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Microbiomes have an immense potential to enhance plant
resilience to various biotic and abiotic stresses. However,
intrinsic microbial communities respond to changes in their
host's physiology and environment during plant’s life cycle. The
potential of the inherent plant microbiome has been neglected
for a long time, especially for the postharvest period. Currently,
close to 50% of all produced fruits and vegetables are lost
either during production or storage. Biological control of
spoilage and storage diseases is still lacking sufficiency. Today,
novel multiomics technologies allow us to study the
microbiome and its responses on a community level, which will
help to advance current classic approaches and develop more
effective and robust microbiome-based solutions for fruit and
vegetable storability, quality, and safety.
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Introduction

Many discoveries of microorganisms and their entire
community, the microbiome, changed the view on life in
general [12]. Each higher organism, including plants, is
now considered as a holobiont, which describes a mu-
tually dependent and coevolved biocoenosis of a eu-
karyotic host and its microbiome [64]. Nowadays,

1,2,3

next-generation sequencing technologies such as meta-
genomics, metaproteomics, metabolomics are the drivers
of microbiome research. Together with advanced culti-
vation and microscopy technologies, those technologies
allow us not only to capture the microbiota's general
presence but also the potential and actual functions they
perform in a certain environment and at a certain time-
point. However, microbiomes are highly specific and
complex, consisting of hundreds of species of different
microbial lineages, including bacteria, archaea, fungi,
and protists [12]. Moreover, especially in interconnected,
open environments, the microbiome's dynamics are
poorly constrained and the responses to environmental
changes, biotic or abiotic, are still hardly predictable.

Compared with open environments, postharvest storage
facilities represent rather-controlled systems, and one
would assume that here, pathogens and pests are easier
to combat. However, spoilage and storage rot caused by
pathogens is still a major global problem in addition to
postharvest food loss due to technical constraints in
harvesting and handling, and undesired sprouting or loss
of sugar and water content. Even though packaging
technologies as well as physical and chemical control
treatments are being optimized continuously, the re-
lative amount of postharvest food loss has not decreased
much during the past 40 years [14,51]. Currently, close
to 50% of all produced fruits and vegetables are lost ei-
ther during production or in the postharvest period [22].

In addition to the limited efficiency of current control
approaches, huge amounts of chemicals applied in the
postharvest sector, such as growth regulators and pesti-
cides, can exert negative impacts on the environment
and human health [39]. Moreover, the plant microbiome
has already been negatively affected by all these an-
thropogenic activities [10]. Finally, the energy con-
sumption in storage facilities is particularly high, which
is not only costly, but simply no longer sustainable in
view of planetary health issues and climate change.
Using the microbiome is becoming a promising aspect
for biotechnological applications, from both ecologic and
economic perspectives [31]. Microbial applications do
not require extreme conditions or energy intake, the
products are environmentally degradable, and the func-
tional potential for plant health, quality, and resilience to
diverse stresses is almost infinite [16].
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In the following, we review current microbiome-based
knowledge and practices and their limitations, present
innovative ideas, for example, prediction of produce
storability already in the field, and discuss the potential
of microbiome modulation for sustainability along the
food chain. The indigenous plant microbiome will play a
decisive role for any effective future application. Thus,
we start our conceptional review at how the plant mi-
crobiome is being initially assembled.

The plant microbiome is a highly dynamic
community subjected to various assembly
strategies

Understanding the plant microbiome relies heavily on
considering the plant and its microbiome as a continuous
line of temporally and spatially dynamic communities of
which the propagative material, that is, seed or vegeta-
tive parts, represents the starting point. The propagative
material harbors a subset of the plant microbiome that is
transmitted to the offspring, referred to as the inherited
microbiome [56,65]. Environmental microorganisms that
colonize the plant subsequently are termed horizontally
acquired microorganisms that represent a substantial
fraction of the plant microbiome [15]. After the dynamic
processes of microbial migration and assembly, rhizo-
sphere, phyllosphere, and especially plant endosphere
patterns of healthy plants remain surprisingly stable. Yet,
the community composition varies significantly between
those plant compartments, which was recently sum-
marized by Trivedi et al. [62]. In terms of microbial
diversity and abundance, a general decline from
rhizosphere to phyllosphere and endosphere can be
stated [62].

The phyllosphere encompasses all aboveground organs,
including leaves and fruits. These tissues have in-
herently major differences in their nutrient composition,
morphology, and anatomy [26], which results in sig-
nificant variations in the associated microbial diversity
and community composition. Variation in the micro-
biome extends to even different fruit compartments.
The core of apple fruits was reported to contain the
highest bacterial abundance but lowest bacterial di-
versity (~10® bacteria, Shannon H’: ~4), whereas peel
and pulp showed the reverse pattern (~10* bacteria,
Shannon H’: ~6.5) [4,70]. Those communities are fur-
thermore influenced by the plant genotype, the geo-
graphical location, including soil conditions, the
management practice, as well as the plant's age [1,46,70].
Yet, despite these variations, few members of the apple
microbiome can be considered as the core. The fungal
genera Aureobasidium, Cladosporium, Alternaria, Filobasi-
dium, Vishniacoxyma, and Sporobolomyces and the bacterial
genera Sphingomonas and Methylobacterium were found to
be present in 75% of the apples collected from 21 loca-
tions in eight countries across the world [1].

After harvest, fruit and vegetable microbiomes can be
significantly affected by storage treatments and time. In
apple fruits, for instance, species richness and abundance
were found to remain relatively stable, whereas the
community composition changed drastically [3,71]. Here,
especially an increase of Enterobacteriales abundance was
repeatedly observed [3,69,70]. In addition, storage and
transport were shown to provoke a shift in the anti-
microbial-resistance gene (ARG) composition of apple
fruits toward higher ARG diversity [71]. Specifically, ARG
counts associated with multidrug, quinolone, rifampicin,
Fosfomycin, and aminoglycoside resistance increased
after storage, independent of the cultivar. While a versa-
tile resistome is a regular feature of plant microbiomes
[49], complex food systems, including intercontinental
transport, might further the transmission of ARGs glob-
ally. The surveillance of postharvest-resistance emer-
gence was highlighted as critically important in view of
One and Planetary health concepts [28].

Finally, the microbiome composition of postharvest
fruits and leaves depends largely on their health status.
Diseased fruits or leaves tend to have a lower microbial
diversity than healthy ones, which is mainly due to
higher abundance of pathogenic fungi or bacteria in the
affected tissues, resulting in both reduction in species
richness and community evenness [36,69,74,76]. The
development of novel and robust disease-control stra-
tegies relies on understanding the dynamics of disease
emergence on the level of plant-microbiome interaction,
in the field, and post harvest.

Current postharvest biocontrol approaches
and limitations

Postharvest biocontrol is being investigated for more
than 30 years, and several products have been com-
mercialized. A summary of products, based on bacteria
and fungi as control agents, and their target pathogens,
was published recently [35]. The mode of action of a
bacterial or fungal biological control agent (BCA) is often
diverse and includes competition for nutrients and
space, mycoparasitism, the formation of biofilms that
inhibit growth of pathogens, competition for iron and
other elements, the production of ‘killer toxins’, hydro-
lytic enzymes, reactive oxygen species, mycotoxins, and
antimicrobial substances, including volatile organic
compounds [23,41,58,66]. In addition, most of the BCAs
induce the host plant's systemic resistance by either
enhancing defensive enzyme activity or by upregulating
pathogenesis-related gene expression [30,68].

Previous research that decoded these modes of action
was fundamental for current postharvest biocontrol, and
nowadays, besides applications of single strains, micro-
bial consortia, or microbial volatile organic compounds
(mVOCs), other concepts integrate bio-safe-considered
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chemical compounds or physical treatments to enhance
the performance of BCAs. The combination with, for
example, CaCl,, methyl jasmonate, or UV protectants as
well as heat treatments or gamma radiation were proven
to be successful in addressing consistency for pathogen
loads, temperature fluctuations, and sanitation processes
at different storage facilities [27,37,40,47,48,54,63,69,77].
Bacteriophages for biopreservation and food safety re-
present a promising approach as well. Especially if a high
target specificity is given, phages exert low risks for
human consumption and the environment [75]. Phage
endolysins, the enzymes that are responsible for the final
lysis step of bacteria, have a future potential because
they are even safer, more specific, and more efficient
than whole-phage application [55].

Yet, microbial treatments at storage still lack broad appli-
cations. The reasons are competition to existing chemicals,
the difficulties to implement them into current postharvest
processes, lack of industry and consumer acceptance,
hurdles for registration, and problems in formulation [73].
Additionally, most of biocontrol products showed incon-
sistent effects, which is, for instance, due to their confined
host range and the dependency on specific conditions for
successful disease control. But also the interaction between
the BCA-introduced and the indigenous plant microbiome
as well as the dynamics and evolution of those commu-
nities in response to plant's physiological state and to
abiotic factors play a critical role [19,33,59].

The development of a postharvest disease is complex,
and infestation can occur at different stages of a plant's
life cycle. Microbial pathogens are primarily field dis-
eases where symptoms accelerate after harvest on in-
fected fruits (e.g. bacterial soft rots and fungal gray
molds) but they can also infect the fruit after harvest, for
example, through wounded tissues. Overall, the condi-
tion in which fresh produce including its microbiota ar-
rives at the storage facility is decisive for fruit and
vegetable health, quality, and safety at later storage
timepoints [1,50]. Already in the field, next-generation
sequencing-based measures can be taken to predict
produce storability, for example, by identifying micro-
bial-indicator taxa for health and disease [36].

Microbial indicators for health and disease:
can we predict and improve the storability of
produce?

Predicting the storability of plant-based products would
not only facilitate the reduction of economic losses
worldwide but also reduce agricultural waste and land
use in general. Targeted microbiome approaches enable
the identification of indicator taxa that can be later
quantified, for example, by molecular approaches (e.g.
gPCR), as a sophisticated proxy for the storability of
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harvested produce [36]. Such indicator taxa must not
only include typical postharvest pathogens but can on
the contrary also include certain taxa that are indicative
for enhanced storability as previously shown for sugar
beets [36]. The potential of preharvest microbiome
profiling was also highlighted by Ref. [25]. Based on the
pathosystem tomato—Ralstonia solanacearum, the authors
showed that the binary outcome of health and disease of
plant individuals growing under homogeneous condi-
tions and in the presence of a soilborne pathogen, results
from an early and rapid divergence of the rhizosphere
microbiome. Those differences were found to sig-
nificantly predict health and disease even before disease
outbreak. In addition, bacteria isolated from persistent
healthy plants reduced disease severity by up to 100%
after being reintroduced into the pathosystem [25]. Such
findings provide the basis for the implementation of
targeted postharvest biotechnological treatments that
may be coupled with preharvest microbiome diagnostics
for plant diseases, analogous to precision agriculture,
which mainly relies on artificial intelligence [78].

Current research is often focused on the identification of
pathobionts in host-associated microbiota. Pathobionts are
microorganisms that can occur under specific genetic or
environmental conditions as a harmless symbiont in their
respective hosts [34]. However, when these conditions
change, the same microorganisms can cause specific dis-
eases in their host. Recent studies that analyzed post-
harvest losses on microbiome level, found that several of
the prominent storage pathogens, such as Penicillium spp.,
Neofabrea spp., Aspergillus spp., Botrytis spp., Sclerotinia spp.,
Erwinia spp., and Agrobacterium spp., are usually present in
natural environments as well and can be even found in
healthy fruits after storage [3,7,24,32,36,53,69,76]. In nat-
ural and healthy environments, the functionally highly
diverse microbiota can, in case of disturbance (e.g. pa-
thogen attack), intervene and take supportive action. In
contrast, during storage, certain abiotic parameters might
favor the growth of specific microbes, and at the same time,
downregulate the native functions of the indigenous mi-
crobiome, which is consequentially not able to compensate
the caused dysbiosis. Figure 1 shows microbial colonization
of seeds and fruit pulp of healthy and diseased pumpkins.
In the included example, the pulp of diseased pumpkins
clearly shows high abundances of Fusarium hyphae (IFigure
1f) and Erwinia amylovora cells (Figure 11). In contrast, the
microbiota of the seeds apparently remained unchanged
under all health conditions (Figure 1b, e, and h). Such
observations support the idea that all plant tissues, in-
cluding seeds, are natively colonized by diverse microbial
communities and it is not the general presence of a certain
potentially pathogenic microbial species, but rather a shift
in the microbiome, and especially a significant decrease in
microbial diversity and evenness, that affects the storability
of fresh produce [11,20].
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Figure 1

Current Opinion in Biotechnology

Microbial colonization of healthy and diseased Styrian oilseed pumpkin seeds and pulp. Panel A shows a healthy bisected pumpkin and panels B and
C visualize fluorescent in situ hybridization—confocal laser scanning micrographs of the respective seed endosphere (b) and pulp (c). Panels D, E, and
F visualize a pumpkin and its seed and pulp affected by Fusarium. Please note that in seeds (e), only bacteria were observed, whereas no intact plant
cells and only fungal hyphae were detected in the pulp (f). Panels G, H, and | visualize the whole fruit, seed endosphere, and pulp of a pumpkin
affected by Erwinia amylovora. Here, seeds (h) showed regular bacterial colonization, while, compared with healthy tissues, higher numbers of

bacterial cells were observed in the pulp (i). Scale bars indicate 10 pm.

Preventive strategies to counteract common postharvest
pathogens already in the field were established and
successfully applied in the past [38]. Such applications
would greatly benefit from targeted predictions via mi-
crobiome tracking if microorganisms are present that
could cause disease. This would allow to specifically
apply biotechnological products, such as formulated

antagonistic microorganisms, that can counteract certain
phytopathogens that are naturally occurring during plant
growth. Another promising strategy would be the tar-
geted application of so-called soterobionts that specifi-
cally prevent the outbreak of postharvest diseases.
Soterobionts were only recently described [17] as dis-
tinct microorganisms that can holistically protect their

Current Opinion in Biotechnology 78 (2022) 102808

www.sciencedirect.com



hosts from disease. However, so far, no soterobionts that
are specific for postharvest diseases were described.
Their identification and transfer into biotechnological
applications will benefit from microbiome-guided pre-
dictive approaches that have the potential to reveal pa-
thogens that require countermeasures to avoid disease
emergence.

Microbiome engineering: exploiting the full
potential of microbiome biotechnology for
sustainability along the food chain

Changes in microbial diversity and composition can be
expected to influence the host phenotype and thus de-
termine between health and disease. Microbiome en-
gineering is based on the implementation of microbial
populations that perform specific functions for the host
plant and contribute to a desired phenotype.
Microbiome modulation is a term that summarizes the
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formulated single strains or microbial consortia, to
pointedly influence the indigenous plant microbiome
temporarily or constantly with health benefits for the
host [11]. The potential of microbiome research to find
biotechnological solutions for postharvest applications is
presented in Figure 2.

In general, microbiome management comprises applying
(1) microbiome transplants, (ii) microbes with beneficial
properties, or (iii) microbiota-active metabolites to shift
microbiota structure and function from dysbiosis into a
healthy state. Biocontrol by microbial inoculation is a
classical strategy. However, classic microbial inoculants
continue to face significant obstacles, restricting their
application in agricultural contexts due to a lack of re-
producibility and efficacy under field conditions [61].
Recent advances in multiomics approaches have pro-
vided a more comprehensive picture of intermicrobial

modes of action of microbial inoculants, that is, and plant-microbial interactions and led to the
Figure 2
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Supply-chain sustainability can be achieved by incorporating the microbiome at all levels, from field to fork. Microbiome research will substantially
advance current postharvest approaches (left arrow), increase our understanding of disease development, and help to assess impacts and risks of
current and novel postharvest treatments (right arrow). Definitions: Pathobionts: host-associated, disease-causing (micro-)organisms with a distinct
pathogenic potential under certain genetic and environmental conditions. Soterobionts: host-associated, disease-preventing microorganisms that are
transferable to disease-susceptible hosts to confer disease resistance. Microbiome modulation: mode of action of single strains or microbial consortia
to pointedly modulate the indigenous plant microbiome temporarily or constantly with health benefits for the host. Hologenome editing: application of
microbes that provide a functional trait to support plant health. Integrative approaches: changing the environmental conditions to modulate the

microbiome on a community level.
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identification of ‘health conferring’ agents (soterobionts)
with high efficiency [17]. An example was recently
provided by Ref. [44], which used a combination of high-
throughput amplicon sequencing, gene mutagenesis,
and molecular-interaction assays that allowed the iden-
tification of the underlying mode of action of Sphingo-
monas melonis, a seed-endophytic bacterium that is
transmitted across generations and that differentiates
between rice seedling blight-resistant and -susceptible
phenotypes of the same rice cultivar. Inoculation of the
isolated strain into disease-susceptible rice phenotypes
resulted in resistance due to the production of anthra-
nilic acid that interferes with the sigma factor RpoS, a
protein that is needed for virulence-factor biosynthesis
by the seedborne pathogen [44]. Considering the in-
digenous plant microbiome in disease-preventing stra-
tegies is pivotal to design more targeted microbial
inoculants.

Host—microbiome cobreeding is another strategy to im-
prove disease resistance and other beneficial traits in
crops. It is well-documented that plant-associated mi-
crobial communities are partly influenced by host ge-
netics [2,67]. Since the selection of these specific taxa is
strongly driven by the host, they may provide beneficial
functions. For example, the microbiome of Fusarium
oxysporum-resistant cultivars of common bean was shown
to present higher gene-expression rates for nutrient
metabolism and biosynthesis of the antifungal com-
pounds compared with nonresistant cultivars [42]. In
another study, indica varieties of rice were found to
utilize nitrogen more effectively than japonica varieties
because they can attract a more diverse microbiome,
including strains that carry nitrogen-metabolism func-
tions [79]. Genome-wide association studies have
emerged as a useful tool for breeding programs to in-
vestigate the genetic complexity of plant phenotypes
[18,29]. Another study highlighting the importance of
host—microbiome cobreeding was published by Adam
et al. [5]: the seed microbiome in pumpkin, especially
the intraspecific diversity of Enterobacteriaceae, was cor-
related with healthy pumpkins in the field. These
findings represent the first steps into microbiome-driven
breeding for plant-beneficial microbes.

Hologenome editing, an idea recently designated by
Ravanbakhsh et al. [52], relies on the application of
microbes that provide a functional trait to support plant
health. Based on a simplified holobiont model with A.
thaliana and Pseudomonas putida, the authors demon-
strated that the plant nutritional value can be increased
by either targeted mutations of the microbiome or al-
terations of the plant genome. Both, altering the plant
ethylene-synthesis gene ETO1, or the microbial gene
acdS, yielded in increased ethylene production and thus,
similar plant phenotypes [52]. Similar approaches can

also be applied at postharvest by modulating the in-
digenous microbiota that can protect harvested products
from postharvest pathogens. This can also include gene
editing of biocontrol strains, for example, T7ichoderma
virens mutants carrying a mitogen-activated protein ki-
nase-encoding gene (Arv£l) showed improved biocon-
trol ability against Rhizoctonia solani due to increased
expression of genes associated with mycoparasitism and
overproduction of lytic enzymes [43]. Similarly, silencing
of acel gene in Trichoderma atroviride, increased the
synthesis of antibiotics and other secondary metabolites
that significantly enhanced its potential as a biocontrol
agent against Fusarium oxysporum and R. solani [21].
CRISPR-based technologies belong also to the genome-
editing technologies. This was recently applied to reg-
ulate microbial activity by altering the genetic content
within a species of interest from a complex microbial
population [9]. Thereby, new avirulent strains can be
produced that compete directly with virulent ones or
trigger plant immune responses [45]. The authors fur-
thermore suggested that CRISPR-Cas can be in-
troduced via engineered phage particles or extracellular
vesicles into spoilage microorganisms to target specific
genes, that is, virulence, antibiotic resistance, and toxin
genes, to specifically impair survival and colonization
rates [9].

Finally, we propose integrative approaches to modify the
microbiome on community level as most promising. In
general, any biotic or abiotic factor can lead to conversions
within the microbiome. These conversions are generally
not performed by single strains, but by specific ecological
units that respond to a certain factor [60]. A targeted
conversion of the microbiome, thus, comes down to
changing certain environmental conditions that favor a
desired ecological unit. Adam et al. [6] suggested, for
example, to first clear specific niches by predators within
the holobiont and thereby facilitate the establishment of
the microbial inoculant. mVOC:s, to which the effects of a
biocontrol agent are often attributed to, represent another
promising tool for integrated measures and to replace
hazardous chemicals [8]. Such approaches can be im-
plemented pre-, but especially postharvest, where abiotic
conditions can be controlled more precisely.

At the end, we want to highlight the relevance of mi-
crobiome research to assess the holistic impact of novel
biodecontamination treatments in the postharvest sector.
By analyzing the microbiome, [80] showed for instance
that cold plasma treatment, which is generally con-
sidered as safe for the environment and human con-
sumption [57], reduced overall bacterial diversity and
initiated the formation of bacterial spores in wheat
grains. Such effects are often not reflected by currently
used culture-dependent approaches but may represent a
risk to human health.

Current Opinion in Biotechnology 78 (2022) 102808

www.sciencedirect.com



Conclusion

Management of storage diseases demands on deep un-
derstanding of all factors that influence plant—micro-
biome interactions from the field to the consumer.
However, once those factors are disclosed, we will be
able to engineer the microbiome on a community level,
which will be far more robust and exceed the effectivity
of a single-strain application many times over. The fu-
ture vision is that microbiome-based solutions can
be integrated in one's health approaches, and act as
human probiotics too.
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