECM re-
modelling by cancer cells. As much as cells are driven along fibres, fibres can also be pushed and
re-oriented by contact with cells. We have already included a first-step model of fibre degradation
whereby fibres that are in contact with cells are subject to a rate of degradation. In order to make this
aspect more biologically relevant we could instead couple it to a reaction-diffusion equation for matrix
metalloproteinases (MMPs) and other matrix degrading enzymes - in a similar way to the modelling
of oxygen shown in Section 3. MMPs are enzymes released by cancer cells which are capable of
degrading key components of the ECM such as collagen fibres.

Nonetheless, we currently have a novel individual-based model of solid tumour growth which can
replicate key aspects of growth and development and which forms a foundation to build upon. What is
important now is to take our current model from an exploratory tool to a quantitative, predictive one.
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